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This article extends tail-call optimisation by applying it to asynchronous calls. We first introduce Tail-Modulo-

Await, a novel code transformation for asynchronous tail recursive functions that prevents the creation of

unnecessary tasks. We then show how to combine Tail-Modulo-Await with the existing Tail-Modulo-Cons

optimisation; we obtain an optimisation able to turn a recursive function with multiple tail calls under

constructors into a parallel version of the function, also optimised in space.

We formalise both optimisations over representative calculi, and prove them correct through backward

simulations. Finally, we provide a proof-of-concept implementation as an OCaml syntax extension and evaluate

it experimentally, showing our approach optimises both memory and execution time.
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1 Introduction
The Tail Call Optimisation has been a staple of functional programming languages since its intro-

duction in 1977 in Steele Jr. [17]’s seminal paper “LAMBDA: The Ultimate GOTO”. This optimisation

hinges on the observation that, when a function call is in tail position, i.e., a return position in

the program, it can be compiled as a simple JUMP instruction, thus dramatically improving the

efficiency of procedure calls. This transformation, which also saves space in the function stack,

made its way in numerous languages and compilers, whether enabled by default in languages such

as OCaml, Haskell, or Scala; or as an on-demand optimisation in compilers such as LLVM and GCC.

The notion of tail position was initially quite restrictive: only calls in exact return position were

considered. Tail-Call modulo Constructor [3] extends the class of accepted program with single

tail-positions under a data constructor. Thanks to this notion, most functions over lists are now

considered tail-recursive, and thus liberated from stack constraints.

However, while lists remain a data structure of choice for functional programmers, shouldn’t

trees deserve the same care? More broadly, can we hope for a similar optimisation in presence of

multiple calls in tail position? Surely, this makes little sense in a sequential context: how could

we launch several tail-calls without any synchronisation? However, this makes perfect sense in

an asynchronous context, and more specifically in the presence of futures [5],
1
which are entities

representing the result of an ongoing computation. In fact, a notion similar to asynchronous tail

calls already exists for OO method calls in asynchronous languages, dubbed forward [8].
In this article, we further extend the notion of tail-position to be “modulo Await”. Similarly to how

tail-calls in sequential contexts are optimised to use constant stack space, we show how to optimise

tail-calls in asynchronous context in order to use no spurious scheduler space. Furthermore, when

1
Coincidentally, both works were published in 1977, and both originated from the LISP community!
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1 type 'a tree = Leaf | Node of 'a * 'a tree * 'a tree
2

3 val map : ('a -> 'b) -> 'a tree -> 'b tree future
4 let%async rec map f t = match t with
5 | Leaf -> Leaf
6 | Node (x , tl, tr) -> Node (f x, await (map f tl), await (map f tr))

Fig. 1. A parallel and asynchronous map on trees.

combined with Tail-Modulo-Cons (tmc), we obtain a Tail-Modulo-Cons-Await optimisation (tmca)
able to optimise functions with multiple recursive calls under a constructor. We demonstrate this

feature over trees.

A tail-recursive map on trees
Fig. 1 showcases an implementation of an asynchronous map function on trees in an OCaml dialect

with asynchronous functions.
2
Before going over details, let us state our selling point: using our

code transformation, this function is fully parallel (all calls to f are executed concurrently), uses a

constant memory space per thread, and doesn’t use any superfluous scheduler space.

We provide the signature for map on Line 3: it takes a function f, a tree t, and returns the tree

where f has been applied to every element of t. In our code, asynchronous-related operations

are indicated in blue and code internal to our optimisation in peach. Concretely, we consider
a parametric tree type, defined on Line 1, where each Node is binary and contains a value. As is

common for asynchronous functions, map returns more precisely a future for this tree. By tagging

the function as async on Line 4, calls to this function create a future and launch the associated

computation in a parallel sub-task. The result can then be retrieved using the await primitive: this

is done for both recursive calls on Line 6. Finally, we assemble the value into a Node and return it,

implicitly in a future.

In the absence of any optimisation, the behaviour of this function would be, on each Node
constructor, to launch the task for one branch, wait for it to finish, launch the task for the other

branch, wait for it to finish, then allocate the new constructor and return it. The stack would

grow linearly in the height of the tree; furthermore, the execution would be overall sequential,

while paying additional cost for synchronisation. The asynchronous programmer would however

not write the code above and would favour a more parallel version by replacing Line 6 with:

let tl' = map f tl in let tr' = map f tr in Node (f x, await tl', await tr')
This version parallelizes the treatment of the left and right branches (this introduces task interleaving

as discussed below). Its main drawback is that it can have as many “active” tasks as there are nodes

in the tree; indeed all the finished tasks which have at least one unfinished task below it in the tree

structure are still blocked in an await statement.

Our approach optimises the two preceding programs by both parallelizing subtasks, and termi-

nating all tasks that are only awaiting others. To achieve this, we translate the function to Destiny

Passing Style, an asynchronous interpretation of Destination Passing Style [16]. An idealized version

of the transformed function map_dps is shown on Fig. 2a; its execution is illustrated on Fig. 2b.

At the top level, a single future fut is tied to the filling of a memory cell, a destiny d (Line 11).
From there, a helper function map_dps is called. The function map_dps takes as an additional argument

a destiny d (Line 1) which represents the memory location where the result of the asynchronous

computation should be written to. When returning a value, such as Leaf on Line 2, we set the destiny
d with d ◀ Leaf. In the recursive case, we perform the allocation ahead of time—similarly to what

2
Our dialect is implemented with an OCaml syntax extension.
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Tail Modulo Async-Await 3

1 let rec map_dps d f t = match t with
2 | Leaf -> d ◀ Leaf
3 | Node (x, tl, tr) ->
4 let v = Node (■, ■, ■) in
5 d ◀ v;
6 fork_dps map_dps v.1 f tl;
7 fork_dps map_dps v.2 f tr;
8 v.0 ◀ f x
9

10 let map f l =
11 let d, fut = create_future () in
12 fork_dps map_dps d f l;
13 fut

(a) Code with tmca

✘ dfut

Node f 𝑥1 d.1 d.2

. . . Node f 𝑥2 d.2.1 d.2.2

Leaf Node ■ ■ ■

Memory

✔
map_dps d f t

map_dps d.1 f t1

✔
map_dps d.2 t2

✔
map_dps d.2.1 t21

map_dps d.2.2 t22

Tasks

(b) Snapshot of execution of map f t after tmca

Fig. 2. Translation of map on trees from Fig. 1 using Tail-Modulo-Cons-Await

happens in tmc— but put empty holes in lieu of its arguments. The current destiny can therefore

be immediately set to v, the freshly allocated node. Both recursive calls are then forked in their

own thread, one for each child: we must pass them their respective destiny, i.e., the corresponding

hole in v they are responsible for filling—we address fields of constructors by position. The calls

to fork_dps handling recursive calls each fork a new task running the function map_dps with the

arguments passed as parameters; they create no stack for executing map_dps and discard the value

returned by the function so that the call uses a minimal space. Finally, we compute the value f x
and set it in v. When all parallel tasks have finished, there are no more holes in the structure, the

future is marked as resolved, and the value can be retrieved. Fig. 2b shows an intermediate state

of the execution, the left side shows the status in memory of the tree being computed, the right

side shows the tasks involved in the computation. Scheduler space is represented in blue. Futures

and destiny both play a synchronisation role and serve as pointers to actual data, and are thus

striped. The original future fut is yet unresolved (✘). Tasks map_dps d f t, map_dps d.2 f t2, and
map_dps d.2.1 f t21 are finished, the corresponding destinies have been filled and the tasks have

been garbage-collected. Task map_dps d.2.2 f t22 has just performed the allocation of a Node (with
holes). Task map_dps d.1 f t1 is still ongoing. This illustrates that only the tasks actually computing

are still active on the scheduler side, contrarily to the versions that do not use tmca.
This code transformation automatically reveals parallelism present in the source program. In

fact, it doesn’t fully respect the sequential semantics. Indeed on Line 6 in the code above, the

transformed code can interleave subtasks in map f tl and map f tr, while the sequential semantics

would enforce an execution order, without interleaving. Thus, this automatic parallelisation comes

at the risk of introducing undesired behaviors. We mitigate this risk in two ways.

First, we only modify code at the level of a constructor in tail position. This means the programmer

can easily enforce sequentiality via simple let-bindings. For instance, we could replace Line 6 by:

let x' = f x in Node (x', await (map f tl), await (map f tr))
In this case, it would wait for f to return before proceeding to the two subtrees in parallel (thus

bounding the parallelism by the width of the tree). This aligns with good practice in languages like

OCaml, where users who care about order of operation should state it explicitly via let-bindings.
3

Second, we introduce two variants for each constructor: parallel constructors which behave as

above, and sequential ones which don’t introduce parallelism and only allow one tail position. With

these variants, we show that our transformation preserves the semantics.

3
Naturally, this might come with some cost in scheduler- or stack- space, since the only way to optimise these aspects is

through parallelism and thus interleaving of tasks.
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4 Emma Nardino, Ludovic Henrio, Gabriel Radanne, and Yannick Zakowski

Contribution and Plan
In this paper, we introduce the following contributions.

• In Section 2, we introduce a novel code transformation for asynchronous tail-recursive function

dubbed Tail-Modulo-Await. This code transformation generalises and automatises the treatment

of forward present in the literature on asynchronous computing.

• In Section 3, we combine Tail-Modulo-Await and Tail-Modulo-Cons to derive a transformation

allowing for having multiple tail calls launched concurrently. This code transformation can,

depending on the users’ choices, maximise parallelism, or strictly preserve sequential semantics.

• We formalise both on minimal calculi and prove them sound via backward simulations.

• We provide a proof-of-concept implementation as an OCaml syntax extension and evaluate it

experimentally in Section 4.

2 Tail-Modulo-Await
In this section, we set aside constructors and focus on an optimisation dubbed Tail-Modulo-Await

(tma)—we shall extend this optimisation to handle our introductory example later, in Section 3.

After illustrating informally the optimisation on an example, we introduce two core calculus, a

source and a target, over which we formalise the transformation.

2.1 Motivating example

1 val check_urls : url list -> bool future
2 let%async rec check_urls files =
3 match files with
4 | [] -> true
5 | url :: rest ->
6 if await (check_url url) then
7 await (check_urls rest)
8 else false

Fig. 3. Checking all URLs, with async/await

Fig. 3 presents a toy program illustrating tma.
The check_urls function iterates recursively over

a list of urls in order to check whether they actu-

ally point to some resource. Such checks require to

communicate over the network, which takes time:

to avoid halting the whole system, we hence per-

form them via a call to an asynchronous operation

check_url: url -> bool future. This operation, pro-
vided by our favourite Web Client, is wrapped in an

await on Line 6. But a similar issue arises on Line 7 in the recursive call! The check_urls function
itself must therefore be declared asynchronous, and recursive calls must be wrapped in an await.
Recursion and async/await seem to play well together: we have elegantly turned our recursive

function into a non-blocking one. But one may wonder what the space behaviour of such a function

is? Indeed, the synchronous equivalent (where async/awaits are removed) is clearly tail-recursive,

and hence its recursive calls can operate in constant stack. Hopefully, the same is true of this

asynchronous variant. But in this case, check_urls’s memory behaviour deserves closer inspection,

as illustrated on Fig. 4. Strictly speaking, the function does not consume stack-space either: it

delegates to async, where each call to await is in tail position. However, as illustrated in Section 1, in

an asynchronous context we must worry about scheduler-space as well! Each recursive call creates

async check_urls l0

(a) Stack

check_urls l0

𝑓 𝑢𝑡0

check_url url0

la
u
n
c
h

check_urls l1

𝑓 𝑢𝑡1

launch

check_url url1

la
u
n
c
h

true

𝑓 𝑢𝑡2

launch

(b) Futures and Tasks
Fig. 4. Memory behaviour of check_urls
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Tail Modulo Async-Await 5

1 let rec check_urls_dps d files =
2 match files with
3 | [] -> d ◀ true
4 | url::rest ->
5 if await (check_url url) then
6 check_urls_dps d rest
7 else d ◀ false
8

9 let check_urls l =
10 let d, fut = create_future () in
11 fork_dps check_urls_dps d l;
12 fut

(a) Code after tma

check_urls d l0

(b) Stack

✘ dfut true
fill

check_urls_dps d []

(c) Futures, Destinies and Tasks.
Here, the task reaching the end of the list is filling the destiny d. Only
one task for check_urls_dps is alive at any point. There is only call
in the stack for check_urls.

Fig. 5. Checking all URLs with the Tail-Modulo-Await transformation

a future, which needs to be awaited for, forming a chain the size of the list l0 taken as argument.

As the chain grows, the memory gets cluttered with un-active futures and tasks.

As per its name, Tail-Modulo-Await optimises such functions that are almost tail recursive, but

whose tail calls happen under await. Consider the effect of the optimisation in Fig. 5: the stack

remains of constant size, only one recursive task is ever alive, and the chain of futures is reduced to

length one. To achieve this, the recursive computation check_urls_dps is crucially not asynchronous
any more. Furthermore, it takes a destiny d as argument, a write-once memory cell in which we

shall set the boolean resulting from its computation. The function check_urls is then defined as a

top level wrapper that creates a pair of a destiny to be passed to the helper, and of a future that will

get resolved by this destiny: such a pair is referred to as a promise in the literature. To ensure we

are non-blocking, the helper is forked in a separate thread, before returning the future. Naturally,

calls to await which are not in tail position remain, such as the one to check_url on Line 5.

One might wonder what happens if a terminal position contains a call to a function which is

not in Destiny-Passing-Style ? For instance, if we were to unroll the check_urls function once, we

would obtain the following extra-clause in our pattern matching:

| [url] -> await (check_url url)
The check_url function, which is provided by an external library, doesn’t necessarily have a DPS

version. Nevertheless, we would like to avoid creating an intermediary task whose sole purpose

is to wait before filling the destiny. This exactly corresponds to forward [8] from the literature.

forward (d, fut) registers that when future fut is resolved, the result should be used to set destiny

d. This can be implemented efficiently in the scheduler to avoid an extra task. Furthermore, it works

for any future, not just asynchronous function application. This efficiently bridges the gap between

the DPS world and the rest of the asynchronous world.

2.2 Calculus
We now present our calculus, a first order imperative and asynchronous 𝜆-calculus which formalises

this first transformation, Tail-Modulo-Await, without any constructor. Fig. 6 shows at once the

syntax of both the source language and the target one, using the following code colour: 𝐿𝑖𝑔ℎ𝑡 𝑏𝑙𝑢𝑒

elements are source-specific, 𝑝𝑒𝑎𝑐ℎ elements are target-specific, and Grey elements are runtime

syntax. dynamic semantics of the language.

