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Introduction

Optimal coin packings

Given infinite number of identical coins ()

how to place them on an infinite plane without overlap to maximize the covered surface?
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Introduction

Optimal coin packings

Given infinite number of identical coins ()

how to place them on an infinite plane without overlap to maximize the covered surface?

hexagonal coin packing '

1910-1940 J

The hexagonal coin packing is optimal.

Density of disc and sphere packings 1/24




Introduction

higher dimension

ore coins
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Introduction

Kepler conjecture, 1611

The “cannonball” packing is optimal:

Y

(proved optimal in 2000-2022) (proved in 1998-2014)
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Introduction

s @ tigher

&

Kepler conjecture, 1611

The “cannonball” packing is optimal:

(proved optlmal in 2000-2022) (proved in 1998- 2014)

\ / 8 )
(Viazovska, Fields Medal 2022)
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Introduction

Nanomaterials and packings

combine different types of nanoparticles
self-assembly

/\

new material

dy A

phase separation

4 s 3 ! . Pom—cT—Ty
Paik et al 2015 Cheon et al 2006
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Introduction

Nanomaterials and packings

combine different types of nanoparticles
self-assembly
new material/ \Phase separation
p Y — .';

s
Cheon et al 2006

Also in 3D:

Wau, Fan, Yin 2022

Chemists’ question : which sizes and concentrations allow for new materials?

Daria Pchelina Density of disc and sphere packings
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Disc packings

Definitions

Discs:

Packing P:
(in R?)

Daria Pchelina Density of disc and sphere packings



Disc packings
Definitions

Discs:

Packing P:
(in R?)

area([—n, n]> N P)
nooo  area([—n, n]?)

Density: 6(P) :=limsup
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Definitions
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Disc packings

Definitions

Discs:

Packing P:
(in R?)

area([—n, n]> N P)
n— oo area([_nv ’712)

Density: 6(P) :=limsup
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Definitions
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Definitions
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Disc packings
Definitions

Discs:

Packing P:
(in R?)

area([—n, n]> N P)
nooo  area([—n, n]?)

Density: 6(P) :=limsup
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Disc packings

Definitions

Discs:

Packing P:
(in R?)

area([—n, n]> N P)
n— oo area([_nv ’712)

Density: 6(P) :=limsup

Main Question

Given a finite set of discs (e.g., O®e ),
what is the maximal density §* of a packing?

5" :=sup§(P)
P

Daria Pchelina Density of disc and sphere packings



Disc packings
Optimal 2-disc packings

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)
Each of the following packings is optimal (densest) for discs of radii 1 and r: J

2

r~0.63 6*~91.1%

%

r~0.41 §"~92% r~0 38 6*~92% 0.34 ~92 5%

% %
r~0.28 6*~93.2%  r~0.15 &6*~95%  r~0.1 0*~96%
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Disc packings
Optimal 2-disc packings

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)
Each of the following packings is optimal (densest) for discs of radii 1 and r: J

r~0.53 §*~91.4%

rO 34 6" ~92.5%

06

-y _{( |
~93.2% r=0.15 §"~95% r=0.1 §"~96%

Daria Pchelina Density of disc and sphere packings 5/ 24
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Disc packings

Connelly conjecture

Triangulated packings:

Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optlmal.J

. C
()

non triangulated triangulated non trlangulated
saturated non saturated non saturated

AN A
triangulated
saturated

Daria Pchelina Density of disc and sphere packings
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Disc packings
Connelly conjecture

Triangulated packings:

Conjecture (Connelly 2018) J

If a finite set of discs allows saturated triangulated packings then one of them is optimal.

e

VAL AN YA FAN
triangulated non triangulated triangulated non triangulated
saturated saturated non saturated non saturated

Theorem (O@®e Fernique, Hashemi, Sizova 2019)

Discs of radii 1, r and s: there are 164 pairs (r,s) allowing triangulated packings.

st e R ok R Y M
e iR P oqssuso sl - Podoale of o k'
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Qee
1 r

164 (r,s) allowing
triangulated packings:

Wl .

