
A Two-Phase Infinite/Finite Low-Level Memory Model
Reconciling Integer–Pointer Casts, Finite Space, and undef at the LLVM IR Level of Abstraction

CALVIN BECK, University of Pennsylvania, USA

IRENE YOON, Inria, France
HANXI CHEN, University of Pennsylvania, USA

YANNICK ZAKOWSKI, Inria, ENS de Lyon, CNRS, UCBL1, LIP, UMR 5668, France

STEVE ZDANCEWIC, University of Pennsylvania, USA

This paper provides a novel approach to reconciling complex low-level memorymodel features, such as pointer–

integer casts, with desired refinements that are needed to justify the correctness of program transformations.

The idea is to use a “two-phase”memorymodel, onewith an unboundedmemory and corresponding unbounded

integer type, and one with a finite memory; the connection between the two levels is made explicit by a

notion of refinement that handles out-of-memory behaviors. This approach allows for more optimizations

to be performed and establishes a clear boundary between the idealized semantics of a program and the

implementation of that program on finite hardware.

The two-phase memory model has been incorporated into an LLVM IR semantics, demonstrating its utility

in practice in the context of a low-level language with features like undef and bitcast. This yields infinite
and finite memory versions of the language semantics that are proven to be in refinement with respect to

out-of-memory behaviors. Each semantics is accompanied by a verified executable reference interpreter. The

semantics justify optimizations, such as dead-alloca-elimination, that were previously impossible or difficult

to prove correct.

CCS Concepts: • Theory of computation→ Denotational semantics; Program verification; Program
specifications; • Software and its engineering→ Compilers; Semantics.

Additional Key Words and Phrases: low-level memory model, integer–pointer casts, semantics, coq

ACM Reference Format:
Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic. 2024. A Two-Phase In-

finite/Finite Low-Level Memory Model: Reconciling Integer–Pointer Casts, Finite Space, and undef at the

LLVM IR Level of Abstraction. Proc. ACM Program. Lang. 8, ICFP, Article 263 (August 2024), 29 pages.

https://doi.org/10.1145/3674652

1 Introduction
After 50 years the memory model for a programming language like C should be well understood!

Unfortunately, memory models for low-level languages like C and LLVM IR are quite subtle and

complex, especially when considered in the context of optimizations and program transforma-

tions [3–6, 13, 18–20, 22, 25, 26, 31, 32]. Why? These languages provide an abstract view of memory

to justify a wide range of “high-level” optimizations—often pretending that available memory is

unbounded and that allocations yield disjoint blocks, where a pointer to one allocated block can

Authors’ Contact Information: Calvin Beck, University of Pennsylvania, Philadelphia, PA, USA, hobbes@seas.upenn.edu;

Irene Yoon, Inria, Paris, France, euisun.yoon@inria.fr; Hanxi Chen, University of Pennsylvania, Philadelphia, PA, USA,

hanxic@seas.upenn.edu; Yannick Zakowski, Inria, ENS de Lyon, CNRS, UCBL1, LIP, UMR 5668, France, yannick.zakowski@

inria.fr; Steve Zdancewic, University of Pennsylvania, Philadelphia, PA, USA, stevez@cis.upenn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART263

https://doi.org/10.1145/3674652

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0002-3469-7219
HTTPS://ORCID.ORG/0000-0003-3388-1257
HTTPS://ORCID.ORG/0009-0006-4486-7222
HTTPS://ORCID.ORG/0000-0003-4585-6470
HTTPS://ORCID.ORG/0000-0002-3516-1512
https://doi.org/10.1145/3674652
https://orcid.org/0000-0002-3469-7219
https://orcid.org/0000-0003-3388-1257
https://orcid.org/0009-0006-4486-7222
https://orcid.org/0000-0003-4585-6470
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.1145/3674652

263:2 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

never be used to access adjacent blocks from different allocations—but these languages also allow for

low-level access to the memory, yielding a high degree of control and performance. Unfortunately,

these two extremes are at odds, and it is difficult to ensure that the semantics of low-level memory

operations preserve the invariants expected by the high-level optimizations.

This tension between low-level memory operations and high-level optimizations is evident in

pointer arithmetic operations. Pointer arithmetic operations allow programmers to manipulate

memory addresses as integer values, which exposes the underlying concrete memory layout. When

the concrete memory layout is exposed, the behavior of a program can depend upon where values
are allocated in memory, which can severely limit which optimizations can be performed. For

instance, the assignment a[i] = 2 could overwrite any other value in memory if a[i] is out of
bounds of the array a (the underlying pointer arithmetic is hidden by the array index notation).

That sounds reasonable when considering how this program would execute on a specific machine

at a low level, but it is disastrous from the perspective of an optimizing compiler! Even if a is

dead (i.e., never read from again), the compiler can’t remove this store because it might alias with
something that is live. To justify removing a (seemingly) dead store, the compiler would also have
to prove that i is in bounds, but because i can be the result of an arbitrary computation this can be

difficult, if not impossible. What is a compiler (or compiler implementor) to do?

Programming languages like C and LLVM use the notion of “undefined behavior” (or “UB”) to
justify the correctness of “high-level” optimizations without the need for complicated reasoning

(like determining whether a[i] is in bounds). The compiler assumes that the program doesn’t

exhibit undefined behavior. For instance, by declaring that out-of-bounds accesses are UB, the

compiler only needs to determine that a isn’t read from again to justify deleting the dead a[i] = 2
store—the compiler assumes that a[i] is in bounds, so we don’t need to worry about it aliasing

with anything except elements of a. Programs given to the compiler must not exhibit UB or the

optimizations it performs won’t be valid, potentially leading to unexpected results, but, in return,

the compiler is able to perform much more aggressive optimizations.

While UB can be a very powerful tool, it can, unfortunately, be difficult to define the semantics of

a programming language and its memory model such that situations that impact optimizations are

classified as UB. This is particularly challenging in the context of more realistic memory models,

such as those involving finite memory, in which seemingly pure operations may have visible side

effects, like exhausting memory. For instance Lee, et al. [22] note that, in the case of finite memory,

there is a side-channel that can be used to accurately guess the physical address of other blocks,

making it difficult to rule out pointer aliasing brought about by casting arbitrary integers to pointers.

Similarly (but perhaps counter-intuitively) in a finite memory model, it is, in general, unsound
to remove a dead allocation operation: allocating less memory can turn a program that always

runs out of space into one that makes more progress, thereby introducing more behaviors after

optimization—to justify removing the allocation, the compiler would have to also prove that the

allocation always succeeds! (This is the strategy taken in CompCertS [5].)

These situations may seem unimportant: Who cares if a program can determine the physical

address of a block without directly observing it through a pointer–integer cast? Isn’t the goal of

removing an allocation to save memory, potentially allowing the program to make more progress?

However, properly accounting for such semantics is essential for ensuring that the compiler makes

consistent assumptions—inconsistency can lead to end-to-end miscompilation bugs and subtle

erroneous interactions between optimization passes.
1
It is also vital in the context of formal

1
There are numerous discussions about such semantics problems on the LLVM IR github issue tracker https://github.com/

llvm/llvm-project/issues/. A few examples particularly germane to our focus are 54002, 55061, 52930, 33896, and, especially,

34577: LLVM Memory Model needs more rigor to avoid undesired optimization results, which has been open since 2017.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

https://github.com/llvm/llvm-project/issues/
https://github.com/llvm/llvm-project/issues/
https://github.com/llvm/llvm-project/issues/54002
https://github.com/llvm/llvm-project/issues/55061
https://github.com/llvm/llvm-project/issues/52930
https://github.com/llvm/llvm-project/issues/33896
https://github.com/llvm/llvm-project/issues/34577

A Two-Phase Infinite/Finite Low-Level Memory Model 263:3

verification, which aims for optimizations to be “provably correct.” For example, if the memory

model does not rule out the possibility that a program can determine the physical address of some

block, it can be impossible to justify an optimization that depends on memory locations being

unaliased. Ultimately, an incoherent memory model leads to buggy software, and complicates

formally verifying optimization passes.

Pointer–integer casts are a major sticking point for memory models [5, 18]. These casts expose

the bare bones of the memory layout, which complicates alias analysis and can invalidate many

optimizations, but these casts also bring a more subtle and sinister issue into play: cardinality. Most

programming languages at this level of abstraction have integers with finite bitwidths; however,
compilers and programmers pretend that there is no limit to the number of pointers a program

can allocate, as doing so greatly simplifies reasoning (see the discussion in Lee, et al. [22]). This

discrepancy between finitary integers and infinitary pointers means that one of the following design

choices must be made: (1) a cast from a pointer to an integer can fail, (2) casting from a pointer to

an integer and back does not necessarily yield the original pointer, and thus causes unexpected

aliasing, or, (3) we must admit that memory is finite and make the pointer types finite as well. All of

these options have implications for program transformations: (1) means that pointer–integer casts

are effectful, instead of being (pure) no-ops, which means they can’t easily be removed, (2) means

that any code using a cast may result in pointers being truncated, which means it could cause

aliasing, thereby invalidating many optimizations, and, (3) has many complicated consequences,

including being unable to remove dead allocations (as mentioned above).

The big(int) idea. This paper proposes a new way to reconcile the desired features mentioned

above. In particular, we present a semantics for low-level languages that provides an account of

pointer–integer casts, while dealing with finite memory and justifyingmany desirable optimizations.

The key insight is that, for such a language, there are really two memory models in play: one that

assumes an unbounded amount of memory and the presence of an “unbounded integer type” (akin

to bigint) for which there can be an injection from pointers to these unbounded integers, and

a second that assumes a finite memory and in which all pointers and integer types have finite

bitwidths. The advantage of this is that many optimizations, such as dead allocation elimination,

are always valid in the infinite memory model without any additional reasoning (though some

optimizations are valid in both). Optimizations should primarily be performed with respect to the

infinite memory model, and then the program should be translated safely to the finite memory

model for subsequent lowering to machine code. This explicit translation step that converts the

program from the infinite model to the finite one is (almost) just the identity translation on syntax.

Semantically, it may introduce new out-of-memory behaviors, but otherwise, the translated code

retains a precisely specified connection to its infinitary behavior. The upshot is that we can reason

about the impact of a compiler’s optimizations in phases, but still have end-to-end guarantees

about a program’s behaviors that are sufficient to ensure correct compilation. In contrast, existing

models for languages like LLVM IR don’t separate these phases, which muddles the semantics and

makes the assumptions unclear. While our focus is on languages that straddle the barrier between

low-level memory accesses and high-level optimizations like LLVM IR and C, these ideas should be

relevant to all higher-level languages that assume there is infinite memory and must ultimately be

compiled to run on machines with finite memory.

Although this idea seems simple at first blush, working through all of the many details turned

out to be highly nontrivial—for instance, in the infinite phase, one must address
2
what it means

to store an “infinitely wide” pointer into a data structure that is serialized into a form stored in

memory. To handle that, we observe that the infinite model’s behaviors in such cases are always

2
Pun intended!

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:4 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

(eventually) lowered to the finite model’s, which gives us a degree of wiggle room: in the infinite

memory model, reading such an infinitely wide pointer “atomically” from memory can be lossless,

but—even in the infinite model—reading such a stored pointer byte-by-byte can truncate the pointer.

So long as the finite model refines these behaviors, it will behave “as expected.”

In summary, this paper makes the following contributions:

• We explain the design rationale of this two-phase infinite/finite memory model in the context

of related state-of-the-art memory models for languages that support integer–pointer casts.

See Section 2.

• We formalize the proposed memory model in the Coq theorem prover. The axiomatic de-

scription allows for many possible implementations, and we use Coq’s module features to

share the definitions common to the infinite and finite models. Each model is parameterized

by a few basic abstractions (symbolic bytes and addresses) that should be relevant in any

low-level programming language. The basic interface is given by just seven byte-oriented

operations, which can be used to build methods for working with aggregate data such as

vectors or structs. See Section 3.

• We define the relevant notions of simulation in both the infinite and finite models and prove

that the translation from the infinite to the finite phase is a suitable refinement, introducing

only new out-of-memory behaviors.

• To demonstrate the suitability of these ideas for modeling “real world” languages, we instan-

tiate the memory models in the context of an existing formal semantics VIR, for LLVM IR,

based on the work by Zakowski, et al. [39]. The VIR semantics aims to be a specification

for a large, practically applicable subset of LLVM IR, but its prior memory models suffered

from the deficiencies with respect to optimization correctness mentioned above. We choose

this setting because VIR (and LLVM IR) supports a rich, C-like structured memory model,

including integer–pointer casts; it also includes undef and poison values that interact non-

trivially with the specification because they introduce nondeterminism and affect the notion

of Undefined Behavior. Our instantiation handles a superset of the features supported by

previous versions of VIR, giving us confidence that our memory model scales to realistic

features sets. See Section 4.