Shared core. Both languages includes standard control flow and support for references, with op-

erations for creation (newref(𝑒)), reads (! 𝑒), and updates (𝑒 := 𝑒). As motivated earlier, this first

calculus contains no data type, static values are reduced to basic types. Its functional side is first

order: we assume all functions are 𝜆-lifted in a table of function definitions Fun. In both languages,
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6 Emma Nardino, Ludovic Henrio, Gabriel Radanne, and Yannick Zakowski

(expressions) Expr ∋ 𝑒 F 𝑣 | 𝑥 ∈ Var | let𝑥 = 𝑒 in 𝑒′

| (𝑓 𝑒)
| if 𝑒 then 𝑒𝑡 else 𝑒𝑓
| newref(𝑒) | ! 𝑒 | 𝑒 := 𝑒

| await(𝑒)
| (𝑓 #𝑡 (𝑒′, 𝑒))
| forward(𝑒, 𝑒′)
| refine(𝑒, 𝑒′)

(functions) fd F 𝑓 ↦→ 𝜆𝑥 . 𝑒

| 𝑓 ↦→ 𝜆async𝑥 . 𝑒

| 𝑓 ↦→ 𝜆dps𝛿, 𝑥 . 𝑒

Fun F
[
fd

]
(values) Val ∋ 𝑣 F 𝑏 ∈ B | 𝑐 ∈ Const

| ℓ ∈ Loc | fut ∈ F
| 𝑑 ∈ Dest

Fig. 6. Syntax – 𝐿𝑖𝑔ℎ𝑡 𝑏𝑙𝑢𝑒 elements only exist in the source language and 𝑝𝑒𝑎𝑐ℎ elements only in the target
language. Grey elements denote runtime syntax.

functions are tagged with their calling behaviour when declared: sequential by default, or with

an asynchronous behaviour. When a task 𝑡 is created, a future fut is associated to it, and any task

can get the result of the computation by performing await(fut). If 𝑡 is not finished yet, we say

fut is unresolved, in which case await(fut) is blocking; otherwise, it retrieves the computed value.

Futures are runtime values.

Source language. The only syntax for function calls is (𝑓 𝑒). The behaviour of the call directly
depends on the tag associated to 𝑓 in its declaration: synchronous by default, unless tagged by

𝜆async. In the latter case, the behaviour is asynchronous: each call spawns both a task and a fresh

future, whose resolution is tied to the task.

Target language. Here, there are no such coupling between a future and a task responsible for

fulfilling it. Instead, each future is mapped to exactly one destiny: a value acting as a write-once

memory location which can be used to fill the future. A pair of a read-only future and a write-

once reference is often referred to as a promise in asynchronous programming languages. These

destinies are not bound to a particular task, and can be passed by argument to subsequent calls to

asynchronous functions. To this end, asynchronous functions are declared in destiny-passing style

(dps), i.e., of the shape (𝜆dps𝛿, 𝑥 . 𝑒), where 𝛿 is the variable used to pass the destiny.

There are two distinct ways to call a dps function. The first one, as (𝑓 𝑒), is similar to the source

language: it creates a task, a promise (read a pair fut, 𝑑 , where 𝑑 is the destiny resolving future fut)

and maps the destiny to 𝑑 . This corresponds to automatically introducing the wrapper function in

Fig. 5. The second one is specific to tail calls to asynchronous functions: we explicitly represent

such calls in the syntax as (𝑓 #𝑡 (𝑑, 𝑒)). Instead of creating a fresh promise, such tail calls delegate

the resolution of the promise to the newly created task, by passing its destiny 𝑑 as the new task’s

destiny. This behaviour corresponds to fork_dps calls in Fig. 5.

Unlike futures, the resolution of destinies is not associated to the end of a task but must be

performed explicitly, via the statement refine(𝑑, 𝑒). In the absence of constructor, this corresponds

to d ◀ e in our informal syntax.
4
Finally, forward(fut, 𝑑) binds the resolution of a promise to the

resolution of another one: the destiny 𝑑 is automatically filled when the promise fut is resolved.

2.3 Semantics
We now equip both languages with an operational, small-step, semantics. We assume a table of

function definitions 𝐹𝑢𝑛 implicitly parametrising the semantics.

Shared core. At runtime, values are extended with locations and futures (Fig. 6). Both languages

share a thread-local core, whose reduction is defined over local configurations (𝜎, 𝑒) carrying a

store and an expression. The local reduction · → · is provided on Fig. 8. This reduction relation is

4
As the name hints, refine takes on more responsibilities when constructors are introduced, in the next section
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Tail Modulo Async-Await 7

(store) 𝜎 F
[
ℓ ↦→ 𝑣

]
(evaluation contexts) Ectx ∋ 𝐶 F □ | let𝑥 = 𝐶 in 𝑒 | if𝐶 then 𝑒𝑡 else 𝑒𝑓 | (𝑓 𝐶)

| newref(𝐶) | 𝐶 := 𝑒 | ℓ := 𝐶 | await(𝐶)
| (𝑓 #𝑡 𝐶) | forward(𝐶, 𝑒′) | refine(𝑒, 𝐶)

Fig. 7. Runtime syntax for Stores 𝜎 and Contexts 𝐶

𝜎, 𝑒 → 𝜎 ′, 𝑒′

𝜎,𝐶 [𝑒] → 𝜎 ′,𝐶 [𝑒′]
ℓ ∉ dom(𝜎)

𝜎, newref(𝑣) → 𝜎 [ ℓ ↦→ 𝑣 ] , ℓ
(ℓ ↦→ 𝑣) ∈ 𝜎

𝜎, ! ℓ → 𝜎, 𝑣

𝜎, (ℓ := 𝑣) → 𝜎 [ ℓ ↦→ 𝑣 ] , ()
(𝑓 ↦→ 𝜆𝑥. 𝑒) ∈ Fun

𝜎, (𝑓 𝑣) → 𝜎, 𝑒 [𝑥 ↦→ 𝑣]

Fig. 8. Sequential semantics (rules for if and let are omitted) — 𝜎, 𝑒 → 𝜎′, 𝑒′

(unordered list of tasks) Task F (main ↦→ 𝑒) ⊔ (fut ↦→ 𝑒)
(source configurations) 𝑐 F 𝜎, Task

(a) Runtime configurations

𝜎𝑠 = ∅
Task𝑠 = (main ↦→ 𝑒)
(b) Initial configurations

Fig. 9. Source Configuration

step

𝜎, 𝑒 → 𝜎′, 𝑒′

𝜎, Task ⊔ (fut ↦→ 𝑒) → 𝜎′, Task ⊔ (fut ↦→ 𝑒′)

await-resolved

(fut′ ↦→ 𝑣) ∈ Task

𝜎, Task ⊔ (fut ↦→ 𝐶 [await(fut′)]) → 𝜎, Task ⊔ (fut ↦→ 𝐶 [𝑣])

async-call

(𝑓 ↦→ 𝜆async𝑥 . 𝑒) ∈ Fun fut
′ ∉ dom(Task) fut

′ ≠ fut

𝜎, Task ⊔ (fut ↦→ 𝐶 [(𝑓 𝑣)]) → 𝜎, Task ⊔ (fut′ ↦→ 𝑒 [𝑥 ↦→ 𝑣]) ⊔ (fut ↦→ 𝐶 [fut′])

Fig. 10. Global source reduction — 𝜎, Task → 𝜎′, Task′

completely standard: evaluation contexts are defined on Fig. 7, and the four other rules specify the

operations over the store, and the beta reduction for sequential function calls.

Source language. In the source, task creation and synchronisation is entirely managed through

futures: runtime configurations (Fig. 9) pair a store with a set of tasks, each bound to a different

future (with the exception of the main thread). Initial configurations have an empty store and a

single main task, while final configurations have all tasks evaluated down to a value.

The concurrent reductions are given on Fig. 10. The step rule allows any task to progress

according to the local semantics. Rule await-resolved evaluates an await(fut′) statement: if the

computation of fut
′
is reduced down to a value, this value is substituted. Finally, the async-call

rule handles task creation by creating a fresh future and a new entry in the set of tasks.

Target language. Runtime configurations for the target language are described on Fig. 11. Contrary to

the source, any thread can fulfil a future: Fut hence keeps track of their status.Wewrite [ fut ↦→ 𝔘 𝑑 ]
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8 Emma Nardino, Ludovic Henrio, Gabriel Radanne, and Yannick Zakowski

(maps of futures) Fut F F
fin−⇀ Dest + Val

(Tasks) Task F (main ↦→ 𝑒) ⊔ (tid ↦→ 𝑒)
(target configurations) 𝑐 F 𝜎, Task, Fut

(a) Runtime configuration

𝜎𝑡 = ∅
Task𝑡 = (main ↦→ 𝑒)
Fut𝑡 = ∅

(b) Initial configuration

Fig. 11. Target Configuration

step

𝜎, 𝑒 → 𝜎 ′, 𝑒′

𝜎, Task ⊔ (tid ↦→ 𝑒), Fut → 𝜎 ′, Task ⊔ (tid ↦→ 𝑒′), Fut

await-target

Fut [ fut ] = ℜ 𝑣

𝜎, Task ⊔ (tid ↦→ 𝐶 [await(fut)]), Fut → 𝜎, Task ⊔ (tid ↦→ 𝐶 [𝑣]), Fut

chain

Fut [ fut ] = 𝔘 𝑑 Fut [ fut′ ] = ℜ 𝑣

𝜎, Task ⊔ (tid ↦→ forward(fut′, 𝑑)), Fut → 𝜎, Task, Fut [ fut ↦→ ℜ 𝑣 ]

dps-call

(𝑓 ↦→ 𝜆dps𝛿, 𝑥 . 𝑒) ∈ Fun fut
′, 𝑑, tid′ fresh

𝜎, Task ⊔ (tid ↦→ 𝐶 [(𝑓 𝑣)]), Fut →
𝜎, Task ⊔ (tid ↦→ 𝐶 [fut′]) ⊔ (tid′ ↦→ 𝑒 [𝛿 ↦→ 𝑑] [𝑥 ↦→ 𝑣]), Fut [ fut′ ↦→ 𝔘 𝑑 ]

tail-call

(𝑓 ↦→ 𝜆dps𝛿, 𝑥 . 𝑒) ∈ Fun tid
′ ∉ dom(Task)

𝜎, Task ⊔ (tid ↦→ (𝑓 #𝑡 (𝑑, 𝑣))), Fut → 𝜎, Task ⊔ (tid′ ↦→ 𝑒 [𝑥 ↦→ 𝑣] [𝛿 ↦→ 𝑑]), Fut

future-fill

Fut [ fut ] = 𝔘 𝑑

𝜎, Task ⊔ (tid ↦→ refine(𝑑, 𝑣)), Fut 𝜀→𝜎, Task, Fut [ fut ↦→ ℜ 𝑣 ]

Fig. 12. Global target reduction — 𝜎, Task, Fut → 𝜎′, Task′, Fut′

when fut is yet unresolved, and tied to the destiny 𝑑 ; and [ fut ↦→ ℜ 𝑣 ] when fut is resolved with

value 𝑣 . The target tasks are not indexed by futures, but rather by anonymous identifiers, written

tid, that cannot be awaited. Initial configurations are similar to the source language, with an empty

map of futures. A configuration is final if its main thread is reduced to a value, it is the only thread

left, and every future in Fut is resolved.

Reduction is defined on 12. Local reductions can still be lifted to any task (step). await-

target handles futures synchronisation: await(fut) can only be evaluated if fut is resolved, i.e., if

Fut [ fut ] = ℜ 𝑣 for some value 𝑣 .

chain evaluates a forward(fut′, 𝑑) statement when fut
′
is resolved, and in turn resolves the

future linked to destiny 𝑑 . Its behaviour is seemingly similar to the one of await: it blocks until
𝑓 𝑢𝑡 ′ is resolved. However forward can only occur in tail position, as captured by the absence of

an evaluation context in chain. Thus tasks of the form (tid ↦→ forward(fut, 𝑑)) are kept asleep
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(tail contexts) Tctx𝑛 ∋ 𝐶𝑡𝑙
𝑛 F □ : Tctx1 | let𝑥 = 𝑒 in𝐶𝑡𝑙

𝑛 : Tctx𝑛

| if 𝑒 then𝐶𝑡𝑙
𝑛 else𝐶𝑡𝑙

𝑚 : Tctx𝑛+𝑚

□1 [𝑒] := 𝑒

(let𝑥 = 𝑒 in𝐶𝑡𝑙
𝑛 ) [𝑒1 | · · · | 𝑒𝑛] := let𝑥 = 𝑒 in (𝐶𝑡𝑙

𝑛 [𝑒1 | · · · | 𝑒𝑛])
(if 𝑒 then𝐶𝑡𝑙

𝑛 else𝐶𝑡𝑙
𝑚) [𝑒1 | · · · | 𝑒𝑛+𝑚] := if 𝑒 then (𝐶𝑡𝑙

𝑛 [𝑒1 | · · · | 𝑒𝑛]) else (𝐶𝑡𝑙
𝑚 [𝑒𝑛+1 | · · · | 𝑒𝑛+𝑚])

(a) Tail contexts: definition and filling operation

Fun𝑠 ⇒ Fun𝑡

𝑓 ↦→ 𝜆𝑥 . 𝑒 ⇝ 𝑓 ↦→ 𝜆𝑥 . 𝑒

𝑓 ↦→ 𝜆async𝑥 . 𝑒 ⇝ 𝑓 ↦→ 𝜆dps𝛿, 𝑥 .DJ𝑒K𝛿

(b) Transformation over function definitions

DJ∅,𝑇mainK = ∅,𝑇main, ∅

(c) Transformation over initial configurations

DJ𝐶𝑡𝑙
𝑛 [𝑒1 | · · · | 𝑒𝑛]K𝛿 F 𝐶𝑡𝑙

𝑛 [DJ𝑒1K𝛿 | · · · | DJ𝑒𝑛K𝛿 ]
DJawait(𝑒)K𝛿 F DaJ𝑒K𝛿

DJ𝑒K𝛿 F refine(𝛿, 𝑒) (otherwise)

DaJ𝐶𝑡𝑙
𝑛 [𝑒1 | · · · | 𝑒𝑛]K𝛿 F 𝐶𝑡𝑙

𝑛 [DaJ𝑒1K𝛿 | · · · | DaJ𝑒𝑛K𝛿 ]
DaJ(𝑓 𝑒)K𝛿 F (𝑓 #𝑡 (𝛿, 𝑒))

if (𝑓 ↦→ 𝜆async𝑥 . 𝑒
′) ∈ Fun

DaJ𝑒K𝛿 F forward(𝑒, 𝛿) (otherwise)

(d) Transformation over expressions

Fig. 13. The Tail-Modulo-Await transformation — DJ·K

in the configuration until fut is resolved, but do not block pending computations. An optimised

implementation could store such forwarded destinies directly on the future fut itself.

dps-call and tail-call handle asynchronous function calls, as described previously. dps-call

creates a fresh promise (thus a new mapping [ fut ↦→ 𝔘 𝑑 ] in Fut), and a new task resolving said

promise by executing the called function. tail-call handles specifically calls in tail position: it

passes the current destiny to the called function and hosts it in a new task, but furthermore kills the

current task as we know there is nothing left to computer afterwards. Finally, future-fill handles

future resolution, killing the current task as well, as refine statements only exist in tail position.