@ 15 cases: non
saturated

@ 16+16 cases:
a ternary or binary
triangulated packing
is densest

@ 45 cases: a binary
non triangulated
packing is denser

Daria Pchelina
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Disc packings
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Theorem (Fernique, P 2023)

Each of the following packings is optimal for discs of radii 1, r and s:

r~0.8 s~0.7 §*~90.9%

r~0.6 s~0.5 6" ~91.2%

r~0.7 s~0.5 §*~91.1%

s

¢ X
01.8% r~0.5 s~0.4 0" ~0L.7% r~0.8 s~0.5 5 ~91.2%
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Disc packings
FM-triangulation

1-disc packing multi-size disc packing

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other
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Disc packings

FM-triangulation

1-disc packing multi-size disc packing

\J D
3\ @ ©

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
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Disc packings

FM-triangulation
1-disc packing multi-size disc packing
Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
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Disc packings

FM-triangulation
1-disc packing multi-size disc packing
Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells

FM-triangulation of a packing: dual graph of the Voronoi diagram

Daria Pchelina Density of disc and sphere packings 9/ 24



Disc packings

FM-triangulation

1-disc packing multi-size disc packing

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
FM-triangulation of a packing: dual graph of the Voronoi diagram

Density of a triangle A in a packing = its proportion covered by discs on = %A(Z)P)
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Disc packings

FM-triangulation

1-disc packing multi-size disc packing

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
FM-triangulation of a packing: dual graph of the Voronoi diagram

Density of a triangle A in a packing = its proportion covered by discs on = %A(Z)P)
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Disc packings

Local density redistribution

P of density 6(P) P* of density 6*
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Disc packings
Local density redistribution

X

P of density 6(P) P* of density 6*
VA, 8(A) < 5(A) = 6" 3(AN) = o7
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Disc packings
Local density redistribution

X

P of density 6(P) P* of density 6*
VA, 8(A) < 5(A) = 6" 3(AN) = o7
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Disc packings

Local density redistribution

‘i‘& 5(P) < &* é&

P of density 6(P) P* of density 6*
VA, 8(A) < 5(A) = 6" 3(AN) = o7
Proof:

o the smallest angle of any A is at least % 2>R=

@ thus the largest angle is between 7 and %’T
/2
area(A)

density of a triangle A: §(A) =

the area of a triangle ABC with the largest angle A: ‘AB“‘AQC"SE”E >22% _ 3

o thus the density of ABC is less or equal to L\/; ="

Daria Pchelina Density of disc and sphere packings 10 / 24



Disc packings
Local density redistribution

& o(P) <" &

P of density 6(P) P* of density 6"

A, §(8) < 6(An) = o 5(An) =6

| 4

P of density §(P) P* of density 5*
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Disc packings

Local density redistribution

X

P of density 6(P) P* of density §*

A, §(8) < 6(An) = o 5(An) =6

| 4

Triangles in P* have different
densities:

5(&) <ot < 5(&)

Hopeless to bound the density
P of density 4(P) by §* in each triangle... P* of density &*

Daria Pchelina Density of disc and sphere packings 10 / 24



Disc packings

Local density redistribution

P of density 6(P)
VA, §(A) < 5(AN) = 6

X

P* of density 6"

S(AN) =5

redistributed density §':

dense triangles
share their density
with neighbors

P of density §(P)<&'(P)

Daria Pchelina

Density of disc and sphere packings

P* of density §*
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Disc packings

Local density redistribution

P of density 6(P)
VA, §(A) < 5(AN) = 6

X

P* of density 6"

S(AN) =5

redistributed density §':

dense triangles
share their density
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Disc packings

Local density redistribution

P of density 6(P)
VA, §(A) < 5(AN) = 6

X

P* of density 6"

S(AN) =5

QZ/V 5(P) < '(P) < &

redistributed density §':

dense triangles
P of density 6(P)<¢'(P) share their density
VA, §'(A) <§* with neighbors

Daria Pchelina

Density of disc and sphere packings

P* of density §*
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Disc packings

Verifying inequalities on compact sets

How to check ¢§'(A) < 6* on each possible triangle A? (there is a continuum of them)
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Disc packings
Verifying inequalities on compact sets

How to check §'(A) < &* on each possible triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

o

rht+n<c<r+rn+2s
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Disc packings
Verifying inequalities on compact sets

