
Monadic Interpreters for Concurrent Memory Models
Executable Semantics of a Concurrent Subset of LLVM IR

Nicolas Chappe
ENS de Lyon - CNRS - Inria - UCBL -

LIP - UMR 5668
Lyon, France

nicolas.chappe@ens-lyon.fr

Ludovic Henrio
CNRS - ENS de Lyon - Inria - UCBL -

LIP - UMR 5668
Lyon, France

ludovic.henrio@cnrs.fr

Yannick Zakowski
Inria - CNRS - ENS de Lyon - UCBL -

LIP - UMR 5668
Lyon, France

yannick.zakowski@inria.fr

Abstract
Monadic interpreters have gained attention as a powerful
tool for modeling and reasoning about first order languages.
In particular in the Coq ecosystem, the Choice Tree (CTree)
library provides generic tools to craft such interpreters in
presence of divergence, stateful effects, failure, and non-
determinism. This monadic approach allows the definition
of semantics for programming languages that are modular
in its effects, compositional w.r.t. its syntax, and executable.

We demonstrate the use of CTrees to formalize a semantics
for concurrency and weak memory models. We instantiate
the approach over a minimal concurrent subset of LLVM IR.
Our semantics is built in stages, interpreting aspects of the se-
mantics separately. Notably, a stage encodes multi-threading
as an interleaving semantics, and another implements a weak
memory model that supports most LLVMmemory orderings.
Furthermore, the modularity of the approach allows for plug-
ging a different source language or memory model by chang-
ing a single phase. By leveraging the notions of (bi)similarity
on CTrees, we establish the equational theory of our con-
structions, show how to transport equivalences through our
layered construction, and prove simulation results between
memory models. Finally, our model is executable, hence the
semantics can be tested by extraction to OCaml.

CCS Concepts: • Software and its engineering→ Seman-
tics; • Theory of computation→ Concurrency.

Keywords: Semantics, Concurrency, Coq, LLVM

ACM Reference Format:
Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski. 2025.
Monadic Interpreters for Concurrent Memory Models: Executable
Semantics of a Concurrent Subset of LLVM IR. In Proceedings
of the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’25), January 20–21, 2025, Denver, CO,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3703595.3705890

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CPP ’25, January 20–21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1347-7/25/01
https://doi.org/10.1145/3703595.3705890

1 Introduction
In recent years, large-scale verification of industrial-strength
software has become increasingly common [56] follow-
ing the inspirational success of CompCert [42] in Coq, or
CakeML [34] in HOL4:. However, such developments still
require a tremendous amount of expertise and efforts. A
significant body of work hence seeks to simplify this task,
whether through richer semantic foundations [6, 11], or
through richer proof principles [31, 60, 68].

In the Coq ecosystem, the Interaction Trees (ITree) library
by Xia et al. [62, 64] has been influential [17, 21, 32, 43, 59,
60, 63, 67] over the recent years as a rich semantic toolbox
for modeling first order languages. Inspired by advances in
denotational semantics [8, 20, 52], the library provides an im-
plementation of a coinductive variant of the freer monad [30].
This library provides access to monadic programming over
symbolic events, tail recursive and general recursion, and in-
terpretation of effects into monadic transformers in the style
of one-shot algebraic effects. Concerning proofs, a rich the-
ory of weak bisimilarity of computations enables both equa-
tional reasoning, and relational Hoare-style program logics.
The approach has been used to model and verify a wide range
of applications, such as networked servers [32, 67], transac-
tional objects [43], non-interference [58], or memory-safe
imperative programs [21].

But the largest application of the approach is arguably
embodied by the Vellvm project. This project aims to formal-
ize LLVM IR, the intermediate representation at the heart
of the LLVM compilation infrastructure [39], and build ver-
ified tools upon it. LLVM IR is both the target language of
a wide range of source languages, from C/C++ and Rust
to Haskell, and an intermediate representation that targets
most architectures. As such, investing effort into its verifica-
tion is particularly worthwhile, as it takes part in the trusted
codebase of an enormous range of projects. In a nutshell,
the language itself is a low level language based on SSA-
formed mutually recursive control flow graphs with a low
level memory model.

While the Vellvm project takes its roots over a decade
ago [69, 70], Zakowski et al. have restarted the project on
denotational foundations using the ITree library [4, 65]. The
approach has been coined by Zakowski et al. as “a compo-
sitional, modular, and executable semantics”. Compositional

https://orcid.org/0000-0003-3732-7704
https://orcid.org/0000-0001-7137-3523
https://orcid.org/0000-0003-4585-6470
https://doi.org/10.1145/3703595.3705890
https://doi.org/10.1145/3703595.3705890
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705890

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

in that it is built by structural recursion on the syntax, and
defines the meaning of open programs. Modular in that it
defines and compose the semantics of each effect as inde-
pendent handlers. Executable in that the model allows for
the extraction of a verified executable interpreter suitable
for testing.

Yet, the Vellvm project presents a major blind spot: it
strictly restricts itself to sequential computations, ruling out
entirely any modeling of concurrency. This shortcoming is
particularly regrettable in that concurrency bugs are partic-
ularly difficult to detect by nature, being hard to reproduce
trough testing. In this paper, we pave the road towards ad-
dressing this limitation. More specifically, we raise the fol-
lowing question: can a monadic model be built for a language
such as LLVM IR in the presence of threads against a weak
memory model? We answer positively by implementing one
such model in Coq.

To achieve this result, we build on Chappe et al.’s recently
introduced Choice Trees (CTrees) [10]. CTrees are a variant of
ITrees, where the monad not only provides support for diver-
gence, but also non-determinism. Chappe et al. demonstrate
how this is sufficient to build trace models for concurrency,
illustrating the approach on CCS and a simple imperative
language with cooperative scheduling.

To model concurrency in the context of LLVM IR, we
provide the following contributions.

• We build a semantic model for a concurrent language
(Section 3) by composing four passes: (1) representa-
tion into CTrees, (2) implementation of intra-thread
effects, (3) interleaving of threads, and (4) implemen-
tation of inter-thread effects.

• We develop a meta-theory, showing in particular how
equivalence of programs is transported across inter-
pretation, which provides a simple proof method for a
class of thread-local optimizations (Section 5).

• We apply our approach to `threadIR , a simplified version
of LLVM IR with support for thread creation (Sec-
tion 3.2) and a weak memory model based on Kang et
al.’s work on Promising Semantics [26] (Section 3.6).

• We derive an executable version of the semantics from
our model (Section 4).

All our results are formalized in the Coq prover, and provided
as an open source artifact.1

2 Context
2.1 Memory Models and LLVM IR Orderings
In a concurrent setting, the semantics of accesses to a shared
memory can be particularly subtle. Indeed, modern architec-
tures such as ARMv8 do not ensure that writes to memory
are immediately visible to all threads, a property known as
sequential consistency (SC). In turn, modern programming

1See the supplementary material of this paper.

languages adopt memory models weaker than SC (i.e., al-
lowing more behaviors) to enable efficient compilation to
such targets. Otherwise, synchronization statements (e.g.,
fences) have to be injected by a compiler targeting hardware
with a weaker memory model to ensure that the compilation
does not introduce unexpected behaviors. These additional
synchronizations induce a run-time performance penalty.

Intermediate representations for compilers such as LLVM
IR are at the convergence of such constraints: they must
support models allowing an efficient compilation both to a
wide range of hardware, as well as from the vast majority
of source languages. To accommodate for the diversity of
front-ends it supports, LLVM IR’s atomic memory access and
fence instructions support a memory ordering annotation
that specifies the degree of atomicity of the instruction. We
sum up their semantics below, and refer the interested reader
to the LLVM language reference for further information.2

• Regular loads and stores, with no annotation,3 offer
few atomicity guarantees. They are unsafe in a concur-
rent setting, unless another form of synchronization
such as fences or mutexes is used. In most cases, data
races involving a non-atomic operation return an un-
defined value.

• The Unordered ordering corresponds to the Java mem-
ory model. It guarantees that a load returns a defined
value that comes from a memory write to the same
address, but it still offers weak guarantees on which
value is chosen.

• The Monotonic ordering corresponds to the relaxed
C/C++ memory model. It enforces a total ordering
on memory accesses to the same memory location,
but not on those to different memory locations. For
most weak hardware memory models, this ordering is
the strongest one that can be efficiently compiled to
machine code without introducing additional fences.

• The Acquire, Release and AcquireRelease orderings are
based on their C/C++ counterparts. They offer syn-
chronization guarantees on memory akin to mutexes.
When an acquire operation synchronizes with a prior
release operation (e.g., an acquire read reads a value
from a release write), all the writes visible to the releas-
ing thread become visible to the acquiring thread.

• SequentiallyConsistent is the strongest LLVM IR or-
dering. When used exclusively, it guarantees global
sequential consistency.

Consider the litmus test in Listing 1 for illustration. As-
suming @x is atomically initialized to 0, the non-atomic load
of thread B (line B.1) may return undef as it can read both
the initial 0 or the 2 from (A.1). By contrast, the monotonic
load (B.2) will have a defined result, either 0 or 2, because
it is atomic. Assuming the acquire fence (B.3) synchronizes

2https://llvm.org/docs/LangRef.html
3In `threadIR , we use the annotation not_atomic for uniformity.

https://llvm.org/docs/LangRef.html

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

thread A
1 store monotonic 2, @x
2 fence release

thread B
1 %1 = load @x
2 %2 = load monotonic @x
3 fence acquire
4 %3 = load @x

Listing 1. Fragment of an LLVM IR program with 2 threads
running in parallel (simplified syntax).

with the release fence (A.2), all the stores visible to thread A
at the time of the fence become visible to thread B, which
implies that the final load at (B.4) unambiguously returns 2.