• Besides the specification of the memory models, which is intended to be a logical (and hence

nondeterministic) characterization of the set of allowed behaviors, we also define executable
implementations for the VIR semantics (for both infinite and finite memories). We formally

prove that these implementations refine the corresponding specifications. These executable

semantics let us both test VIR against other LLVM IR implementations (specifically clang)
and use Quickchick-style [12] randomized testing to probe the behaviors of our model.

• We further demonstrate the utility of this semantics for formal verification by proving the

correctness of instances of dead-alloca elimination and dead ptrtoint cast elimination,

which are representative of the reasoning needed to prove full-scale compiler optimizations

such as register promotion and global-value numbering. We briefly describe these results in

Section 5.

Although our proposal provides a piece of the puzzle for defining a “full” memory model for

low-level languages like C or LLVM IR, we deliberately do not consider some features in this paper,

leaving them to other (future) work. In particular, we omit concurrency altogether because there

has already been much research on concurrent memory models, especially for relaxed-memory

semantics, for such languages like C and the LLVM IR [1, 9, 17, 24, 34, 35]. Our treatment of

infinite–finite refinement should be orthogonal to those proposals, but we expect it would take

non-trivial engineering effort to combine them. We also elide and/or simplify some details of LLVM

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:5

Table 1. Comparison of various low-level memory models. Columns PtoI and ItoP describe pointer–to-int
and int-to-pointer support, column Finite indicates support for finite memory, and Ext. Mem. describes
whether the memory model requires extra memory.

Model PtoI ItoP Finite Ext.
Mem.

Optimizations

Concrete No-Op No-Op Yes No Bad

Logical Blocks Unsupported Unsupported No No Good

Quasi-Concrete Effectful Yes No, awkward No Good when no PtoI casts, can-

not remove PtoI casts if con-

crete memory is finite

Twin-Allocation No-Op No-Op Yes Yes Cannot remove dead alloca-

tions

CompCertS No-Op No-Op Only Finite Yes Have to prove optimizations

use less memory

Ours No-Op No-Op 2-Stages No Staged between infinite + fi-

nite compilation to allowmore

optimizations

IR that are not really relevant or that we expect to be straight forward to implement using this

model; Section 4 describes the features we do consider.

Our formal semantics specification, the VIR implementations, and the claimed theorems are fully

implemented and proved in the Coq interactive theorem prover. However, the full development is

very large, relies heavily on Coq-specific details, and is a bit more general than what we need here.

Thus, for the purposes of this paper, we have liberally simplified and streamlined the presentation,

in-lining, renaming, and sharing some definitions when compared to the Coq code.
3

2 Remembering Low-level Memory Models
To put our work in context, this section provides an overview of some basic memory models,

focusing on which kinds of optimizations they allow, especially in the context of pointer arithmetic,

pointer–integer casts, and finite memory. We’ll start by reviewing a basic concrete memory model,

compare it to a logical memory model (which does not support low level memory operations, but

supports more optimizations), and then look at several memory models that bridge the gap between

these two extremes, namely, the Quasi-Concrete model [18], the Twin-Allocation model [22], and

the CompCertS finite memory model [5]. The summary of the comparison is given in Table 1.

2.1 Fully Concrete

int main(int argc, char *argv[]) {
char *a = malloc(4);
char *b = malloc(4);
*b = 1;
char *c = a + f(0);
*c = 2;
// What can this print?
printf("%d\n", *b);
// optimized: printf("%d\n", 1)
return 0; }

One of the simplest memory models is a completely con-

crete one where memory is modeled by an array of bytes.

Each allocation is assigned its own unique physical pointer

which is just an integer index into the memory array. Model-

ing pointer–integer casts under this memory model is trivial

as pointers really are just integer indices, making the casts

no-ops. Furthermore, finite memory can easily be modified

by simply restricting the size of the array.

This model of memory is perfectly reasonable, and is quite

similar to how the memory in a physical computer actually

3
The development can be found here https://github.com/vellvm/vellvm, and the artifact, with some additional documentation

linking claims from the paper to the Coq development, can be found here https://zenodo.org/doi/10.5281/zenodo.12518800

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

https://github.com/vellvm/vellvm
https://zenodo.org/doi/10.5281/zenodo.12518800

263:6 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

works; unfortunately, these memory models are too concrete. The physical memory layout is not

abstract at all, making it difficult to justify high level optimizations. For example, consider the

program shown above.

It looks like *b is not modified after initialization, so it’s sensible to use store forwarding to

optimize away the extra load from *b, and replace the call to printf with printf("%d\n", 1)
(which would enable further optimizations as b would now be dead). Unfortunately, the simple

concrete memory model can’t justify this optimization when c == a + f(0) == b, as this would
mean that the write to *c overwrites the value stored in *b, and so it should print 2 instead of 1.
If we want to perform this optimization, we’ll now have to know where a and b can be allocated

in memory, and what the function call f(0) evaluates to. This is a lot of work for the compiler

to justify a simple optimization, especially when the only reason it won’t work is in the kind of

degenerate case where you use a to generate a pointer to b, which should be out of bounds of a.

Undefined behavior. This is where undefined behavior (UB) comes into play. Language designers

may decide that certain behaviors are “undefined,” leaving the language semantics unspecified in

such cases. The presence of UB justifies more aggressive compiler optimizations. For instance, in C

the example program above is considered to have UB whenever c is a pointer outside of the region

of memory allocated for a. The language implementation does not necessarily check for this UB;

the compiler simply assumes that pointers constructed using pointer arithmetic stay in bounds of

the original allocation, and thus c could never alias with b, because b was allocated with a different

call to malloc. Compilers only need to preserve defined behavior, and so any case where UB occurs

need not be considered when performing a program transformation. In the example above, we can

perform store forwarding to have printf("%d\n", 1) instead—the only way that this program

could print anything besides 1 is if c aliases with b, which would make the store to *c UB.
Unfortunately, this concrete memory model cannot justify such optimizations—the model is too

well defined, giving a specific behavior to the program in the degenerate cases where out-of-bounds

pointer arithmetic is used to overwrite arbitrary memory locations. We shouldn’t be able to use a

pointer from one allocation to derive an alias to a separate allocation. To address this we’d like to

keep track of which pointers are allowed to access which regions of memory.

2.2 CompCert: Provenance
One way to solve the aliasing problem from the previous section is to give pointers provenance. The
provenance of a pointer determines which block in memory that pointer is allowed to access. This

provenance can be preserved throughout pointer arithmetic operations, so the pointer c should
have the same provenance as a, and thus c should only be able to modify the block of memory

associated with a, and cannot access the disjoint block of memory from the separate allocation b.
One example of a memory model that takes provenance into account is CompCert’s [26, 27].

CompCert is a formally verified C compiler with an abstract-block-based memory model. Memory

is no longer defined as a concrete array; instead memory is a map of blocks, and each allocation

creates a block with a unique id b in the memory map. Pointers can then be represented by a tuple

(b, o), where b is the block id that serves as the provenance, and o is the offset into the block.

With this model, it’s not possible for a pointer to be created that indexes into another block, as

pointer arithmetic modifies only the offset and block ids never change. This is good news for the

optimization in the example: c will never be able to alias with b. Unfortunately, it’s not clear how
we could handle casts between pointers and integers in this model because there is no longer a

physical address for a block! Furthermore, because there is no physical memory layout, it is not

clear how to implement finite memory in this case (one could limit the total size of the allocations,

but without a physical layout of memory, it is difficult to take fragmentation into account).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:7

2.3 Bringing Back Casting
There have been a couple of proposals for how to handle pointer–integer casting. The main two

points of comparison are the quasi-concrete [18] and twin allocation [22] memory models.

2.3.1 Quasi-concrete Memory Model. The quasi-concrete memory model is an extension of Comp-

Cert’s abstract-block style of memory models. The memory is split into two parts: logical, and

concrete. The logical memory is the block/offset model described in Section 2.2, and, if no pointer–

integer casts occur, the quasi-concrete memory is effectively identical to this model.

To support casts, the quasi-concrete memory model glues a concrete memory on top of the logical

block model. This concrete layer represents the physical layout of the blocks in memory. Whenever

a pointer is cast to an integer, a physical block is allocated in the concrete layer, representing where

the logical block is actually allocated in physical memory. Delaying the allocation of a physical

block until cast time can rule out situations where an address of a block might be guessed
4
. If the

physical address of a block has never been observed through a integer cast, then a program should

not be able to guess where that block is allocated (the block exists only in logical memory). Of

course, while an actual program running on a real computer will allocate a physical address for

every block immediately, the delayed allocation of physical blocks allows abstract pointers
5
to

be completely isolated, such that physical addresses can never alias with them. Thus, even in the

presence of complex casting between pointers and integers, more optimizations involving purely

abstract pointers are justified, as are simpler heuristics for aliasing.

The downside of the delayed allocation of physical blocks is that pointer–integer casts have the

side effect, within the semantics, of allocating a physical block in concrete memory. This means that

we cannot erase any pointer to integer casts, even if they’re dead, which in turn further restricts

other optimization passes. For instance, an otherwise dead block of code or function call may need

to remain in the program, because removing a cast will change the memory layout, impacting

the behavior of the program. Removing the cast may mean the block is no longer accessible via

integers cast to pointers, and may change where other blocks are allocated in concrete memory.

Furthermore, the story for finite memory is awkward in the quasi-concrete memory model.

We can allocate as many logical blocks as we want, but, if there are a finite number of physical

addresses, a cast from a pointer to an integer can cause an Out Of Memory (OOM) error. Ultimately,

there are still all of the problems that we have with reasoning about finite programs, but they arise

only in programs that perform pointer to integer casts.

2.3.2 Twin Allocation. Twin allocation [22] takes a different approach to handling pointer–integer

casts, and does so while taking finite memory into account. Twin allocation gives every pointer

a physical address immediately, but uses nondeterminism to rule out address guessing. Upon

allocation, this memory model actually reserves two (or more) blocks instead of just one. One block

is a “trap”, and accessing it will raise UB; the other will be used as normal
6
. The model tracks two

executions for the program nondeterministically, with the only difference between the executions

being which of the two blocks is real and which is the trap. Then, if address guessing occurs, UB

will be observed in one of the executions, as the guessed block will instead be a trap block in the

alternate execution—and in that case, the program as a whole is considered to exhibit UB.

4
An address is “guessed” if we construct a pointer to a block without deriving it directly from the allocation. This is mostly

done via integer–pointer casts. For instance, casting an arbitrary integer to a pointer could give you an alias to any region

of memory. Aliasing is problematic for optimizations, so we want to avoid it.

5
Pointers whose physical address has never been observed via pointer–integer casts.

6
Both blocks really do need to be allocated! If we just considered two executions, one where the block is allocated at p1 and

one where the block is allocated at p2, then it’s plausible for something else to be allocated in the other slot for each of the

executions, so you might not be able to swap p1 for a trapped p2.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:8 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

This model addresses some of the problems of the quasi-concrete memory model. Casts between

pointers and integers aren’t effectful and can thus be erased, as every block gets a physical address

immediately. However, this model introduces some additional constraints on program transforma-

tions. Most importantly, allocations, even dead ones, cannot be removed! This issue is fundamental

to the nature of finite memory models: when performing any allocation
7
in a finite model, the

program may run out of memory, and, if it is removed, the program will behave differently—it

might continue to execute instead of running out of memory. This situation isn’t very satisfying,

though, as programmers want the compiler to remove dead allocations! Section 3 will discuss our

solution to this seemingly impossible conundrum.

Furthermore the twin-allocation model requires additional memory allocation to ensure that

there’s enough nondeterminism for address guessing to be detected. It should be possible for the

extra allocation to be removed at run time, as that should also yield a valid execution of the program

(the “trap” blocks can only cause UB to be raised sooner, or OOM), but it’s awkward that we have

to reason about programs with double (or more) of their actual memory usage. Section 6 of [31]

makes the observation that it should be possible to instead reserve space for the largest allocation

that the program can possibly make, instead of duplicating every allocation, which makes a slightly

different reasoning trade-off. Using this strategy, one would have to prove that a program never

performs an allocation larger than this pre-allocated trap block in order to guarantee that addresses

are not guessed, which is an additional burden on the compiler, or on the programmer if such large

allocations would be considered UB instead.

2.4 CompCertS: A Finite Symbolic Memory Model
CompCertS [5] extends the classic CompCert memory model with symbolic values (as in [3] and

[4]), and allows for pointers to be treated as integers — our memory model takes a very similar

approach with respect to the abstract bytes stored in memory as discussed in Section 4.2.2.