How to check §'(A) < &* on each possible triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

o

rht+n<c<r+rn+2s

o Interval arithmetic: to verify 0’ (A, ) < 0° for all (a, b,c) € [a,3] x [b, b] X [c, €],
we verify [0, 0] < 0" where [3,0] = 6'(A, 3 (b5 1c.q)

o If 6* €[4, 6], recursive subdivision: @ - % -

Daria Pchelina Density of disc and sphere packings
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Disc packings

And these:

Daria Pchelina Density of disc and sphere packings



Disc packings
45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar manner (non triangulated) and still get high density

ternary triangulated

packing :
§<0.931369 s~ 0.121445 §<0.924522 s~0.166169
counter example
using only 2 discs
4
§>0.937371 s~0.121445 §>0.939305 s~ 0.166169 5>0 918420 s~ 0.240205

Daria Pchelina Density of disc and sphere packings 14 / 24



Disc packings
45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar manner (non triangulated) and still get high density

ternary triangulated

packing g
§<0.931369 s~ 0.121445 §<0.924522 s~ 0.16616
dense binary
packing
<
§~0.962430 7~ 0.101021 §~0.950308 r~0.154701 o~ 0931901 r~0.2 7
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Sphere packings

Kepler conjecture: @-packings

3D close @-packings: @ §F = T
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Sphere packings
Kepler conjecture: @-packings
3D close @-packings: @ C@) 5 = ﬁ

Hales, Ferguson, 1998-2014 (Conjectured by Kepler, 1611)J

Close packings maximize the density.

@ close packings maximize the density among lattice packings Gauss, 1831
@ 18th problem of the Hilbert's list 1900
@ 6 preprints by Hales and Ferguson ArXiv 1998
> 50000 + 137000 lines of code
@ reviewing: 13 reviewers, 4 years... “99% certain” 1999-2003
@ “short” version of the proof Annals of Mathematics 2005
o full version: 6 edited papers DCG 2006
o Flyspeck project: formal proof (HOL Light and Isabelle) 2003-2014

Forum of Mathematics, Pi 2017
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Sphere packings

Rock salt ) @-packings

cannonball packing

sphere

@
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Sphere packings

Rock salt ) @-packings

rock salt packing

rock salt spheres

oe
1 r=v2-1

Daria Pchelina Density of disc and sphere packings 16 / 24



Sphere packings

Rock salt ) @-packings

rock salt packing

rock salt spheres

oe
1 r=v2-1
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Sphere packings

Rock salt ) @-packings

rock salt packing

rock salt spheres

1 r=v2-1
triangulated — simplicial
(contact graph is a “tetrahedration™)
Fernique, 2019

The only simplicial 2-sphere packings in
3D are rock salt packings.
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Sphere packings

Rock salt ) @-packings

rock salt packing

rock salt spheres

1 r=v2-1
triangulated — simplicial
(contact graph is a “tetrahedration™)
Fernique, 2019

The only simplicial 2-sphere packings in
3D are rock salt packings.

Salt conjecture open problem

Rock salt packing is optimal §* ~ 79%
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Sphere packings

Upper density bound for O @-packings in 2D

Florian, 1960

The density of a packing never exceeds the density in the following triangle: A
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Sphere packings

Upper density bound for O @-packings in 2D

Florian, 1960

The density of a packing never exceeds the density in the following triangle: A

Proof:
o Dimension reduction (3 — 1) Fejes T6th, Mélnar, 1058
For any triangle, there is a denser triangle with at least two contacts between discs.

e i
=8

triangle deflation sliding
symmetry

C*e C*e Gte
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Sphere packings

Upper density bound for O @-packings in 2D

Florian, 1960

The density of a packing never exceeds the density in the following triangle: A

Proof:
o Dimension reduction (3 — 1) Fejes T6th, Mélnar, 1058
For any triangle, there is a denser triangle with at least two contacts between discs.

e i
=8

triangle deflation sliding
symmetry

C*e C*e Gte

@ Function analisys

- ——|AC]
AQC A@C
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Sphere packings
Upper density bound for () @-packings

FM-triangulation (triangles)

FM-simplicial partition (tetrahedra)

densest triangle

densest tetrahedra

TILL tght, T tighe, T sretched (Fejes Toh 1owe

iower bouna)

Daria Pchelina

Density of disc and sphere packings



Sphere packings
Upper density bound for () @-packings

Theorem, r =2 — 1 in progress

Each of the following tetrahedra is densest among the tetrahedra with the same spheres:

H A L >

61111 ~ 0.7209 o011 ~ 0.8105 O1rrr ~ 0.8065 Orrr =~ 0.7847 O111r R 0.81251

Daria Pchelina Density of disc and sphere packings 19 / 24



Sphere packings
Upper density bound for () @-packings

Theorem, r =2 — 1 in progress

Each of the following tetrahedra is densest among the tetrahedra with the same spheres:

H A L >

61111 ~ 0.7209 o011 ~ 0.8105 O1rrr ~ 0.8065 Orrr =~ 0.7847 O111r R 0'81251

Proof:

o Dimension reduction (6 — 4): //
tetrahedron deflation + sphere sliding Y
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Sphere packings
Upper density bound for () @-packings

Theorem, r =+/2—1 in progress

Each of the following tetrahedra is densest among the tetrahedra with the same spheres:

DA L e

51111 =~ 0.7209 511” ~ 0.8105 51", =~ 0.8065 5,", ~ 0.7847 5111, ~ 0.8].25J

Proof:

@ Dimension reduction (6 — 4):
tetrahedron deflation + sphere sliding
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Sphere packings
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Sphere packings
Upper density bound for () @-packings

Theorem, r =+/2—1 in progress

Each of the following tetrahedra is densest among the tetrahedra with the same spheres:

DA L e

51111 =~ 0.7209 511” ~ 0.8105 51,,, =~ 0.8065 5,,,, ~ 0.7847 5111, ~ 0.8125J

Proof:

o Dimension reduction (6 — 4):
tetrahedron deflation + sphere sliding

\
o Computer-assisted proof for tetrahedra with 2 contacts:
recursive subdivision + interval arithmetic
= 1000 lines of code 11h on 96 CPUs

Daria Pchelina Density of disc and sphere packings 19 / 24



Sphere packings

Why the computations are so slow

interval arithmetic + huge formulas — loss of precision
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Sphere packings

Why the computations are so slow

interval arithmetic + huge formulas — loss of precision

Example: to compute the support sphere radius, we need to solve Ar? +Br+ C =0

A =22’ +42° P +4b o’ 4 P -4 d 142D ¥ - 4b e 42’ P +Ab el +ab d ¥ A d e —ab e —4a" P+ 42 P+ 42° P - AK P 142 P P AC A P 147 PP A P F - ad e
422 4 ad* 2 -8d e P +4e* 118 F2 12 —8e 22 +-4F* 12 —8b 01, +BC7 d 1y +8b7 € 1ry —8 €1y, — 162 F 1ty +8b* £ 1t +8C2F2 1y +8d° F2 rry 4862 £ 1, —8F* o +-8b* 12 —8b* c*r2 +4c*r}
8B 2128 F2 12 +AF* 1 —8a A e+ B AP 114822 € 1~ 1662 1y 12+ 8 € 1y 1480 € 1y 1 —8€* 11483 1 o~ B F o4 8% Forro ~8a° b1y 1o +8a° P 1y 124862 €21y 1o —8C 1y e~ 162y 1
1862, r 4 82 r, o+ 822, 1A 82 Fory 1B FPr o 4a'r2 —82° P r2 1 4c 1282212 -8 e 2 14 1218 d 1+ 8D AP rr, — 167 AP rr, 8" er, — 83 € rry + 862 € rr, 4 8d% € iy
+83% F2 r —8b 2 11y -8 F2 114837 b1y oy —8b" 1, oy — B> €21y 1y +8b2CP 1y 1+ 8L 02 1y 1y 482 1 1oy~ 162 €21y 1, 4837 F2 1y 1 4+ 862 £2 1y 1,8l F2 1y 1y 8" 12 1y 4832 bR o1 4 83° P oy —8b2 P Lty

+83°d 121 +8C°d* 1,1+ 83" € 121w +8b° € 121y —8d € 11— 163" F o1, +-43" 1) — 82 b1} +-4b° 1 —8a  d°r) —8b d’r) +4d "y,