2.2 Promising Semantics
Capturing the semantics of weak memory models, or from
our perspective of the various orderings we have informally
described in the previous section, has constituted a major re-
search endeavor over the last two decades. We seek a formal
memory model that supports the different LLVM IR memory
access operations (load, store, read-modify-write (RMW) and
fence) and orderings. We furthermore need the model to be
operational: by defining locally the next available transitions
of the system, such models fit better in the CTree formal-
ism. Promising Semantics [26] is one such operational weak
memory model, and has been extensively studied over the
past few years [13, 40, 41, 66]. We introduce its main features
as it is a key source of inspiration for our memory model, but
do not delve into the details of the associated meta-theory.

In its most basic form, Promising semantics uses two com-
ponents to model a shared memory: a global set of messages
and per-thread views. The set of messages materializes the
past writes to memory.

Definition 2.1 (Promising Message). A message 〈033A :=
E0;@(BC0AC, 4=3]〉 represents a store of value E0; to address
033A , happening at half-open time interval (BC0AC, 4=3], BC0AC
and 4=3 being rational timestamps in Q.

Through the global set of messages, each address has
a totally ordered timeline of its past stores. Two stores
to the same address cannot have overlapping timestamps,
and each memory address has its own independent clock,
which means that 〈01 := E1@(1, 2]〉 is guaranteed to hap-
pen before 〈01 := E2@(2, 3]〉 but not necessarily before
〈02 := E3@(2, 3]〉 because it involves a different address.

On top of the global set of messages, a Promising state
also contains thread states. Each thread C has a view E84FC

that records for each address the timestamp of its last access
performed. When a message 〈033A := E0;@(BC0AC, 4=3]〉 is
read or written by some thread C , E84FC is updated so that
E84FC (033A) = 4=3 . The view of a given thread can only
increase over time, but not necessarily to the maximal known
timestamp. In other words, when a memory access to some

0 1 2 3 4
time for 0

E1 E2 E3

Figure 1. An example Promising timeline for address 0

thread A
1 store mon 2, @x ; t=2
2 store mon 1, @y ; t=1
3 %a = load @y ; t=1

thread B
1 store mon 2, @y ; t=2
2 store mon 1, @x ; t=1
3 %b = load @x ; t=1

Listing 2. Fragment of an LLVM IR program with 2 threads
(simplified syntax, monotonic abbreviated to mon). The com-
ments indicate a possible assignment of timestamps at which
load and store operations occur.

address 0 occurs, E84FC (0) is nondeterministically updated
to a timestamp greater than or equal to its current one.

Figure 1 represents the timeline for address 0 if the
global message set contains the messages {<1 = 〈0 :=
E1@(0, 12]〉,<2 = 〈0 := E2@(1, 2]〉,<3 = 〈0 := E3@(3, 4]}.

The example in Listing 2, adapted from [26], demonstrates
how timestamps enable store-store reordering in Promising
semantics. 0 and 1 can both be assigned 1 in the same exe-
cution, if the store to ~ on line A.2 happens before (i.e., is
assigned a lower timestamp than) the store to ~ on line B.1,
and similarly the store to G on line B.2 happens before the
store to G on line A.1.

One may wonder why messages contain intervals instead
of just one timestamp. The reason is that support for read-
modify-write operations relies on these intervals: an interval
can “fill” a timeline between the timestamp of the read part
of an RMW operation and the timestamp of its write opera-
tion, in order to prevent the insertion of undesirable writes
between them.

We stress that this short description of promising seman-
tics is simplified. In particular, promising semantics also
supports load-store reorderings thanks to promises. At any
point of an execution, a thread can promise that it will later
write some value to some address at some timestamp. Other
threads accessing this address can read from this promise as
if the future write had already happened. For an execution
to be valid, every promise has to be eventually fulfilled. We
will not support promises in our implementation, as exten-
sively discussed in Section 3.6. This allows us to support all
the orderings of an acquire/release semantics, but not the
load-store reorderings allowed by the monotonic ordering.

2.3 Choice Trees

The datatype. CTrees, introduced in [10], is a Coq library
providing a coinductive data-structure ctree E B X of poten-
tially infinite trees. As illustrated in Figure 3, values of this

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

CoInductive ctree (E B : Type → Type) (R : Type) :=
(* pure computation *)
| Ret (r : R)
(* external event *)
| Vis {X : Type} (e : E X) (k : X → ctree)
(* delayed branching *)
| BrD {X : Type} (c : B X) (k : X → ctree)
(* stepping branching *)
| BrS {X : Type} (c : B X) (k : X → ctree)

Listing 3. The CTrees data structure

r
Ret r

∅
4
E 1

4
E
=

Vis e
g

g
BrS b

.

BrD b

Figure 2. The interpretation of the four kinds of nodes of
values of type ctree E B X in terms of a labeled transition
system. Dotted transition represents an inductive search
down the tree for a transition.

datatype are built of four kinds of nodes. Leaves (Ret) carry
values of type X: they represent pure computations. Compu-
tations can interact with the environment through external
events (Vis) taken from the signature E. Finally, CTrees can
perform two variants of non-deterministic branching (BrD
and BrS) taken from the signature B.4. A signature is a family
of types: for instance, an event e : E nat represents an inter-
action with the environment whose effect should return to
the computation a natural number. Hence, a Vis node over e
resumes with a continuation indexed over nat.

The semantic meaning of CTrees can be better understood
through their propositional interpretation as Labeled Transi-
tion Systems (LTS). Figure 2 provides an informal definition
of this LTS. Pure computations observe their resulting value
A , and move to a stuck state, written ∅, and represented
as a nullary BrD node. External events encode observable
computations: each branch is labeled differently, by both the
event performed and the answer subsequently received. Both
branching nodes are internal actions, but are still further dis-
tinguished depending on their visibility. BrS nodes encode
a computational step whose existence can be observed (de-
noted by the presence of a g label in Figure 2). In contrast,
BrD nodes are truly invisible, capturing a proper internal
non-deterministic transition: the LTS can take a step if it
finds inductively a step in any of the successors of the node.
Observe in particular that an infinite tree made of BrD nodes
constitutes a representation of the stuck process.

While the interface B is application dependent, we typi-
cally work with a baseline of branching choices B01 allow-
ing for representing stuck processes (∅, a BrD node with no

4The B parameter was not present in [10], branching was over finite sets
fin n. We base our work on a later, more general version of the library.

successor), silent guards (Guard, a BrD node with a single suc-
cessor), and stepping guards (Step, a BrS node with a single
successor). In particular, note that Guard is routinely used
to satisfy the guardedness checker for corecursive function
calls without attaching any semantic to this call. We write
+' for the disjoint sum of signatures.

Programming. Much like ITrees, CTrees come with a set
of combinators that facilitates writing computations, or mod-
eling source languages. First, ctree E B forms a monad for
any interfaces E and B: they can embed pure computations
and sequence computations through the ret and bind con-
structs. CTrees furthermore supports iteration, via the com-
binator iter (f : I → ctrees E B (I + J)) (i : I) that it-
erates recursively a loop body f, starting from the in-
dex i. If the body returns a new index inl i', it loops;
if it returns an exit signal inr j, it terminates. Of course
arbitrary computations can always be defined directly
by corecursion. Finally, CTrees support non-deterministic
effects: the stuck process ∅ and the binary choice
choose p q := BrD T2 (| T21 ⇒ p | T22 ⇒ q)5 form the
expected lattice; choose trivially generalizes to n-ary choice.

As a minimal illustration, one can model a little pro-
cess randomly walking along a line with two events
Right/Left : Ewalk unit:

CoFixpoint walk := choose3 (Vis Right (fun _ ⇒ walk))
(Vis Left (fun _ ⇒ walk))
(Ret tt)

which models the two states LTS

p ∅

Right

Left

tt

Monadic interpretation of effects. As illustrated above,
CTrees are a shallow embedding in Coq of possibly non-
deterministic LTSs. As is, they are however quite limited for
the purpose of modeling programming languages. Consider
for instance an alternate version of walk that would at each
iteration step twice to the right, once to the left, or vice-versa.
We would like both processes to be equivalent! Furthermore,
we may want to execute our process. In both case, external
events are ill-fit.

To address this question, CTrees, following ITrees, sup-
port one-shot handlers of external events into monadic im-
plementations. More specifically, the library provides a func-
tion interp. Given a handler h: ∀ X, E X → M X (abbreviated
E { M hereafter), i.e., an implementation of the interface E

5We write T2 for a type with two inhabitants T21 and T22, and abbreviate
the notation for defining a function by case analysis.

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

into a monad M, interp h: ctree E B { M implements com-
putations over E into M. The monad M must be able to inter-
nalize divergence, and non-determinism.

Coming back to walk, one may use a counter to keep track
of the current coordinate and implement Right and Left

as increment/decrement operations. The monad of imple-
mentation M would therefore be Z → ctree ∅ B (Z * _), i.e.,
stateT Z (ctree ∅ B). Given an initial coordinate, the com-
putation does not contain any external event anymore: it is
both suited for execution, and allows for proving that walk
and its alternative are equivalent. In this paper, Mwill always
be a stateful CTree monad of the form stateT S (ctree E B).

Equivalence. Equivalence of CTrees is implemented as a
standard notion of strong bisimilarity over their correspond-
ing LTS (Figure 2). The inductive collapse of BrD nodes in the
construction of the LTS before defining the bisimilarity is
slightly reminiscent of the treatment of silent steps under
weak bisimilarity: they are however different, we refer the in-
terested reader to [10]. The library provides a rich equational
library for its combinators w.r.t. strong bisimilarity.

When moving to richer monads through interpretation,
one defines application specific equivalences. In the case of
the stateful interpretation considered above, one could for
instance work with pointwise bisimilarity.

Extraction. CTrees are a shallow model of LTSs, they do
not rely on propositional relations. As such, they are per-
fectly extractible to OCaml, leading to executable reference
interpreters. In particular, if no external event remains, they
can be run against an implementation of a scheduler deciding
how to choose how to crawl the non-deterministic branches.

