
An Equational Theory for Weak Bisimulation via
Generalized Parameterized Coinduction

Chung-kil Hur

Seoul National University

Seoul, Republic of Korea

Paul He

University of Pennsylvania

Philadelphia, PA, USA

Yannick Zakowski

University of Pennsylvania

Philadelphia, PA, USA

Steve Zdancewic

University of Pennsylvania

Philadelphia, PA, USA

Abstract
Coinductive reasoning about infinitary structures such as

streams is widely applicable. However, practical frameworks

for developing coinductive proofs and finding reasoning

principles that help structure such proofs remain a challenge,

especially in the context of machine-checked formalization.

This paper gives a novel presentation of an equational

theory for reasoning about structures up to weak bisimula-

tion. The theory is both compositional, making it suitable

for defining general-purpose lemmas, and also incremental,

meaning that the bisimulation can be created interactively.

To prove the theory’s soundness, this paper also introduces

generalized parameterized coinduction, which addresses ex-

pressivity problems of earlier works and provides a practical

framework for coinductive reasoning. The paper presents the

resulting equational theory for streams, but the technique

applies to other structures too.

All of the results in this paper have been proved in Coq,

and the generalized parameterized coinduction framework

is available as a Coq library.

1 Introduction
Coinduction is a powerful technique for reasoning about

streams, computation trees, and other infinitary structures

that are used widely in semantics and systems modeling.

As such, coinductive proofs play a significant role in Coq

developments like CompCert [Leroy 2009], FreeSpec [Letan

et al. 2018], or Interaction Trees [Xia et al. 2020].

In such contexts, working with weak bisimulation (equiv-

alence modulo hidden “internal” computation steps) is often

desirable. However, naïve ways of applying coinduction, in-

cluding its use for establishing weak bisimulations, suffer

from lack of compositionality or incrementality. Composi-
tionality allows the proof developer to create modular proofs

using generic lemmas, while still ensuring sound coinductive

reasoning. Incrementality lets them construct the bisimula-

tion relation by accumulating parts of it during the proof,

rather than having to posit the entire relation up front at

CPP’20, January 2020, New Orleans, LA USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the proof’s outset. Both of these properties are particularly

useful in the context of mechanized formal proof.

The situation was improved by the introduction of the

parameterized coinduction approach by Hur et al. [2013],

and its implementation in the paco library for Coq. The crux
of the approach is to move away from specifying the greatest

fixed point up front and instead to work with a predicate

parameterized by “accumulated knowledge” that one can

use during the construction of the proof to incrementally

build the postfixed point. Hur et al. show that paco sup-

ports reasoning up-to closures too, and they hinted that it

might be pragmatic to systematically work with the greatest
compatible closure (that is, the most general closure among a

class satisfying good closure properties). This idea has been

studied in greater length by Pous [2016], leading to the so-

called companion approach, to which we compare ourselves

in Section 7.

Despite these advances, there are still several difficulties

with developing coinductive proofs in interactive theorem

provers. First, the paco reasoning principles are still too

weak, resulting in cumbersome proofs. The limitation is par-

ticularly apparent when a proof nests two cofixed points: the

inner cofixed point forgets all accumulated knowledge, lead-

ing to redundant reasoning. Second, the support for up-to

reasoning remains either ad hoc or difficult to manipulate in

existing approaches: we advocate here for internalizing and

manipulating concretely defined closures, as opposed to the

greatest compatible one. Finally, it still remains to package

coinductive reasoning principles into “proof patterns” for

weak bisimulation that are expressive and easy to work with

in practice.

This paper addresses the above problems by making two

technical contributions:

• We present an equational theory over streams that

gives a novel axiomatic interface for working with

weak bisimulations. This yields an “API,” realized by

a set of lemmas, that helps users structure their coin-

ductive proofs of weak bisimulation. This equational

theory is a simplified (and self-contained) presentation

of a formalization of the equational theory of interac-

tion trees [Xia et al. 2020].