B =—4cd" 1, +40° d* ¥ 1 +4CP d ¥ r—4b e 1 +427 P £ 1+ AP I £ 14427 £ 1+ 4D 1 —8d € o r—4a ' 1+ 4d 1} —8d7 € 1) +4e’ 1} —8d 1} 87 2 i +4f 2 +4b P ry—4c dr,—ab" e,
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+4e' 1} —8a* b o 1oy +42° P P 1o +4b7 P d 1, —4P d* 1, +42° b2 € 1, —4b° ¥ 1+ 4D AP € 1, —8a° P 1+ 42D £ 1y +427 0P £ 4827 0P 21+ 462 AP 2 1~ P r—Ad 2 r, — 427 € Er, +Ab €
+4d° € 121 +43 £ 11— 46 £ 12 1 4 £ 121, +42° B 1 1y — 4 1 1, — 827 C ) 1y + 4 C ) 1+ 4B 1y +AC O 1 1 — 862 €7 1 1y 427 £ AP P )y —4d 2 1) 1y —4a° 21 42 B 1y 40P C
4P 422 A R A A R 80 AL € A€ 2 —8a 12 1 42 P+ 4D B B Pl —4d 1l — 437 € ol + AP+ AdP e 8P P 4D
B O R o Y o O R e Y Rl R Y Rl O A F

—ab P42 P HAC P A4l 4D Lt —Ad e ol —8a P ik +4a° 1) —8a b +4b* ) —8a 0 ry —8b7 dP ) +4d )
C=c'd" 2P +b'e' 227 d’ P22’ ¥ F a2 d e’ Pl 12l d 2k e R 422 P 42 P P 237 P 42k’ P —ad ¥ Frl —2a7 FU il d il —2d e i€t

—2d*Fri -2 FPritF 4207 P d ) —2c d ) —2b' €y 4267 P 1237 B P 1) 420 P —ab P 42 P R 2k e f 2 2k P 2 d 2kt ¥ i —2 P e i —4a )

426 P2 P+ 2d P 426t P =26 b ) -2k Pyt 2B ) 2 Pl U 42 P —2c d 2a b e — 4t el 2k et i +actd el —2bPet ]

—23' 2423’ PP 2423 P} 2a P i 2 P 423’ il —Ab el i 2 E 4 2d e il 26" 22 423 2 Pl 2 428 Pl 2a b 4 237 P rp 4260
—2c' Al d 20 e i 2c e i 2a P 42 P =26 P 4at ri—2a Pl -2’ i -2 e el — 4’ B d 4237 P 4267 Py —27 d 423 b e,
—2b' 4207 P 23" P 1] 4237 P A1) 428 AP P 4237 Pl 4207 Pl — A P i) —2d 2 ) — 227 € 2l 42k @ i r 4 2dP € i 4 237 P 2 —2b £ 2 ) 42 P ) 428 b
—2b* 22 P A0 P 420 P 420 d 4B 2 R 4 2 P ) 2 £ 23 2 4237 B 287 Pl e 2P P 2 2 Pl r 42 P
122 2 ra 4202 il —2d P rirl —4at Frird +a' ry—2a° B ry 4+ bt —2a dP i —2bP Pl 4-d*r),

Density of disc and sphere packings / 24




Sphere packings

Why the computations are so slow

interval arithmetic + huge formulas — loss of precision

Example: to compute the support sphere radius, we need to solve Ar? +Br+ C =0

Thanks to dimension reduction:

compute with fixed radii and edge lengths, then "simplify”
g 2=y g e (et ey 2y il @ =2

Aun =4 (d? — &)? + 4" + ((d* — 8)e? — 8d?)f?

Bun =8 (d® — €?)® + 8" + 2 ((d?> — 8)e* — 8d?)f>
C1111 = d2e2f2
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Conclusion

Techniques

Geometry:

properties of triangulations ... and “tetrahedrizations” differential geometry

Computer assistance:

Ann =4 (d - ) a4 (@ - 8)e - 8d) f
B =8 (@ =)’ +8 11 4 2((d - 8)e* — 8%) f*
Cun = d*ef?
8 7 =2 T
— arctan | Y=HE=0)
<
V(@ = e = ft - (@2 - 8)e? - 8d) 2

case analysis symbolic calculus — N:gts{v(il;rgzgee,\t/;;th)
Python, C++ SageMath Boost (C++)
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Conclusion

Open questions: packings and tilings

triangulated packings ~ tilings by triangles
with local rules

C NN

VVAV VVA' V'