3 Concurrent Semantics for a Subset of
LLVM IR

This section introduces our approach to formalize concur-
rency and memory models as monadic interpreters. The ap-
proach is applied to a subset of LLVM IR focused on concur-
rency: an assembly-like language with concurrent memory
accesses and functions that can be spawned with C-style
thread creation and joining. However, the principles and
the tools we develop are applicable to other languages and
concurrency primitives.

In the remainder of this section, we first give a bird’s eye
view of our approach, before specifying the source language
we consider, and defining its semantic model.

3.1 A Semantic Model Built as an Interpretation
Stack

Figure 3 illustrates the construction of the semantic model.
It is structured into successive stages of interpretation, from
a source language (`threadIR in our case study, introduced
hereafter) all the way down to our semantic domain D4,

a monadic computation combining a read-only map of glob-
als, stateful local and memory states, and internalizing the
potential divergence and non-determinism into a CTree. The
stack follows four stages:

• CTree representation. From the source language, each
function is represented into a (deterministic) CTree.
This stage produces a list of CTrees.

• Intra-thread interpretation. This stage gives a seman-
tics to thread-local events: this process can be done
pointwise over D1, it is unrelated to the concurrent
nature of the computation. For `threadIR , this phase deals
with accesses to globals and registers, introducing a
reader monad (for global variables) and a state monad
(for local variables) in D2.

• Interleaving. This pass takes the CTrees modeling the
(spawnable) functions in D2, and builds a singular
(non-deterministic) CTree that represents the concur-
rent execution of the program. Spawn events are given
a semantics at this stage. Memory events get anno-
tated (in superscript) by the identifier of the thread
performing them.

• Inter-thread interpretation. The final stage gives a se-
mantics to the remaining, non-thread-local, events;
in particular it interprets shared memory accesses. In
our case-study, we build an operational Promising-
like memorymodel supporting non-atomic, acquire/re-
lease, and (partly) monotonic accesses.

We emphasize that only the first layer of interpreta-
tion, the representation of the source language into D1,
is language-specific. The other components of the model
are reusable. Furthermore, alternate memory models can be
plugged in place of the inter-thread interpretation; we come
back to this idea in Section 5.3.

3.2 The Source Language: `threadIR

Figure 4 depicts the syntax of `threadIR , our source language. A
program includes an identifiedmain function, a list of global
variable (@83) declarations, and a list of functions ready to be
spawned. These functions take exactly one argument. They
are defined as control flow graphs, i.e., a name, an entry block,
and a list of blocks. Blocks contain an identifier, straight line
three address code, and a terminator either returning, or
jumping to a new block.

`threadIR instructions include arithmetic and boolean opera-
tions (exp, built of standard binary operations op) and stan-
dard LLVM IR memory access instructions, annotated with
their expected orderings, as described in Section 2.1. Since
the semantics of thread creation is not defined in LLVM
IR, and largely depends on the platform, language, and li-
braries used, we define a non-standard `threadIR instruction
spawn (fid, fidinit, fidcleanup, x), that spawns a thread with
the body of the function fid as its initial task, with G given
as a parameter. This instruction is parameterized by a thread

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

`threadIR

D1 , list globals × list (
ctree (VarE +' ThreadE +' MemE) B01

value)

Representation Irepr

D2 , genv → list (lenv →
ctree (ThreadE +' MemE) B01

(locals * value))

Intra-thread Ivar

D3 , genv → list lenv →
ctree (WithTId MemE) (B01 +' SchedC)

(locals * unit)

Interleaving Ithread

D4 , genv → PSMem * list lenv →
ctree ∅ (B01 +' SchedC +' PSMemC)

(PSMem * locals * unit)

Inter-thread Imem

spawn @f()
%1 = load @a

Spawn f

Load a

LocalWrite %1 0 LocalWrite %1 1

Spawn f

Load a

define @f() {
store @a 1

}

Store a 1

Store a 1

Sched

Sched

Load0 a

Sched Sched

Store1 a 1

Sched

Sched

Sched

UpdView a Rd

Sched

UpdView a Wr

Sched

Figure 3. The interpretation stack: signatures (left) and simplified example (right). Black nodes represent events (Vis), brown
ones stepping branches (BrS), and gray ones silent branches (BrD). Ret nodes are omitted, and dotted lines indicate further
omitted nodes. We only display two branches as potential results to a load, but the model naturally branches on all values.

atom ::= @id | %id | int | bool | undef
exp ::= atom | atom op atom

aop ::= atomic_exchange | atomic_add
ord ::= not_atomic | monotonic | acquire | release

| acq_rel | sc

instr ::= exp | alloca (exp) | loadord (exp)
| storeord (exp, exp) | rmword (aop, exp, exp)
| cmpxchgord (exp, exp, exp) | fenceord
| spawn (fid, fid, fid, G)

term ::= branch (exp, bid, bid) | jmp (bid) | return (exp)
sblock ::= {entry : bid; code : ;8BC (fid, instr); term : term}

cfg ::= {name : fid; entry : id; body : ;8BC sblock}
prog ::= {main : cfg; funs : ;8BC cfg; globs : ;8BC @83}

Figure 4. Syntax for `threadIR , a minimal subset of LLVM IR

initialization function fidinit and a thread cleanup function
fidcleanup, respectively run at the beginning and at the end
of the thread execution.

As any production level language, LLVM IR accumulates
numerous orthogonal features, leading to active research
even when restricted to its sequential memory model [4, 27].
In order to keep the complexity of our development reason-
able, many LLVM IR features, mostly unrelated to concur-
rency concerns (typing, function calls other than via spawn,
undefined behaviors, etc.) are not supported in our devel-
opment. These excluded features are however supported in
Vellvm [65]. We expect that a future integration of our con-
tributions to Vellvm would only require minor modifications
to the way we handle concurrency and memory.

Thread creation and joining. As an intermediate rep-
resentation, LLVM IR does not specify how threads can be

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

created, this is left to higher-level programming languages
and APIs. The spawn primitive we have equipped `threadIR with
is therefore overly general: in particular it does not enforce
a consistent view on memory between the caller thread and
the freshly-created one.

However, it is parameterized by thread initialization and
cleanup functions whose code is respectively prepended
and appended to the code of the actual task to run. We
can use these functionalities to implement more realistic
thread handling primitives.6 More specifically, we currently
provide a semantics for thread creation and joining based
on thrd_create and thrd_join from the C11 standard li-
brary [22]. It is similar to POSIX’s pthread_create and
pthread_join, but the interactions between these functions
and the memory model are more clearly specified in the C
standard than in the POSIX one.

Following the C standard, the creation of a thread syn-
chronizes with the beginning of the execution of said thread,
meaning that memory writes that were visible to the creat-
ing thread are made visible to the created thread. Likewise,
the end of the execution of a thread synchronizes with the
thrd_join caller.The semantics of such synchronization cor-
responds to acquire/release accesses, and can thus be mod-
eled using those at little additional cost: the parent writes
the thread argument to memory using a release write, and
the child acquire-reads it at the beginning of its execution,
which materializes the synchronizes-with edge.

In our Coq development, the thread creation and join op-
erations are directly implemented in `threadIR on top of the
low-level spawn instruction. thrd_create is a macro (a Coq
function that generates `threadIR code) that accepts two argu-
ments: the function identifier of the thread to spawn, and a
value that is passed to it; It returns a pointer to the thread data
structure. Then, the macro thrd_join, given such a pointer,
waits for the completion of the corresponding thread and
returns its final result.

3.3 CTree Representation for `threadIR

This first step translates the syntax into the semantic domain
D1: each function is denoted into a CTree, and collected into
a list, along with the global variables. This process is rather
standard, following closely Vellvm to resolve the control
flow, albeit using CTrees rather than ITrees. In particular,
graphs are denoted as a tail recursive fixpoint of the function
mapping block identifiers to their denotation. We refer to
Zakowski et al. [65] for details.

Crucial to this denotation is the identification of the effects
of the language, captured for now into abstract events. We
inventory them in Listing 4: interactions with the local and
global variables (VarE), interactions with the shared memory

6If we supported function calls (as they are in Vellvm), we could use this
instead of the prepend/append mechanism but not having functions reduces
the overall complexity of the development.

(* Events used in the initial representation *)
Variant VarE : Type → Type :=
| LocalWrite (id: ident) (v: value) : VarE unit
| LocalRead (id: ident) : VarE value
| GlobalRead (id: ident) : VarE value

Variant MemE : Type → Type :=
| Read (o: ordering) (k: addr) : MemE value
| Write o (k: addr) (v: value) : MemE unit
| ReadWrite o (k: addr) (f: value → value) : MemE value
| Fence (o: ordering) : MemE unit
| Alloc (sz: nat) : MemE addr

Variant ThreadE : Type → Type :=
| Spawn (f init cleanup:fid) (arg:value): ThreadE thread_id
| Yield : ThreadE unit

(* Event and branch introduced in the interleaving *)
Variant WithTId (E : Type → Type) : Type → Type :=
| Annot {X} (e : E X) (t : thread_id) : WithTId E X

Variant SchedC : Type → Type :=
| Sched (ready: list thread_id) : SchedC thread_id

(* Additional branch introduced by the memory model *)
Variant PSAccess : Type :=

PSRead | PSFulfill | PSFulfillUpdate
Variant PSMemC : Type → Type :=
| PSUpdateView (m: PSMem) (i: thread_id) (a: addr) (acc:

PSAccess): PSMemC (date * date)

Listing 4. Signature of events and branches used in the
construction of the model

(MemE), and multithreading events (ThreadE). Note that these
events only specify a signature at this stage: their semantics
will be refined in the subsequent stages of interpretation;
in particular, this leaves us all flexibility in choosing the
memory model later on.

The intuitive semantics of variable and memory events is
mostly straightforward. The most complex of these events is
the RMW operation (ReadWrite o k f) that atomically reads
a memory address k, modifies its content according to the
function f, and returns the read value. Each memory event
(save for alloc) takes a memory ordering as argument to
specify atomicity constraints that the memory model should
enforce on this access. These orderings directly reflect LLVM
IR’s specification, as discussed in Section 2.1.