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

• To prove the soundness of the equational theory, we in-

troduce Generalized Parameterized Coinduction, gpaco,
a backwards-compatible generalization of the paco
framework. This new construction provides the ability

to record previously available knowledge that has been

accumulated during a coinductive proof, which solves

paco’s issue with nested cofixed points. Additionally,

it has intrinsic support for up-to reasoning, which, in

contrast to the companion approach, allows for the

creation of generic lemmas that aid in modular proof

developments. We show that gpaco supports novel

coinductive principles.

The rest of the paper explains these contributions in detail,

working from gpaco to the equational theory. We first briefly

review paco in Section 2 and highlight, by way of example,

the shortcomings that motivate our generalized definition.

Section 3 presents generalized parameterized coinduction,

establishes its basic properties, and explains the reasoning

principles that it justifies. We then incorporate “up-to clo-

sures” into the definition, again establishing the appropriate

metatheory. Sections 4 and 5 apply gpaco to develop an equa-
tional theory for reasoning about (weak) bisimulations of

streams with τ (internal) events. Here we also present our

novel proof rules for working with those bisimulations. Fi-

nally, Section 7 provides a comparison with related work,

and, in particular, explains the deficiency of working with

the companion.

The reasoning principles presented in this paper are ap-

plicable with little-to-no overhead in the Coq proof assistant

through an extension of the paco library.1 All of the defini-
tions, metatheory and examples presented here have been

verified in Coq.
2
However, none of it is specific to this proof

assistant, and all results should be transferable to any other

system providing support for coinduction.

2 Background: paco and a motivating
example

2.1 Notations
In this and the following sections, we consider a complete

lattice (C, ⊑,⊔) and f ∈ C
mon
−−−−→C , a monotone function over

C that we refer to as a functor. The typical use case in our

context will instantiateC with P(T ×T) for some typeT (i.e.
the lattice of binary relations over T), but the theory applies

to any such lattice. In our Coq formalization, the main lattice

is the one of propositional relations over C : C → C → Prop.

WriteXf for the set of postfixed points of f , i.e. x such that

x ⊑ f (x). Tarski’s theorem implies that Xf admits an upper

bound. We write ν . f for this upper bound. Additionally, this

upper bound is the greatest fixed point of f , i.e. in particular

ν . f = f (ν . f).

1
The public link is redacted for the purpose of this submission. The material

will be provided as an anonymous tarball for the reviewers.

2
Redacted as well

2.2 Parameterized Coinduction
We briefly recall the central idea behind parameterized coin-

duction and its reasoning principles. Intuitively, it consists in

moving away from using ν . f itself and instead conducting

a proof toward some Gf ∈ C
mon
−−−−→C that is parameterized by

some accumulated knowledge:

Definition 2.1 (Parameterized greatest fixed point). Define

G ∈ (C
mon
−−−−→C)

mon
−−−−→(C

mon
−−−−→C) to be:

Gf r
def

= ν .(λy. f (r ⊔ y))

Here, we think of r as the “knowledge” accumulated dur-

ing a proof. The intuition and usefulness behind this def-

inition is best illustrated by the equations it satisfies. The

soundness of the approach comes from the fact that it coin-

cides with the greatest fixed point when no knowledge has

been accumulated.

Lemma 2.2 (Init). ν . f ≡ Gf ⊥

The central coinduction principle, mapping to a strong

variant of Tarski’s principle, is expressed as an unfolding

lemma. It intuitively states that the coinduction hypothesis

as well as the accumulated knowledge are accessible behind

the guard, i.e. an iteration of the functor f .

Lemma 2.3 (Unfold). Gf r ≡ f (r ⊔Gf r)

Finally, the accumulation principle is the key to allow for

incremental coinductive proofs: one can enrich the currently

accumulated knowledge at any point.