For our purposes, the most relevant aspect of CompCertS is how it handles finite memory.

CompCertS makes the assumption that programs do not run out of memory, and any program

transformation that CompCertS performs must be shown to either preserve, or decrease the amount

of memory allocated by the program. These are perfectly reasonable design decisions, but this

means that (1) to ensure correct compilation of a program, that program must be proven to not run

out of memory, (2) any program transformations must be shown to not use additional memory,

and (3) the finite memory address guessing side-channel discussed in Section 2.3.2 is present.

The constraints introduced by (2) can be mitigated somewhat by “pre-allocating” some unused

memory that can be utilized by future program transformations, and it should also be possible

to reclaim memory that is no longer needed. Program transformations that decrease memory

usage should always be applicable (assuming the source program does not run out of memory),

but transformations that increase memory usage may only apply conditionally. This approach to

handling finite memory is honest and yields strong guarantees about the memory usage of the

target program, but the restrictions on which optimizations can be performed are not ideal—ideally,

we want to let our compiler hand-wave reasoning about memory altogether (in a semantically

consistent way).

3 A Two-Phase Memory Model
To address the limitations of the memory models described in Section 2, our proposal is to use two

phases of compilation to get the best of all worlds: an infinite memory model where high-level

7
Assuming the bound on memory size is not known in advance, which is the usual assumption. If the size is known, then
one could prove that some allocations will always succeed, but that poses other complications.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:9

𝜎 ∈ Conf ≜


mem : Memory,
heap : Heap,
stack : FrameStack,
used : P(Prov)

m ∈ Memory ≜ Addr ↩→ (SByte × Prov)
h ∈ Heap ≜ Addr ↩→ P(Ptr)
p ∈ Ptr ≜ {a : Addr ; pr : Prov}

f ∈ Frame ≜ P(Ptr)
fs ∈ FrameStack ≜ list Frame

pr ∈ Prov ≜ option(N)
Fig. 1. Datatype of memory configurations, where Addr and SByte are abstract parameters

abstract optimizations can be performed with ease, and a finite memory model that more closely

represents the finite architecture of the compilation target. In our infinite model, both allocations

and casts between pointers and integers can be removed (if they’re dead) or added at will, so the

presence of these operations doesn’t block optimizations. Nearly all optimizations should be done

under the infinite semantics, as optimizations that are valid under the finite model are also valid

under the infinite model. Once optimizations are performed, there is an explicit translation to the

finite model. That compilation step preserves the semantics of the original infinite program, but

potentially introduces points where the program can halt early because it ran out of memory.

At a high level, the design of our two-phase memory model resembles the concrete memory

models from Section 2.1 and Section 2.4. The only real difference between our infinite and finite

models is the type of the pointers and the iptr type that we introduce in Section 4.2 in order

to handle pointer / integer casts appropriately. The infinite model uses Coq’s big-integer Z type

for physical addresses, and the finite versions use an implementation of 64-bit integers (limiting

the size of memory to the 64-bit address space). The iptr type matches the type of the physical

addresses in the respective memory model.

The semantics for our memory model is nondeterministic, allowing us to accurately model the

behavior of the program under the different memory layouts that arise from nondeterministic

allocations. This nondeterminism can also be used to prevent address guessing in the infinite

memory model, as there will always be an execution where a guessed block could be allocated

somewhere else instead (akin to swapping blocks in the twin-allocation model, except no pre-

allocation of these “trap blocks” is necessary because infinite memory means we always have

unallocated space to swap blocks to).

3.1 Notations
We write m : 𝐴 ↩→ 𝐵 when m is a partial map from 𝐴 to 𝐵. We write m[𝑎] = 𝑏 to assert that 𝑎

belongs to the domain of m and maps to 𝑏, m{a := b} for updating a in m with value b, possibly
extending the domain of𝑚 in the process, and m \ a to remove a from the domain of m. When r is
an element of a record type, we write r .f for the content of its field f . We use the notation P(𝐴)
for the set of all subsets of elements of 𝐴. Given a list, l, we write |l | for its length, l [i] to access its

i-th element, assuming it is within bounds, and coerce it into a set implicitly when needed. Finally,

we conflate equality and extensional equality over finite maps.

3.2 Memory Configurations
Figure 1 describes the datatype Conf of memory configurations. It is parameterized by two types:

Addr , the representation of concrete addresses, and SByte, the representation of (symbolic) bytes,

in memory. The former is straightforward: addresses are represented as unbounded integers at

the infinite level, and bounded integers at the finite level—we assume an operation + : Addr →
N→ OOM + Addr , which performs arithmetic on addresses returning OOM in the case where an

overflow occurs in the finite model. We will leave the representation of symbolic bytes abstract,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:10 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

as their implementation is language dependent, but we will give a full description of them in our

LLVM semantics in Section 4.2.2; we invite the reader to think of them as concrete bytes until then.

A configuration 𝜎 has four fields. The memory itself, 𝜎.mem, is a finite map from addresses to

bytes with an associated provenance. The provenance is an optional natural number, where the

None constructor is used as a wildcard during integer–pointer casts. We introduce notations to

access the memory via pointers, i.e., addresses tagged with provenance information. We write

𝑚[p] ¤= b for the partial allowed SByte lookup operation: it asserts both that p.a is in the domain

of m, and performs a provenance check by ensuring that it maps to the pair (b, p.pr). We simply

write p ¤∈ m as a shortcut to ∃b,m[p] ¤= b to state that a pointer is accessible in memory. Conversely,

p ¤∉ m states that a pointer cannot be accessed in memory, either because p.a is not in the domain

of m, or because the associated provenance is different from p.pr . Finally, we write m1 ≡\−→p m2 to

express that memories m1 and m2 agree on content and provenance at all addresses except those in

the list of pointers
−→p :

m1 ≡\−→p m2 ≜ ∀p′, b, (∀p ∈ −→p , p′ .a ≠ p.a) → (m1 [p′] ¤= b↔ m2 [p′] ¤= b)

The heap 𝜎.heap tracks information about heap allocation units. Via malloc, a contiguous region
of memory can be allocated in blocks of sequentially consecutive pointers: p1, . . . , p𝑛 . Each p𝑖 :
Ptr in the block is associated with its root address p1.a, which is the address returned by the

allocation operation. Freeing the root deallocates the whole block. (Freeing a non-root address will

be undefined behavior.) The stack, 𝜎.stack, keeps track of the call stack by maintaining a stack of

frames, where each frame consists of a list of pointers. Fresh addresses, allocated via alloca, are
added to the top frame of the stack, referred to as 𝜎.stack.top. Finally, a configuration keeps track

of a set of used provenances, 𝜎.used in order to ensure that fresh provenances can be assigned to

new allocations.

3.3 The Specification Monad
Memory models for compiler IRs are naturally nondeterministic semantic objects: they must

describe all legal implementations architectures may commit to, and allocations, in particular, are

left unconstrained, leading to nondeterminism. We provide a specification for each operation via a

specification monad:

MemSpec(𝑋) ≜ Conf → P(Result (Conf × 𝑋)) where Result (𝐴) ≜ UB + OOM + FAIL + ok(𝐴)

MemSpec(𝑋) is stateful and nondeterministic, relating initial configurations to a set of possible

configurations that could result from executing a memory operation. These sets are specified in

a propositional way; we describe them either via inference rules, or by composing them via the

usual ret and bind monadic operations. Finally, the result type, Result (), allows us to characterize

the four possible acceptable behaviors of an operation. We write (c 𝜎) ∋ beh to state that beh is a

valid behavior of a memory specification c at initial configuration 𝜎 .

An operation may simply succeed, yielding ok(𝜎, x), returning a new configuration 𝜎 and a

resulting value x. It may also raise one of three exceptional behaviors. The first is Undefined
Behavior, UB, which arises from run-time situations that invalidate assumptions the compiler

makes to justify optimizations; semantically, these are modeled as computations that can be refined

into anything. The second is an out of memory exception, OOM . This behavior captures all the

situations in which the computation may preemptively halt as a consequence of the representation

of addresses; semantically it is modeled as a behavior that refines anything. Lastly, operations may

FAIL, representing cases in our semantics that we intend to be statically checked and ruled out. This

exception also corresponds to language features that have not been implemented in our model. In

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:11

read𝑏 (p : Ptr) : MemSpec(SByte)
write𝑏 (p : Ptr) (b : SByte) : MemSpec(unit)

pushf : MemSpec(unit)
popf : MemSpec(unit)

alloca (−→b : list SByte) : MemSpec(Ptr)
malloc (−→b : list SByte) : MemSpec(Ptr)

free (p : Ptr) : MemSpec(unit)
Fig. 2. Memory model: low level operations

p ¤∉ 𝜎.mem

(read𝑏 p 𝜎) ∋ UB
𝜎.mem[p] ¤= b

(read𝑏 p 𝜎) ∋ ok(𝜎, b)
p ¤∉ 𝜎.mem

(write𝑏 p b 𝜎) ∋ UB

𝜎1 .heap = 𝜎2.heap 𝜎1.stack = 𝜎2.stack 𝜎1.used = 𝜎2 .used
p ¤∈ 𝜎1.mem 𝜎2.mem[p] ¤= b 𝜎1.mem ≡\{p} 𝜎2.mem

(write𝑏 p b 𝜎1) ∋ ok(𝜎2, tt)
Fig. 3. Memory model: byte-level read and write operations

p ∉ 𝜎.used

(fresh 𝜎) ∋ ok(𝜎{used := {p} ∪ 𝜎.used}, p)
∀i, 0 ≤ i < n, 𝜎 .mem[a + i] = None

(find_bk n 𝜎) ∋ ok(𝜎, a)

𝜎1.heap = 𝜎2.heap 𝜎1.used = 𝜎2 .used 𝜎2.stack = 𝜎1.stack.top ⊎ −→p :: 𝜎1 .stack.𝑡𝑙

|−→p | = |−→b | ∀i, 0 ≤ i < |−→p |, 𝜎2.mem[−→p [i]] ¤= −→b [i] 𝜎1 .mem ≡\−→p 𝜎2 .mem

(alloca_post 𝑏𝑠 𝑝𝑡𝑟𝑠 𝑚1) ∋ ok(𝑚2, tt)

𝜎1.stack = 𝜎2.stack 𝜎1.used = 𝜎2.used 𝜎2.heap = 𝜎1.heap{−→p [0] .a :=
−→p }

|−→p | = |−→b | ∀0 ≤ i < |−→p |, 𝜎2 .mem[−→p [i]] ¤= −→b [i] 𝜎1.mem ≡\−→p 𝜎2.mem

(malloc_post −→b −→p 𝜎1) ∋ ok(𝜎2, tt)

𝜎1.stack = 𝜎2.stack 𝜎1.used = 𝜎2 .used 𝜎1.heap[p.a] = Some −→p 𝜎2.heap = 𝜎1.heap \ {p.a}
∀p′ ∈ −→p , (p′ ¤∈ 𝜎1.mem ∧ 𝜎2 .mem[p′ .a] = 𝑁𝑜𝑛𝑒) 𝜎1.mem ≡\−→p 𝜎2.mem

(free p 𝜎1) ∋ ok(𝜎2, tt)
Fig. 4. Memory model: memory management primitives

the remainder of the paper, we therefore elide this case by providing partial specifications instead.

A key distinction between failure and UB is that failure is not “time-traveling” in our semantics.

The monadic specification is particularly useful for maintaining very similar structures between

the memory model and the executable interpreter (See Section 6), which simplifies maintenance

and the proof that the executable implementations of the memory model respect the specifications.

3.4 Low Level Memory Operations
Signatures of the low level primitives interacting with the memory model are described in Figure 2.

The operations are reads and writes of single bytes, allocations of blocks (a contiguous sequence of

bytes) on the stack and heap, operations for freeing heap allocated blocks, pushing stack frames,

and popping the most recent stack frame in order to free stack allocated blocks.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:12 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

𝜎1.heap = 𝜎2.heap 𝜎1 .used = 𝜎2.used 𝜎1.mem = 𝜎2 .mem 𝜎2 .stack = ∅ :: 𝜎1 .stack
(pushf 𝜎1) ∋ ok(𝜎2, tt)

𝜎1.heap = 𝜎2 .heap 𝜎1.used = 𝜎2.used 𝜎1 .stack =
−→p :: 𝜎2.stack

∀p ∈ −→p , (p ¤∈ 𝜎1.mem ∧ 𝜎2 .mem[p.a] = 𝑁𝑜𝑛𝑒) 𝜎1.mem ≡\−→p 𝜎2.mem

(popf 𝜎1) ∋ ok(𝜎2, tt)
Fig. 5. Memory model: frame stack management

Out of memory behavior. Perhaps surprisingly we always allow operations to halt preemptively

with an out-of-memory behavior. One of our goals was for the specifications to encompass a large

number of possible implementations for memory, and we’ve seen instances of memory models that

might “run out of memory” in counter-intuitive situations (for instance a quasi-concrete memory

model with a finite concrete memory may run out of memory when a concrete block is allocated for

a pointer–integer cast), as such we’ve been very lenient with allowing out-of-memory behaviors

throughout or semantics. One could tighten the specifications if desired, though when comparing

the infinite and finite memory models in Section 3.5 our refinement relations allow for out-of-

memory anywhere in the finite memory model anyway. Since out-of-memory is omnipresent, we

work under the convention that all specifications 𝑐 : MemSpec(𝑋) may run out of memory, i.e.,

(𝑐 𝑚) ∋ OOM is satisfied for any initial memory𝑚. This makes OOM a kind of refinement dual to

UB. While UB can always be refined into any computation, any computation may be refined by

OOM , as we purposefully do not want to reason about programs that run out of memory.