Yield events are temporary placeholders adding synchro-
nization points, which simplifies the operational character-
ization provided in Section 5.2. We add them to tag pure
instructions and jumps between blocks. They are replaced
by a Guard in the interleaving phase.

CTrees are not only parameterized by their return type
and interface of events, but also by their interface of internal
branching. The interface for internal branching in D1, B01,
only allows for stuck branches and unary Guard constructors.
Consequently, each function is modeled as a CTree with a
single deterministic trace. The return type in D1 corresponds

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

to the type of dynamic values. In `threadIR , dynamic values are
restricted to unbounded signed integers that also serve as
pointers.

3.4 Interpretation of Intra-Thread Events
By nature, the semantics of thread local events is orthogonal
to any concurrency concern. We therefore handle them first,
without introducing any observable event in the process—we
come back to this intuition when characterizing our model
operationally in Section 5.2. Note that in this second domain
D2, the model of each function is still deterministic.

This interpretation pass is simple enough to be defined
in terms of the generic interp combinator from the CTree
library—applied pointwise to each function. The underlying
handler introduces a reader monad transformer for the global
variables. We assume they have been initialized as part of an
initial configuration phase. The local registers are handled
into a standard state monad transformer.

3.5 Thread Interleaving
The interleaving combinator builds a non-deterministic
model for a whole multithreaded program from the model of
each function, including an initial main function. The gist of
this interleaving stage is to interpret away the ThreadE events
from the local models and build an interleaving semantics.
This stage should also retain enough information to allow
us to choose a specific memory model in a later stage.

Unfortunately, one easily observe that the generic method-
ology of defining an handler and relying on interp is not
applicable to ThreadE events. Indeed, interp performs a sub-
stitution of events by their (single-shot) handler over a single
CTree, while our interleaving combinator will necessarily
have to take multiple CTrees as inputs, representing the
multiple tasks currently running.

We therefore handcraft a new co-recursive combinator
interleave fns fid tasks. This combinator is parameterized
by the list fns of models of the functions in scope, and carries
recursively two pieces of information as argument: (1) the
next fresh thread ID fid to be used; and (2) the run-time map-
ping tasks from thread IDs to their (deterministic) models
still waiting to be interleaved.

At each co-recursive call, the interleave function first
checks whether its work is done, i.e., the tasksmap is empty,
otherwise it proceeds to:
1. non-deterministically pick one thread ID id to focus on;
2. retrieve the first transition7 that the focused code can

take;
3. if the step is a spawn event, extend the tasks map with

a fresh thread initialized to the corresponding task, and
otherwise take an annotated version of the transition.

7We elide details, but point out to the interested reader that retrieving
this first step is not completely trivial over CTrees: we reuse the head
combinator from Chappe et al. [10] to this end.

Step 1 introduces non-determinism in the computation:
as observed in D3, SchedC branches (see Fig. 4) are used
to pick a thread ID from the domain of the current tasks
map. Crucially, these branches are delayed ones, they do not
introduce a synchronization point: in D3, all nodes that are
not �A� are memory events.

Step 3 annotates the non-spawn events it interleaves with
the identifier of the thread performing them. This additional
information is leveraged by the next step of interpretation
that is specific to a memory model. We emphasize that this
interleaving combinator is hence independent both from the
source language, and from the chosen memory model.

The top-level interleaving operator can finally be de-
fined as interleave fns 2 [(1, main)], i.e., by initializing the
tasks map to the singleton containing thread ID 1 pointing
to the model of the main function.

3.6 Interpretation of Inter-Thread Events
It remains at last to interpret the memory events. As sug-
gested by the signatureD4, we proceed by standard interpre-
tation, via interp. Events are handled into a state transformer
for a data-structure PSMem (standing for Promising Semantics
Memory), introducing additional non-deterministic branch-
ing over PSMemC.

As any other interpretation handler, the memory event
handler must compute the result of memory operations
locally, based on the given event and the current mem-
ory state. In contrast, a vast and successful body of works
on concurrent memory models relies on axiomatic mod-
els [1, 19, 22, 36, 53] where acyclicity conditions rule out
globally invalid traces. While we could similarly capture a
superset of the valid traces and trim the valid subset after-
wards, it would likely lead to a complex object to reason
about, and essentially negate any possibility of extraction
(see Section 4).

Fortunately, operational weak memory models have seen
increasing traction over the last decade [18, 26, 35, 50, 55].
These approaches typically define non-deterministic LTSs
over extended notions of memory, making them a natural
fit for monadic interpreters. As discussed in Section 2.2 we
base our model on Promising Semantics. More specifically, we
work with the promise-free subset of Promising, as defined
in [26]. The interpretation of memory events largely follows
the operational semantics described in the Promising papers
and sketched in Section 2.2. In this context, the nondetermin-
istic update of a thread view when a memory access occurs is
materialized with the insertion of a PSUpdateView delayed
branching node (see Figure 4).

The semantics of the promise-free fragment of Promising
has remained stable over the different iterations of Promising
Semantics, except for non-atomic accesses that were only
introduced more recently [13, 40]. Noticeably, this later addi-
tion is similar but not equivalent to LLVM IR’s non-atomics
in case of data race. We close this gap by sticking to LLVM

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

IR’s non-atomic semantics [9] in our formalization on three
main points. First, memory writes do not cause undefined be-
havior. Second, non-atomic reads return an undefined value
if they can read from several messages (i.e., they have more
than one valid choice of timestamp). Finally, atomic reads
return an undefined value if they can read from several mes-
sages, including a non-atomic one.

Our Promising interpretation pass introduces
PSUpdateView branches (see Listing 4) that correspond to
the choice of timestamp when a memory access occurs. The
returned timestamps are checked against the Promising
state to forbid incorrect outcomes such as overlapping
messages. In any case, the interpretation of a memory
event introduces a Step node, which induces a g-transition
(Figure 2).

We note that our model currently does not support un-
ordered accesses (called plain accesses in Promising). Plain
accesses are not particularly challenging to support, but they
add complexity to the model and have a limited use as they
do not appear in C-like languages nor in hardware memory
models.

Load-store reorderings. A second, more fundamental,
limitation of our model is its lack of support for load-store
reorderings, as is also the case for e.g. the RC11 model [36],
because of their complex semantic implications. Our mem-
ory model is thus stronger than full-fledged Promising mem-
ory models, and consequently stronger than the LLVM IR
memory model. This has several consequences on the ap-
plicability of our development. First, it distances us from
the actual semantics of LLVM IR: if we prove the validity
of an optimization under our semantics, we have no formal
guarantee that it is also valid for LLVM IR programs that
contain monotonic accesses. Note however that such minor
discrepancies are common in efforts of mechanizing seman-
tics of programming languages, especially related to memory
models. For instance, the full Promising model is not per-
fectly faithful to the semantics of C or LLVM IR because
of a slightly simplified handling of sequentially consistent
access [26].

A second consequence is that a hypothetical verified com-
piler from our mechanized LLVM IR semantics to an archi-
tecture with a weak memory model that exhibits load-store
reordering (this includes ARMv8, but not x86) would have to
introduce fences aroundmonotonic accesses, so that the com-
pilation does not introduce undesirable additional behaviors.
This need for more fences unsurprisingly induces a perfor-
mance cost on out-of-order architectures. The overhead can
be quantified: Ou and Demsky [49] compare the performance
overhead of 6 compilation techniques from C/C++ to ARMv8
that forbid load-store reorderings, and measure an average
performance overhead ranging between -0.3% and 3.6% de-
pending on the compilation technique chosen. Note however
that the correctness of these compilation techniques has not

been formally proved, and Lee et al. [40] have pointed out
that the suggested technique with the lowest overhead (bo-
gus conditional branch insertion) can be unsound in some
contexts.

The most obvious way to support load-store reorderings
would be to support promises, a feature from Promising Se-
mantics that we left out. Supporting promises in themselves
is not particularly challenging, the problem stems from the
undesirable out-of-thin-air behaviors that appear. In Promis-
ing Semantics, they are prevented using a sophisticated cer-
tificate mechanism that cannot be naturally captured by the
CTree interp combinator. Instead, just like the interleaving
pass (Section 3.5), we would need a custom combinator, and
because of the very nature of certificates, this combinator
would build CTrees that carry proof terms. Sticking to a
memory model without promises and certificates makes our
development much simpler, and does not limit the range of
programs that we can model.

Dependency tracking is another, more operational, option
for load-store reordering support, as suggested by Ou and
Demsky [49]. It has, to our knowledge, not been explored
for Promising-like models. In practice, it would amount to
annotate all values with a list of stores they depend on, and
checking that no memory store depends on itself. We leave
this perspective to future work.

4 Executability
After the final stage, the CTreemodeling a program, given ini-
tial global and local environments, only contains Step, �A�
and Ret nodes. It therefore has no unimplemented effect left.
Its remaining branches are more precisely Sched branches
that determine which thread will execute next; memory-
model-specific branches such as the choice of timestamp
when a memory access occurs in the promising model; Step
nodes introduced by the interpretation of memory events
(Section 3.6); and Guard steps introduced all along.

The model can therefore be used for testing, by recursively
crawling through the tree. In particular, it suffices to provide
an interpretation of the Sched and memory-model branches
to compute a valid execution of the program. Note that this
interpretation can be performed either in Coq, or in OCaml
after extraction.

To illustrate the approach on the Coq side, we provide a
round-robin scheduler and a pseudo-random scheduler for
Sched events. For the nodes branching on Promising times-
tamps, we define two interpretations: one that returns the
maximal timestamps, leading to a sequentially consistent
execution; and one that chooses a random valid timestamp.
Put together with the interpretation stack, this gives us an
extracted end-to-end executable interpreter able to simulate
an execution of a `threadIR program.