Y ﬁ'&‘ f»: W o V -
" 1" V‘?

ey e T4 AT

density = weighted proportion of tiles
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Conclusion

Open questions: packings and tilings

triangulated packings ~ tilings by triangles
with local rules

C IO

A vuv X/

VY ﬁ':v f»: W %//4 V -
LA

Bttty T o 7

density = weighted proportion of tiles

Triangulated Packing Problem

excludes hexagonal packing
algebraic numbers represented by polynomials and intervals — e

Given k disc radii ,--- , rc, is there a triangulated packing of density >

2V3

Y n,---,r with triangulated packings, one is periodic = decidable
(Wang algorithm: search for a period)

dr, -, r whose triangulated packings are all aperiodic = undecidable?
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Conclusion

Open questions: packings and tilings

Dense Packing Problem

excludes hexagonal packing
algebraic numbers represented by polynomials and intervals — e

Given k disc radii r,---, rc, is there a packing of density > T

2V3

¥ n,---, r with dense packings, one is periodic = decidable
(interval arithmetic and subdivision until needed precision)

dn,---, r whose dense packings are all aperiodic not possible!
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Conclusion

Other “spherical” questions: from pollen grains to kissing problem

Tammes 1930: configuration of pores on a pollen grain spherical codes

maximize the number of spherical caps of a given radius on a sphere
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Other “spherical” questions: from pollen grains to kissing problem

Tammes 1930: configuration of pores on a pollen grain spherical codes

maximize the number of spherical caps of a given radius on a sphere

place n points on a sphere to maximize the distance between two nearest points
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Conclusion

Other “spherical” questions: from pollen grains to kissing problem

Tammes 1930: configuration of pores on a pollen grain spherical codes

maximize the number of spherical caps of a given radius on a sphere
place n points on a sphere to maximize the distance between two nearest points

find the smallest possible radius of a central sphere tangent to n unit spheres

solved for n = 3,...,14, and 24 (1943 — 2015)
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Other “spherical” questions: from pollen grains to kissing problem

Tammes 1930: configuration of pores on a pollen grain spherical codes

maximize the number of spherical caps of a given radius on a sphere
place n points on a sphere to maximize the distance between two nearest points

find the smallest possible radius of a central sphere tangent to n unit spheres

solved for n = 3,...,14, and 24 (1943 — 2015)

kissing number: how many unit spheres can touch the same unit central sphere in R
solved ford =2:6, 3:

Daria Pchelina Density of disc and sphere packings 23 /24



Conclusion

Other “spherical” questions: from pollen grains to kissing problem

Tammes 1930: configuration of pores on a pollen grain spherical codes

maximize the number of spherical caps of a given radius on a sphere
place n points on a sphere to maximize the distance between two nearest points

find the smallest possible radius of a central sphere tangent to n unit spheres

solved for n = 3,...,14, and 24 (1943 — 2015)

kissing number: how many unit spheres can touch the same unit central sphere in R
solved for d =2 :6, 3:12 (1953), 4 : 24 (2003), 8 : 240, 24 : 196560 (1979)
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Conclusion

Other “spherical” questions: from pollen grains to kissing problem

Tammes 1930: configuration of pores on a pollen grain spherical codes

maximize the number of spherical caps of a given radius on a sphere
place n points on a sphere to maximize the distance between two nearest points

find the smallest possible radius of a central sphere tangent to n unit spheres

solved for n = 3,...,14, and 24 (1943 — 2015)

kissing number: how many unit spheres can touch the same unit central sphere in R
solved for d =2 :6, 3:12 (1953), 4 : 24 (2003), 8 : 240, 24 : 196560 (1979)

dodecahedral conjecture
smallest Voronoi cell in sphere packing

(proved in 2010)
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How to find triangulated packings

packing is triangulated each disc has a “corona”

2w
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How to find triangulated packings

packing is triangulated each disc has a “corona”

2w

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number):

symbolic corona

r 1

(Fernique, Hashemi, Sizova 2019)
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How to find triangulated packings

packing is triangulated each disc has a “corona”

2w

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number):

symbolic corona — value of r
r 1 — —
6x1lr4+1xrlr =27
r 1 r
~ 0.63
1 1 r=0.
r

(Fernique, Hashemi, Sizova 2019)
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