Reading and writing bytes (Figure 3). The operation read𝑏 p 𝜎 specifies the possible behaviors

when dereferencing a pointer in memory. Dereferencing boils down to looking up the memory,

with the additional provenance check introduced in Section 3.2. If the lookup fails, or is illegal, UB
may be raised. Writing a byte b to memory 𝜎1 .mem at a pointer p may trigger UB in similar cases to

reading. A successful write must furthermore specify the resulting configuration 𝜎2—the statement

is made slightly more complex to account for provenance, but hides no surprise. Only the memory

component of the configuration is modified. A pointer p accessible in 𝜎1.mem will be remapped to

the byte b in 𝜎2.mem. Finally, all addresses distinct from p.a are unchanged in memory.

Memory management (Figure 4). Specifying allocation is a more involved and less atomic task, so

we leverage the specification monad to describe it in a more programmatic style. Utility specifica-

tions help generate a fresh provenance pr (fresh), and retrieve an available contiguous sequence

of n addresses in memory (find_bk n). 8 Note that find_bk uses 𝑎 + 𝑖 to compute contiguous

addresses, should this overflow in the finite model the allowed behavior will only be OOM .

Stack and heap allocations of a list of bytes are specified very similarly, retrieving a fresh prove-

nance, an available range of addresses, constraining the resulting memory, and finally returning

the first allocated address:

alloca (−→b : list SByte) : MemSpec(Ptr) :=
pr ← fresh;;

a← find_bk (|−→b |);;
alloca_post

−→
b [(a, pr), . . . , (a + |−→b | − 1, pr)] ;;

ret (a, pr)

malloc (−→b : list SByte) : MemSpec(Ptr) :=
pr ← fresh;;

a← find_bk (|−→b |);;
malloc_post

−→
b [(a, pr), . . . , (a + |−→b | − 1, pr)] ;;

ret (a, pr)

8
In line with LLVM, allocating no bytes (i.e. an empty list) may return any address. Its fresh provenance, which no data is

equipped with, will, however, ensure we cannot do anything with this address without triggering UB.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:13

𝜎 inf ≳ 𝜎fin
:= 𝜎 inf = ⌈𝜎fin⌉ Refinement

⌈𝜎fin⌉ :=


mem = {𝑧 ↦→ (⌈𝑏⌉, 𝑝) | 𝜎fin .mem[𝑧] = (𝑏, 𝑝)}
heap = {𝑧 ↦→ map ⌈−⌉ blk | 𝜎fin .heap[𝑧] = blk}
stack = map (𝜆blk · map ⌈−⌉blk) 𝜎fin .stack
used = 𝜎fin .used

Configuration Lifting

⌈p⌉ := (int_to_Z(p.a), p.pr)
⌈𝑏⌉ := lift_sbyte(𝑏) (lifting symbolic bytes, language specific)

Fig. 6. Infinite-to-finite refinement defined by lifting of finite memory configurations into infinite memory
configurations. Here, lift_sbyte is a language-specific lifting of finite SBytefin into SByteinf . We omit implicit
int_to_Z() casts when the integer is known to be within finite bounds.

These specifications only differ in how the configurations are constrained as depicted on Figure 4.

For stack allocation, alloca_post
−→
b −→p ensures that (1) the new pointers are added to the current

stack frame, (2) the addresses are written with the corresponding bytes, all sharing the provenance

pr , and (3) nothing else in memory is altered. For heap allocation, malloc_post
−→
b −→p enforces (2)

and (3) similarly, but, instead of manipulating the stack, it ensures that the returned address is a

root in the heap associated with the set of newly allocated pointers.

Given a pointer p, free p 𝜎1 ensures that p.a is a valid root in 𝜎1.heap, associated with a set of

pointers
−→p accessible in 𝜎1 .mem. Under this assumption, it simply reclaims the pointers and severs

p.a from the heap. Though not shown in the Figure, UB occurs in the complementary cases—when

the pointer is not a root in the heap or if the block was not actually allocated in memory.

Stack management (Fig 5). Pushing a new frame, pushf, is trivial, simply adding the emptyset on

top of the stack. The specification of popf is very close to free: we ensure all pointers in the top

frame are accessible in the original memory, reclaim them, and pop the stack.

3.5 Relating the Infinite and Finite Memory Models
We now consider two instances of the memory model, based on two representations of addresses:

an infinite memory model with unbounded integers, and a finite one with 64-bit integers. We will

distinguish between these models with inf and fin superscripts for the infinite and finite memory

models respectively.

Our overarching goal is to be able to reason about programs in the infinite memory model,

performing program transformations under the infinite semantics. We will then convert these

infinite memory programs to finite memory programs that will eventually be compiled to native

assembly code for a concrete architecture. In order to ensure that this process is sound, we must

relate the behavior of memory operations under the infinite model with the behavior of the same

operations under the finite model.

The rough idea is to consider the execution of programs under the infinite model when their

allocations happen to fit within the finite memory model’s range of memory addresses—executions

that don’t fit will exhibit OOM behavior. We then ensure that operations on these finite memory

slices agree between the infinite and finite memory models. Essentially, the finite memory model

should be able to simulate the infinite memory model, as long as all the addresses stay in bounds!

3.5.1 Relating Configurations. We start by relating configurations at both levels. As described

in Figure 6, a finite 𝜎fin
: Conf fin is a refinement of an infinite 𝜎 inf

, written 𝜎 inf ≳ 𝜎fin
, when

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:14 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

𝜎 inf
coincides with the lifting ⌈𝜎fin⌉. Lifting a Conf fin is fairly straightforward, both domains of

configurations having similar concrete representations. The lifting therefore simply maps over the

structure the trivial injection of finite addresses into Z, as well as the lifting of symbolic bytes.
9

3.5.2 Relating Operations. We can now capture the intuitive expected behavior of the memory

operations: if the memory configuration can fit in the finite representation, then the same behavior

can be observed. In practice, we prove a refinement lemma for each low-level operation. For instance,

in the case of reads:

Lemma 3.1 (read_byte_spec refinement).

If
• 𝜎 inf ≳ 𝜎fin, and
• ptr inf = ⌈ptrfin⌉, and
• (read𝑏 𝜎 inf ptr inf) ∋ ok(𝜎 inf , 𝑏inf)

then∃ 𝑏fin such that • 𝑏
inf = ⌈𝑏fin⌉, and

• (read𝑏 𝜎fin ptrfin) ∋ ok(𝜎fin, 𝑏fin).

The lemmas for the other operations are similar in shape, so we omit them for conciseness.

4 Integrating the Memory Model into an LLVM like Language
To demonstrate the usefulness and expressiveness of our memory model described above, we

incorporate it into a modified version of the VIR [39] formal semantics. VIR is a specification for a

large, practically applicable subset of (sequential) LLVM IR. It supports a rich, C-like structured

memory model, including integer–pointer casts; it also includes undef and poison values that

interact non-trivially with the memory model specification because they affect the notion of UB.

Incorporating the two-phase memory model into VIR increases the accuracy of the semantics, and

allows for more optimizations to be formally justified. In addition to integrating our memory model

with VIR, we have made further changes to the VIR semantics. The structure of the interpretation

layers, as discussed in the next section, has been changed to incorporate the non-determinism in

the memory model, we have fixed the behaviour of non-deterministic values with respect to various

operations, and changes have been made to how UB is handled in order to bring the semantics

further in line with LLVM proper. Furthermore, we have introduced a new type to the language,

iptr, which is an integer type that is guaranteed to be able to fit an address
10
. The result of this

effort is a more complete and accurate LLVM semantics in Coq, and demonstrates the applicability

of our memory model for real, complex languages.

Previously, the VIR memory model was based upon the CompCert and quasi-concrete semantics,

so it suffered from the deficiencies with respect to optimization correctness mentioned in Section 2.

The quasi-concrete layout meant that finite memory could not be accurately modeled, and casts

from pointers to integers would impact the concrete memory layout, making these casts effectful

computations, which could not be trivially removed from program, even when dead. Integrating

our memory model rectifies these problems, and our handling of symbolic bytes also allows us to

handle how LLVM’s complex undef values interact with memory more faithfully.

This section will necessarily discuss VIR and the LLVM IR in some detail, but it is worth noting

that our memory model is not specific to LLVM. The infinite and finite models above provide

general semantics that are parameterized by addresses and symbolic bytes, as these parameters

could vary depending on the programming language. This section describes the VIR instantiation

of the framework and, along the way, addresses some challenges of formalizing LLVM IR semantics.

As in the general framework, this instantiation yields both an infinite memory and a finite memory

9
We delay this description to Section 4.2.2.

10
The iptr type does not currently exist in the LLVM IR, but we propose adding it to the IR in order to better support casts

from pointers to integers. It is analogous to the intptr_t type that exists in C.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:15

version of the VIR semantics. Most of the development is parametric with respect to that choice,

but we differentiate them as VIR
inf

and VIR
fin

where necessary.

4.1 Layered Interpreters

VIR

itree 𝐸0 V

itree 𝐸1 V

stateT𝐸𝑛𝑣𝐺 itree 𝐸2 V

stateT𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸3 V

stateT𝑀𝑒𝑚∗𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸4 V

stateT𝑀𝑒𝑚∗𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸5 V

stateT𝑀𝑒𝑚∗𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸4 V → P

stateT𝑀𝑒𝑚∗𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸5 V → P

stateT𝑀𝑒𝑚∗𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸5 V → P

stateT𝑀𝑒𝑚∗𝐸𝑛𝑣𝐿∗𝐸𝑛𝑣𝐺 itree 𝐸5 V → P

intrinsics

global environment

local environment

exec memorymemory model spec

exec undefmodel undef

model UB

model OOM

Fig. 7. Levels of interpretation. Each box shows the type of
the semantic definitions at that layer. Arrows are labeled
with the events they define.

VIR is structured as a series of layered in-
terpreters, as shown in Figure 7, each of

which specifies some aspects of the LLVM

IR semantics. These interpreters are built

on top of interaction trees [36, 38], which
are a Coq datatype of potentially infinite

trees (used to model diverging programs)

whose nodes are uninterpreted events, in-

dicated by 𝐸0–𝐸5 in the Figure. Each layer

handles some subset of the events, defin-

ing their semantics, and leaving the rest

for later layers to handle.

For the purposes of this paper, the most

important parts of the interpretation stack

are the handlers for memory events, nonde-
terminism, undefined behavior, and out-of-
memory exceptions. The memory events,

M, correspond to LLVM IR operations that

interact with the memory model and each

of those events is parameterized by appro-

priate input values and a return typeVor

V𝑢 (indicated as a superscript), as shown

below. These types, describing dynamic values, are explained in the next subsection. The other

kinds of events are similarly annotated.
11

Memory model interaction events Undefined Behavior event

M ≜ MPush() | MPop() | LoadV𝑢 (𝜏, 𝑎) | Store() (𝑎,𝑢𝑣) U ≜ UB∅

| AllocaV (𝜏)

Nondeterminism events OOM event

N ≜ PickV (𝑢𝑣) | PickUniqueV (𝑢𝑣) | PickNonPoisonV (𝑢𝑣) O ≜ O∅

The memory model is integrated with the VIR semantics via the handler for theM events, which

is implemented in terms of the primitive operations described in Section 3. That handler is plugged

into the stack of Figure 7 to interpretM ∈ 𝐸3 into stateful operations that manipulate the memory.

As shown in the left-hand-path of the interpretation stack, the specification of the memory model

is defined propositionally in Coq to account for the nondeterminism of possible implementations,

including nondeterminism introduced by the memory model. The right-hand path implements the

executable version of the semantics. On the specification side, the handlers forU, N and O events

interact with the notion of refinement for the behaviors of VIR programs (see Section 4.4). There

are no equivalent handlers forU and O on the executable side, because the OCaml framework for

executing VIR ITrees simply raises an exception when those events are encountered.