Thanks to the extraction feature of Coq, we complement
these schedulers with a collecting interpreter written in

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

OCaml, that returns all the possible outcomes of a program.
As it naïvely explores every possible branch of a CTree, it
naturally does not scale, but running it on litmus tests illus-
trates our model and builds confidence in the correctness of
our semantics.

The artifact associated with this paper runs a few litmus
tests under several memory models (see Section 5.3) using
the collecting interpreter. Its outputs illustrate that the set
of outcomes of a program depends on the chosen memory
model, and on the chosen ordering annotations.

This executability of the semantics at little additional cost
is a key property of definitional monadic interpreters. This
had been illustrated already in Vellvm but their interpreta-
tion stack eventually splits into a propositional model and
an executable interpreter that handle non-determinism (e.g.,
undefined behavior and undefined values) differently. Our
development goes further in this direction as the CTrees
branching nodes provide a unified framework that fully cap-
tures non-determinism while remaining executable.

5 Meta-Theory
We sketch threemeta-theoretical aspects of ourmodel, laying
ground for the future extension of Vellvm with concurrency
and memory models. First, we establish that equivalence
at each semantic domain is a congruence for its layer of
interpretation. When possible, we do so by strengthening
the generic meta-theory of CTrees. Second, we establish an
operational characterisation of the model at the `threadIR level.
Finally, we introduce alternate memory models and illustrate
their use in the modeling pipeline.

5.1 Transporting Equivalences through the Model
Following a modular design to build our model has benefits
in terms of maintainability, extensibility, and code reuse. But
as advocated abstractly by Yoon et al. [64], and concretely
in Vellvm [65], it also enables us to look at programs under
increasingly complex semantic lenses. Consider for example
the block fusion optimization proven in [65]: two blocks that
are the only successor/predecessor of one another may be
fused. While the optimization modifies the control flow of
the function, and hence requires a non-trivial coinductive
proof, it precisely preserves the trace of occurring events.
It can therefore be proven independently from any piece
of state. Crucially, this proof can be transported to the full
model, because each layer of interpretation preserves the
equivalence at the previous semantic layer. We establish sim-
ilar transport theorems for our model: although the presence
of threads complicates greatly the overall semantics of the
language, the same proof for block fusion should remain
valid!

∀8, C8 ∼ D8

∀6 ;, Ivar (6B, C) 6 ; ∼ Ivar (6B,D) 6 ;

∀6 8 ;, (C 6)8 ; ∼ (D 6)8 ;
∀6 ;, Ithread (C) 6 ; ∼ Ithread (D) 6 ;

∀6 ;, C 6 ; ∼ D 6 ;

∀6 ; <, Imem (C) 6 (<, ;) ∼ Imem (D) 6 (<, ;)

Figure 5. Equivalence preservation by interpretation

Figure 5 spells out the precise statements we prove.8 We
work with equivalences built atop of strong bisimilarity of
CTrees, written ∼, and lift it pointwise to lists and functions.
Lists are indicated with an overline, and we access their
elements with a subscript.

The proof methodology is fundamentally different for the
congruence of Ivar and Imem on one hand, and Ithread on the
other. The latter, interleaving the threads, is hand-crafted: its
proof of congruence must therefore be handmade as well.
The proof is slightly tedious because it involves lists of point-
wise bisimilar CTrees, but there is no major difficulty to
it—we elude its details. The other two cases however are di-
rectly defined in terms of the CTree combinator interp. Their
congruence can therefore be derived from a generalization
of Lemma 5.1 from [10].9

More specifically, we say that a CTree is quasi-pure if every
transition it can take is a value transition (in which case the
CTree is actually pure), or if every transition it can take
deterministically leads to a Ret leaf. A stateful handler is said
to be quasi-pure if for all input states, it implements every
event into a quasi-pure CTree. Assuming that h is quasi-pure,
interp h is a monad morphism that transports equivalences:

Theorem 5.1. If h : E {stateT S (ctree B F) is
quasi-pure, then

∀C D, C ∼ D =⇒ interp ℎ C B ∼ interp ℎ D B.

Our handlers for variable accesses and for memory ac-
cesses are quasi-pure, thus this theorem implies the first and
third cases of Figure 5.

5.2 An Operational Perspective on the Model
While we value the modularity of our construction, our lay-
ered view is difficult to relate to a more intuitive and oper-
ational view of the semantics of the language. To alleviate
this issue, we provide equational means to decompose the
semantics into syntax-level atomic steps. More precisely, we
8Note: there is nothing to prove for Irepr, since syntactic equality at the
source is preserved trivially.
9This more general result is implemented in the current version of the CTree
library.

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

prove that interleaving partial models is equivalent to pick-
ing non-deterministically a live thread identifier, performing
the model of its head instruction, and continuing. That is,
omitting quantifiers:

interleave (Ivar (Irepr fns) g) fid (Ivar (Irepr p) g l)
∼

tid � brD (Sched p);;
(fid',p',l') � step fns fid p g l;;
interleave (Ivar (Irepr fns) g) fid' (Ivar (Ivar p') g l')

Where step fns fid p g l is a function that looks up the
syntactic code of fid in p, and depending on the head instruc-
tion either computes the result of the terminator, extends
the list of threads with a newly created one associated to the
corresponding syntactic code in fns, or inserts the model of
the memory operation terminated with the register update
of the instruction.

For this equation to hold up-to strong bisimulation, it
is crucial that each source instruction results in a step in
the model at the D3 level: this is the motivation behind the
introduction of Yield events when representing pure expres-
sions and terminators mentioned in Section 3.3. Indeed, Yield
events are introduced whenever the interpretation of an in-
struction would generate no observable step, to enforce that
these instructions are observed at the right granularity.

5.3 Models over Alternate Memory Models
As described in Section 3.6, we plug in the model for `threadIR
a weak memory model based on a promise-free Promising
Semantics, striking a balance between simplicity and com-
pleteness of support for LLVM IR’s ordering annotations.
Looking ahead, one may need similar models against differ-
entmemorymodels: whether it is to prove correct a front-end
against a sequentially consistent source language, a back-end
against x86’s Total Store Ordering (TSO) model [50], or to
switch to a simpler model when considering data-race free
`threadIR programs. More generally, any operational memory
model can be implemented in our model.

Such applications are far out of the scope of the present
paper, focused on the design of our initial infrastructure and
meta-theory. Nonetheless, we already illustrate the flexibility
of the approach by additionally implementing in our library
SC and TSO memory models. We furthermore prove that
the SC model of an `threadIR program , sharing the first three
layers of Figure 3, always refines (i.e., is simulated by) its
TSO and Promising counterparts.

SC. Recall that the sequential consistency (SC) model is
based on the assumption that there is a global memory that
is consistent between all threads. The SC state consists of
a simple mapping from addresses to values, and all threads
share this view of memory. Because the SC model is already
as strongly ordered as it can be, fences and memory annota-
tions have no effect.

TSO. In a typical x86 processor, each processor core has
its own L1 and L2 caches, and a slower but larger L3 cache
is shared between all the cores. In a concurrent setting, a
memory write can thus end up in a local cache. It will only
become visible to the threads of the program that are run-
ning on another core when the corresponding cache line is
flushed, or when a fence instruction is encountered. TSO
takes this caching behavior into account by representing the
concurrent memory as a global memory that maps addresses
to values (representing the actual RAM and the shared cache
levels), plus one local memory per thread (representing the
lower cache levels). When a thread writes a value, it goes
to its local memory. When it reads a value from memory, it
tries to read it from its local memory, and if the address is
not known locally it falls back to the global memory.

In this context, a TSO state consists of a mapping from ad-
dresses to values that represents the sharedmemory, plus one
such mapping for each thread, that represents the thread-
local TSO buffer. As TSO is stronger than the monotonic
memory model, only acquire/release and sequentially con-
sistent fences have an effect: they flush the buffer of the
relevant thread. In addition to that, the TSO interpretation
introduces TSOFlush internal branches after each interpreted
access to memory. These branching events choose a list of
threads whose buffers should be flushed. Thanks to these
events, TSO buffers can be emptied at any time.

Variant TSOFlushC : Type → Type :=
| TSOFlush (mem: TSOMem) : TSOFlushC (list thread_id)

Proofs of simulation. The proofs of simulation between
different memory models establishes that SC refines TSO
and Promising, meaning that it allows less behaviors. In the
following, we focus on the proof that SC refines TSO, but
the principle is similar for the Promising proof. We rely on a
generic theorem on interp:10 in order to prove that for any
CTree with memory events, its TSO interpretation simulates
its SC interpretation, it suffices to prove that the TSO in-
terpretation of any memory event, considered in isolation,
simulates the SC interpretation of the same memory event.

Theorem 5.2. ∀(h : E { stateT S (ctree F B))

(h' : E { stateT S' (ctree F' B')) (I: rel S S')

(∀4 B B′, B I B′ =⇒ ℎ 4 B .↑(I×4@) ℎ
′ 4 B′) =⇒

∀C B B′, B I B′ =⇒ interp h C B .↑(I×4@) interp h' C B′ .

Given two stateful handlers for the same events and an
invariant I to compare these states, this theorem guarantees
that if the handlers always produce CTrees in (I × 4@)-
simulation (i.e., the “state monad” part of the return value
verifies the invariant I and the rest of the return value is the
same on both sides), then the interpretations of any CTree
with the two possible handlers will be in (I×4@)-simulation.

10This theorem does not appear in [10], but is implemented in the current
version of the library that we rely on.

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

While both the SC and TSO interpretations interpret a
CTree into a state monad, their respective states are of differ-
ent types (SCMem and TSOMem in our development), hence the
need for this heterogeneous version. In our proof, the invari-
ant between SC and TSO states is made of two conditions:
the SC memory must be equal to the global TSO memory,
and the thread-local TSO memories must all be empty. With
this invariant, the proof approach becomes clear: whenever
a write happens, we immediately flush the TSO buffer of
the relevant thread, so that it is immediately visible to all
threads, as with SC.