2.4 The Tail-Modulo-Await Transformation
We can finally define the Tail-Modulo-Await transformation in Fig. 13. It is applied to all asynchro-

nous functions 𝜆async · . in Fun (Fig. 13b). The rest of the program, and in particular the main thread,

is not affected (Fig. 13c).

Its core is a recursive function over expressions DJ·K𝛿 where 𝛿 is a variable name bound to a

destiny (Fig. 13d). It relies on the notion of tail-context (Fig. 13a) which captures in an expression

the set of positions at which a call would be tail.

The function DJ·K itself proceeds by pattern-matching, recursing through the program towards

tail positions, leaving the rest unperturbed. If it reaches an await(𝑒), it switches mode, now

recursing 𝑒 via DaJ·K, until it reaches either an asynchronous function call to transform it into a

tail-call, or any other expression to transform it into a forward. Finally, for other expressions 𝑒 ,
DJ·K emits refine(𝛿, 𝑒) to fill the current destiny.
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2.5 Correctness of Tail-Modulo-Await
We prove that the tma transformation does not introduce new behaviors: if a source program 𝑝𝑠 is

transformed into a target program 𝑝𝑡 , then any execution of 𝑝𝑡 can be matched by an execution of

𝑝𝑠 , leading to similar final states, and identical stores (i.e., 𝑝𝑡 is a behavioural refinement of 𝑝𝑠 ). As

is standard, we prove it by exhibiting a backward simulation. The simulation admits stuttering steps,

capturing “administrative” steps occurring in the target language but matched by no step in the

source. These steps exactly correspond to future-fill, whose transitions are identified by an “𝜀”.

We hence need to ensure that a transformed program cannot take infinitely many 𝜀 steps in a row.

Definition 2.1 (backward simulation). We say that ≽ is a backward simulation if for any 𝑐𝑠 , 𝑐𝑡 , 𝑐
′
𝑡

such that 𝑐𝑠 ≽ 𝑐𝑡 , we have:

• if 𝑐𝑡
𝜀−→ 𝑐′𝑡 , then 𝑐𝑠 ≽ 𝑐′𝑡

• if 𝑐𝑡 → 𝑐′𝑡 ,, there exists 𝑐
′
𝑠 such that 𝑐𝑠 →+ 𝑐′𝑠 , and 𝑐

′
𝑠 ≽ 𝑐′𝑡

Which allows us to state the correctness theorem for tma

Theorem 2.2. There exists a relation ≽ such that:

(1) ≽ is a backward simulation

(2) forall 𝑐𝑠 initial source configuration, 𝑐𝑠 ≽ DJ𝑐𝑠K
(3) if 𝑐𝑠 ≽ 𝑐𝑡 , and 𝑐𝑡 is a final configuration, then there is a final source configuration 𝑐′𝑠 such that

𝑐𝑠 →∗ 𝑐′𝑠 , and 𝑐
′
𝑠 and 𝑐𝑡 have the same final main value.

In the remaining of this section, we define the relation ≽ and sketch the simulation proof.

2.5.1 Definition of ≽ . We define ≽ on Fig. 14c in three successive layers. First at the level of

expressions, the relation ∼𝑑 is parametrised by a destiny 𝑑 . It relates a source expression 𝑒 to its

syntactic transformation, in which the free variable 𝛿 is substituted by 𝑑 (expr-transfo). This

alignment can however be broken: the target may reduce to expressions like refine(𝑑, await(𝑒)),
with synchronous function calls in tail-positions (expr-refine).

At the level of tasks, ≃ (Fig. 14b) relates sets of threads which collectively capture the same

computation. The relation is of the form 𝑇𝑠 ≃ 𝑇𝑡 ,
[
fut

0
↦→ ℜ 𝑣 |𝔘 𝑑

]
where 𝑇𝑠,𝑡 denote sets of

threads computing the same future. On the source side, a task computing an asynchronous function

and its subsequent recursive calls is related on the target side to the corresponding pair of thread

and future/destiny mapping. One of the main purpose of tma is to prevent chains of hanging tasks

all awaiting the following, i.e., groups of tasks with the shape (fut
0
↦→ await(fut

1
)) ⊔ · · · (fut𝑛−1 ↦→

await(fut𝑛)) . We hence introduce the notation Aw[fut
0
..fut𝑛] for such chains, and capture this

intuition in task-comp. We must furthermore keep track of resolved futures on either sides (task-

val), and bookkeep intermediary states featuring a resolved future yet to be garbage collected

(task-await-val).

Finally, Fig. 14c composes task-level relations into a simulation relation between configurations.

The stores (𝜎𝑠,𝑡 ) and the main thread (main ↦→ 𝑒) are in exact agreement. The other threads on

each side can be partitioned into 𝑛 pools (𝑇
(𝑖 )
𝑠,𝑡 ), one for each future in the target, such that they

are pairwise related by ≃ . Intuitively, a new pool is created when an asynchronous function is

called from a non-tail position (by rule async-call/dps-call), and are never removed from the

configuration. Finally, we maintain two invariants: (6) that no two pools can use the same destiny

name, and (7) that the futures resulting from tail-calls in a pool are internal, i.e., they cannot appear

in the store or any other thread.

2.5.2 Proof sketch. The proof of backward simulation relies on the observation that (1) a step in a

thread belonging to a pool leaves all other pools unchanged, and (2) it is simulated in the source by
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expr-transfo

𝑒 ∼𝑑 DJ𝑒K𝛿 [𝛿 ↦→ 𝑑]

expr-refine

𝑒 ∼𝑑 refine(𝑑, 𝑒)

(a) Expression-level relation

task-comp

𝑒 ∼𝑑 𝑒′

Aw[fut
0
..fut𝑛] ⊔ (fut𝑛 ↦→ 𝑒) ≃ (tid ↦→ 𝑒′),

[
fut

0
↦→ 𝔘 𝑑

] task-val

(fut𝑖 ↦→ 𝑣)0≤𝑖≤𝑛 ≃ ∅,
[
fut

0
↦→ ℜ 𝑣

]
task-await-val

Aw[fut
0
..fut𝑛] ⊔ (fut𝑛 ↦→ 𝑣) ≃ ∅,

[
fut

0
↦→ ℜ 𝑣

]
(b) Task-level relation

𝜎𝑠 , Task𝑠 ≽ 𝜎𝑡 , Task𝑡 , Fut𝑡 ⇔



(1) 𝜎𝑠 = 𝜎𝑡

(2) Task𝑠 = (main ↦→ 𝑒) ⊔ 𝑇
(1)
𝑠 ⊔ · · ·𝑇 (𝑛)

𝑠

(3) Task𝑡 = (main ↦→ 𝑒) ⊔ 𝑇
(1)
𝑡 ⊔ · · ·𝑇 (𝑛)

𝑡

(4) Fut𝑡 =

[
fut𝑖 ↦→ F𝑖

1≤𝑖≤𝑛 ]
(F𝑖 = 𝔘 𝑑𝑖 | ℜ 𝑣𝑖 )

(5) ∀ 𝑖,𝑇
(𝑖 )
𝑠 ≃ 𝑇

(𝑖 )
𝑡 ,

[
fut𝑖 ↦→ F𝑖

]
(6) ∀ 𝑖 ≠ 𝑗, 𝑑𝑖 ≠ 𝑑 𝑗 (if defined)

(7) ∀𝑖, fut ∈ dom(𝑇 (𝑖 )
𝑠 ) \ {fut𝑖 },

{
fut ∉ Im(𝜎)
∀𝑗 ≠ 𝑖, fut ∉ 𝑇

( 𝑗 )
𝑠

(c) Configuration-level relation

Fig. 14. Simulation relation

steps taken in the corresponding pool. We then distinguish two broad cases: a step in main must be

exactly mirrored, while a step in pool 𝑇
(𝑖 )
𝑡 must be matched in 𝑇

(𝑖 )
𝑠 and restore (5) for index 𝑖 . We

refer the reader to Appendix C for the full case analysis, and detail here two informative cases.

Stepping in main. Since the target main is syntactically identical to the source one, the only steps

it can take are local steps, dps-call, and await-target.

To illustrate thread creation, consider a dps-call step: it is matched by an async-call in the

source, using the same future name. The stores are omitted from the configurations.

Task𝑠 ⊔ (main ↦→ 𝐶 [(𝑓 𝑣)]) Task𝑡 ⊔ (main ↦→ 𝐶 [(𝑓 𝑣)]), Fut𝑡

Task𝑠 ⊔ (main ↦→ 𝐶 [fut′])
⊔ (fut′ ↦→ 𝑒 [𝑥 ↦→ 𝑣])

Task𝑡 ⊔ (main ↦→ 𝐶 [fut′])
⊔ (tid ↦→ DJ𝑒K𝛿 [𝛿 ↦→ 𝑑] [𝑥 ↦→ 𝑣]),

Fut𝑡 ⊔ [ fut′ ↦→ 𝔘 𝑑 ]

≽
async-call

(𝑓 ↦→𝜆async𝑥. 𝑒 ) ∈Fun𝑠
dps-call

(𝑓 ↦→𝜆dps𝛿, 𝑥 . DJ𝑒K𝛿 ) ∈Fun𝑡

≽

The main threads (highlighted in 𝑟𝑒𝑑 ) are still identical, and the newly created tasks (in 𝑏𝑙𝑢𝑒 ) verify

clause (5) by task-comp. 𝑑 and fut
′
are fresh so (6) and (7) are satisfied.
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1 let%async rec map f t = match t with
2 | Leaf -> Leaf
3 | Node (x , tl, tr) ->
4 Node𝜌 (f x, await (map f tl),
5 await (map f tr))

(a) map parameterized by Node semantics 𝜌 .

4 let x' = f x in
5 let tl' = await (map f tl) in
6 Node (x', tl', await (map f tr))

(b) Semantically-equivalent code for sequential Node

4 let tl' = map f tl and tr' = map f tr in
5 let x' = f x in
6 Node (x', await tl', await tr')

(c) Semantically-equivalent code for parallel Node

𝜌
=
se
q

𝜌
= | |

Fig. 15. A parametric map on trees

Stepping in a parallel thread. Given a target step in pool 𝑇
(𝑖 )
𝑡 , clause (5) constraints the shape of

the corresponding pool 𝑇
(𝑖 )
𝑠 . Considering a tail-call step as illustration:

Task𝑠 ⊔ Aw[fut
0
..fut𝑛]

⊔ (fut𝑛 ↦→ await((𝑓 𝑣)))
Task𝑡 ⊔ (tid ↦→ (𝑓 #𝑡 (𝑑, 𝑣))),
Fut𝑡 ⊔

[
fut

0
↦→ 𝔘 𝑑

]
Task𝑠 ⊔ Aw[fut

0
..fut𝑛+1]

⊔ (fut𝑛+1 ↦→ 𝑒 [𝑥 ↦→ 𝑣])
Task𝑡 ⊔ (tid′ ↦→ DJ𝑒K𝛿 [𝛿 ↦→ 𝑑] [𝑥 ↦→ 𝑣]),
Fut𝑡 ⊔

[
fut

0
↦→ 𝔘 𝑑

]
≽

async-call tail-call

≽

The task-level invariant ≃ ensures via task-comp that we can take a matching async-call in the

source. Since fut𝑛+1 is fresh, (7) is preserved.

Initial and final states. Initial configurations are trivially related. If 𝑐𝑠 ≽ 𝑐𝑡 , with 𝑐𝑡 a final target

configuration, then the main thread is reduced to a value 𝑣 , and the same is true in 𝑐𝑠 by clauses

(2) and (3). Furthermore, every future is resolved, so each 𝑇
(𝑖 )
𝑠 is either of the form (fut𝑖 ↦→ 𝑣𝑖 ) by

task-val, and thus satisfy finality; or Aw[fut
0
..fut𝑛] ⊔ (fut𝑛 ↦→ 𝑣), in which 𝑛 await-resolved

steps can be taken to reach a final configuration.

3 Tail-Modulo-Cons-Await
Before adding constructors to the calculus, let us revisit some subtle semantic considerations, using

the example of a tail-recursive map on trees introduced in Section 1.

As discussed, we consider two possible semantics for constructors in the presence of async/await.
Constructors tagged as sequential ensure their arguments are evaluated in sequence, while those

tagged parallel maximise parallelism. These different behaviours are illustrated on Fig. 15, which

features the map on trees from Fig. 1, but where the final Node constructor is parametrised by a tag 𝜌 .

We capture the meaning of this tag by translating map into two programs semantically equivalent to

the original one, depending on the value of 𝜌, but whose order of evaluation is made explicit through

let bindings. Beware, this is not the result Tail-Modulo-Cons-Await transformation, which aims to

pre-allocate the constructor and avoid intermediate task creations, as showcased in Section 1.

For 𝜌 = seq, the sequential semantics showcased in Fig. 15b prevents any interleaving, and fixes

an order of execution (here, left-to-right). In this case, only one await statement can be considered

in tail position, the rest of the body must be awaited on to launch the final call. This semantics is

similar to the Tail-Modulo-Cons transformation formalized by Allain et al. [3].

For 𝜌 = | |, evaluation can maximise parallelism, as showcased in Fig. 15c. The semantics is

equivalent to first launching both sub-tasks (here, map f tl and map f tr), and then the sequential

code (f x), hence removing any synchronisation between the tasks.
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(expressions) Expr ∋ 𝑒 F . . .

| { t, 𝑒, 𝑒 } | [ t, 𝑒, 𝑒 ]
| 𝑒.(𝑒) | 𝑒.(𝑒)← 𝑒
| ■
| refine(𝑒, 𝑒)

(values) Val ∋ 𝑣 F . . . | 𝑑, ℓ ∈ Loc

| t ∈ Tag | i ∈ Index

| ⧸
(tags) Tag ∋ t F tseq | t | |
(offsets) Index ∋ i F {0, 1, 2}

Fig. 16. Syntax extension for constructors — Extends Fig. 6 — 𝐿𝑖𝑔ℎ𝑡 𝑏𝑙𝑢𝑒 elements only exist in the source
language and 𝑝𝑒𝑎𝑐ℎ elements only in the target language. Grey elements denote runtime syntax.

(store) 𝜎 F . . .