11
Note that the superscript ∅ for UB∅and O∅means that these events do not return any value; they simply terminate the

computation. The PickUniqueV (𝑢𝑣) and PickNonPoisonV (𝑢𝑣) events technically return constrained types that guarantee

uniqueness or a non-poison value, respectively, but we elide those details here.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:16 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

If 𝑝 is a VIR program, we write, e.g., J𝑝K3 to mean interpretation down to the 3
𝑟𝑑

layer (i.e., just

before the split). We write J𝑝KVIR for the “fully interpreted” semantics of 𝑝 , i.e., at the bottom of the

left branch, and we write interpret 𝑝 for the executable version, at the bottom right branch. That

the executable semantics is a valid implementation of the specification is one of the main theorems

about the VIR development (see Theorem 6.1).

4.2 VIR Values
4.2.1 Dynamic Values and iptr. The semantics of VIR relies upon the domainVof dynamic values
that the language can manipulate. The core of these dynamic values are the defined values.

𝑑𝑣 ∈ V ::= none | 𝑎 | [listV] | 𝑖1 | 𝑖8 | 𝑖16 | 𝑖32 | 𝑖64 | 𝑖ptr | poison𝜏

The void value, none, is a placeholder for operations with no meaningful return values. Memory

addresses (𝑎), of type Addr , are implemented either as positive integers, Addr inf = Z, or 64-bit
values 𝐴𝑑𝑑𝑟fin = i64, depending on whether we are instantiating the infinite or finite memory

model. VIR supports all of LLVM IR’s structured values, including records, but here we present

only arrays, noted as [𝑑𝑣1, . . . , 𝑑𝑣𝑛].
VIR supports i1, i8, i16, i32 and i64-bit integers12 ranged over by 𝑖1, 𝑖8, etc., but it also includes

integers of type iptr, which are in bijection with memory addresses
13
, and ranged over by 𝑖ptr .

iptr has the same cardinality as the Addr type, i.e., iptrinf ≜ Z and iptrfin ≜ i64. The iptr type

acts mostly like the other integer types, supporting all of the same instructions, which allows for

programs to perform arbitrary arithmetic on physical addresses without forcing a cast to a type
of a fixed finite size. Because iptr has the same cardinality as Addr , pointer–integer casts can
effectively be pure no-ops, allowing these casts to be removed to make way for other optimizations,

and ensuring a round-trip property where a pointer cast to an integer and back yields the same

pointer
14
. In order to preserve this round-trip property for casts, arithmetic on iptr values in VIRfin

may provoke OOM , as discussed in Section 4.3.3.

VIR also includes poisoned values (poison) representing a deferred undefined behavior [23].

Deferred UB is instrumental for aggressive optimizations, but a semantic subtlety. The poison
value is a tainting mark: it propagates to all values that depend on it, so equivalences such as

poison + poison ≡ 2 ∗ poison ≡ poison hold true.

4.2.2 Undef Values and Symbolic Bytes. LLVM represents uninitialized memory through undefined
values, which represent the set of possible values of a given type, and operations on themmanipulate

a those sets. Reasoning about undefined values is subtle; each time an undef value is used within

an LLVM program, it may take on a different concrete value. For instance, undefi64 + undefi64 ≡
undefi64 , whereas undefi64 + undefi64 . 2 ∗ undefi64 , because the value on the right hand side of

the equation cannot be an odd number.

In VIR, “uvalues” or under-defined values, written uv : V𝑢 , model these sets. They are given by:

uv ∈ V𝑢 ::= ↑ V | [listV𝑢] | undef𝜏 | opV𝑢 V𝑢 | [list SB]𝜏
sb ∈ SB ::= sbyte𝜏 (𝑢𝑣, 𝑖, 𝑠𝑖𝑑)

12
We use CompCert’s finite integers in our development. VIR also supports floating-point values (omitted here for simplicity).

13
The iptr type is missing from the LLVM IR, but there is precedent for it in C, via intptr_t, uintptr_t and size_t [14]

14
Note that there are concerns about provenance for such casts that we do not tackle in this paper [25]. Our implementation

does not track provenance through integers, so our integer–pointer casts will always yield a pointer with a wildcard

provenance, which is safe, but can limit optimizations in rare cases (see the discussion in [31]). This provenance tracking is

largely orthogonal to the design of our memory model, however, our memory model can be integrated with a language

regardless of whether it tracks provenance through integer computations.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:17

%x = i16 select i1 undef, i16 0x1234, i16 0x0000
%y = i16 select i1 undef, i16 0x5678, i16 0x0000
store i16 %x, ptr %ptr

store i16 %y, ptr (inttoptr (add iptr (ptrtoint %ptr) 2)

%z = load i32, ptr %ptr
Fig. 8. Entangled bytes. Here the select instruction chooses between two values nondeterministically due
to undef, but the load should read (assuming big-endianess for simplicity) one of 0x00000000, 0x00005678,
0x12340000, or 0x12345678, but never something like 0x00345600.

Under-defined values include defined (i.e. concrete) values—we write ↑ for the corresponding
injection—as well as arrays of uvalues. They also include undef𝜏 , which stands for the set of all
possible concrete values of the type 𝜏 (we omit 𝜏 when it is unimportant).V𝑢 also includes “delayed”

operations, where op ranges over VIR’s arithmetic, bit-logic, and other computation primitives.

Such a uvalue lifts the set semantics of undef to nondeterministic computations, as we explain

below. The uvalues also contain (type-annotated) concatenations of symbolic bytes [5], sb : SB,
explained next.

Serializing under-defined values. Values in VIR are stored inmemory as lists of bytes. An undefined

value is serialized as symbolic bytes, given by the type SB. A sbyte𝜏 (𝑢𝑣, 𝑖, 𝑠𝑖𝑑) represents the 𝑖𝑡ℎ
byte of the value 𝑢𝑣 with a store-ID 𝑠𝑖𝑑 , whereas [list SB]𝜏 concatenates a series of symbolic

bytes into a under-defined value of type 𝜏 .

To enable optimizations like store-forwarding, the semantics must precisely preserve nondeter-

minism when serializing and deserializing under-defined values to and from bytes. For example,

the event handler for Store serializes a 𝑢𝑣 ∈ V𝑢 into an array of symbolic bytes matching the size

of the type (written |𝜏 |), with each byte containing the appropriate index into the under-defined

value. This serialization operation is defined as:

serialize(𝑢𝑣, 𝜏) = 𝑠𝑖𝑑 ← fresh_sid; ;
ret [sbyte𝜏 (𝑢𝑣, 0, 𝑠𝑖𝑑), . . . , sbyte𝜏 (𝑢𝑣, |𝜏 |, 𝑠𝑖𝑑)]𝜏

Each of these symbolic bytes contains that same “store id” (𝑠𝑖𝑑), which is uniquely generated for

every Store event, to preserve “entangled” undef values within the semantics. This 𝑠𝑖𝑑 is assigned

to the serialized bytes and it is used to prevent the introduction of too much nondeterminism

when reading bytes written by multiple stores. For example, the program in Figure 8 illustrates the

scenario in which the first two bytes and final two bytes of z are entangled together, so there are

only two possible values for each of these two byte chunks. Note that, if two symbolic bytes have

the same 𝑠𝑖𝑑 , they must have come from the same store, and thus agree on their underlying 𝑢𝑣 too.

Conversely, the handler for the Load instruction deserializes the symbolic bytes:

deserialize([𝑠𝑏1, . . . , 𝑠𝑏𝑛]𝜏 , 𝜏 ′) =

if 𝜏 = 𝜏 ′ ∧ [𝑠𝑏1, . . . , 𝑠𝑏𝑛]𝜏 = [sbyte𝜏 (𝑢𝑣, 0, 𝑠𝑖𝑑), . . . , sbyte𝜏 (𝑢𝑣, |𝜏 |, 𝑠𝑖𝑑)]𝜏 then 𝑢𝑣 else [𝑠𝑏1, . . . , 𝑠𝑏𝑛]𝜏 ′

In the simple case where the value is loaded with the same type, the deserialization for Load can
simply extract the original 𝑢𝑣15 (a property which makes store forwarding optimizations easy

to justify). In more complex cases, where bytes are read at a different type from what they are

stored at (possibly reading a portion of the bytes from different under-defined values) the resulting

under-defined value is left as the concatenation of symbolic bytes but with the updated type—their

concrete bit patterns will be resolved via “concretization,” as explained next.

15
There is a corner case for types where |𝜏 | = 0 (such as an array of length zero); in that case the correct 𝑢𝑣 is uniquely

determined by 𝜏 .

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:18 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

4.3 Concretization: Refinement and Evaluation of LLVM Values
As we saw above, an under-defined value 𝑢𝑣 denotes a set of “concrete” dynamic values—that

is, it is a specification of the set of allowed bit patterns a compliant implementation can use to

refine 𝑢𝑣 . We write J−K𝐶 : V𝑢 → P(Result (V)) to denote the (monadic) function that computes

a set of concretizations of 𝑢𝑣 . This set of concrete values is the semantic meaning of 𝑢𝑣 , making

concretization an important aspect of the semantics, allowing programs with differentV𝑢 repre-

sentations for the same set to be compared. We write 𝑑𝑣 ∈ J𝑢𝑣K𝐶 , defined as J𝑢𝑣K𝐶 ∋ ok(𝑑𝑣) to
indicate that (concrete) dynamic value 𝑑𝑣 is a legal refinement of 𝑢𝑣 . The concretization function

is implemented in a similar fashion to the prior VIR semantics [39]. It essentially implements

an interpreter for all of the computational instructions “lifting” them to work on sets of values.

One important base case is that undef𝜏 concretizes to the set of all legal values of type 𝜏 , that is:

Jundef𝜏K𝐶 = {𝑑𝑣 |𝑑𝑣 : 𝜏, 𝑑𝑣 ≠ poison}. For example, we have 2 ∈ Jmul i64 2, i64 1K𝐶 and also

2 ∈ Jmul i64 1, undefi64K𝐶 but 2 ∉ Jmul i64 3, undefi64K𝐶 . As you can see, due to the presence

of arithmetic (and other non-trivial) LLVM IR operations, and the fact that under-defined values

include ordinary values as a special case, the refinement relationship acts as an evaluation relation—

in the case that 𝑢𝑣 has no occurrences of undef (i.e., it is defined), then 𝑑𝑣 ∈ J𝑢𝑣K𝐶 simply means

that 𝑢𝑣 evaluates to 𝑑𝑣 according to the ordinary rules of LLVM IR computations, as in the first

example above.

Note that concretization can fail with UB (in case of, for example, division by 0) or with OOM
(when working with iptr values, as described below).

4.3.1 Concretizing Symbolic Bytes. New to this work is the treatment of symbolic bytes. Recall

that symbolic bytes represent byte-sized fragments of (possibly) under-defined values and that a

Load event might read a sequence of such bytes that were written by (several) different Stores.
Series of symbolic bytes are concretized as shown below:

J[sbyte𝜏1 (𝑢𝑣1, 0, 𝑠𝑖𝑑1), . . . , sbyte𝜏𝑛 (𝑢𝑣𝑛, 𝑛, 𝑠𝑖𝑑𝑛)]𝜏K𝐶 =

𝑑𝑣1 ← J𝑢𝑣1K𝐶 ;; . . . ;; 𝑑𝑣𝑛 ← J𝑢𝑣𝑛K𝐶 ;;

{ok(bitcast𝜏 (𝑑𝑣1 [1]𝑑𝑣2 [2] . . . 𝑑𝑣𝑛 [𝑛])) | ∀𝑗𝑘, 𝑠𝑖𝑑 𝑗 = 𝑠𝑖𝑑𝑘 → 𝑑𝑣 𝑗 = 𝑑𝑣𝑘 }

This works by recursively concretizing the 𝑢𝑣𝑖 ’s, each of which yields a set of concrete dynamic

values J𝑢𝑣𝑖K𝐶 (or an error, in which case the whole concretization is an error). Then, from each

𝑑𝑣𝑖 ∈ J𝑢𝑣𝑖K𝐶 we can extract the (concrete) 𝑖𝑡ℎ byte, written as 𝑑𝑣𝑖 [𝑖]. The resulting set of concrete
values is then obtained by concatenating the individual bytes combinatorially; however, if two

symbolic bytes share a 𝑠𝑖𝑑 (and hence come from the same store) they are “entangled” and must

be concretized in the same way.