6 Related Work
Formal semantics of C and LLVM IR.. Although switch-

ing from ITrees to CTrees, our work follows closely Za-
kowski et al.’s Vellvm development [65]. Their work, as ours,
put the emphasis in building models allowing for testing, but
also suitable for the formal verification of tools and program
optimizations.

Many others have proposed formalization of various parts
of the C or LLVM IR languages. For C, notable examples
include CompCert [42] and its extensions to memory aware
programs [5], Krebbers and Wiedijk [33]’s typed C11 seman-
tics, Memarian et al.’s modelling of pointer provenance [48].
Specifically over LLVM IR, Crellvm [28] shares common ob-
jectives with Vellvm, while Alive [46, 47], by taking a lighter
weight approach, has had impressive results in bug finding
through bounded model checking.

All these projects emphasize the importance and difficulty
of modelling industrial languages: they however, like Vellvm,
restricted themselves to the sequential fragment. By con-
trast, CompCertTSO [61] has impressively extended Com-
pCert with a TSO model built via a synchronisation machine.
They have used their semantics to prove fence elimination
optimizations but our approach is more modular in terms
of memory model, semantics and concurrency constructs
thanks to the theoretical framework of CTrees. We can note
that the use of synchronisation machine between a LTS mod-
elling the memory model and one modelling the core of the
semantics is a form of modular decoupling of intra-thread
and inter-thread components not unlike what we achieve.
Our layered construction bakes this decoupling further in
the framework, separating the modelling of the control flow,
thread local effects, thread interleaving, and thread-global
events into four components, and furthermore allowing for
reasoning about refinements at each levels.

Specifically for LLVM IR, the K-LLVM framework [44],
based on the K-framework [57], provides a very complete,
executable semantics for LLVM IR with threads. We are how-
ever not aware of any formal proof conducted on their se-
mantics. On the contrary, [9] uses event structures to reason
on the semantics of acquire/release and non-atomic accesses

in LLVM IR, with pen-and-paper compilation proofs from
C11 and to hardware models.

In the Isabelle/HOL, Lammich et al. [16, 38] have devel-
oped an impressive framework to derive efficient LLVM code,
equipped with a proof of total correctness, through succes-
sive refinements. The approach relies on a shallow embed-
ding of the target language, LLVM IR, in Isabelle/HOL, into
a state-error monad. Compared to our work, a notably dis-
tinction is that divergence is tackled classically, a diverging
computation mapping to failure. Interestingly, Lammich [37]
has recently extended this framework to refine down to par-
allel LLVM code.Their positioning is fundamentally different
to ours on two aspects. First in that they are concerned with
the manual proof of refinement of specific computations
rather than with verified compilation. Second they precisely
concern themselves with purely parallel computations, with
no data-race, where the heart of our concern is the modelling
of weak memory models in presence of data-races. An in-
depth comparison of their semantics against our work, but
more generally Vellvm’s semantics, would nonetheless be a
valuable perspective.

Concurrent memory models. An extensive body of
works studies concurrent memory models under an ax-
iomatic lens, where allowed behaviors are captured through
acyclicity conditions. It has been notably instrumental in
clarifying the behavior of modern processors [1, 2].

However, fundamental to our interpretation stack is
the ability to define a weak memory model in an oper-
ational way. As thoroughly discussed through the paper,
we specifically leverage the Promising Semantics line of
work [12, 13, 26, 40, 41]. While we re-use the base formal-
ism of Promising Semantics, recovering their meta-theory
in our formalism is largely left to future work. A possible
starting point could be results reducing non-determinism
around non-atomic memory accesses for the verification of
thread-local optimizations [66].

On the operational side as well, JinjaThreads [45] is a for-
malisation in Isabelle/HOL of concurrent Java and its weak
memory models. This work not only formalizes the opera-
tional semantics, but also the compilation pass down to Java
bytecode, and prove it correct through a bisimulation. Setting
aside the difference in the language of interest and semantic
approach, compared to us, JinjaThreads is a more mature
project, offering much better coverage of the language they
consider, supporting notably more synchronisation primi-
tives. They achieve a form of clean separation of local-thread
semantics and multi-threaded synchronisation, closer to the
approach followed in CompCertTSO, and develop local rea-
soning principles lifted to a concurrent context that shares
flavor with our transport of equivalence through stages of
interpretation. Nonetheless, we argue that the modularity we
develop through our modular approach is more principled,
extends to a more general modular construction of other

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

aspects of the semantics, such as the control flow, and is
more language-agnostic: we therefore conjecture it has the
potential to be more reusable.

Denotational approaches, seeking compositionality, have
been developed for concurrent shared-memory-based mod-
els over the years. In particular, Brookes’ seminal work [7]
introduces an elegant denotational trace semantics for se-
quential consistency. This approach was quickly extended
to TSO [24], and later on to weaker memory models using
partially ordered multisets (pomsets) [29]. Concurrency in
these languages stems from a binary parallel operator, which
does not quite fit the kind of C-like imperative language we
aim at modelling: our thread scheduling relies on a global
view on a list of identified running threads, while a parallel
operator leads to more implicit hierarchical scheduling.

It seems that Brookes’ work resembles our approach pro-
vided we swap the thread interleaving and the inter-thread
interpretation passes, and introduce a stateful Yield event
that sends the memory state to the scheduler and obtains
an updated version. Specifying such a commutation and
comparing closely the two approaches is left to future work.

Recently, Dvir et al. [14] have proposed a monadic denota-
tional semantics for sequential consistency with a yield oper-
ator based on Brookes’ traces. This model was later extended
to an acquire/release memory model [15], based on the ac-
quire/release fragment of Promising Semantics (a restriction
of the promise-free model we use). Beyond the shared con-
text, they rather focus on a pen-and-paper equational theory.
Nevertheless, support for the program transformations men-
tioned in [15] would be an interesting perspective for our
Coq development.

Other denotational approaches to weak memory models
do not build an interleaving semantics but carry a partial
order of dependencies between events. Such approaches rely
on event structures [51] or on partially ordered multisets [23,
25, 29].

Bridging the gap with the hardware. While we focus
on LLVM IR, a natural perspective would be the verification
of an efficient back-end. Faithfully modeling modern hard-
ware is however a major endeavour in itself. IMM [53] is
an axiomatic semantics that provides a standard intermedi-
ate model bridging the gap between programming language
concurrent memory models and axiomatic hardware models;
it is meant to factor out proofs of compilation correctness. It
notably supports Promising Semantics as a source model.

On a level closer to the architecture, Sail is a DSL for
describing formally the behaviour of machine-level instruc-
tions [3]. It has been used to give executable operational
semantics to the Power [18] and ARMv8 [54] memory mod-
els. While we seem to strike for a sensibly different angle
at the time, Sail is interesting in that it allows local thread
behaviour to be translated into a free monad over an effect
datatype. It would seem rather straightforward to interpret

this monad into a CTree, and use the framework presented
in this paper to reason formally about it, in the presence of
concurrent threads.

7 Discussion and future work
The nature of the layered semantics we construct raises a
natural question: in which order should the various kinds of
events be interpreted? Currently, events that do not involve
any communication between threads (i.e., variable accesses)
are interpreted before the interleaving pass, and events that
involve communication between threads (i.e. memory ac-
cesses) are interpreted after.

We have experimented with placing the interpretation
pass that deals with variable accesses after the interleaving,
but the resulting model turned more difficult to manipulate.
In the approach we chose however, the need for extrane-
ous Yield events that the pre-interleaving interpretation of
memory events must introduce seem rather contrived.

In order to reconcile these two approaches, a commu-
tation result between thread-local handlers and the inter-
leaving could be established. Such a result would necessi-
tate a transformation from a handler for thread-local events
into a post-interleaving handler. Conversely, generating pre-
interleaving handlers from post-interleaving handlers would
also be possible through the use of a Yield event. These com-
mutation theorems would make clearer the role of the Yield
events in the pre-interleaving variable access interpretation
pass. We leave all of this to future work.

Future work. In this paper, we have built a semantics for
a subset of LLVM IR focused on concurrency. Thanks to the
CTree data structure and the accompanying infrastructure,
this semantics is built in layers, separating threading, vari-
able access, and memory access concerns. As a result, parts
of the model can be reused in other contexts, or tuned piece-
wise to accommodate alternate semantics. CTrees addition-
ally make our semantics executable, and provide powerful
tools to establish meta-theoretical results. However, we have
only laid the foundations and are still far away from a full
extension of Vellvm to concurrency as CompCertTSO [61]
did for CompCert [42].

On a long term basis, our work lays a foundation for the
formal verification of optimizations and compilation passes,
taking into account a concurrent memory model in a partic-
ularly modular way. Building upon the current artifact that
formalizes a minimalistic subset of LLVM IR, we first envi-
sion to support a more complete language. To reach this goal,
we believe it should not raise any major theoretical challenge
to integrate our work into Vellvm. Indeed, most of Vellvm’s
features we omitted (functions, typing) are orthogonal to
concurrency. The most complex part would probably be the
handling of undefined values and undefined behaviors, but
we believe CTrees would provide a better behaved model for
them than the current propositional approach.

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

References
[1] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard,

and Luc Maranget. Armed cats: Formal concurrency modelling at
arm. ACM Trans. Program. Lang. Syst., 43(2), jul 2021. doi:10.1145/
3458926.

[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory.
ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014. doi:10.1145/
2627752.

[3] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-
sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-
naswami, and Peter Sewell. ISA semantics for ARMv8-A, RISC-V, and
CHERI-MIPS. In Proceedings of the 46th ACM SIGPLAN Symposium
on Principles of Programming Languages, January 2019. Proc. ACM
Program. Lang. 3, POPL, Article 71. doi:10.1145/3290384.