Lemma 2.4 (Acc). y ⊑ Gf r ⇐⇒ y ⊑ Gf (r ⊔ y)

The technique has been a wild success, most notably in

the context of the Coq proof assistant in which it has been

implemented. It at once enabled both incremental and com-

positional reasoning principles, two improvements that are

of particular value when conducting mechanized proofs. No-

tably, parameterized coinduction is also entirely compatible

with automation, something that the native reasoning princi-

ples provided by Coq for coinduction prohibited in practice.

2.3 Example: paco’s shortcomings
The typical coinductive proof using paco reasoning aims to

prove a goal of the form y ⊑ ν . f . One starts by using Init

to obtain y ⊑ Gf ⊥, after which the proof proceeds by using

Unfold and Acc interleaved with other steps of equational

reasoning. Such incremental proofs are considerably sim-

pler to construct in an interactive theorem prover. However,

the paco lemmas falter in the presence of nested cofixed

points: they lose too much information about the accumu-

lated knowledge, leading to redundant and more awkward

to construct proofs, a deficiency that becomes more problem-

atic as the technique scales to reason about more complex

systems.

To illustrate this phenomenon, consider the coinductive

stream data type that might be used for instance to represent

2

Generalized Parameterized Coinduction CPP’20, January 2020, New Orleans, LA USA

the trace of a transition system. Such an object is a potentially

infinite sequence of internal events, τ , and external (or visible)
events β(n), terminated (if finite) by the ϵ marker. Here, for

simplicity, we assume that visible events carry a natural

number. We will sometimes omit the β constructor and just

write n (especially in examples) to save space.

Here are some example streams:

s0 = 01ϵ finite stream

s1 = τ0ττ1ϵ finite stream

s2 = 012 . . .n(n + 1) . . . infinite increasing stream

s3 = 0τ1τ2 . . .nτ (n + 1) . . . infinite increasing stream

s4 = 01010101 . . . infinite alternating stream

s5 = τττττττ . . . silent divergence

It is well-known that strong bisimulation is often too tight

a relation to be relevant when studying such systems. One

should instead work “up-to-tau,” which means that, when

considering whether two streams are “the same,” we can dis-

regard any finite number of τ steps on either side. This weak
bisimulation matches terminal constructors and identical ex-

ternal events one-to-one, but also allows for a finite number

of τ steps to be stripped away from either stream at any

given point. We write s ≈ t to mean that s is equivalent to t
up-to-tau. For the examples shown above, we have s0 ≈ s1

and s2 ≈ s3, but no other distinct pairs of streams are weakly

bisimilar.

We delay the full exposition of a formal definition of this

relation to Section 4. Here, we simply observe that we can

define ≈ as the greatest fixed point of a functor, euttF:

euttF : P(stream × stream) → P(stream × stream)
≈ ≡ ν .euttF

We can think of euttF as acting on a set of pairs of streams

Y , which behaves as the “coinductive hypothesis” in this def-

inition. euttF is defined so that it satisfies several properties
that characterize weak bisimulation. Among them, we have:

Lemma 2.5 (euttF Tau Left).

X ⊆ euttF(Y) =⇒ {(τs, t) | (s, t) ∈ X } ⊆ euttF(Y)

Lemma 2.6 (euttF Vis).

X ⊆ Y =⇒ {(ns,nt) | (s, t) ∈ X } ⊆ euttF(Y)

The first lemma states that, when reasoning backwards using

goal-directed proof search, if we want to show that τ · s is
related to t by euttF(Y), it suffices to show that s is related
to t by euttF(Y)—we can drop a τ from the left stream. The

second lemma states that if two streams begin with the same

visible event n, we can directly appeal to the coinductive

hypothesis Y to establish the relation.

With this setup, we can give an example proof using paco-
style reasoning and see where it can be improved upon.