(eval contexts) Ectx ∋ 𝐶 F · · · | [ 𝑡,𝐶, 𝑒 ] | [ 𝑡, 𝑣,𝐶 ] | [ 𝑡,■,𝐶 ] | 𝑒.(𝐶) | 𝐶.(𝑣)
| 𝑒.(𝑒)←𝐶 | 𝑒.(𝐶)← 𝑣 | 𝐶.(𝑣)← 𝑣
| refine(𝑒, 𝐶)

Fig. 17. Runtime syntax for constructors — Extends Fig. 7

sta(𝐶𝑡𝑙
𝑛 [await(𝑒1) | · · · | await(𝑒𝑛)]) F 𝐶𝑡𝑙

𝑛 [𝑒1 | · · · | 𝑒𝑛]

Fig. 18. Utility function to strip awaits in tail positions – sta(𝑒)

In both cases, tmca pre-allocates the Node constructor and constructs the structure in memory

piece-by-piece, as shown in Section 1. But crucially in the case of the parallel semantics, the

intermediary structure during execution might have several holes. The top-level future is resolved

when there are no more holes in the structure.

In the remainder of this section, we extend the calculus introduced in Section 2 in order to

formalise the Tail-Modulo-Cons-Await code transformation, and prove its correctness.

3.1 Calculus
To model data-constructors, we add binary constructors to the language as tagged mutable memory

blocks { t, 𝑒1, 𝑒2 }, with notations and semantics inspired by Allain et al.’s formalization of Tail-

Modulo-Cons [3], but with the additional sequential (tseq) and parallel (t | | ) discussed above. As

in [3], we have a separate, runtime-only block construction [ t, 𝑒1, 𝑒2 ], in which evaluation order

is always left-to-right, and which performs allocation when all fields have finished evaluating.

Memory locations are still runtime-only, and there is no general pointer arithmetic. Once allo-

cated, constructor fields are accessible using ℓ.(i), where i is an offset in {0, 1, 2}. Destinies are
now actual memory locations, in the store.

The purpose of the refine instruction is extended: refine(𝑑, 𝑣) takes a value 𝑣 which may have

some holes—syntactic markers (written ■) to denote positions in a value that we want to compute

later—, plugs said value at location 𝑑 , and returns the locations of said holes in 𝑣 . The positions

marked are initialized with value ⧸ (read Undef ). For simplicity, we keep arguments of refine as
shallow constructors (no sub-constructors) with at most two arguments. We extend slightly this

construct for our implementation in Section 4.1.

3.2 Semantics
Both the source and target runtime configurations are the same as for the Tail-Modulo-Await

transformation. The same is true for initial and final configurations.

Shared core. We add support for constructors with contexts in Fig. 17, utility functions in Fig. 18

and reduction rules in Fig. 19.
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14 Emma Nardino, Ludovic Henrio, Gabriel Radanne, and Yannick Zakowski

constr-read

𝜎 [ ℓ + 𝑖 ] = 𝑣

𝜎, ℓ.(𝑖) → 𝜎, 𝑣

constr-write

ℓ + 𝑖 ∈ dom(𝜎)
𝜎, ℓ.(𝑖)← 𝑣 → 𝜎 [ ℓ + 𝑖 ↦→ 𝑣 ] , ()

constr-alloc

∀𝑖 ∈ Index, ℓ + 𝑖 ∉ dom(𝜎)
𝜎, [ 𝑡, 𝑣1, 𝑣2 ] → 𝜎 [ ℓ ↦→ 𝑡, 𝑣1, 𝑣2 ] , ℓ

constr-full-par

sta(𝑒1) = 𝑒′
1

sta(𝑒2) = 𝑒′
2

𝜎, { t | |, 𝑒1, 𝑒2 } → 𝜎,

let𝑥1 = 𝑒′
1
in

let𝑥2 = 𝑒′
2
in

[ t | |, await(𝑥1), await(𝑥2) ]

constr-par-left

sta(𝑒1) = 𝑒′
1

sta(𝑒2) undefined

𝜎, { t | |, 𝑒1, 𝑒2 } → 𝜎,

let𝑥1 = 𝑒′
1
in

let𝑥2 = 𝑒2 in
[ t | |, await(𝑥1),𝑥2 ]

constr-par-right

sta(𝑒2) = 𝑒′
2

sta(𝑒1) undefined

𝜎, { t | |, 𝑒1, 𝑒2 } → 𝜎,

let𝑥2 = 𝑒′
2
in

let𝑥1 = 𝑒1 in
[ t | |,𝑥1, await(𝑥2) ]

constr-seq-left

sta(𝑒1) = 𝑒′
1

sta(𝑒2) undefined

𝜎, { tseq, 𝑒1, 𝑒2 } → 𝜎,

let𝑥2 = 𝑒2 in
let𝑥1 = 𝑒′

1
in

[ tseq, await(𝑥1),𝑥2 ]

constr-base

other cases

𝜎, { t, 𝑒1, 𝑒2 } → 𝜎, let𝑥1 = 𝑒1 in let𝑥2 = 𝑒2 in [ t,𝑥1,𝑥2 ]

Fig. 19. Sequential semantics for constructors — 𝜎, 𝑒 → 𝜎′, 𝑒′ — Extends Fig. 8

To specify their reduction, we need to capture expressions of shape𝐶𝑡𝑙
𝑛 [await(𝑒1) | · · · | await(𝑒𝑛)]

where𝐶𝑡𝑙
𝑛 is a tail context (see Fig. 13a). In such expressions, all execution path lead to an await. Re-

markably, such tail contexts “commute” with awaits, which is crucial to formalize which positions in

a constructor are indeed task creations. To capture this, we define a partial function over expressions:

strip-tail-awaits (shortened to sta), defined in Fig. 18, which removes all tail awaits. Intuitively,

this removal separates synchronisation from computation: consider 𝑒′ = sta(𝑒) = 𝐶𝑡𝑙
𝑛 [𝑒1 | · · · | 𝑒𝑛],

then 𝑒 is semantically equivalent to first binding fut to 𝑒′, launching a parallel task, and then

evaluating await(fut). Conversely, if sta(𝑒) is undefined, expression 𝑒 must be treated sequentially.

We can define reduction for constructors on Fig. 19. Stores are unchanged and evaluation

contexts are easily extended in Fig. 17. Read (constr-read) and write (constr-write) accesses

to constructors are defined by memory accesses. The final constructor allocation (constr-alloc)

is immediate by store access. Recall that { t, 𝑒1, 𝑒2 } denotes syntactic constructors, which can

have sub-expressions, while [ t,𝑥1,𝑥2 ] is runtime syntax for a constructor allocation and can not

have sub-expressions. The main challenge is in defining the evaluation of sub-expressions in a

constructor depending on its tag. While the rules are numerous, they simply enumerate all possible

node tags and positions for holes (one or two holes, left or right). We use let-bindings to represent

evaluation order: for parallel constructors t | | , we first evaluate the “parallel” fields (i.e., such that

sta is defined), then the sequential fields (similarly to tmc), and then perform the await for the
parallel fields just before allocation; conversely for sequential constructors tseq: non-parallel fields

are computed first, thus preserving evaluation order.

Source language. The concurrent reduction of the source semantics is unchanged.

Target language. Our target semantics crucially relies on the fact that we can resolve a future only

if it has no holes. To model this, we assume a magic function holes : ℓ → N (see Section 4 for an

efficient implementation) which returns the number of locations set to ⧸ in the tree rooted at ℓ .

Sequential Semantics. We add rules for refine in the sequential semantics. In a transformed

program, the second argument of a refine can be one of four cases, each described by one of the rules

in Fig. 20: either a block with a parallel tag and two holes (refine-par), a block with a sequential
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refine-par

𝜎 [𝑑 ] = ⧸ ℓ, ℓ + 1, ℓ + 2 ∉ dom(𝜎)
𝜎′ = 𝜎

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | , ℓ + 1, ℓ + 2 ↦→ ⧸

]
𝜎, refine(𝑑, [ t | |,■,■ ]) → 𝜎′, (ℓ + 1, ℓ + 2)

refine-seq-right

𝜎 [𝑑 ] = ⧸ ℓ, ℓ + 1, ℓ + 2 ∉ dom(𝜎)
𝜎′ = 𝜎

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq, ℓ + 1 ↦→ 𝑣1, ℓ + 2 ↦→ ⧸

]
𝜎, refine(𝑑, [ tseq, 𝑣1,■ ]) → 𝜎′, (ℓ + 2)

refine-seq-left

𝜎 [𝑑 ] = ⧸ ℓ, ℓ + 1, ℓ + 2 ∉ dom(𝜎)
𝜎′ = 𝜎

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq, ℓ + 1 ↦→ ⧸, ℓ + 2 ↦→ 𝑣2

]
𝜎, refine(𝑑, [ tseq,■, 𝑣2 ]) → 𝜎′, (ℓ + 1)

fill

𝜎 [𝑑 ] = ⧸

𝜎, refine(𝑑, 𝑣) 𝜀→𝜎 [𝑑 ↦→ 𝑣 ] , ()

Fig. 20. Sequential semantics for refine

chain-unresolved

Fut [ fut ] = 𝔘 𝑑′ 𝐶 ≠ □ tid
′
fresh

𝜎, Task ⊔ (tid ↦→ 𝐶 [forward(fut, 𝑑)]), Fut 𝜀→𝜎, Task ⊔ (tid ↦→ 𝐶 [()]) ⊔ (tid′ ↦→ forward(fut, 𝑑)), Fut

chain-resolved

Fut [ fut ] = ℜ 𝑣

𝜎, Task ⊔ (tid ↦→ 𝐶 [forward(fut, 𝑑)]), Fut → 𝜎 [𝑑 ↦→ 𝑣 ], Task ⊔ (tid ↦→ 𝐶 [()]), Fut

dps-call

(𝑓 ↦→ 𝜆dps𝛿, 𝑥 . 𝑒) ∈ Fun fut
′, 𝑑, tid′ fresh

𝜎, Task ⊔ (tid ↦→ 𝐶 [(𝑓 𝑣)]), Fut →
𝜎 [𝑑 ↦→ ⧸ ], Task ⊔ (tid ↦→ 𝐶 [fut′]) ⊔ (tid′ ↦→ 𝑒 [𝛿 ↦→ 𝑑] [𝑥 ↦→ 𝑣]), Fut

[
fut

′ ↦→ 𝔘 𝑑
]

tail-call

(𝑓 ↦→ 𝜆dps𝛿, 𝑥 . 𝑒) ∈ Fun tid
′
fresh

𝜎,

Task ⊔ (tid ↦→ 𝐶 [(𝑓 #𝑡 (𝑑, 𝑣))]),
Fut

→
𝜎,

Task ⊔ (tid ↦→ 𝐶 [()]) ⊔ (tid′ ↦→ 𝑒 [𝑥 ↦→ 𝑣] [𝛿 ↦→ 𝑑]),
Fut

future-resolve

Fut [ fut ] = 𝔘 𝑑 holes(𝑑) = 0 𝜎 [𝑑 ] = 𝑣

𝜎, Task, Fut
𝜀→𝜎 \ 𝑑, Task, Fut [ fut ↦→ ℜ 𝑣 ]

prune-tasks

𝜎, Task ⊔ (tid ↦→ ()), Fut → 𝜎, Task, Fut

Fig. 21. Global Target reduction — 𝜎, Task, Fut → 𝜎′, Task′, Fut′ — Extends Fig. 12.
Greyed out rules are similar to tma, with the modified parts highlighted in 𝑣𝑖𝑜𝑙𝑒𝑡 .

tag and one hole (refine-seq-left or refine-seq-right), or a value (fill). Except for that last case,

refine performs the allocation when every field of the block is either a value or a hole—setting the

location to ⧸ in that case—, sets the destiny argument to the corresponding value, and returns all

locations initialized at ⧸.

Concurrent Semantics. To define the target concurrent semantics with constructors, we extend

the one defined for Tail-Modulo-Await, but with additional contexts. The language constructs

that previously appeared exclusively in tail-position (and therefore could only be reduced under

empty evaluation context), can now appear under context: before a sequence, when evaluating

asynchronous fields of transformed constructor allocations. Therefore, we add contexts in the

reduction rules for these constructs (namely forward and (· #𝑡 ·))—for clarity, we write the rule in
grey and highlight the new additions in 𝑣𝑖𝑜𝑙𝑒𝑡 . Furthermore, these rules cannot kill the current
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task any more, and must instead return (). Instead, the new rule prune-tasks kills the threads

which “have nothing left to do”. Similarly, since forward can now appear under non-empty context,

it shouldn’t block its thread evaluation if the future to forward is still unresolved. Rule chain-

unresolved delegates the forward to a dedicated task, until it can be evaluated once the future is

resolved.

Filling a destiny does not necessarily resolve a future immediately. The rule future-resolve

sets a future to ℜ in Fut when it has no holes left; it also removes its associated destiny from the

store. This last removal is not necessary, but simplifies proofs by keeping stores consistent between

source and target configurations (these locations do not exist in the source).

3.3 Transformation
Finally, Fig. 22 describes the Tail-Modulo-Cons-Await transformation, extending Tail-Modulo-Await

with constructors. It uses the sta function (see Fig. 18) to determine which positions end in awaits
or not, and re-order the expressions accordingly. The bulk of the constructor is always replaced

by an allocation and a refine to obtain the appropriate destinies. Note that, in the tseq case, the

transformation is not recursively called on sub-expressions as there is only one tail-position.

DJ𝑒K𝛿 F . . .

DJ{ t | |, 𝑒1, 𝑒2 }K𝛿 F
let𝛿1, 𝛿2 = refine(𝛿, [ t | |,■,■ ]) in
DJ𝑒2K𝛿2 ;DJ𝑒1K𝛿1

(when sta(𝑒2) defined,
and sta(𝑒1) undefined)

DJ{ t | |, 𝑒1, 𝑒2 }K𝛿 F
let𝛿1, 𝛿2 = refine(𝛿, [ t | |,■,■ ]) in
DJ𝑒1K𝛿1 ;DJ𝑒2K𝛿2

(otherwise)

DJ{ tseq, 𝑒1, 𝑒2 }K𝛿 F
let𝛿1 = refine(𝛿, [ tseq,■, 𝑒2 ]) in
DJ𝑒1K𝛿1

(when sta(𝑒1) defined)

DJ{ tseq, 𝑒1, 𝑒2 }K𝛿 F
let𝛿2 = refine(𝛿, [ tseq, 𝑒1,■ ]) in
DJ𝑒2K𝛿2

(when sta(𝑒1) undefined)

Fig. 22. The Tail-Modulo-Cons-Await transformation — DJ·K — Extends Fig. 13

3.4 Correctness of tmca
We extend the proof of correctness introduced in Section 2.5 for tma. The simulation relation

essentially extends the previous one. However, the amount of administrative details we need to

track of gets hairy: we therefore refer the interested reader to the Appendix C for details, and

favour here a graphical representation to convey the intuition of the proof.

The management of the stuttering aspect of the backward simulation is slightly more involved

than in the tma case: the fill reduction step can be stuttering in some contexts, but not all. The

identification of 𝜀 steps is therefore now contextual, rather than purely hardcoded in the semantics.