[4] Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve
Zdancewic. A two-phase infinite/finite low-level memory model:
Reconciling integer–pointer casts, finite space, and undef at the llvm
ir level of abstraction. Proc. ACM Program. Lang., 8(ICFP), aug 2024.
doi:10.1145/3674652.

[5] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. Compcerts: A
memory-aware verified C compiler using a pointer as integer seman-
tics. J. Autom. Reason., 63(2):369–392, 2019. URL: https://doi.org/10.
1007/s10817-018-9496-y, doi:10.1007/S10817-018-9496-Y.

[6] Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan Schmitt.
Skeletal semantics and their interpretations. Proc. ACM Program. Lang.,
3(POPL):44:1–44:31, 2019. doi:10.1145/3290357.

[7] Stephen Brookes. Full abstraction for a shared-variable parallel lan-
guage. Information and Computation, 127(2):145–163, 1996. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540196900565, doi:
10.1006/inco.1996.0056.

[8] Venanzio Capretta. General recursion via coinductive types. Log.
Methods Comput. Sci., 1(2), 2005. doi:10.2168/LMCS-1(2:1)2005.

[9] SohamChakraborty and Viktor Vafeiadis. Formalizing the concurrency
semantics of an llvm fragment. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization, CGO ’17, pages
100–110. IEEE Press, 2017.

[10] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and
Steve Zdancewic. Choice trees: Representing nondeterministic, recur-
sive, and impure programs in coq. Proc. ACM Program. Lang., 7(POPL),
jan 2023. doi:10.1145/3571254.

[11] Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel
Gruetter. Omnisemantics: Smooth handling of nondeterminism.
ACM Trans. Program. Lang. Syst., 45(1):5:1–5:43, 2023. doi:10.1145/
3579834.

[12] Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. Mod-
ular data-race-freedom guarantees in the promising semantics. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, pages
867–882, New York, NY, USA, 2021. Association for Computing Ma-
chinery. doi:10.1145/3453483.3454082.

[13] Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori
Lahav. Sequential reasoning for optimizing compilers under weak
memory concurrency. In Proceedings of the 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementa-
tion, PLDI 2022, pages 213–228, New York, NY, USA, 2022. Association
for Computing Machinery. doi:10.1145/3519939.3523718.

[14] Yotam Dvir, Ohad Kammar, and Ori Lahav. An algebraic theory for
shared-state concurrency. In Programming Languages and Systems:
20th Asian Symposium, APLAS 2022, Auckland, New Zealand, December
5, 2022, Proceedings, pages 3–24, Berlin, Heidelberg, 2022. Springer-
Verlag. doi:10.1007/978-3-031-21037-2_1.

[15] Yotam Dvir, Ohad Kammar, and Ori Lahav. A denotational approach
to release/acquire concurrency. In Stephanie Weirich, editor, Pro-
gramming Languages and Systems - 33rd European Symposium on
Programming, ESOP 2024, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2024, Luxembourg
City, Luxembourg, April 6-11, 2024, Proceedings, Part II, volume 14577
of Lecture Notes in Computer Science, pages 121–149. Springer, 2024.
doi:10.1007/978-3-031-57267-8_5.

[16] Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. A
verified SAT solver with watched literals using imperative HOL. In
June Andronick and Amy P. Felty, editors, Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pages 158–171.
ACM, 2018. doi:10.1145/3167080.

[17] Simon Foster, Chung-Kil Hur, and Jim Woodcock. Formally veri-
fied simulations of state-rich processes using interaction trees in
isabelle/hol. In Serge Haddad and Daniele Varacca, editors, 32nd
International Conference on Concurrency Theory, CONCUR 2021, Au-
gust 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages
20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CONCUR.2021.20.

[18] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher
Pulte, Susmit Sarkar, and Peter Sewell. An integrated concurrency
and core-ISA architectural envelope definition, and test oracle, for
IBM POWER multiprocessors. In Proceedings of the 48th International
Symposium on Microarchitecture (Waikiki), pages 635–646, December
2015. doi:10.1145/2830772.2830775.

[19] Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter Sewell, Lars
Birkedal, and Jean Pichon-Pharabod. An axiomatic basis for computer
programming on the relaxed arm-a architecture: The axsl logic. Proc.
ACM Program. Lang., 8(POPL), jan 2024. doi:10.1145/3632863.

[20] Peter Hancock and Anton Setzer. Interactive programs in depen-
dent type theory. In Peter G. Clote and Helmut Schwichtenberg,
editors, Computer Science Logic, pages 317–331, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[21] Paul He, Eddy Westbrook, Brent Carmer, Chris Phifer, Valentin Robert,
Karl Smeltzer, Andrei Stefanescu, Aaron Tomb, Adam Wick, Matthew
Yacavone, and Steve Zdancewic. A type system for extracting func-
tional specifications from memory-safe imperative programs. Proc.
ACM Program. Lang., 5(OOPSLA):1–29, 2021. doi:10.1145/3485512.

[22] ISO/IEC. ISO/IEC 9899:2011. 2011.
[23] Radha Jagadeesan, Alan Jeffrey, and James Riely. Pomsets with pre-

conditions: a simple model of relaxed memory. Proc. ACM Program.
Lang., 4(OOPSLA):194:1–194:30, 2020. doi:10.1145/3428262.

[24] Radha Jagadeesan, Gustavo Petri, and James Riely. Brookes is re-
laxed, almost! In Proceedings of the 15th International Conference on
Foundations of Software Science and Computational Structures, FOS-
SACS’12, pages 180–194, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-28729-9_12.

[25] Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin,
and Anton Podkopaev. The leaky semicolon: Compositional semantic
dependencies for relaxed-memory concurrency. Proc. ACM Program.
Lang., 6(POPL), jan 2022. doi:10.1145/3498716.

[26] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek
Dreyer. A promising semantics for relaxed-memory concurrency.
In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 175–189.
ACM, 2017. doi:10.1145/3009837.3009850.

[27] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,
Steve Zdancewic, and Viktor Vafeiadis. A formal C memory model
supporting integer-pointer casts. In David Grove and Stephen M.
Blackburn, editors, Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,

https://doi.org/10.1145/3458926
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3674652
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/S10817-018-9496-Y
https://doi.org/10.1145/3290357
https://www.sciencedirect.com/science/article/pii/S0890540196900565
https://www.sciencedirect.com/science/article/pii/S0890540196900565
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3579834
https://doi.org/10.1145/3579834
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5
https://doi.org/10.1145/3167080
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/3632863
https://doi.org/10.1145/3485512
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3009837.3009850

Monadic Interpreters for Concurrent Memory Models CPP ’25, January 20–21, 2025, Denver, CO, USA

USA, June 15-17, 2015, pages 326–335. ACM, 2015. doi:10.1145/
2737924.2738005.

[28] Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee,
Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho,
Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. Crellvm: Verified
credible compilation for llvm. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2018, pages 631–645, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3192366.3192377.

[29] Ryan Kavanagh and Stephen Brookes. A denotational semantics for
sparc tso. Electronic Notes in Theoretical Computer Science, 336:223–239,
2018. The Thirty-third Conference on the Mathematical Founda-
tions of Programming Semantics (MFPS XXXIII). URL: https://
www.sciencedirect.com/science/article/pii/S1571066118300288, doi:
10.1016/j.entcs.2018.03.025.

[30] Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible
effects. In Proceedings of the 8th ACM SIGPLAN Symposium on
Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015,
pages 94–105, 2015. URL: http://doi.acm.org/10.1145/2804302.2804319,
doi:10.1145/2804302.2804319.

[31] Jérémie Koenig and Zhong Shao. Compcerto: compiling certified
open C components. In Stephen N. Freund and Eran Yahav, editors,
PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25,
2021, pages 1095–1109. ACM, 2021. doi:10.1145/3453483.3454097.

[32] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf
Honoré, William Mansky, Benjamin C. Pierce, and Steve Zdancewic.
From C to interaction trees: specifying, verifying, and testing a net-
worked server. In Assia Mahboubi and Magnus O. Myreen, editors,
Proceedings of the 8th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,
2019, pages 234–248. ACM, 2019. doi:10.1145/3293880.3294106.

[33] Robbert Krebbers and Freek Wiedijk. A typed C11 semantics for
interactive theorem proving. In Xavier Leroy and Alwen Tiu, editors,
Proceedings of the 2015 Conference on Certified Programs and Proofs,
CPP 2015, Mumbai, India, January 15-17, 2015, pages 15–27. ACM, 2015.
doi:10.1145/2676724.2693571.

[34] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
CakeML: A verified implementation of ML. In Principles of Program-
ming Languages (POPL), pages 179–191. ACMPress, January 2014. URL:
https://cakeml.org/popl14.pdf, doi:10.1145/2535838.2535841.

[35] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-
acquire consistency. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16,
pages 649–662, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2837614.2837643.

[36] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in c/c++11. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, pages 618–632, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3062341.
3062352.

[37] Peter Lammich. Refinement of parallel algorithms down to LLVM. In
June Andronick and Leonardo de Moura, editors, 13th International
Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022,
Haifa, Israel, volume 237 of LIPIcs, pages 24:1–24:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/
LIPIcs.ITP.2022.24, doi:10.4230/LIPICS.ITP.2022.24.

[38] Peter Lammich and S. Reza Sefidgar. Formalizing the edmonds-karp
algorithm. In Jasmin Christian Blanchette and Stephan Merz, editors,
Interactive Theorem Proving - 7th International Conference, ITP 2016,
Nancy, France, August 22-25, 2016, Proceedings, volume 9807 of Lecture
Notes in Computer Science, pages 219–234. Springer, 2016. doi:10.
1007/978-3-319-43144-4_14.

[39] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA,
2004. IEEE Computer Society.

[40] Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori
Lahav. Putting weak memory in order via a promising intermediate
representation. Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi:
10.1145/3591297.

[41] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,
Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. Promising 2.0: Global
optimizations in relaxed memory concurrency. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2020, pages 362–376, New York, NY, USA,
2020. Association for Computing Machinery. doi:10.1145/3385412.
3386010.