Consider the two infinite transition systems s and t de-
picted in Figure 1. They each visually encode the different

states two streams can be in. A stream can change state

s0

s ′
0

s1

s ′
1

0 τ 1

2

t0

t ′
0

t1

t ′
1

0 = 1

2

s0 = 0 s ′
0

s ′
0
= τ s1 s1 = 1 s ′

1
s ′

1
= 2 s ′

0

t0 = 0 t ′
0

t ′
0
= t1 t1 = 1 t ′

1
t ′
1
= 2 t ′

0

Figure 1. Two weakly bisimilar transition systems: illustrat-

ing the shortcoming of paco’s reasoning principles

Let X0 = {(s0, t0), (s1, t1)} and X1 = {(s ′
0
, t ′

0
), (s ′

1
, t ′

1
)}

X0 ⊆ ν .euttF
Init

⇐⇒ X0 ⊆ GeuttF ∅
Acc (a)
⇐⇒ X0 ⊆ GeuttF X0

Unfold

⇐⇒ X0 ⊆ euttF(X0 ∪GeuttF X0)
lem. 2.6 (b)
⇐= X1 ⊆ X0 ∪GeuttF X0

⇐= X1 ⊆ GeuttF X0

Acc (c)
⇐⇒ X1 ⊆ GeuttF (X0 ∪ X1)

We now handle both cases in X1 separately:

rhs: (s ′
1
, t ′

1
) ∈ GeuttF (X0 ∪ X1)

Unfold

⇐⇒ (s ′
1
, t ′

1
) ∈ euttF(X0 ∪ X1 ∪GeuttF (X0 ∪ X1))

lem. 2.6

⇐= (s ′
0
, t ′

0
) ∈ (X0 ∪ X1 ∪GeuttF (X0 ∪ X1)) □

lhs: (s ′
0
, t ′

0
) ∈ GeuttF (X0 ∪ X1)

Solution with redundancy (d):
Unfold

⇐⇒ (s ′
0
, t ′

0
) ∈ euttF(X0 ∪ X1 ∪GeuttF (X0 ∪ X1))

lem. 2.5; 2.6

⇐= (s1, t1) ∈ (X0 ∪ X1 ∪GeuttF X0 ∪ X1) □
Failed attempt without redundancy (e):

lem. 2.7

⇐= (s1, t1) ∈ GeuttF (X0 ∪ X1) : we cannot conclude.

Figure 2. Shortcoming of paco: an illustrating proof

through either an internal step or by emitting an event. We

also consider additional equations we know over the states of

the streams: the edge labeled by an equality sign represents

definitional equality – we assume we have such an equation

in our context. The bottom half of Figure 1 characterizes the

same two streams, but as a system of equations.

Their behaviors can therefore be described as follows. Both

streams consist of an infinite cycle alternating between the

visible events 1 and 2. In the left stream, each iteration of

these two events is separated by a silent step, while the right

stream starts the new cycle immediately—embodied by the

definitional equality between t ′
0
and t1. Finally, both streams

have an initial state stepping into the cycle by emitting 0.

We wish to build a weak bisimulation between both corre-

sponding upper states of s and t , that is to prove that s0 ≈ t0
and s1 ≈ t1. The paco library is the perfect tool for such a

task: we would like to build our proof incrementally as we

3

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

explore the underlying transition systems. Let us venture

step by step into this task, depicted in Figure 2.

This minimal example highlights a deep problem in the

existing reasoning principles: unused accumulated knowl-

edge is always guarded again, i.e. sent back behind the guard.

We see this in the proof at the point where we use Acc for

the second time (marked (c)). We had already used Acc once,

at point (a), putting X0 into the accumulated knowledge. In-

tuitively, this means that after we step under a guard we

should be able to use X0, which is what happens at point

(b), where we have X0 directly available on the right hand

side. The problem is that even though the knowledge X0 is

available at point (b), we have to discard it to use Acc at

point (c), which forgets the fact that X0 was available.