The resulting sequence of bytes is converted to a dynamic value of type 𝜏 by the bitcast𝜏 (−)
operation. It might need to truncate or pad the sequence, depending on the size of values of type

𝜏 and the number, 𝑛, of available bytes. This bitcast operation is, ultimately, what allows the

conversion between values of distinct types. For instance, it could convert an array value of type

[8 × i8] into a value of type i64, even though such values have different representations in the

semantics. Altogether, this treatment of symbolic bytes properly ensures “entanglement” of values

as illustrated in Figure 8.

4.3.2 Concretizing iptrinf Values. For the infinite memory model, in which iptr is taken to be

(unbounded) integers, concretization works in essentially the same fashion as the other integer

types. This is the easy case, because in VIR
inf iptr values are just Z values, so no overflow or

underflow can occur, and all of the operations work straightforwardly as expected.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:19

4.3.3 Concretizing iptrfin Values. The finite memory model defines iptr to be unsigned 64-bit

integers. However, unlike for ordinary i64 arithmetic operations, in which LLVM IR’s nuw and

nsw (“No un/signed wrap”) flags cause overlow/underflow to be treated as introducing undefined

behavior, for iptr, such errors instead introduce OOM . This difference from “ordinary” integers

is crucial to maintaining the connection between the infinite and finite semantics. To see why,

consider the following program (written using C-like notation that is easy to express as VIR code):

iptr i = 1;
while (0 < i) { ++i; printf("%zd\n", i); }
do_evil();

In the infinite language the iptr addition can never overflow, so this program will count up

indefinitely, never calling the do_evil function. If we naïvely “convert” this program to a finite

program by simply using 64-bit arithmetic, which can wrap, the value of i will overflow to the

value 0, terminating the loop and thus calling do_evil, which is not an allowed refinement. From

this example we can see that it’s clearly not safe to allow iptrfin values to wrap in general, as that

can change the meaning of the program. LLVM’s nuw flag also does the wrong thing—it introduces

undefined behavior, so translating the infinite program to a finite program in this way would cause

the target program to have UB while the source program does not!

Ultimately, the only reasonable solution is to add bounds checks to integer operations on iptr
values and to halt the program with OOM when the checks fail (intuitively, such an arithmetic

operation has run out of bits in which to store the result). The VIR
fin

semantics incorporates these

bounds checks directly into the specification of arithmetic on iptr values, as part of concretization,
but these bounds checks could be added explicitly on top of regular i64 values if desired.

4.4 Behavioral Refinement Within VIR
𝑋

If we fix our attention on just one of VIR
inf

or VIR
fin
—call it VIR

𝑋
—and consider the interpretation

stacks as shown in Figure 7, there are several notions of behavioral refinement that are useful for
reasoning about the semantics. First, there is refinement at each successive layer of interpretation—

that is, we can think of interpretation down to each layer as defining a program semantics with its

own notion of refinement. Following [39], a key result about of the VIR development shows that

refinement at one layer implies refinement at the next layer, which allows reasoning at one stage of

the interpretation stack to be used to prove results about the “full” semantic interpretation.

Up until the interpretation of memory events, refinement is built on stateful variants of the

eutt𝑅 bisimulation relation as defined previously [39]. For instance, after interpreting the local and

global environments at layer 2, we would have the following top-level refinement relation between

the behaviors of programs under a given environment represented by the ITrees 𝑃 and 𝑄 of type

itree 𝐸2 (𝐸𝑛𝑣𝐿 × (𝐸𝑛𝑣𝐺 ×V)):

𝑃 ⊒2 𝑄 := eutt≈𝑒𝑛𝑣
2

(𝑃, 𝑄)

Typically, we instantiate the refinement relation by using it on the interpretations of program

syntax, i.e., by taking 𝑃 = J𝑝K2 𝑔 𝑙 and𝑄 = J𝑞K2 𝑔 𝑙 , where 𝑔 and 𝑙 are global and local environments.

The relation ≈𝑒𝑛𝑣2 acts as a postcondition on the results computed by the 𝑃 and 𝑄 ; in this case, it

states that the returned values are equivalent, ignoring the global and local environments.

Once memory events are interpreted the semantics is nondeterministic, as the handler forM
events (which defines the meanings of MPush, MPop, Load, Store, and Alloca) is implemented using

the nondeterministic primitives of the general memory model framework operations from Figure 2,

along with the serialize and deserialize mechanisms described above. The interpretation

of N events also introduces further nondeterminism due to the treatment of undef values. The

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:20 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

refinement relation after interpretingmemory and nondeterminism events is given by a set inclusion

relation between sets of ITrees 𝑃 and 𝑄 of type P(itree 𝐸4 𝑀𝑒𝑚 × (𝐸𝑛𝑣𝐿 × (𝐸𝑛𝑣𝐺 ×V))):
𝑃 ⊒4 𝑄 := ∀𝑡 ′ ∈ 𝑄, ∃𝑡 ∈ 𝑃, eutt≈𝑒𝑛𝑣

4

(𝑡, 𝑡 ′)
The sets of ITrees are generally taken to be those given by the interpretation of program syntax

using the propositional semantics, so 𝑃 = J𝑝K4 𝑔 𝑙 𝑠𝑖𝑑 𝑚 and 𝑄 = J𝑞K4 𝑔 𝑙 𝑠𝑖𝑑 𝑚, where 𝑔 and 𝑙 are

the initial global and local environments as before, 𝑠𝑖𝑑 is the initial high watermark for store ids,

and𝑚 is the initial state of the memory.

Finally, we would like to take UB and OOM into account. The semantics of UB∅ provides “time

traveling” undefined behavior semantics [11]. Intuitively, any program, here represented as an

interaction tree, that may reach a UB∅ event is considered to be ill-defined. We write this predicate

as hasUB(𝑡), and, in that case, any other behavior is allowed in its set of refinements. Dually,

the treatment of O events says that an out-of-memory event refines any behavior (but not in a

“time-traveling” fashion—the programs must agree up until the O∅ occurs). That notion is defined

via a modified version of the ordinary eutt𝑅 relation, which we write as eutt_oom𝑅 . Like eutt,
eutt_oom is a weak simulation relation, but it additionally allows eutt_oom𝑅 (𝑡, trigger O∅) for
any interaction tree 𝑡—this is the sense in which “out-of-memory” refines everything.

Taken altogether, these definitions lead to the following top-level, definition of semantic refine-

ment for two sets of behaviors 𝑃 and 𝑄 :

𝑃 ⊒VIR 𝑄 := ∀𝑡 ′ ∈ 𝑄, ∃𝑡 ∈ 𝑃, hasUB(𝑡) ∨ eutt_oom≈𝑒𝑛𝑣
VIR

(𝑡, 𝑡 ′)

Once again, we can define refinement for VIR programs 𝑝 and 𝑞 by taking 𝑃 = J𝑝KVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚 and

𝑄 = J𝑞KVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚.

4.4.1 Refinement Theorems for VIR𝑋 . As mentioned above, the VIR development proves that

refinement at lower levels in the interpretation stack of Figure 7 imply refinement at later levels

(these are, intuitively, easy to prove because the less interpretation that has been done, the stronger
the notion of refinement is). That means we can prove:

Theorem 4.1 (Level refinement). For interpretations levels ℓ ≤ ℓ ′ and for any behaviors 𝑃 and
𝑄 , if 𝑃 ⊒ℓ 𝑄 then 𝑃 ⊒ℓ ′ 𝑄 . In particular, for any ℓ , we have 𝑃 ⊒ℓ 𝑄 implies 𝑃 ⊒VIR 𝑄 .

Equally important is the ability to serially compose program refinements within a level of inter-

pretation. This is needed to prove a pipeline of program optimizations correct. To this end, we

prove:

Theorem 4.2 (Transitivity of refinement). At every level ℓ , if 𝑃 ⊒ℓ 𝑄 and 𝑄 ⊒ℓ 𝑅 then it is
also the case that 𝑃 ⊒ℓ 𝑅.

4.5 Lowering VIR
inf to VIR

fin

The main idea in this paper is to separate compilation into two distinct phases—there is an explicit

transition from a source language such as VIR
inf
, with semantics using infinite memory, to a

“target” language such as VIR
fin
, which uses a finite memory. Intuitively, when we convert an

infinite program to a finite program the only difference in their behavior should be that the finite

program can halt with an out-of-memory event at any point, instead of continuing execution. The

semantics of VIR
fin

is more constrained than that of VIR
inf

because the finite address size and iptr
size means that programs which allocate too much memory or compute addresses outside of the

bounds of the finite memory cannot continue execution and must halt and trigger OOM instead.

While our discussion in this section is centered around VIR, a similar structure of refinements

would be used for other languages using our two-phase memory model.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:21

We can express this connection as (yet another!) refinement. This relation is defined in terms of

orutt𝑅 (similar to how eutt_oom𝑅 is used to define the single-language refinements in Section 4.4).

orutt𝑅 is a heterogeneous version of eutt_oom𝑅 , based on the rutt𝑅 relation between ITrees

with different event structures instead of eutt𝑅 , which operates on ITrees with the same event

types. This is necessary as VIR
inf

and VIR
fin

have events which are parameterized by the types of

addresses and iptr values.

The correspondence between memory configurations is given by the (overloaded) ≳ relation

shown in Figure 6. To express the relationship between VIR
inf

under-defined values and VIR
fin

ones, we also need to instantiate the lift_sbyte function required in that Figure. To do so, we

simply lift the ⌈𝑝⌉ operation (which injects pointers) to all of the 𝑢𝑣 cases—the resulting relation is

an injection that lifts a finite 𝑢𝑣 to its infinite counterpart, ⌈𝑢𝑣⌉. That definition allow us to define

the ≳ relation for environments too.

Putting all the pieces together, yields the following definition:

𝑃 ≳VIR 𝑄 := ∀𝑡 ′ ∈ 𝑄, ∃𝑡 ∈ 𝑃 . hasUB(𝑡) ∨ orutt(≳𝑚𝑒𝑚⊗≳𝑒𝑛𝑣) (𝑡, 𝑡
′)

This definition says that for every behavior exhibited by the finite semantics, 𝑄 (as represented

by the ITree 𝑡 ′), we can find a corresponding behavior, 𝑡 ′ in the infinite semantics, 𝑃 . The ITrees

that represent the behaviors should agree with each other, either continuing indefinitely, or until

both ITrees terminate in lock-step (by raising an error or returning a value successfully), or until

the finite ITree raises an out-of-memory event. Finally this relation considers UB∅ , if any ITree in 𝑃

contains UB the relation holds.

Theorem 4.3 (Infinite-to-finite Top-level Refinement). For every VIR program 𝑝 ,

J𝑝Kinf
VIR

𝑔
inf
𝑖𝑛𝑖𝑡

𝑙
inf
𝑖𝑛𝑖𝑡

𝑠𝑖𝑑
inf
𝑖𝑛𝑖𝑡

𝑚
inf
𝑖𝑛𝑖𝑡

≳VIR J𝑝Kfin
VIR

𝑔
fin
𝑖𝑛𝑖𝑡

𝑙
fin
𝑖𝑛𝑖𝑡

𝑠𝑖𝑑
fin
𝑖𝑛𝑖𝑡

𝑚
fin
𝑖𝑛𝑖𝑡

This guarantees that our translation does not add any new behaviors, and that the finite program

will behave identically to the infinite one until the programs terminate in lock-step, or the finite

program runs out of memory. Despite the apparent simplicity, this is a very technically challenging

theorem to prove for several reasons. First, because it quantifies over all programs, it touches the

full semantics of both VIR
inf

and VIR
fin
, which, for LLVM IR, involves dozens of arithmetic, bitwise,

logic, and datatype manipulation instructions—there are literally hundreds of cases to consider.

Second, it is asking us to prove an existential claim. Digging into the proof, we end up needing a

lemma roughly of the form:

∀𝑡 inf 𝑡fin, orutt𝑅1
(𝑡 inf , 𝑡fin) → ∀𝑡fin

2
J𝑡finK ∋ 𝑡fin

2
→ ∃𝑡 inf

2
, J𝑡 inf K ∋ 𝑡 inf

2
∧ orutt𝑅2

(𝑡 inf
2

, 𝑡
fin
2
)

That is, we need to find a VIR
inf

tree, 𝑡
inf
2

, whose behaviors agree with the VIR
fin

tree 𝑡
fin
2

except

forOOM . Ideally we would be able to use coinduction to walk through the orutt𝑅1
(𝑡 inf , 𝑡fin) relation

to build 𝑡
inf
2

, because that would give us the appropriate relationships between continuations nodes

in corresponding parts of the ITrees. Unfortunately, existentials are inductive in Coq, so we cannot

use coinduction to extract information from this relation until the existential is already instantiated...

which is too late! We therefore have to define a coinductive function that lifts the finite 𝑡
fin
2

to the

infinite 𝑡
inf
2

, and then re-derive the relationship between them.