3.4.1 Definition of ≽ . Figs. 23 and 24 introduce graphical representations for respectively source

and target configurations in relation: we take this informal graphical depiction as definition for

≽ . As for tma, the main thread is identical. However, because we allocate constructors in the store

at different points in execution, and also because destinies are now actual memory locations, the

stores cannot be synchronised: nonetheless, the store for a source configuration is always included

in the target store (𝜎), which we single out on the left of the representation.

The remaining threads of the configurations are still divided in matching pairs of pools, but with

additional structure, represented as boxes. Each box is associated to exactly one future. When, in
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𝜎 (main ↦→ 𝑒) · · · 𝑇
(𝑖 )
𝑠

fut𝑖 (fut𝑗 ↦→ 𝑣 𝑗 ) ⊔ · · ·fut𝑗

Fig. 23. Source configurations

𝜎 (main ↦→ 𝑒) · · ·
fut𝑖 ↦→ 𝔘 𝑑𝑖

𝑇
(𝑖 )
𝑡

𝜎𝑖𝑑𝑖

fut𝑗 ↦→ ℜ 𝑣 𝑗

(tid ↦→ ())

Fig. 24. Target configurations

(fut ↦→ [ t | |,𝛼1,𝛼2 ])

𝑇1

𝑇2

fut

fut
1

fut
2

fut ↦→ 𝔘 𝑑

(tid ↦→ ())?
[
𝑑 ↦→ ℓ

ℓ ↦→ t | |

]𝑑

𝑇 ′
1

𝜎1ℓ + 1

𝑇 ′
2

𝜎2ℓ + 2

fut
≈
𝑑

𝑇𝑖
fut𝑖

≈ℓ+𝑖 𝜎𝑖 ,𝑇
′
𝑖 , 𝑖 ∈ {1, 2}

Fig. 25. The last case of the relation for parallel constructors

the target, this future fut𝑖 maps to an unresolved destiny 𝑑𝑖 , it owns the share of store 𝜎𝑖 , which

holds the tree of constructors “in construction” on which the resolution of 𝑑𝑖 depends. As in tma,

the source and target threads pools are related via a relation 𝑇
(𝑖 )
𝑠

fut𝑖

≈
𝑑𝑖

𝜎𝑖 , 𝑇
(𝑖 )
𝑡 , annotated

with the future and destiny being resolved by the box. Otherwise, if the future is resolved (case fut𝑗 ),

the box carries the remaining set of lingering anonymous tasks on the target side, and resolved

futures on the source side.

Recall the tree-like memory layout at runtime presented in Fig. 2b. This structure, internal to a

"box", therefore needs to be captured in ≈ . It therefore reflects two aspects of the current state of

the structure in memory. First, at each node, it recursively ensures that the subtrees are related.

Furthermore, it must keep track of the status of the allocation of a given node as one of three

successive states: whether none, one, or two subtasks have been launched yet.
5
By identifying this

last case, we can identify the operation in the target filling the final hole, and against which the

source program can perform the corresponding allocations, resynchronising both configurations.

Fig. 25 illustrates the case of a parallel constructor with both fields asynchronous, in the situation

where both subtasks have already been launched. On the source side, we have 𝛼𝑖 = await(fut𝑖 ) if
fut𝑖 is not resolved yet, and 𝛼𝑖 = 𝑣𝑖 where 𝜎𝑖 (𝑙 + 𝑖) = 𝑣𝑖 otherwise.

3.4.2 Proof sketch. First, observe that similarly to the tma case, the ≈ relation allows us to frame

out part of the configurations when proving the backward simulation. We can therefore strengthen

the statement of simulation we establish, specifying the shape of the configurations we reach.

Consider 𝑐𝑠 =
𝜎𝑠 ,

Task𝑠 ⊔ 𝑇𝑠
≽

𝜎𝑡 ⊔ 𝑠𝑡 ,

Task𝑡 ⊔ 𝑇𝑡 ,

Fut𝑡

= 𝑐𝑡 , s.t. 𝑇𝑠
fut
≈
𝑑
𝑠𝑡 ,𝑇𝑡 , then:

5
In the case of sequential constructors, at most one subtask is launched.
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(fut ↦→ [ t | |, 𝑣1, await(fut2) ])

(fut
1
↦→ 𝑣1) · · ·

𝑇2

fut

fut
1

fut
2

(fut ↦→ [ t | |, 𝑣1, await(fut2) ])

(fut
1
↦→ 𝑣1) · · ·

(fut
2
↦→ 𝑣2) · · ·

fut

fut
1

fut
2

∗

(fut ↦→ ℓ)

(fut
1
↦→ 𝑣1) · · ·

(fut
2
↦→ 𝑣2) · · ·

fut

fut
1

fut
2

a
w
a
i
t
-
r
e
s
o
l
v
e
d
f
u
t
2
;

c
o
n
s
t
r
-
a
l
l
o
c
ℓ

(tid ↦→ ())?
[
𝑑 ↦→ ℓ

ℓ ↦→ t | |

]𝑑

Idle [ ℓ + 1 ↦→ 𝑣1 ]ℓ + 1

𝑇 ′
2

𝜎2ℓ + 2

fut
≈
𝑑

(tid ↦→ ())? [𝑑 ↦→ ℓ ]
𝑑

Idle ∅ℓ + 1

Idle ∅ℓ + 2

fut
≈
𝑑

fill or chain-resolved [ ℓ
↦→

[
t
||,

𝑣
1
,
𝑣
2
]
] ⊆

𝜎

Fig. 26. Sub-configurations before a synchronisation step. Idle denotes a possibly empty list of threads all
reduced to ()

Lemma 3.1. If we have

𝑐𝑡 →
𝜎 ′
𝑡 ⊔ 𝑠′𝑡 ,
Task𝑡 ⊔ 𝑇 ′

𝑡 ( ⊔𝑇 new
𝑡 )?,

Fut𝑡 ( ⊔ 𝐹 new𝑡 )?
then there exist 𝑇 ′

𝑠 , 𝜎
′
𝑠 (and maybe 𝑇 new

𝑠 ) such that

𝑐𝑠 →∗ 𝜎 ′
𝑠 ,

Task𝑠 ⊔ 𝑇 ′
𝑠 ( ⊔𝑇 new

𝑠 )? and 𝑇 ′
𝑠 fut

≈
𝑑
𝑠′𝑡 ,𝑇

′
𝑡

Moreover, we can characterise more finely 𝑇 ′
𝑠 in the case where we finish computing the tasks

associated with 𝑑 . Indeed, if in 𝑐𝑡 we have holes(𝑑) = 1, and if the step under consideration in

the target fills this last hole in the subtree of 𝑑, then 𝑇 ′
𝑠 = (fut ↦→ 𝑣) ⊔ (fut𝑖 ↦→ 𝑣𝑖 ), with 𝑣 = 𝑠′𝑡 (𝑑).

This situation arises each time a destiny is introduced, but most importantly at the end of the

evaluation of constructors. In the target, as soon as all values are filled, we are done with evaluating

the constructor, and its future can be resolved and awaited. Therefore, the last step filling a destiny

needs to be matched, in the source, by all allocations and administrative steps required to get to a

configuration where the block can be allocated, and finally performing said allocation.

This lemma relies in particular on the fact that for related configuration, for any destiny 𝑑

such that holes(𝑑) = 0 associated to related pools 𝑇𝑠
fut
≈
𝑑
𝜎𝑡𝑇𝑡 , we have that fut is resolved and

𝑇𝑠 ⊇ (fut ↦→ 𝑣) where 𝑣 = 𝜎𝑡 (𝑑).

Backward simulation: illustrative case. Finally, we illustrate the case from Fig. 25 in the proof of

lemma 3.1 conducted by induction on the hypothesis 𝑇𝑠
fut
≈
𝑑
𝑠𝑡 ,𝑇𝑡 .

Fig. 26 depicts the situation, where the target is at the bottom. The step it takes fills the last

location under destiny 𝑑 . We know that holes(𝑑) = 1, with said hole necessarily in either the

left or right sub-tree. Let’s assume it is in the right sub-tree, rooted at ℓ + 2, with the other one

completely resolved. By invariant, we have 𝛼1 = 𝑣1, where 𝑣1 = 𝜎𝑡 [ ℓ + 1 ] and 𝑇2
fut

2

≈ℓ+2 𝜎2,𝑇
′
2
.,

with holes(ℓ + 2) = 1. By induction hypothesis, the step can be matched in the source, until 𝑓 𝑢𝑡2
is resolved, to value 𝑣2 with 𝑣2 the value at ℓ + 2 in the target configuration, represented on Fig. 26

by the first sequence of transition at the top of the figure.
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At this point, the await(fut
2
) remaining in the constructor can be resolved, and the block

allocated. As this block is now allocated in the store on the source side, it is already accounted for

in the “synchronised” logical view of the target store, and the corresponding mappings are removed

from the 𝜎𝑖 sub-parts.

We finally reach a “value” state of the ≈ relation: all source threads are resolved futures, all

target thread idle (read reduced to () or already pruned), with a single mapping from the current

destiny to its value in the sub-part of the store; which satisfies the lemma, and the invariant.

4 Practical considerations
In this section, we showcase an implementation and evaluation of our code transformation. We first

describe a refined version of Tail-Modulo-Cons-Await which avoids creating unnecessary destinies.

We then describe our prototype OCaml implementation, and evaluate it in practice.

4.1 Optimized Code Transformation
The tmca code transformation proposed in Section 3.3 is quite inefficient in the presence of nested

constructors. This inefficiency, already noted by Allain et al. [3], is best demonstrated on an example.

Let us consider the source code below on the left, which builds a value using constructors 𝐴 | | and
𝐵 | | (both in a parallel fashion). It will result in the target code on the right.

{𝐴 | |, {𝐵 | |, await(𝑒1), 𝑒2 }, await(𝑒3) } ⇒

let𝛿𝑙 , 𝛿𝑟 = refine(𝛿, [𝐴 | |,■,■ ]) in
forward(𝑒3, 𝛿𝑟 );
let𝛿𝑙𝑙 , 𝛿𝑙𝑟 = refine(𝛿𝑙 , [𝐵 | |,■,■ ]) in
forward(𝑒1, 𝛿𝑙𝑟 ); refine(𝛿𝑙𝑙 , 𝑒2)

While semantically fine, the destiny 𝛿𝑙 is unnecessary: it is immediately filled by the allocated

block [𝐵 | |,■,■ ]. As we show in next section, creating a destiny in practice is a fairly costly

operation: it requires cooperation from the scheduler, and, in a language like OCaml, induces a

write-barrier when filled. It would be better to set the value directly. As such, and following a

similar idea from Allain et al. [3], we emit the following code:

let𝛿𝑙𝑙 , 𝛿𝑙𝑟 , 𝛿𝑟 = refine(𝛿, [𝐴 | |, [𝐵 | |,■,■ ],■ ]) in
forward(𝑒3, 𝛿𝑟 ); forward(𝑒1, 𝛿𝑙𝑟 ); refine(𝛿𝑙𝑙 , 𝑒2)

This new code builds a single more complex “value with holes”, and has only one call to refine.
It nonetheless preserves the execution order of sub-expressions 𝑒1, 𝑒2 and 𝑒3 induced by the naive

transformation.

The detailed transformation is shown in Fig. 27. Only the base case of the DJ·K𝛿 changes, by

calling a collecting function, DconsJ·K, which accumulates two things: a list of expressions to be

evaluated (either synchronously or asynchronously), and a “value with holes”, made of constructors

and constants. This transformation ensures that only one call to refine is done per tail-position.
Except for this optimisation, our prototype implementation closely follows the formalisation we

presented in the previous sections.

4.2 Proof-of-concept Implementation
We provide a proof-of-concept implementation in OCaml. The implementation is available in

the joint anonymous material (and will be available as free software online for publication). The

syntactic transformation is implemented as a PPX syntax extension on OCaml’s syntax. This is

not a battle-ready implementation, which should be implemented directly inside a compiler, but is

sufficient to test our transformation on real-world examples. The runtime is implemented as a thin
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layer atop an existing OCaml concurrency library.
6
An overview of the runtime API is provided on

Figs. 28 and 30, and the actual translation of map on trees on Fig. 29.

6
Most existing library would satisfy our needs, we use Picos (https://github.com/ocaml-multicore/picos) for its clear

semantics and to allow testing with different schedulers

DJ𝐶𝑡𝑙
𝑛 [𝑒1 | · · · | 𝑒𝑛]K𝛿F 𝐶𝑡𝑙

𝑛 [DJ𝑒1K𝛿 | · · · | DJ𝑒𝑛K𝛿 ]
DJawait(𝑒)K𝛿F DaJ𝑒K𝛿

DJ𝑒K𝛿 F
let𝛿𝑘 = refine(𝛿, 𝑐) in
DJ𝑒𝑘K𝛿𝑘 ; ∀𝑘.sta(𝑒𝑘 ) defined
DJ𝑒𝑘K𝛿𝑘 ; ∀𝑘.sta(𝑒𝑘 ) not defined

where 𝑒𝑘 , 𝑐 = DconsJ𝑒K

𝑒𝑖
𝑖 , 𝑐 = DconsJ𝑒K 𝑒′

𝑗

𝑗
, 𝑐′ = DconsJ𝑒K

DconsJ{ t | |, 𝑒, 𝑒′ }KF 𝑒𝑖
𝑖
; 𝑒′

𝑗

𝑗
, { t | |, 𝑐, 𝑐′ }

DconsJ𝑐KF ∅, 𝑐 DconsJ𝑥KF ∅, 𝑥 DconsJ𝑒KF 𝑒,■

Fig. 27. Optimized Tail-Modulo-Cons-Await transformation for nested constructors — DJ·K — Extends Fig. 22

1 module Loc : sig
2 (** Location inside an OCaml memory block,
3 composed of a value and an offset. *)
4 type 'h t = { pointer : Obj.t ; offset : int }
5

6 (** An heterogeneous list of locations *)
7 type 'a list =
8 | [] : unit list
9 | (::) : 'h t * 'h2 list -> ('h * 'h2) list
10

11 (** A dummy value to insert into blocks. *)
12 val dummy : 'a
13

14 (** [Loc.mk o i] is the location in value [o]
15 at offset [i]. [o] must b a pointer to a
16 block. *)
17 val mk : 'a -> int -> 'b t
18 end

Fig. 28. Runtime library for locations

1 let rec map$dps d4 f t = match t with
2 | Leaf -> Destiny.refine d4 Leaf []
3 | Node (v, tl, tr) ->
4 let v5 = Node(Loc.dummy,Loc.dummy,Loc.dummy) in
5 let [d6; d7; d8] =
6 Destiny.refine d4 v5
7 [Loc.mk v5 0; Loc.mk v5 1; Loc.mk v5 2]
8 in
9 fork (fun () -> map$dps d8 f tr);
10 fork (fun () -> map$dps d7 f tl);
11 Destiny.refine d6 (f v) []
12

13 let map f l =
14 let d, c = Destiny.mk () in
15 fork (fun () -> map$dps d f l);
16 c

Fig. 29. Real translation of parallel map from Fig. 1

1 (** Launch a new task. *)
2 val fork : (unit -> unit) -> unit
3

4 module Destiny : sig
5 (** A Destiny with a hole of type ['a] *)
6 type 'a t = {
7 counter : int Atomic.t; (* Number of holes *)
8 resolve : unit -> unit; (* Top-level resolve *)
9 set : 'a -> unit; (* Set the current destiny *)
10 }
11

12 (** An heterogeneous list of destinies *)
13 type 'a list =
14 | [] : unit list
15 | (::) : 'h t * 'h2 list -> ('h * 'h2) list
16

17 (** [mk ()] returns a synchronised destiny and
18 future. The future will be fulfilled only
19 when all holes in the destiny are filled. *)
20 val mk : unit -> 'a t * 'a Future.t
21

22 (** [refine d v hs] fills the destiny [d] with a
23 value [v] with holes [hs]. It returns a list
24 of destinies corresponding to each holes.
25 [d] should not be used again. *)
26 val refine : 'b t -> 'b -> 'a Loc.list -> 'a list
27

28 (** [forward c d] will fill the destiny [d] with
29 the value of the asynchronous computation [c]
30 when it is finished. *)
31 val forward : 'a Future.t -> 'a t -> unit
32 end

Fig. 30. Runtime library for destinies
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The main difference between our implementation and the formalism presented so far is that

hole creation, memory locations and destinies were previously fused into the near-magical refine
operation. These operations are now split to allow finer control. To pre-allocate a constructor,

we first create a value from a constructor, with holes implemented by a dummy value Loc.dummy.
We then take locations for each of its holes, using the Loc.mk function, and gather them in an

heterogeneous Loc.list. We then use Destiny.refine with the explicit list of locations to obtain

the list of destinies (as a Destiny.list). This is demonstrated in Line 4 to 7 in Fig. 29.