The impact of this loss of information shows up later, when

trying to conclude for the pair of states (s ′
0
, t ′

0
). A natural

solution, depicted at point (d), is to simply blindly go through

a new round of unfolding and stepping under the functor,

using successively Lemma 2.5 and 2.6. Note that Lemma 2.5

alone is not enough to go under the functor, it does not act

as a guard. However, by taking this step, we are repeating a

part of the proof we already did: taking the transition that

emits a 1 for both streams. This may seem innocuous on

such a toy example, but may in general require reiterating

an arbitrarily complex proof.

Intuitively however, we would like to simply ignore this

τ on s and conclude by using X0, knowledge that we made

available earlier in the proof. The first part of this intuition,

the innocuousness of the τ guard, is a particular case of

a more general reasoning principle: reasoning up-to silent
steps. We can indeed formalize this idea using paco, by prov-
ing the following lemma:

Lemma 2.7 (GeuttF Tau Left).

X ⊆ GeuttF (Y) =⇒ {(τs, t) | (s, t) ∈ X } ⊆ GeuttF (Y)

It precisely states that one can strip a τ from the left hand

side under a call to GeuttF . Using this lemma at point (e)
in Figure 2, we can therefore reduce our goal to relating

the desired pair, (s1, t1). However this is useless in this case

due to paco’s inability to remember previously available

knowledge in the presence of nested accumulation lemmas:

we know that the pair of states are in X0, knowledge that

was made available before, and yet we cannot access it to

conclude.

To alleviate these difficulties, we introduce a new con-

struction that still supports up-to reasoning, but crucially

offers a finer grained management of available knowledge.

3 Generalized Parameterized Coinduction
In this paper, we introduce a new construct, dubbed the gen-
eralized parameterized greatest fixed point (and succinctly

referred to as gpaco), that we show satisfies new principles

that greatly ease reasoning in cases such as the one depicted

in Figure 1. Our new construct builds on the so-called param-

eterized greatest fixed point introduced by Hur et al. [2013],

and implemented in Coq through the paco library.

We extend the parameterized greatest fixed point in two

ways. First, we refine its treatment of available knowledge

by making a distinction between knowledge that is available,

or “already unlocked” and knowledge that is guarded, or

“must be unlocked” Maintaining this distinction dramatically

simplifies incremental coinductive proofs. Second, we build

in support for “up-to” reasoning, another powerful technique

that lets us construct coinductive relations using closure

operators.

3.1 Generalized incremental reasoning
Recall our unsatisfactory proof of Figure 1. One core issue

comes from the fact that while the accumulated knowledge

is safely released after a guard, it does not internalize the fact

that this knowledge became available. The first extension we

introduce is to precisely take this observation into account:

the parameterized greatest fixed point is now parameterized

by two elements representing accumulated knowledge.

The generalized parameterized greatest fixed point Ĝf r д,
also shortened to gpaco, therefore intuitively represents the

greatest fixed point of the functor f with available accu-

mulated knowledge r and guarded accumulated knowledge

д, which becomes available only after making progress by

applying f . We express this distinction in the following defi-

nition, which uses Gf −.

Definition 3.1 (Generalized parameterized greatest fixed

point (first definition)).
Define Ĝ ∈ (C

mon
−−−−→C)

mon
−−−−→(C

mon
−−−−→C

mon
−−−−→C) to be:

Ĝf r д
def

= r ⊔Gf (r ⊔ д)

Note that if we pick r = ⊥, this definition degenerates to

Gf д, which gives us the following soundness property. As

before, we call it Init because it lets us begin a coinductive

proof by moving into the gpaco realm.
3

Lemma 3.2 (Init).

Ĝf ⊥ ⊥ ≡ Gf ⊥ ≡ ν . f

We can also return to vanilla parameterized coinduction

from the generalized version:

Lemma 3.3 (Final).

r ⊔Gf д ⊑ Ĝf r д

These two lemmas mean in particular that gpaco is fully
backwards compatible with paco: no changes in previous

definitions or statements written with paco are required,

and the new reasoning principles are available for properties

defined in terms of G .

3
We overload the lemma names like Init and Acc which are defined both

for Gf − and Ĝf − −. Which one is meant can easily be distinguished

from the context.