Finally, because the semantic interpretations on both sides are defined by layers of monadic

interpreters (as in Figure 7), the proof itself proceeds by establishing the connection between infinite

and finite semantics at each layer, leading to many refinement lemmas, that together imply this

theorem. (There are other technical hurdles too—the orutt relation used here and earlier is itself

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:22 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

define void @alloca_code() {
%ptr = alloca i64
ret void

}

define void @ptoi_code() {
%ptr = alloca i64
%i = ptrtoint ptr %ptr to iptr
ret void

}

define void @ret_code() {
ret void

}

Fig. 9. Example code for optimizations.

a non-trivial variant of the ITrees rutt mixed inductive-coinductive definition, which requires a

significant amount of metatheory, for instance to prove transitivity, to be useful.)

5 Optimizations Under the Memory Model
This section explores some important program transformations enabled by our memory model

using the code examples shown in Figure 9. We have verified refinement relations between these

blocks of code, in both the infinite language and in the finite language (where applicable). Though

we have not (yet) verified full-blown optimization passes based on these transformations
16
, the

semantic reasoning used in the following refinement proofs is representative of the key ideas

needed for the general case. A notable aspect of these examples is that the infinite memory model

allows for dead allocation removal while the finite memory model does not.

The main results, each verified in Coq, are as follows:

Optimization 1. Dead allocation removal (only allowed in the infinite model):

∀𝑔 𝑙 𝑠𝑖𝑑 𝑚.J@alloca_codeKVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚 ⊒VIR J@ret_codeKVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚

Note that the twin-allocation model and CompCertS models described in Section 2 are not able to

perform this transformation in general, unless they can verify that the allocation always succeeds—

otherwise, removing the allocation may cause the program to continue executing instead of halting.

This is not a problem in our two-phase model because allocations in the infinitary semantics always

succeed, so we never have to worry about failed allocations hiding extra behaviors of the program.

Optimization 2. Removing a ptrtoint cast (only allowed in infinite model):

∀𝑔 𝑙 𝑠𝑖𝑑 𝑚.J@ptoi_codeKVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚 ⊒VIR J@ret_codeKVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚

The twin-allocation and CompCertS models would be able to remove the ptrtoint cast in

this example, but still would not be able to remove the alloca (as in the previous example). The

quasi-concrete model cannot justify this refinement, because casting a pointer to an integer impacts

the layout of the concrete memory and, in a finite setting, that could potentially result in the

program halting (and thus removing the cast could change the behavior of the program). Again,

this is something that the two-phase model is able to handle gracefully, as pointer to integer casts

are essentially no-ops. The cast could be removed in both the finite and infinite models, but as per

the previous example, the allocation can only be removed in the infinite.

Optimization 3. Adding an alloca (allowed in both the infinite and finite model):

∀𝑔 𝑙 𝑠𝑖𝑑 𝑚.J@ret_codeKVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚 ⊒VIR J@alloca_codeKVIR 𝑔 𝑙 𝑠𝑖𝑑 𝑚

Finally, we may wish to add an allocation to a program (certain optimizations may wish to cache

a result, for instance). This proves tricky for the approach taken by CompCertS, which maintains

an invariant that memory usage never increases after a program transformation. Both our infinite

16
In general, doing that would require static analysis and non-trivial manipulation of VIR syntax, which, while certainly

doable, is beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:23

and finite models allow this, however, thanks to the out-of-memory refinement relations we’ve

developed.

5.1 Bounds Checking Overhead
Our two-phase memory model ensures that pointer–integer casts never have an external effect,

which allows them to be removedwhen performing program transformations. Onemight reasonably

wonder, however, about the bounds checks on iptr arithmetic in VIR
fin

and whether these would

impact possible optimizations. They do, but we believe the impact should be fairly minimal for the

following reasons.

Firstly, nearly all optimizations should be performed under VIR
inf

semantics, prior to lowering

the program into the finitary semantics. Under the infinitary semantics, iptr arithmetic is just

arithmetic on Z, and expressions involving iptr can be optimized in the infinite world using these

unbounded integers as a model without bounds checks. Any iptr computations that happen to be

dead can be removed prior to lowering the program into the finite world.

All normal optimizations can occur at the infinite level, and thus the only optimizations necessary

to do on finite programs would involve removing the bounds checks required to trigger OOM
that are added by the infinite to finite translation. These bounds checks can, naturally, have a

performance impact; however, we believe that they will not be a significant impediment to the

performance of real-world programs, and, in many cases, optimizations on finitary LLVM programs

should be able to remove these bounds checks entirely. Consider the following possible use cases

for ptrtoint casts iptr arithmetic, which cover many real-world use cases:

(1) Pointers cast to integers to use as a hash.

(2) XOR doubly-linked lists.

(3) Using the least-significant-bit of a pointer as a flag.

(4) Indexing into allocated blocks.

For (1), pointers can be cast to simple integer types, like i64, instead. The truncation does not

matter in these use cases, as the program will not cast the value back to a pointer. This will, however,

require programmers to make a choice to cast to the appropriate integer type.

Doubly-linked lists using xor (2) are an interesting use of pointer arithmetic, however the finite

iptr values will be 64-bit values, and performing a bitwise xor cannot yield an out of bounds value.

Similarly, bitwise operations that use unused bits in pointers as flags (3) cannot cause an overflow

either, so bounds checking will not be necessary for these operations.

And, of course, another important case to consider is the use of iptr arithmetic to index into

an allocated block. However, this use case should be covered by the LLVM IR’s getelementptr
operation instead, where bounds checks are unnecessary. If getelementptr is used to compute an

out of bounds pointer, using that pointer to perform a memory access will cause UB∅ in the infinite

semantics anyway due to mismatched provenances.

Finally, existing programming languages like Rust can achieve a great deal of performance,

despite requiring bounds checking for array accesses [30]. We’re optimistic that 1) most situations

where iptr arithmetic will be used will fall into these cases and not require bounds checking, 2)

in rarer circumstances, other LLVM optimizations may be able to remove the bounds checks, and

3) for any remaining bounds checks the costs will be minimal. We believe that the flexibility our

memory model allows for optimizations prior to the finite language level will outweigh these rare

costs

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:24 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

readrun
𝑏
(p : Ptr) : MemExec(SByte)

writerun
𝑏
(p : Ptr) (b : SByte) : MemExec(unit)

pushfrun : MemExec(unit)
popfrun : MemExec(unit)

allocarun (−→b : list SByte) : MemExec(Ptr)
mallocrun (−→b : list SByte) : MemExec(Ptr)

freerun (p : Ptr) : MemExec(unit)

Fig. 10. Executable memory model: low level operations

6 Executable Reference Interpreters
A formal specification of a language should be useful, in that it allows for validating optimizations of

interest, but also faithful to existing implementations and informal specifications. Where usefulness

is the realm of formal verification, faithfulness sends us back to a more traditional software

engineering consideration: testing. This need for validation is well identified among contributors

of formal semantics, and has even led to the development of dedicated tools and techniques to

alleviate the pain: ad-hoc usage of big-step semantics [7, 10], the K framework [33], and skeletal

semantics [8] all notably contribute in this direction.

6.1 Executable Memory Models
The ITree framework [36], on which we base our work, is extremely helpful for validating such

large scale semantics as ITrees can be extracted to executable code. In our case, the memory model

presented in Section 3 is not deterministic —a crucial necessity to faithfully characterize memory

for LLVM. Therefore it’s intrinsically non-executable, as we implement in Coq the specification

monad propositionally, representing sets P(𝐴) as predicates A -> Prop.
To facilitate testing (see below), we provide proven-correct, executable versions of the memory

model. To lighten the induced development burden, we maintain the implementation as monadic

code as parallel as possible to the specification, which helps, in particular, with mirroring of changes

between them.

Figure 10 describes the executable memory model interface: it precisely mimics the specification,

except that it lives in a deterministic, executable monad:MemExec(𝑋) ≜ Conf → Result (Conf ×𝑋).
The implementations of each of these operations closely mirrors their specification counterparts.

They syntactically diverge significantly only when the specification is nondeterministic, i.e., in the

fresh and find_bk utilities needed for alloca and malloc.
On the executable side, fresh simply uses a trivial freshness monad, which increments a natural

number to generate fresh provenance. Our current implementation of find_bk is currently quite el-
ementary, but sufficient for our testing purpose: it looks up the largest addresses currently allocated,

and returns the range of the required size of following addresses. More clever allocation strategies,

such as those used by actual implementations of malloc to reduce memory fragmentation, could

be implemented if relevant: the specification only enforces that the allocated block is contiguous,

and disjoint from any other block.

6.1.1 Correctness of the executable memory models. We prove for each memory operation that

its executable implementation is valid with respect to its specification counterpart. Since these

implementations are pure Coq functions, validity is almost defined as point-wise set membership,

ensuring that, for any initial state, the computed result belongs to the specification, or that the

specification contains undefined behavior:

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:25

A basic memory model computation (𝑠 : MemExec(𝑋)) is valid with respect to a specification

(S : MemSpec(𝑋)) if:
∀𝜎, (S 𝜎) ∋ UB ∨ (S 𝜎) ∋ 𝑠 𝜎

Our development proves these soundness lemmas for all of the memory model primitives.

6.2 Executable VIR

Section 4 describes the integration of our memory model into VIR, a formal model of LLVM IR.

Figure 7 also shows the right-hand path of interpreters, which provide an executable implementation

by specializing the concretization operation of Section 4.3 to pick default values for each undef𝜏
(for instance undefi8 is 0). Let us call the resulting top-level executable program interpret

VIR
.

Using the soundness lemmas for the memory-model base operations, it is straightforward to

show that the resulting deterministic interpretation function is a valid refinement of the semantics:

Theorem 6.1 (Interpreter is sound). For all programs 𝑝 ,

J𝑝KVIR 𝑔𝑖𝑛𝑖𝑡 𝑙𝑖𝑛𝑖𝑡 𝑠𝑖𝑑𝑖𝑛𝑖𝑡 𝑚𝑖𝑛𝑖𝑡 ⊒VIR {interpretVIR 𝑝} 𝑔𝑖𝑛𝑖𝑡 𝑙𝑖𝑛𝑖𝑡 𝑠𝑖𝑑𝑖𝑛𝑖𝑡 𝑚𝑖𝑛𝑖𝑡

That is, the (singleton set) of behaviors defined by the executable interpreter refines the semantic

specification—in other words, the interpreter is “correct.”

6.2.1 Testing the VIR semantics. The resulting VIR interpreter, even with the somewhat complex

memory model that manipulates symbolic bytes, is performant enough to be able to run real LLVM

IR code. We use it on a suite of test cases consisting of several hundred hand-written unit tests

of LLVM IR semantic features, as well as on LLVM IR code generated by compiling source C

programs. We have also experimented with using QuickChick [12] to randomly generate LLVM

IR programs that stress-test the memory model, and we can use the ability to generate LLVM

IR to instantiate parts of the Alive2 [29] suite as executable tests. In all cases, we do differential

testing of the executable VIR model versus llc to look for problems on either side. In the process

of developing the memory model for this project, such testing was invaluable to debugging the

model. It also highlighted some ill-specified corner cases in the LLVM IR itself, for instance, it is

unclear what the getelementptr instruction should do when computing addresses for structures

and arrays whose data values are smaller than 8 bits and hence “share” an address in memory, and

extractelement seems to have similar problems when vector elements are smaller than 8 bits,

resulting in miscompilations.

7 Discussion
7.1 Additional related work
The individual phases in our two-phase memory model share a lot in common with the existing

state of the art in memory models—especially those already discussed in detail in Section 2—but

with the crucial distinction that our approach recognizes that the compilation pipeline for many

programming languages involves a phase-change from higher level programs with unbounded

memory semantics, to bounded machine code (a boundary which is awkwardly straddled by

compiler IRs like LLVM, and lower level languages like C). Many projects have either an explicitly

finite size of memory [5, 22, 28], or utilize a parameterized finite pointer type [19, 21]. C memory

models [19, 21] often even have a uintptr_t type as a parameter, which is part of the inspiration

for our iptr extension to LLVM. These works generally consider a single finite parameterization of

their memory models, however, and do not relate different parameterizations of the memory models.

This raises the question: how would the memory model with 32-bit pointers relate to its 64-bit

parameterization? We provide the answer with our out-of-memory refinement relations, treating

the unbounded specification as the ground truth, and finite parameterizations as refinements.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

263:26 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

Our memory model is currently just a sequential one. Concurrent memory models [1, 9, 15, 17, 24,

28, 34, 35] are much more complex, but we believe the two-phase approach is orthogonal and would

apply to concurrent models as well. There are also other considerations for undefined behavior in

memory models, which we don’t touch upon. In C, strict aliasing requirements are important for

ruling out pointer aliasing via the types of pointers, which some memory models [19, 21] tackle.