The implementation of Loc relies on details of the OCaml memory model and some unsafe

internal API (Obj). Destiny, in turn, only uses regular OCaml with concurrency. Destinies are a

triplet composed of a set to a location, a reference to a shared atomic counter representing the

current number of holes in the full structure, and a resolve function which marks the top-level

future as resolved. The functions forward and refine decrement and increment the counter when

holes are added or removed from the structure. The key trick here is that, as soon as the atomic

counter hits zero, there are no more holes in the structure and the counter can never rise up again.

We can then resolve the top-level future immediately.

To implement DPS calls (Line 9, 10 and 15 in Fig. 29), we use a regular fork function which takes

a callback containing the actual call. The call is syntactically a tail-call, ensuring that OCaml’s

compiler uses the desired call convention. Finally, for the purpose of this implementation we

consider all constructors to be parallel: indeed, as described in Section 3, sequential constructors

can be emulated by let-bindings. The rest of the implementation follows our formalism closely.

4.3 Experimental Evaluation
We now evaluate our full code transformation experimentally. Our evaluation setup is a Thinkpad

T470 equipped with i5-7200U with 4 cores and 11GiB of memory. All the implementations evaluated

are provided in Appendix B. We explore the following scientific questions:

What is the effect of Tail-Modulo-Cons-Await on memory consumption? Evaluating stack and

scheduler space precisely is quite difficult. We settle for a lesser goal: to evaluate the total live

memory during the execution of a program. More specifically, we consider the execution of several

variants of List.map on a list of 50000000 elements. The implementations (see Fig. 36 in Appendix B)

are: a naive non-tail-rec List.map, a version using Tail-Modulo-Cons, an asynchronous version

with a sequential function parameter, an asynchronous version with a sequential constructor, and

an asynchronous version with a parallel constructor. For more details, see Appendix A. The overall

memory footprint of the overall trace is shown in Fig. 31. There is only one run, since memory

footprint is deterministic. The List.map runs out of stack before allocating anything, and crashes. All
the other functions complete their execution while consuming the exact same amount of memory,

which corresponds exactly to an allocation of the output list. Neither stack nor scheduler space

is used in this execution. The synchronous version using Tail-Modulo-Cons runs faster than the

asynchronous version, which is expected since it doesn’t involve a scheduler. This confirms that

Tail-Modulo-Cons-Await behaves as advertised and avoids superfluous stack and scheduler space.

What is the effect of Tail-Modulo-Cons-Await on performances and parallelism? To evaluate the

effect of Tail-Modulo-Cons-Await on time, we run several variants of map on randomly generated

trees of growing size. Figure 32 shows the time per elements, i.e., the total time divided by the

number of elements, for Tree.map f. We consider two distinct f functions which are applied at each

Node: a very fast function on the left (multiply by 2) and a slow function (sleep a random amount

between 0 and 50ms). The evaluated map implementations (see Fig. 37 in Appendix B) are as follows:

map_tmc is a synchronous sequential version which uses Tail-Modulo-Cons (with only one recursive

tail call); all the others are asynchronous, with and without Tail-Modulo-Cons-Await: map_seq uses a
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Order of execution:
• Creation of the list of 50000000 elements

• map_naive: Not tail-recursive
• map_tmc: With Tail-Modulo-Cons

• map_async_sync: Synchronous function 𝑓

• map_async_seq: Sequential constructor ::
• map_async_par: Parallel constructor ::

Fig. 31. Memory measurement of several version of List.map. Global Memory footprint vs. Time elapsed
since start of execution in seconds.

(a) With f = fun x -> x*.2.. Time in 𝜇𝑠 . (b) With f = Unix.sleepf. Time in𝑚𝑠 .

Fig. 32. Time measurement for several versions of Tree.map. Lower is better.

sequential semantics Node (as in Fig. 15b); map_par_full uses a full parallel semantics (as in Fig. 15c);

map_par_width also uses a parallel semantics, but applies f before any recursive calls, thus bounding

the parallelism by width (see Section 1). The function compiled with Tail-Modulo-Cons-Await are

marked with _tmca and are represented using dashed lines. The scheduler is allowed to spawn tasks

on all four available processors. All time measurements are obtained with repeated runs until a

correlation of 𝑟 2 > 0.8 is obtained.

First, we can observe that the parallel semantics is, indeed, parallel! Regardless of the function f
used, the parallel versions are exactly 4 times faster than the sequential versions.

Second, let us look at raw performance. With the fast f function, we can observe that Tail-

Modulo-Cons-Await consistently improves performances, especially on large trees, although never

to the point of equating the performance of the synchronous version. The cost of the slow function

completely dominates any of the costs introduced by the implementation of map, and the cohort are

separated into two groups: the sequential and the parallel versions.

5 Related Work
5.1 Tail recursion
The Tail-Modulo-Cons transformation is as old as functional programming, seeing birth in the

LISP community in the early 70th. During this decade, two academic publications describe the
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transformation, first Risch for the REMREC system [15], then Friedman and Wise [11] over a pure

LISP with cons compiled down to a machine language.

After having remained folklore for half a century, the transformation has seen revived interest

in the community through essentially two independent pieces of work. Leijen and Lorenzen have

implemented tmc for Koka, a strongly typed language with effect types and handlers. In doing

so, they have rephrased the transformation in an equational style, generalised it to work with

an abstract notion of contexts, and adapted it to the linear typing discipline followed by Koka.

Independently, Allain et al. [3] have also implemented tmc, but in the OCaml compiler. In doing

so, they have formalised the optimisation over a core calculus from which we took inspiration for

designing our own, and have furthermore mechanised its proof of soundness using a variant of

Simuliris [12], a simulation technique based on separation logic.

5.2 Asynchronous Programming
Future and Promises. Futures are limited in the sense that they must be fulfilled by the task that

was associated with their creation. This limitation gives guarantees on the fact that futures are

eventually fulfilled. On the contrary, promises associate their fulfilment with a handler given to the

programmer. Hence, they do not suffer from this limitation, but it cannot be ensured that a promise

is resolved exactly once [1]. The fact that promises allow for the optimisation of scheduler space

compared to futures was already the key idea of the forward construct [8]. In this work, forward
promises are only used internally for optimisation purposes, as we do in the work presented in this

paper. Indeed, the forward optimisation is only valid when applied to an asynchronous call in tail

position. The present article can therefore be seen as an extension of [8] with more automation,

added parallelism, and more general application setting.

Dataflow synchronisation on futures [9] is a paradigm that makes it impossible to observe

chains of futures: chains are automatically traversed upon each synchronisation (synchronisation

is insensible to successive asynchronous tail calls). Chappe et al. [6] showed that with dataflow

futures, it is safe to optimise tail-calls with promises, and that return has the same semantics as

forward in this setting. This is another setting that makes it possible to optimise scheduler space for

futures (also by replacing futures by promises) and in which the tmaa approach should be applicable

to make the approach more general. Unfortunately dataflow synchronisation on futures implies a

type system where 'a future unifies with ('a future) future. Such typing rules, where monadic

flatten is an axiom, are particularly difficult to integrate in ML-like languages such as OCaml.

Other Asynchronous Paradigms. Futures are massively used in actors and active object lan-

guages [2, 7]: this family of languages thus offers a privileged application domain for all optimisa-

tions of asynchronous calls, notably the one we propose. The fact that, by nature, all calls to an

actor create a future multiplies the number of futures, often with tail-calls, and hence makes future

optimisation crucial in these languages. Indeed forward was created in an active object language,

and the present work would clearly benefit languages with prominent Actors libraries [2, 13, 14],

including the recently designed OCaml active object library [4].

Our parallel constructors could also be compared to the parT construct of the Encore language [10]
or the par construct of Haskell [18, 19]. Both combinators generate parallelism and allow the

coordination of parallel tasks. Rather, our vision here is to create parallelism automatically when

using data constructors. We believe the integration of data production and parallelism fits well with

the notion of futures and promises, but approaches based on parallel combinator features richer

synchronisation patterns compared to our work. We might study if it would be possible to integrate

a few richer coordination patterns in our context, which could for example enable some form of

pipelining when performing two asynchronous maps in a row (even over complex data structures).
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A Yet Another example: a medley of map
We consider several asynchronous versions of the function map_async over lists, mapping a syn-

chronous or asynhcronous function over a list, returning an asynchronous computation itself. We

first consider in Fig. 33 a version where only the recursive call to map_async is asynchronous, with
the mapped function synchronous (map_async_sync : ('a -> 'b) -> 'a list -> 'b list future).
Using Tail-Modulo-Cons-Await, we can transform it into the code in Fig. 33b.

1 let%async rec map_async_sync f l =
2 match l with
3 | Nil -> Nil
4 | Cons (x, xs) ->
5 Cons (f x, await (map_async_sync f xs))

(a) Source implementation

1 let rec map_async_sync_dps d f l =
2 match l with
3 | Nil -> d ◀ Nil
4 | Cons (x, xs) ->
5 let v = Cons (f x, ■) in
6 d ◀ v;
7 fork_dps map_async_sync_dps v.1 f xs

(b) Translation using tmca
The wrapping code for the initial destiny is identical to Fig. 5

Fig. 33. An asynchronous, sequential, map on lists with async/await, mapping a sequential function

When both calls are asynchronous (map_async : ('a -> 'b future) -> 'a list -> 'b list future),
the function admits two semantics: sequential where an application of 𝑓 must terminate before the

next, or parallel which launches all tasks at once. These two semantics are differentiated in our

formalisation by the annotation over constructor tags. Let us first consider the sequential version

in Fig. 34. The Tail-Modulo-Cons-Awaittransformation affects this version in the same way as ths

version in Fig. 33.

1 let%async rec map_async_seq f l =
2 match l with
3 | Nil -> Nil
4 | Cons (x, xs) ->
5 let y = await (f x) in
6 Cons (y, await (map_async_seq f xs))

(a) Source implementation

1 let rec map_async_seq_dps d f l =
2 match l with
3 | Nil -> d ◀ Nil
4 | Cons (x, xs) ->
5 let y = await (f x) in
6 let v = Cons (y, ■) in
7 d ◀ v;
8 fork_dps map_async_seq_dps v.1 f xs

(b) Translation using tmca
The wrapping code for the initial destiny is identical to Fig. 5

Fig. 34. An asynchronous, sequential, map on lists with async/await

Finally, the parallel version is illustrated in Fig. 35. The transformed code in Fig. 35b uses forward
for the call to f, rather than fork_dps, as f might be an external asynchronous function without a

dps version.
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1 let%async rec map_async_par f l =
2 match l with
3 | Nil -> Nil
4 | Cons (x, xs) ->
5 Cons (await (f x),
6 await (map_async_par f xs))

(a) Source implementation

1 let rec map_async_par_dps d f l =
2 match l with
3 | Nil -> d ◀ Nil
4 | Cons (x, xs) ->
5 let v = Cons (■, ■) in
6 d ◀ v;
7 let fut = f x in
8 forward v.0 fut;
9 fork_dps map_async_par_dps v.1 f xs

(b) Translation using tmca
The wrapping code for the initial destiny is identical to Fig. 5

Fig. 35. An asynchronous, parallel, map on lists with async/await
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B Supporting code for the Experimental Evaluation

1 let rec map_naive f = function
2 | [] -> []
3 | h :: t -> f h :: map_naive f t
4

5 let[@tail_mod_cons] rec map_tmc f l =
6 match l with
7 | [] -> []
8 | x :: xs ->
9 let y = f x in
10 y :: map_tmc f xs
11

12 let%async rec map_async_sync f l =
13 match l with
14 | [] -> []
15 | x :: xs ->
16 f x :: await (map_async_sync f xs)
17

18 let%async rec map_async_seq f l =
19 match l with
20 | [] -> []
21 | x :: xs ->
22 let y = await (f x) in
23 y :: await (map_async_seq f xs)
24

25 let%async rec map_async_par f l =
26 match l with
27 | [] -> []
28 | x :: xs ->
29 await (f x) :: await (map_async_par f xs)

Fig. 36. Implementation of map on lists

1 type 'a tree = N of 'a * 'a tree * 'a tree | L
2

3 let[@tail_mod_cons] rec map_tmc f t = match t with
4 | L -> L
5 | N (v , tl , tr ) ->
6 let y = f v in
7 let tl' = map_tmc f tl in
8 N (y, tl', map_tmc f tr)
9

10 let rec map_seq f t =
11 async @@ fun () -> match t with
12 | L -> L
13 | N (v , tl , tr ) ->
14 let y = f v in
15 let tl' = await (map_seq f tl) in
16 let tr' = await (map_seq f tr) in
17 N (y, tl', tr')
18

19 let rec map_par_width f t =
20 async @@ fun () -> match t with
21 | L -> L
22 | N (v , tl , tr ) ->
23 let y = f v in
24 let task_tl = map_par_width f tl in
25 let task_tr = map_par_width f tr in
26 N (y, await task_tl, await task_tr)
27