4

Generalized Parameterized Coinduction CPP’20, January 2020, New Orleans, LA USA

The Base equation below embodies the fact that available

knowledge is stored in gpaco. By definition, it is indeed

trivial to see that r is immediately available for use:

Lemma 3.4 (Base).

r ⊑ Ĝf r д

Naturally, in order for Base to be sound, the incremental

principle extends only the guarded knowledge:

Lemma 3.5 (Acc).

x ⊑ Ĝf r (д ⊔ x) ⇐⇒ x ⊑ Ĝf r д

Finally, stepping under the guardmakes the guarded knowl-

edge available. Note that the pattern of accumulation ensures

that we always have the invariant that r ⊑ д, which is why

erasing r here does not lose information. Lemmas 2.5 and

2.6 derive from this general reasoning principle, instantiated

to the functor euttF.

Lemma 3.6 (Step).

f (Ĝf д д) ⊑ Ĝf r д

With the addition of the available knowledge parameter

to gpaco and its new reasoning principles, we are closer to

a more succinct proof of Figure 1 without the extraneous

steps required in the previous proof. However, we still need

a statement analogous to Lemma 2.7, in order to strip off a τ
without having to continue to go under guards.

Lemma 3.7 (ĜeuttF Tau Left, idealized).

X ⊆ ĜeuttF r д =⇒ {(τs, t) | (s, t) ∈ X } ⊆ ĜeuttF r д

Note that this lemma does not hold with the definition of

gpaco introduced in this subsection. We will get back to its

proper statement, as well as its soundness, in Section 3.2,

once we have extended gpaco with intrinsic support for up-

to reasoning. Accepting temporarily this slight idealization,

we showcase in Figure 3 a proof of the example from Section 2

eliminating the undesired repetition.

This proof illustrates how the extra parameter provides

just the right degree of freedom to remember knowledge

collected across nested calls to Acc. Here, the first use of Acc

at point (a) doesn’t yet provide anymore flexibility compared

to the old proof. At point (b), however, the Step operation
copies X0 from the “guarded knowledge” parameter to the

“available immediately” parameter. Later, at the second use

of Acc at point (c),X0 remains available, even asX2 is placed

under the guard. The payoff comes at point (d), where we
can immediately use X0.

3.2 Up-to reasoning: generalized paco with closure
The ability to construct coinductive proofs incrementally,

as considered above, is one technique that is invaluable for

working with coinduction in an automated theorem prover.

Another crucial technique is the use of “up-to” reasoning

X0 ⊆ ν .euttF
Init

⇐⇒ X0 ⊆ ĜeuttF ∅ ∅
Acc (a)
⇐⇒ X0 ⊆ ĜeuttF ∅ X0

Step (b)
⇐= X0 ⊆ euttF(ĜeuttF X0 X0)
lem. 2.6

⇐= X1 ⊆ ĜeuttF X0 X0

Acc (c)
⇐⇒ X1 ⊆ ĜeuttF X0 (X0 ∪ X1)

rhs: (s ′
1
, t ′

1
) ∈ ĜeuttF X0 (X0 ∪ X1)

Step

⇐= (s ′
1
, t ′

1
) ∈ euttF(ĜeuttF (X0 ∪ X1) (X0 ∪ X1))

lem. 2.6

⇐= (s ′
0
, t ′

0
) ∈ ĜeuttF (X0 ∪ X1) (X0 ∪ X1)

Base

⇐= (s ′
0
, t ′

0
) ∈ X0 ∪ X1 □

lhs: (s ′
0
, t ′

0
) ∈ ĜeuttF X0 (X0 ∪ X1)

lem. 3.7

⇐= (s1, t1) ∈ ĜeuttF X0 (X0 ∪ X1)
Base (d)
⇐= (s1, t1) ∈ X0 □

Figure 3. Improved proof of Figure 1

principles, which enable more scalable and modular proofs.