[42] Xavier Leroy. Formal verification of a realistic compiler. Communica-
tions of the ACM, 52(7):107–115, July 2009. URL: https://hal.inria.fr/
inria-00415861, doi:10.1145/1538788.1538814.

[43] Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam
Chlipala, Benjamin C. Pierce, and Steve Zdancewic. C4: verified trans-
actional objects. Proc. ACM Program. Lang., 6(OOPSLA1):1–31, 2022.
doi:10.1145/3527324.

[44] Liyi Li and Elsa L. Gunter. K-LLVM: A Relatively Complete Seman-
tics of LLVM IR. In Robert Hirschfeld and Tobias Pape, editors,
34th European Conference on Object-Oriented Programming (ECOOP
2020), volume 166 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 7:1–7:29, Dagstuhl, Germany, 2020. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. URL: https://drops-dev.dagstuhl.
de/entities/document/10.4230/LIPIcs.ECOOP.2020.7, doi:10.4230/
LIPIcs.ECOOP.2020.7.

[45] Andreas Lochbihler. Mechanising a type-safe model of multithreaded
java with a verified compiler. J. Autom. Reason., 61(1–4):243–332, June
2018. doi:10.1007/s10817-018-9452-x.

[46] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. Alive2: Bounded translation validation for llvm. PLDI
’21, 2021. doi:10.1145/3453483.3454030.

[47] Nuno P Lopes, DavidMenendez, SantoshNagarakatte, and John Regehr.
Provably correct peephole optimizations with alive. PLDI 15, pages
22–32. ACM, 2015. doi:10.1145/2813885.2737965.

[48] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell,
Alexander Richardson, Robert N. M. Watson, and Peter Sewell. Explor-
ing C semantics and pointer provenance. Proc. ACM Program. Lang.,
3(POPL):67:1–67:32, 2019. doi:10.1145/3290380.

[49] Peizhao Ou and Brian Demsky. Towards understanding the costs of
avoiding out-of-thin-air results. Proc. ACM Program. Lang., 2(OOPSLA),
oct 2018. doi:10.1145/3276506.

[50] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-tso. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,
pages 391–407, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[51] Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott
Owens, and Mark Batty. Modular relaxed dependencies in weak mem-
ory concurrency. In Peter Müller, editor, Programming Languages and
Systems, pages 599–625, Cham, 2020. Springer International Publish-
ing.

[52] Maciej Piróg and Jeremy Gibbons. The coinductive resumption monad.
In Bart Jacobs, Alexandra Silva, and Sam Staton, editors, Proceedings of
the 30th Conference on the Mathematical Foundations of Programming
Semantics, MFPS 2014, Ithaca, NY, USA, June 12-15, 2014, volume 308
of Electronic Notes in Theoretical Computer Science, pages 273–288.
Elsevier, 2014. URL: https://doi.org/10.1016/j.entcs.2014.10.015, doi:
10.1016/J.ENTCS.2014.10.015.

https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/3192366.3192377
https://www.sciencedirect.com/science/article/pii/S1571066118300288
https://www.sciencedirect.com/science/article/pii/S1571066118300288
https://doi.org/10.1016/j.entcs.2018.03.025
https://doi.org/10.1016/j.entcs.2018.03.025
http://doi.acm.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/2676724.2693571
https://cakeml.org/popl14.pdf
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPICS.ITP.2022.24
https://doi.org/10.1007/978-3-319-43144-4_14
https://doi.org/10.1007/978-3-319-43144-4_14
https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010
https://hal.inria.fr/inria-00415861
https://hal.inria.fr/inria-00415861
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3527324
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.7
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1007/s10817-018-9452-x
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/3290380
https://doi.org/10.1145/3276506
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.1016/J.ENTCS.2014.10.015
https://doi.org/10.1016/J.ENTCS.2014.10.015

CPP ’25, January 20–21, 2025, Denver, CO, USA Nicolas Chappe, Ludovic Henrio, and Yannick Zakowski

[53] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. Bridging the gap
between programming languages and hardware weak memory models.
Proc. ACM Program. Lang., 3(POPL), jan 2019. doi:10.1145/3290382.

[54] Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying arm concurrency: multicopy-atomic
axiomatic and operational models for armv8. Proc. ACM Program.
Lang., 2(POPL), dec 2017. doi:10.1145/3158107.

[55] Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan
Lee, and Chung-Kil Hur. Promising-arm/risc-v: a simpler and faster
operational concurrency model. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2019, pages 1–15, New York, NY, USA, 2019. Association
for Computing Machinery. doi:10.1145/3314221.3314624.

[56] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, Zachary Tat-
lock, et al. Qed at large: A survey of engineering of formally verified
software. Foundations and Trends® in Programming Languages, 5(2-
3):102–281, 2019.

[57] Grigore Roşu and Traian Florin Şerbănută. An overview of the
k semantic framework. The Journal of Logic and Algebraic Pro-
gramming, 79(6):397 – 434, 2010. Membrane computing and pro-
gramming. URL: http://www.sciencedirect.com/science/article/pii/
S1567832610000160, doi:10.1016/j.jlap.2010.03.012.

[58] Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and Steve
Zdancewic. Semantics for noninterference with interaction trees. In
Karim Ali and Guido Salvaneschi, editors, 37th European Conference
on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle,
Washington, United States, volume 263 of LIPIcs, pages 29:1–29:29.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://
doi.org/10.4230/LIPIcs.ECOOP.2023.29, doi:10.4230/LIPICS.ECOOP.
2023.29.

[59] Lucas Silver and Steve Zdancewic. Dijkstra monads forever:
termination-sensitive specifications for interaction trees. Proc. ACM
Program. Lang., 5(POPL), January 2021. doi:10.1145/3434307.

[60] Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael
Sammler, and Derek Dreyer. Conditional contextual refinement.
Proc. ACM Program. Lang., 7(POPL):1121–1151, 2023. doi:10.1145/
3571232.

[61] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. Compcerttso: A verified compiler for
relaxed-memory concurrency. J. ACM, 60(3), jun 2013. doi:10.1145/
2487241.2487248.

[62] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. Interaction trees:
representing recursive and impure programs in coq. Proc. ACM Pro-
gram. Lang., 4(POPL), dec 2019. doi:10.1145/3371119.

[63] Kangfeng Ye, Simon Foster, and Jim Woodcock. Formally verified
animation for robochart using interaction trees. Journal of Logical
and Algebraic Methods in Programming, 137:100940, 2024. URL: https:
//www.sciencedirect.com/science/article/pii/S2352220823000949, doi:
10.1016/j.jlamp.2023.100940.

[64] Irene Yoon, Yannick Zakowski, and Steve Zdancewic. Formal reasoning
about layeredmonadic interpreters. Proc. ACM Program. Lang., 6(ICFP),
aug 2022. doi:10.1145/3547630.

[65] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva,
and Steve Zdancewic. Modular, compositional, and executable formal
semantics for LLVM IR. Proc. ACM Program. Lang., 5(ICFP), aug 2021.
doi:10.1145/3473572.

[66] Junpeng Zha, Hongjin Liang, and Xinyu Feng. Verifying optimizations
of concurrent programs in the promising semantics. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2022, pages 903–917, New
York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3519939.3523734.

[67] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao
Xia, Lennart Beringer, William Mansky, Benjamin C. Pierce, and Steve
Zdancewic. Verifying an HTTP key-value server with interaction
trees and VST. In Liron Cohen and Cezary Kaliszyk, editors, 12th
International Conference on Interactive Theorem Proving, ITP 2021, June
29 to July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs,
pages 32:1–32:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. URL: https://doi.org/10.4230/LIPIcs.ITP.2021.32, doi:10.4230/
LIPICS.ITP.2021.32.

[68] Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong
Shao. Fully composable and adequate verified compilation with di-
rect refinements between open modules. Proc. ACM Program. Lang.,
8(POPL):2160–2190, 2024. doi:10.1145/3632914.

[69] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Formalizing the LLVM Intermediate Representation for
Verified Program Transformations. In Proc. of the ACM Symposium
on Principles of Programming Languages (POPL), 2012. doi:10.1145/
2103621.2103709.

[70] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Formal verification of SSA-based optimizations for LLVM.
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI), 2013. doi:10.1145/2499370.
2462164.

Received 2024-09-17; accepted 2024-11-19

https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://www.sciencedirect.com/science/article/pii/S1567832610000160
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPICS.ECOOP.2023.29
https://doi.org/10.4230/LIPICS.ECOOP.2023.29
https://doi.org/10.1145/3434307
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3571232
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3371119
https://www.sciencedirect.com/science/article/pii/S2352220823000949
https://www.sciencedirect.com/science/article/pii/S2352220823000949
https://doi.org/10.1016/j.jlamp.2023.100940
https://doi.org/10.1016/j.jlamp.2023.100940
https://doi.org/10.1145/3547630
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3519939.3523734
https://doi.org/10.1145/3519939.3523734
https://doi.org/10.4230/LIPIcs.ITP.2021.32
https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.1145/3632914
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2499370.2462164
https://doi.org/10.1145/2499370.2462164

	Abstract
	1 Introduction
	2 Context
	2.1 Memory Models and LLVM IR Orderings
	2.2 Promising Semantics
	2.3 Choice Trees

	3 Concurrent Semantics for a Subset of LLVM IR
	3.1 A Semantic Model Built as an Interpretation Stack
	3.2 The Source Language: IRthread
	3.3 CTree Representation for IRthread
	3.4 Interpretation of Intra-Thread Events
	3.5 Thread Interleaving
	3.6 Interpretation of Inter-Thread Events

	4 Executability
	5 Meta-Theory
	5.1 Transporting Equivalences through the Model
	5.2 An Operational Perspective on the Model
	5.3 Models over Alternate Memory Models

	6 Related Work
	7 Discussion and future work
	References