28 let rec map_par_full f t =
29 async @@ fun () -> match t with
30 | L -> L
31 | N (v , tl , tr ) ->
32 let task_tl = map_par_full f tl in
33 let task_tr = map_par_full f tr in
34 N (f v, await task_tl, await task_tr)
35

36 let%async rec map_seq_tmca f t = match t with
37 | L -> L
38 | N (v , tl , tr ) ->
39 let y = f v in
40 let tl' = await (map_seq_tmca f tl) in
41 N (y, tl', await (map_seq_tmca f tr))
42

43 let%async rec map_par_width_tmca f t = match t with
44 | L -> L
45 | N (v , tl , tr ) ->
46 let y = f v in
47 N (y,
48 await (map_par_width_tmca f tl),
49 await (map_par_width_tmca f tr))
50

51 let%async rec map_par_full_tmca f t = match t with
52 | L -> L
53 | N (v , tl , tr ) ->
54 N (f v,
55 await (map_par_full_tmca f tl),
56 await (map_par_full_tmca f tr))

Fig. 37. Implementation of map on trees
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C Backward-simulation proofs
C.1 Tail-Modulo-Await backward simulation proof

Cases for the main thread. :

Since the main thread is unaffected by the transformation, its term is only comprised of source

syntax. Thus, the only steps that can be taken are local steps, dps-call and await-target

step any local step is immediately closed if they don’t affect the store. If they affect the store,

then they affect it in the same way in source and target, and since stores are equal, we close

immediately.

dps-call:

Task𝑠 ⊔ (main ↦→ 𝐶 [(𝑓 𝑣)]) Task𝑡 ⊔ (main ↦→ 𝐶 [(𝑓 𝑣)]), Fut𝑡

Task𝑠 ⊔ (main ↦→ 𝐶 [fut′])
⊔ (fut′ ↦→ 𝑒 [𝑥 ↦→ 𝑣])

Task𝑡 ⊔ (main ↦→ 𝐶 [fut′])
⊔ (tid ↦→ DJ𝑒K𝛿 [𝛿 ↦→ 𝑑] [𝑥 ↦→ 𝑣]),

Fut𝑡 ⊔ [ fut′ ↦→ 𝔘 𝑑 ]

�𝐷

async-call

(𝑓 ↦→𝜆async𝑥. 𝑒 ) ∈Fun

dps-call

(𝑓 ↦→𝜆dps𝛿, 𝑥 . DJ𝑒K𝛿 ) ∈Fun′

�𝐷 ⊔ {𝑑 }

Main threads in red still equal, blue closed by task-comp

await-target: The challenge is:

Task𝑠 ⊔ (main ↦→ 𝐶 [await(fut)]) Task𝑡 ⊔ (main ↦→ 𝐶 [await(fut)]), Fut𝑡

Task𝑡 ⊔ (main ↦→ 𝐶 [𝑣]), Fut𝑡

�𝐷
await-target

Fut𝑡 [ fut ]=ℜ 𝑣

We need to have, on the LHS, (fut ↦→ 𝑣), which we will get by exploiting Fut𝑡 [ fut ] = ℜ 𝑣 in

the RHS. There are two cases:

task-val:

Task𝑠 ⊔ (main ↦→ 𝐶 [await(fut)]) Task𝑡 ⊔ (main ↦→ 𝐶 [await(fut)]), Fut𝑡

Task𝑠 ⊔ (main ↦→ 𝐶 [𝑣]) Task𝑡 ⊔ (main ↦→ 𝐶 [𝑣]), Fut𝑡

�𝐷

await-resolved

await-target

Fut𝑡 [ fut ]=ℜ 𝑣

�𝐷

task-await-val: We have some 𝑇
( 𝑗 )
𝑠 = Aw[fut, fut

1
..fut𝑛] ⊔ (fut𝑛 ↦→ 𝑣) ⊆ Task𝑠 . We close

by 𝑛 + 1 applications of await-resolved.

Task𝑠 ⊔ (main ↦→ 𝐶 [await(fut)]) Task𝑡 ⊔ (main ↦→ 𝐶 [await(fut)]), Fut𝑡

Task𝑠 ⊔ (main ↦→ 𝐶 [𝑣]) Task𝑡 ⊔ (main ↦→ 𝐶 [𝑣]), Fut𝑡

�𝐷
await-resolved

𝑖=𝑛..0

await-target

Fut𝑡 [ fut ]=ℜ 𝑣

�𝐷

We are left with 𝑇
( 𝑗 )
𝑠

′
= (fut ↦→ 𝑣) ⊔ (fut

1
↦→ 𝑣)1≤𝑖≤𝑛 , which is closed using task-val.

Which concludes the cases for the main thread.
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other groupings. In the following, we thus assume that we are in one of the𝑇
(𝑖 )
𝑡 . We omit writing

the await chains when they are not affected.

Note that we have the following property: For any 𝐶𝑡 , 𝑒 such that 𝑒𝑡 = 𝐶𝑡 [𝑒], there exists a

context 𝐶𝑠 such that 𝑒𝑠 = 𝐶 [𝑒].
Moreover, for any 𝑒′, 𝐶𝑠 [𝑒′] ∼𝑑 𝐶𝑡 [𝑒′]

Case step. All sub-cases follow directly from the properties presented above, and the arguments

mentioned for the main thread.

Case await-resolved. For the reasons explained above:

Task𝑠 ⊔ (fut ↦→ 𝐶𝑠 [await(fut𝑟 )]) Task𝑡 ⊔ (tid ↦→ 𝐶𝑡 [await(fut𝑟 )]), Fut𝑡

Task𝑠 ⊔ (fut
0
↦→ 𝐶𝑠 [𝑣]) Task𝑡 ⊔ (tid ↦→ 𝐶𝑡 [𝑣]), Fut𝑡

�𝐷 ⊔ {𝑑 }
await-resolved

(fut𝑟 ↦→𝑣) ∈Task𝑠 (∗)
await-resolved

Fut𝑡 [ fut𝑟 ]=ℜ 𝑣

�𝐷 ⊔ {𝑑 }

(∗) by exploiting Fut𝑡

[
fut𝑟

]
= ℜ 𝑣 , in the case task-val. See the proof in the case of the main

thread for the case of task-await-val

Case chain.

Task𝑠 ⊔ Aw[fut
0
..fut𝑛] ⊔ (fut𝑛 ↦→ await(fut𝑟 ))

Task𝑡 ⊔ (tid ↦→ forward(fut𝑟 , 𝑑)),
Fut𝑡 ⊔

[
fut

0
↦→ 𝔘 𝑑

]
Task𝑠 ⊔ Aw[fut

0
..fut𝑛] ⊔ (fut𝑛 ↦→ 𝑣) Task𝑡 , Fut𝑡 ⊔

[
fut

0
↦→ ℜ 𝑣

]
�𝐷 ⊔ {𝑑 }

await-resolved

(fut𝑟 ↦→𝑣) ∈Task𝑠 (∗)
chain

Fut𝑡 [ fut𝑟 ]=ℜ 𝑣

�𝐷

Using the same arguments as above to obtain (∗).
Closed with task-val or task-await-val depending on the number of awaits in LHS (i.e.

depending on 𝑛)

Case dps-call.

Task𝑠 ⊔ (fut ↦→ 𝐶𝑠 [(𝑓 𝑣)]) Task𝑡 ⊔ (tid ↦→ 𝐶𝑡 [(𝑓 𝑣)]), Fut𝑡 ⊔ [ fut ↦→ 𝔘 𝑑 ]

Task𝑠 ⊔ (fut ↦→ 𝐶𝑠 [fut′])
⊔ (fut′ ↦→ 𝑒 [𝑥 ↦→ 𝑣])

Task𝑡 ⊔ (tid ↦→ 𝐶𝑡 [fut′])
⊔ (tid′ ↦→ DJ𝑒K𝛿 [𝛿 ↦→ 𝑑 ′] [𝑥 ↦→ 𝑣]),

Fut𝑡 ⊔ [ fut ↦→ 𝔘 𝑑 ] ⊔ [ fut′ ↦→ 𝔘 𝑑 ′ ]

�𝐷 ⊔ {𝑑 }
async-call

(𝑓 ↦→𝜆async𝑥. 𝑒 ) ∈Fun

dps-call

(𝑓 ↦→𝜆dps𝛿, 𝑥 . DJ𝑒K𝛿 ) ∈Fun′

�𝐷 ⊔ {𝑑,𝑑 ′ }

Chain of awaits omitted. Both painted subsets closed with task-comp.

, Vol. 1, No. 1, Article . Publication date: April 2025.



30 Emma Nardino, Ludovic Henrio, Gabriel Radanne, and Yannick Zakowski

Case tail-call.

Task𝑠 ⊔ Aw[fut
0
..fut𝑛]

⊔ (fut𝑛 ↦→ await((𝑓 𝑣)))
Task𝑡 ⊔ (tid ↦→ (𝑓 #𝑡 (𝑑, 𝑣))),
Fut𝑡 ⊔

[
fut

0
↦→ 𝔘 𝑑

]
Task𝑠 ⊔ Aw[fut

0
..fut𝑛+1]

⊔ (fut𝑛+1 ↦→ 𝑒 [𝑥 ↦→ 𝑣])
Task𝑡 ⊔ (tid′ ↦→ DJ𝑒K𝛿 [𝛿 ↦→ 𝑑] [𝑥 ↦→ 𝑣]),
Fut𝑡 ⊔

[
fut

0
↦→ 𝔘 𝑑

]
�𝐷 ⊔ {𝑑 }

async-call tail-call

�𝐷 ⊔ {𝑑 }

With fut𝑛+1 fresh and awaited nowhere else. Closed with task-comp.

Case future-fill (𝜀).

Task𝑠 ⊔ Aw[fut
0
..fut𝑛]

⊔ (fut𝑛 ↦→ 𝑣) Task𝑡 ⊔ (tid ↦→ refine(𝑑, 𝑣)), Fut𝑡 ⊔
[
fut

0
↦→ 𝔘 𝑑

]
Task𝑡 , Fut𝑡 ⊔

[
fut

0
↦→ ℜ 𝑣

]
�𝐷 ⊔ {𝑑 }

�𝐷 𝜀
future-fill

Closed using task-await-val.

There can be at most as many future-fill steps as there are unresolved futures in Fut𝑡 , of which

there are finitely many at any given point; which ensures that we cannot stutter indefinitely.

Which concludes the proof.

C.2 Tail-Modulo-Cons-Await backward simulation proof
C.2.1 Simulation relation. We first define the full backward simulation relation, and all necessary

sub-relations.

expr-transfo

𝑒 ∼𝑑 DJ𝑒K𝛿 [𝛿 ↦→ 𝑑]

expr-fill-await

𝑒 ∼𝑑 refine(𝑑, 𝑒)

expr-await

𝑒
await∼ 𝑑 DaJ𝑒K𝛿 [𝛿 ↦→ 𝑑]

Fig. 38. Expr-level relations

thread-dest

𝑒 ∼𝑑 𝑒′

(fut ↦→ 𝑒)
fut
≃
𝑑
[𝑑 ↦→ ⧸ ] , (tid ↦→ 𝑒′)

Fig. 39. Thread-level relation

thread-await

𝑇𝑠
fut𝑛

≃
𝑑
𝜎𝑡 ,𝑇𝑡

Aw[fut
0
..fut𝑛] ⊔ 𝑇𝑠

fut
0

≈{fut
1..𝑛 }

𝑑
𝜎𝑡 ,𝑇𝑡

thread-val

(fut ↦→ 𝑣) ⊔ (fut𝑖 ↦→ 𝑣)
fut
≈fut𝑖

𝑑
[𝑑 ↦→ 𝑣 ] , (tid ↦→ ())+

Fig. 40. Pool relation. The right index annotates the set of “internal” futures
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field-thread-await

𝛼 = await(fut) 𝑇𝑠
fut
≈𝐼
𝑑
𝜎𝑡 ,𝑇𝑡 𝑑 ∈ dom(𝜎𝑡 )

{𝛼} : 𝑇𝑠 R𝐼
𝑑
𝜎𝑡 ,𝑇𝑡

field-resolved

𝑇𝑠 = (fut𝑖 ↦→ 𝑣𝑖 ) ∃𝑖, 𝑣𝑖 = 𝑣

{𝑣} : 𝑇𝑠 R
fut𝑖

𝑑
[𝑑 ↦→ 𝑣 ], ∅

field-chain

𝛼 = await(fut) 𝑇𝑡 = forward(𝑑, fut)
{𝛼} : ∅ fwdR∅

𝑑
[𝑑 ↦→ ⧸ ],𝑇

Fig. 41. For keeping sub-tasks for constructors together

par-both-0

𝑒1
await∼ 𝑑1 𝑒

′
1

𝑒2
await∼ 𝑑2 𝑒

′
2

(fut ↦→
let𝑥1 = 𝑒1 in
let𝑥2 = 𝑒2 in
[ t | |, await(𝑥1), await(𝑥2) ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | ,⧸,⧸

]
,

(tid ↦→ let (𝑑1, 𝑑2) = (ℓ + 1, ℓ + 2) in
𝑒′
1
; 𝑒′
2

)

par-both-1

𝑒1
await∼ ℓ+1 𝑒′1 𝑒2

await∼ ℓ+2 𝑒′2

(fut ↦→
let𝑥1 = 𝑒1 in
let𝑥2 = 𝑒2 in
[ t | |, await(𝑥1), await(𝑥2) ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | ,⧸,⧸

]
, (tid ↦→ 𝑒′

1
; 𝑒′
2
)

par-both-2

∨
{

{𝛼1} : 𝑇1 fwdRℓ+1 𝜎1,𝑇
′
1

{𝛼1} : 𝑇1 R𝐼
ℓ+1 𝜎1,𝑇

′
1

𝑒2
await∼ ℓ+2 𝑒′2

(fut ↦→ let𝑥2 = 𝑒2 in
[ t | |,𝛼1, await(𝑥2) ]

) ⊔ 𝑇1
fut
≃𝐼
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | , ℓ + 2 ↦→ ⧸

]
⊔ 𝜎1, (tid ↦→ ((); )?𝑒′

2
) ⊔ 𝑇 ′

1

par-both-3

∨
{

{𝛼1} : 𝑇1 fwdRℓ+1 𝜎1,𝑇
′
1

{𝛼1} : 𝑇1 R𝐼1
ℓ+1 𝜎1,𝑇

′
1

{𝛼2} : 𝑇2 R𝐼2
ℓ+2 𝜎2,𝑇

′
2

𝑇 = (tid ↦→ ())? holes(𝑑) ≥ 1

(fut ↦→ [ t | |,𝛼1,𝛼2 ]) ⊔ 𝑇1 ⊔ 𝑇2
fut
≃𝐼1 ⊔ 𝐼2
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | |

]
⊔ 𝜎1 ⊔ 𝜎2,𝑇 ⊔ 𝑇 ′

1
⊔ 𝑇 ′

2

Fig. 42. paratag, both awaits
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par-left-0

𝑒1
await∼ 𝑑1 𝑒

′
1

𝑒2 ∼𝑑2 𝑒′
2

(fut ↦→
let𝑥1 = 𝑒1 in
let𝑥2 = 𝑒2 in
[ t | |, await(𝑥1),𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | ,⧸,⧸

]
,

(tid ↦→ let (𝑑1, 𝑑2) = (ℓ + 1, ℓ + 2) in
𝑒′
1
; 𝑒′
2

)

par-left-1

𝑒1
await∼ ℓ+1 𝑒′1 𝑒2 ∼ℓ+2 𝑒′

2

(fut ↦→
let𝑥1 = 𝑒1 in
let𝑥2 = 𝑒2 in
[ t | |, await(𝑥1),𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | ,⧸,⧸

]
, (tid ↦→ 𝑒′

1
; 𝑒′
2
)

par-left-2

∨
{

{𝛼1} : 𝑇1 fwdRℓ+1 𝜎1,𝑇
′
1

{𝛼1} : 𝑇1 R𝐼
ℓ+1 𝜎1,𝑇

′
1

𝑒2 ∼ℓ+2 𝑒′
2

(fut ↦→ let𝑥2 = 𝑒2 in
[ t | |,𝛼1,𝑥2 ]

) ⊔ 𝑇1
fut
≃𝐼
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | , ℓ2 ↦→ ⧸

]
⊔ 𝜎1, (tid ↦→ ((); )?𝑒′

2
) ⊔ 𝑇 ′

1

par-left-3

∨
{

{𝛼1} : 𝑇1 fwdRℓ+1 𝜎1,𝑇
′
1

{𝛼1} : 𝑇1 R𝐼
ℓ+1 𝜎1,𝑇

′
1

𝑇 = (tid ↦→ ())? holes(𝑑) ≥ 1

(fut ↦→ [ t | |,𝛼1, 𝑣2 ]) ⊔ 𝑇1 ⊔ 𝑇2
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | , ℓ + 2 ↦→ 𝑣2

]
⊔ 𝜎1,𝑇 ⊔ 𝑇 ′

1

Fig. 43. paratag, one await on the left (symmetrically for right)

par-none-0

𝑒1 ∼𝑑1 𝑒′
1

𝑒2 ∼𝑑2 𝑒′
2

(fut ↦→
let𝑥1 = 𝑒1 in
let𝑥2 = 𝑒2 in
[ t | |,𝑥1,𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | ,⧸,⧸

]
,

(tid ↦→ let (𝑑1, 𝑑2) = (ℓ + 1, ℓ + 2) in
𝑒′
1
; 𝑒′
2

)

par-none-1

𝑒1 ∼ℓ+1 𝑒′
1

𝑒2 ∼ℓ+2 𝑒′
2

(fut ↦→
let𝑥1 = 𝑒1 in
let𝑥2 = 𝑒2 in
[ t | |,𝑥1,𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | ,⧸,⧸

]
, (tid ↦→ 𝑒′

1
; 𝑒′
2
)

par-none-2

𝑒2 ∼ℓ+2 𝑒′
2

(fut ↦→ let𝑥2 = 𝑒2 in
[ t | |, 𝑣1,𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ t | | , 𝑣1,⧸

]
, (tid ↦→ ((); )?𝑒′

2
)

Fig. 44. partag, no awaits
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seq-none-0

𝑒2 ∼𝑑2 𝑒′
2

(fut ↦→ let𝑥2 = 𝑒2 in
[ tseq, 𝑣1,𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq, 𝑣1,⧸

]
,

(tid ↦→ let𝑑2 = ℓ + 2 in
𝑒′
2

)

seq-none-1

𝑒2 ∼ℓ+2 𝑒′
2

(fut ↦→ let𝑥2 = 𝑒2 in
[ tseq, 𝑣1,𝑥2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq, 𝑣1,⧸

]
, (tid ↦→ 𝑒′

2
)

Fig. 45. seqtag, no awaits

seq-left-0

𝑒1
await∼ 𝑑1 𝑒

′
1

(fut ↦→ let𝑥1 = 𝑒1 in
[ tseq, await(𝑥1), 𝑣2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq,⧸, 𝑣2

]
,

(tid ↦→ let𝑑1 = ℓ + 1 in
𝑒′
1

)

seq-left-1

𝑒1
await∼ ℓ+1 𝑒′1

(fut ↦→ let𝑥1 = 𝑒1 in
[ tseq, await(𝑥1), 𝑣2 ]

)
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq,⧸, 𝑣2

]
,

(tid ↦→ 𝑒′
1
)

seq-left-2

∨
{

{𝛼1} : 𝑇1 fwdRℓ+1 𝜎1,𝑇
′
1

{𝛼1} : 𝑇1 R𝐼
ℓ+1 𝜎1,𝑇

′
1

𝑇 = (tid ↦→ ())? holes(𝑑) ≥ 1

(fut ↦→ [ tseq,𝛼1, 𝑣2 ] ) ⊔ 𝑇1
fut
≃
𝑑

[
𝑑 ↦→ ℓ, ℓ ↦→ tseq, ℓ + 2 ↦→ 𝑣2

]
⊔ 𝜎1,

𝑇 ⊔ 𝑇 ′
1

Fig. 46. seqtag, await on the left (sym for right)

box-thread

𝑇𝑠
fut
≈𝐼
𝑑
𝑠𝑡 ,𝑇𝑡

𝑇𝑠 �
𝐼 𝑠𝑡 ,𝑇𝑡 , [ fut ↦→ 𝔘 𝑑 ]

box-val

(fut ↦→ 𝑣) ⊔ (fut𝑖 ↦→ 𝑣)𝑖 �fut𝑖
𝑖

[𝑑 ↦→ 𝑣 ] , ∅, [ fut ↦→ 𝔘 𝑑 ]

box-resolved

𝑇 = (tid ↦→ ())

(fut ↦→ 𝑣) ⊔ (fut𝑖 ↦→ 𝑣)𝑖 �fut𝑖
𝑖

∅,𝑇 , [ fut ↦→ ℜ 𝑣 ]

Fig. 47. Top-level-future-level rel (=boxes)

Config-level. The simulation relation between source and target configurations:
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𝜎𝑠 , Task𝑠 ≽ 𝜎𝑡 , Task𝑡 , Fut𝑡 ⇔



(1) Task𝑠 = (main ↦→ 𝑒) ⊔ 𝑇
(1)
𝑠 ⊔ · · ·𝑇 (𝑛)

𝑠

(2) Task𝑡 = (main ↦→ 𝑒) ⊔ 𝑇
(1)
𝑡 ⊔ · · ·𝑇 (𝑛)

𝑡

(3) 𝜎𝑡 = 𝜎𝑠 ⊔ 𝜎1 ⊔ · · ·𝜎𝑛
(4) Fut𝑡 =

[
fut𝑖 ↦→ F𝑖

1≤𝑖≤𝑛 ] (F𝑖 = 𝔘 𝑑𝑖 | ℜ 𝑣𝑖 )
(5) ∀𝑖, 𝑇 (𝑖 )

𝑠 �𝐼𝑖 𝜎𝑖 ,𝑇
(𝑖 )
𝑡 ,

[
fut𝑖 ↦→ F𝑖

]
with each 𝐼𝑖 internal sets of futures in the sense given in Section 2.5.

Like in tma, steps are “local” to one thread pool.

C.2.2 Proof sketch. We follow the same sketch as in tma:

(1) isolate in which set of threads the step operates: either the main, or one of the parallel pools

(2) case analysis on � , then on the step.

(3) in the parallel pools, in case box-thread, use lemma 3.1

Steps in the main thread. The same arguments as for tma are still valid here, with one caveat: the

stores are not fully synchronised. However, only the synchronised parts are accessible by the main

thread.

Steps in parallel thread pools. We are thus in a 𝑇
(𝑖 )
𝑡 . We write the configs as

𝜎𝑠 , Task𝑠 ⊔ 𝑇
(𝑖 )
𝑠 ≽

𝜎𝑠 ⊔ 𝜎others ⊔ 𝜎𝑖 ,

Task𝑡 ⊔ 𝑇
(𝑖 )
𝑡 ,

Fut𝑡 ⊔ 𝐹𝑖

where 𝑇𝑖 �
𝐼 𝜎𝑖 ,𝑇𝑖 , 𝐹𝑖

We also have the same property as for single-hole: if 𝑒𝑠 ∼𝑑 𝑒𝑡 , then for any 𝐶𝑡 , 𝑒 such that

𝑒𝑡 = 𝐶𝑡 [𝑒], there exists a context 𝐶𝑠 such that 𝑒𝑠 = 𝐶 [𝑒].
Moreover, for any 𝑒′, 𝐶𝑠 [𝑒′] ∼𝑑 𝐶𝑡 [𝑒′]

box-val. Only step that can be taken is future-resolve (𝜀). We close immediately with box-

resolved. Cannot have infinitely many future-resolve steps in a row: each consumes an unre-

solved future, which there are finitely many at each step.

box-resolved. Only possible step is prune-tasks (𝜀) (only if 𝑇 ≠ ∅), and we close immediately.

box-thread. We give here most elements of the proof of lemma 3.1, from which the proof for

this case follows immediately

thread-dest. This case handles almost every computation, except constructors being built

local steps All local steps except the ones for refine are treated the same as for the single-hole

optimisation, using the contexts property, and the same arguments as in the main thread. For

the store argument, only refine can read or write to unsynchronised parts of the store.

refine (≠ fill) A refine step necessarily happens in a context of the form let𝛿+ = refine(𝑑, □) in 𝑒 .
There are several cases depending on the shape of the second argument of refine (sequential
or parallel tag, which and how many fields are in the domain of sta). They are all matched

with one of the constr-par/seq rules, and we enter one of the chains described earlier, in a

state par/seq-<_>-0.

fill We close with thread-val after 𝑛 applications of await-resolved.
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Aw[fut
0
..fut𝑛] ⊔ (fut𝑛 ↦→ 𝑣) [𝑑 ↦→ ⧸ ] , (tid ↦→ refine(𝑑, 𝑣))

(fut
0
↦→ 𝑣) ⊔ (fut𝑖 ↦→ 𝑣)𝑖=1..𝑛 [𝑑 ↦→ 𝑣 ] , (tid ↦→ ())

fut
0

≈
𝑑

await-resolved

𝑖=𝑛−1..0
fill

fut
0

≈
𝑑

Even though we might answer the challenge with 0 steps on the source side, we cannot take

infinitely many fill steps in a row: each fill step consumes a binding [𝑑 ↦→ ⧸ ] from the

store. The number of these bindings in the store is thus a strictly decreasing measure for

possibly-𝜀 steps. It is moreover always finite, thus we cannot stutter indefinitely.

This also verifies the second part of the lemma.

chain-resolved We have 𝑒 ∼𝑑 𝑒′ = 𝐶 [forward(fut′, 𝑑)]. The only possible case for 𝐶 is □. Thus,
with Fut𝑡 [ fut′ ] = ℜ 𝑣 , we get by box-resolved that (fut′ ↦→ 𝑣) ∈ Task𝑠

Aw[fut
0
..fut𝑛] ⊔ (fut𝑛 ↦→ await(fut′)) [𝑑 ↦→ ⧸ ] , (tid ↦→ forward(fut′, 𝑑))

(fut
0
↦→ 𝑣) ⊔ (fut𝑖 ↦→ 𝑣)𝑖=1..𝑛 [𝑑 ↦→ 𝑣 ] , (tid ↦→ ())

fut
0

≈
𝑑

await-resolved

𝑖=𝑛..0 chain-resolved

fut
0

≈
𝑑

Closing again with thread-val, same as fill, with possibly 𝑛 + 1 awaits.

This also verifies the second part of the lemma.

dps-call Very similar to the case for the single-hole optimisation. Here, we create a new “box”:

(fut ↦→ 𝐶 [(𝑓 𝑣)]) 𝜎𝑡 ,

(tid ↦→ 𝐶 [(𝑓 𝑣)]),

(fut ↦→ 𝐶 [fut′]) 𝜎𝑡 ,

(tid ↦→ 𝐶 [fut′])

(fut′ ↦→ 𝑒 [𝑥 ↦→ 𝑣])
[𝑑 ′ ↦→ ⧸ ] ,
(tid′ ↦→ DJ𝑒K𝛿 [𝛿 ↦→ 𝑑 ′] [𝑥 ↦→ 𝑣])
[ fut′ ↦→ 𝔘 𝑑 ′ ]

𝑓 𝑢𝑡
≃
𝑑

async-call

(𝑓 ↦→𝜆async𝑥. 𝑒 ) ∈Fun
dps-call

(𝑓 ↦→𝜆dps𝛿, 𝑥 . DJ𝑒K𝛿 ) ∈Fun′

𝑓 𝑢𝑡
≃
𝑑

⊔ ⊔

�

Red part is the same, blue by box-thread, thread-dest

tail-call Exactly the same as for the single-hole optimisation.

chain-unresolved, future-resolve, prune-tasks None of these rules applicable in this case.

Continuing the cases of ≈ :

thread-val. Two rule can be applied: either prune-tasks, or future-resolve.

prune-tasks stutters and we either stay in the same state, or if if it was the last task to prune, go

to box-val.

future-resolve matched with 𝑛 awaits, then closed with box-resolved
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The sequence par-both-x. We give details here fro one of the chains handling constructors: the

case of parallel-tagged constructors, with both fields “asynchronous” (read: in the domain of sta).
The arguments for the other sequences are the same.

par-both-0 Only case is reducing the let, stuttering, going to par-both-1

par-both-1 Any step under context in 𝑒′
1
will be matched in 𝑒1, stay in same state. Last steps can

be either tail-call or one of the chain ones, and need to be matched with the corresponding

source step, then the substitution (𝑒1 is now just a future), and we go to par-both-2

par-both-2 Any step will be either in the thread tid, or in𝑇 ′
1
. Steps in𝑇 ′

1
keep us in the same state,

we go to par-both-3 only with the last step in 𝑒′
2
.

in tid First step will be getting rid of the ((); )?, which is epsilon. Then, any subsequent

steps in 𝑒′
2
will be matched in 𝑒2 in the same way as 𝑒′

1
in the previous case. The last step

will either create a 𝑇 ′
2
, or directly resolve to a value, in the same way.

in 𝑇 ′
1
if its under field-chain, only possible step is chain-resolved, ok. Otherwise, induc-

tion hypothesis.

After the last step (which by ind ends with (fut
1
↦→ 𝑣1) on the LHS), we must resolve the

await(fut
1
), and we close this part with field-resolved.

par-both-3 Same as the previous one, but now steps might also be in 𝑇 ′
2
. They are however for

the most part treated in the same way.

The last step in this state is already detailed in Section 3.4
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