The basic idea is to define a closure operator clo ∈ C → C
that, given a relation X , extends it to clo(X), a larger relation

that accounts for regularity in the coinductive argument.

For example, the closure operator used for Lemma 3.7 is:

τL(R) = {(τ s, t) | (s, t) ∈ R}

In this section, we develop the enhancements to gpaco nec-

essary to reason using these closure operators.

Before we proceed, we briefly review the state-of-the-

art up-to techniques. Pous [2016] characterizes valid clo-

sures as any function bounded by the greatest compatible
closure, called the companion. Specifically, an up-to function

clo ∈ C
mon
−−−−→C is compatible with f if clo ◦ f ⊑ f ◦ clo. The

companion cpnf ∈ C
mon
−−−−→C is the join of all such compatible

functions, which is again compatible with f . Then, cpnf ad-

mits nice incremental and up-to principles for coinduction:

in particular, clo(cpnf (r)) ⊑ cpnf (r) for any (not necessarily
compatible) function clo ⊑ cpnf . In practice, most useful

up-to functions are bounded by the companion.

In our approach, instead of using the companion, we pa-

rameterize our construct with the upper bound of valid clo-

sures, which we call a base closure, in order to allow a more

explicit construction of the fixed point. This generalization

is essential in the development of our equational theory for

weak bisimulation in Section 5.

Definition 3.8 (Generalized parameterized greatest fixed

point). We redefine the previous Ĝ, adding a “base” closure

bclo ∈ C
mon
−−−−→C as the second argument:

Ĝbclo
f r д

def

= bclo∗(r ⊔Gf ◦bclo∗ (r ⊔ д))

where bclo∗ is the reflexive transitive closure of bclo.

5

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

s0 � 0 s ′
0

s ′
0
� r ++ s1 s1 � 1 s ′

1
s ′

1
� 2 s ′

0

t0 � 0 t ′
0

t ′
0
� r ′ ++ t1 t1 � 1 t ′

1
t ′
1
� 2 t ′

0

Figure 4. Two weakly bisimilar streams when r ≈ r ′

Note that by choosing the companion as a base closure,

we get the equality Ĝ
cpnf
f r д = cpnf (r ⊔ f (cpnf (r ⊔ д))).

Definition 3.9. We introduce the following useful notation:

Ḡbclo
f д

def

= Ĝbclo
f д д

Then we can use any up-to function clo bounded by bclo,
and in fact even larger ones bounded by Ḡbclo

f .

Lemma 3.10 (Closure). If clo ⊑ Ḡbclo
f , then

clo(Ĝbclo
f r д) ⊑ Ĝbclo

f r д

Since bclo ⊑ Ḡbclo
f , in the case clo = bclo, it is always

valid to use Closure, which will be marked as Closure*.

For the base closure, we require a condition that is weaker

than compatibility.

Definition 3.11 (Weakly compatible closure). bclo ∈ C
mon
−−−−→C

is weakly compatible with respect to f if

bclo ◦ f ⊑ f ◦ Ḡbclo
f

We can begin using generalized parameterized coinduc-

tion from usual parameterized coinduction:

Lemma 3.12 (Init). If bclo is weakly compatible for f , then

Ĝbclo
f ⊥ ⊥ ⊑ Gf ⊥

We are now ready to amend Lemma 3.7: it holds, provided

we instantiate the base closure parameter of Ĝ with τL, or
any greater closure in the sense of Lemma 3.10. In particular,

Section 4 will introduce one such base closure: transitivity

up-to directed transitivity.

For a more involved example showing how reasoning

up-to closures can help, consider the streams in Figure 4,

which are a modified version of the example we saw ear-

lier in Figure 1. Here, rather than s taking an extra τ step,

both streams go through intermediate transitions r and r ′ re-
spectively. Moreover, rather than defining the streams using

definitional equality “=”, we instead specify them via strong

bisimulation “�”. In the case that r and r ′ are known to be

weakly bisimilar to each other, the resulting streams remain

weakly bisimilar. However, in order to prove that this is the

case, the weak bisimulation relation would have to contain

all of the internal bisimilar states of r and r ′, and moreover,

it would have to somehow incorporate the states related by

the underlying strong bisimilarity relation too.