Languages like Rust have complex ownership rules for pointers that eliminate pointer aliasing at

the type level, the semantics of which is tackled by the RustBelt [15] project.

7.2 The Two-Phase Memory Model in the Context of VIR
These improvements to the VIR semantics have been a substantial development effort, expanding the

codebase by over three fold in terms of lines-of-Coq-code. We’ve aimed to keep things realistic while

encapsulating the many complications present in a substantial subset of LLVM. For instance, undef
is known to be incredibly complicated to reason about [23], and the under-defined values required to

simulate undef contain over 30 constructors, making (proofs by) case analysis particularly arduous.

Furthermore, undef interacts with the memory model and semantics in non-trivial ways, and many

changes were made throughout the development to figure out precisely where under-defined values

should undergo concretization and nondeterminism should be collapsed so as to enable as many

optimizations in the semantics as possible. The nondeterminism in the specification monads has

also been a challenge to work with, as illustrated in the discussion surrounding Theorem 4.3.

The product of this painstaking work is a parameterized semantics for a substantial LLVM-

like language with an in-depth characterization of many intricate and interacting details like

undef, undefined behavior, nondeterministic memory operations, and casts between pointers and

integers. We have done so in an effort to ease justifying optimizations in a compiler, without the

compiler itself having to maintain complicated invariants in order to prove the validity of important

optimizations. Our verified two-phase compilation between memory models provides a novel

approach to handling the complexities of low-level memory operations like casts between pointers

and integers in the presence of high-level optimizations, and demonstrates the semantic necessity

of considering finite memory when compiling programs to finite architectures, which is applicable

to many languages.

Having put in this effort, we are now in position to reap many rewards. For instance the Helix

project [40] is a verified compiler for a numerical programming language that targets VIR, and our

interface should provide a more accurate view of LLVM memory which will lend more credence to

the compilation pipeline for Helix. Similarly, our memory model should be amenable to separation

logics built using Iris [16], which have been used in conjunction with VIR before [37, 38]. We

believe that our richer memory model and higher-fidelity LLVM IR semantics will be a boon for

these and future projects that depend upon VIR.

8 Data-Availability Statement
The development has been incorporated into themain Vellvm development, available onGitHub [41],

and a snapshot of the source code, as well as a VM containing all of the dependencies, has been

made available on Zenodo [2].

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant

Number 2247088.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

A Two-Phase Infinite/Finite Low-Level Memory Model 263:27

References
[1] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin,
Texas, USA) (POPL ’11). Association for Computing Machinery, New York, NY, USA, 55–66. https://doi.org/10.1145/

1926385.1926394

[2] Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic. 2024. A Two-Phase Infinite/Finite
Low-Level Memory Model. https://doi.org/10.5281/zenodo.12518800

[3] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2014. A Precise and Abstract Memory Model for C Using Symbolic

Values. In Programming Languages and Systems, Jacques Garrigue (Ed.). Springer International Publishing, Cham,

449–468. https://doi.org/10.1007/978-3-319-12736-1_24

[4] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2015. A Concrete Memory Model for CompCert. In Interactive
Theorem Proving, Christian Urban and Xingyuan Zhang (Eds.). Springer International Publishing, Cham, 67–83.

https://doi.org/10.1007/978-3-319-22102-1_5

[5] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. CompCertS: a memory-aware verified C compiler using a

pointer as integer semantics. Journal of Automated Reasoning 63 (2019), 369–392. https://doi.org/10.1007/s10817-018-

9496-y

[6] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. A verified CompCert front-end for a memory model

supporting pointer arithmetic and uninitialised data. Journal of Automated Reasoning 62, 4 (2019), 433–480. https:

//doi.org/10.1007/s10817-017-9439-z

[7] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan

Schmitt, and Gareth Smith. 2014. A trusted mechanised JavaScript specification. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh
Jagannathan and Peter Sewell (Eds.). ACM, 87–100. https://doi.org/10.1145/2535838.2535876

[8] Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt. 2019. Skeletal semantics and their interpretations.

Proc. ACM Program. Lang. 3, POPL (2019), 44:1–44:31. https://doi.org/10.1145/3290357

[9] Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the Concurrency Semantics of an LLVM Fragment. In

Proceedings of the 2017 International Symposium on Code Generation and Optimization (Austin, USA) (CGO ’17). IEEE
Press, 100–110. https://doi.org/10.5555/3049832.3049844

[10] Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias

Felleisen and Philippa Gardner (Eds.). Springer, 41–60. https://doi.org/10.1007/978-3-642-37036-6_3

[11] Raymond Chen. 2014. Undefined behavior can result in time travel (among other things, but time travel is the funkiest).

https://devblogs.microsoft.com/oldnewthing/20140627-00/?p=633

[12] Maxime Dénès, Catalin Hritcu, Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C Pierce. 2014. Quick-

Chick: Property-based testing for Coq. In The Coq Workshop, Vol. 125. 126.
[13] Charles Ellison. 2012. A Formal Semantics of C with Applications. Ph. D. Dissertation. University of Illinois. https:

//doi.org/2142/34297

[14] ISO 9899:1999 1999. Programming Languages — C. Standard. International Organization for Standardization.

[15] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: securing the foundations

of the Rust programming language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017), 34 pages. https:

//doi.org/10.1145/3158154

[16] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018), e20. https://doi.org/10.1017/S0956796818000151

[17] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for

relaxed-memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY, USA, 175–189. https:

//doi.org/10.1145/3009837.3009850

[18] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor Vafeiadis. 2015.

A formal C memory model supporting integer-pointer casts. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15). Association for Computing

Machinery, New York, NY, USA, 326–335. https://doi.org/10.1145/2737924.2738005

[19] Robbert Krebbers. 2013. Aliasing Restrictions of C11 Formalized in Coq. In Certified Programs and Proofs, Georges
Gonthier and Michael Norrish (Eds.). Springer International Publishing, Cham, 50–65. https://doi.org/10.1007/978-3-

319-03545-1_4

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.5281/zenodo.12518800
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/s10817-017-9439-z
https://doi.org/10.1007/s10817-017-9439-z
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/3290357
https://doi.org/10.5555/3049832.3049844
https://doi.org/10.1007/978-3-642-37036-6_3
https://devblogs.microsoft.com/oldnewthing/20140627-00/?p=633
https://doi.org/2142/34297
https://doi.org/2142/34297
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1007/978-3-319-03545-1_4

263:28 Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve Zdancewic

[20] Robbert Krebbers, Xavier Leroy, and Freek Wiedijk. 2014. Formal C Semantics: CompCert and the C Standard. In

Interactive Theorem Proving, Gerwin Klein and Ruben Gamboa (Eds.). Springer International Publishing, Cham, 543–548.

https://doi.org/10.1007/978-3-319-08970-6_36

[21] Robbert Jan Krebbers. 2015. The C standard formalized in Coq. Ph. D. Dissertation. [Sl]:[Sn]. https://doi.org/2066/147182
[22] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling high-level

optimizations and low-level code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA, Article 125 (oct 2018), 28 pages.
https://doi.org/10.1145/3276495

[23] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.

Lopes. 2017. Taming Undefined Behavior in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, 633–647. https://doi.org/10.1145/3140587.3062343

[24] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.

2020. Promising 2.0: global optimizations in relaxed memory concurrency. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing

Machinery, New York, NY, USA, 362–376. https://doi.org/10.1145/3385412.3386010

[25] Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, and Peter Sewell. 2022. VIP:

verifying real-world C idioms with integer-pointer casts. Proc. ACM Program. Lang. 6, POPL, Article 20 (jan 2022),

32 pages. https://doi.org/10.1145/3498681

[26] Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-likeMemoryModel and Its Uses for Verifying Program

Transformations. Journal of Automated Reasoning 41, 1 (01 Jul 2008), 1–31. https://doi.org/10.1007/s10817-008-9099-0

[27] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016.

CompCert - A Formally Verified Optimizing Compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress. SEE, Toulouse, France. https://inria.hal.science/hal-01238879

[28] Liyi Li and Elsa Gunter. 2020. K-LLVM: A Relatively Complete Semantics of LLVM IR. In 34rd European Conference on
Object-Oriented Programming, ECOOP 2020, Berlin, Germany. https://doi.org/10.4230/LIPIcs.ECOOP.2020.7

[29] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation

Validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,

65–79. https://doi.org/10.1145/3453483.3454030

[30] Alana Marzoev. 2022. How much does Rust’s bounds checking actually cost? — blog.readyset.io. https://blog.readyset.

io/bounds-checks/. [Accessed 27-02-2024].

[31] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, and

Peter Sewell. 2019. Exploring C semantics and pointer provenance. Proc. ACM Program. Lang. 3, POPL, Article 67 (jan
2019), 32 pages. https://doi.org/10.1145/3290380

[32] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and

Peter Sewell. 2016. Into the Depths of C: Elaborating the de Facto Standards. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for

Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/2908080.2908081

[33] Grigore Roşu and Traian Florin Şerbănută. 2010. An overview of the K semantic framework. The Journal of Logic and
Algebraic Programming 79, 6 (2010), 397 – 434. https://doi.org/10.1016/j.jlap.2010.03.012 Membrane computing and

programming.

[34] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO:

A Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22. https://doi.org/10.1145/2487241.2487248

[35] Jaroslav Ŝevčik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011. Relaxed-

memory concurrency and verified compilation. SIGPLAN Not. 46, 1 (jan 2011), 43–54. https://doi.org/10.1145/1925844.

1926393

[36] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2019. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article
51 (dec 2019), 32 pages. https://doi.org/10.1145/3371119

[37] Euisun Yoon. 2023. Modular Semantics and Metatheory for LLVM IR. Ph. D. Dissertation. University of Pennsylvania.

https://doi.org/20.500.14332/59534

[38] Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal reasoning about layered monadic interpreters.

Proc. ACM Program. Lang. 6, ICFP, Article 99 (aug 2022), 29 pages. https://doi.org/10.1145/3547630

[39] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic. 2021. Modular,

Compositional, and Executable Formal Semantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP, Article 67 (aug
2021), 30 pages. https://doi.org/10.1145/3473572

[40] Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti. 2020. Verified Translation Between Purely Functional and Imperative

Domain Specific Languages in HELIX. In Software Verification: 12th International Conference, VSTTE 2020, and 13th

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

https://doi.org/10.1007/978-3-319-08970-6_36
https://doi.org/2066/147182
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3140587.3062343
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3498681
https://doi.org/10.1007/s10817-008-9099-0
https://inria.hal.science/hal-01238879
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/3453483.3454030
https://blog.readyset.io/bounds-checks/
https://blog.readyset.io/bounds-checks/
https://doi.org/10.1145/3290380
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/1925844.1926393
https://doi.org/10.1145/1925844.1926393
https://doi.org/10.1145/3371119
https://doi.org/20.500.14332/59534
https://doi.org/10.1145/3547630
https://doi.org/10.1145/3473572

A Two-Phase Infinite/Finite Low-Level Memory Model 263:29

International Workshop, NSV 2020, Los Angeles, CA, USA, July 20–21, 2020, Revised Selected Papers (Los Angeles, CA,
USA). Springer-Verlag, Berlin, Heidelberg, 33–49. https://doi.org/10.1007/978-3-030-63618-0_3

[41] Steve Zdancewic et al. [n. d.]. Vellvm. https://github.com/vellvm/vellvm

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 263. Publication date: August 2024.

https://doi.org/10.1007/978-3-030-63618-0_3
https://github.com/vellvm/vellvm

	Abstract
	1 Introduction
	2 Remembering Low-level Memory Models
	2.1 Fully Concrete
	2.2 CompCert: Provenance
	2.3 Bringing Back Casting
	2.4 CompCertS: A Finite Symbolic Memory Model

	3 A Two-Phase Memory Model
	3.1 Notations
	3.2 Memory Configurations
	3.3 The Specification Monad
	3.4 Low Level Memory Operations
	3.5 Relating the Infinite and Finite Memory Models

	4 Integrating the Memory Model into an LLVM like Language
	4.1 Layered Interpreters
	4.2 VIR Values
	4.3 Concretization: Refinement and Evaluation of LLVM Values
	4.4 Behavioral Refinement Within VIRX
	4.5 Lowering VIRinf to VIRfin

	5 Optimizations Under the Memory Model
	5.1 Bounds Checking Overhead

	6 Executable Reference Interpreters
	6.1 Executable Memory Models
	6.2 Executable VIR

	7 Discussion
	7.1 Additional related work
	7.2 The Two-Phase Memory Model in the Context of VIR

	8 Data-Availability Statement
	Acknowledgments
	References