Similarly, when proving the equivalence up-to-tau of two

streams, it is intuitively the case that if r ≈ r ′ and we want

to coinductively relate r ++ s ≈ r ′ ++ t , it suffices to relate s

and t—we can ignore the weakly bisimilar prefixes and focus

on proving the tails of the streams equivalent.

Up-to reasoning formalizes these intuitions. First, we de-

fine two closure operators:

prefix(R) = {(h1 ++ t1,h2 ++ t2) | h1 ≈ h2 ∧ (t1, t2) ∈ R}

bisim(R) = {(a,b) | ∃a′,b ′,a � a′ ∧ b � b ′ ∧ (a′,b ′) ∈ R}

Being able to prove s0 ≈ t0 and s1 ≈ t1 up-to bisim and

prefix allows for a proof conducted parametrically in the

assumption r ≈ r ′, leading to a proof with complexity similar

to the one for Figure 1.

Using the resulting set of reasoning principles provided

by gpaco, summarized in Figure 5, we can proceed with the

proof of weak bisimilarity for Figure 4, that is s0 ≈ t0 and
s1 ≈ t1. We use bisim as our base closure, a choice that will

be grounded in Section 4.

By leveraging the reasoning principles up-to (strong) bisim-

ilarity (bisim) and up to prefix (pre f ix), we can derive a proof
extremely similar to the previous examples. The difference

lies in the application of the Closure rules at five points

in the proof. We first apply Closure* twice with bisim to

rewrite s0, t0, s1, and t1. Next we apply Closure* again to

replace s ′
0
and t ′

0
with r ++s1 and r

′
n ++t1 respectively. We then

apply Closure with pre f ix to remove the weakly bisimi-

lar prefixes r and r ′. Finally we apply Closure* with bisim
again to rewrite s ′

1
and t ′

1
. The remainder of the proof follows

as before.

4 Up-to-tau bisimulation of streams
In the previous section we introduced gpaco, a greatest fixed
point predicate recording both the accumulated knowledge

guarded by a constructor and its already accessible counter-

part.We additionally extended the construction to internalize

the support for up-to closure.

We have described the novel, richer reasoning principles

derived from gpaco. We now illustrate its practical use con-

cretely by establishing a rich equational theory to reason

about weak bisimilarity of interactive systems. We develop

this case study using the datatype of potentially infinite

streams of internal and external events, and study their equiv-

alence up to internal steps.

The approach and the results being general, we present

them in lattice theoretic notations, but all results are formal-

ized in Coq.

4.1 Streams
The codata considered is the same type of potentially finite

streams of internal and external events introduced earlier in

the paper. Formally, we define stream
def

= ν .streamF where:

streamF X
def

= {ϵ} ∪ {τ · s | s ∈ X }

∪ {β(n) · s | s ∈ X , n ∈ N}

6

Generalized Parameterized Coinduction CPP’20, January 2020, New Orleans, LA USA

bclo weakly compatible for f

Ĝbclo
f ⊥ ⊥ ⊑ Gf ⊥

Init

r ⊑ Ĝbclo
f r д

Base

r ⊔Gf д ⊑ Ĝbclo
f r д

Final

f (Ĝbclo
f д д) ⊑ Ĝbclo

f r д
Step

x ⊑ Ĝbclo
f r (д ⊔ x)

x ⊑ Ĝbclo
f r д

Acc

clo ⊑ Ḡbclo
f

clo(Ĝbclo
f r д) ⊑ Ĝbclo

f r д
Closure

bclo(Ĝbclo
f r д) ⊑ Ĝbclo

f r д
Closure*

Figure 5. Proof rules for generalized parameterized coinduction

An element of the resulting type stream is hence a poten-

tially infinite trace consisting of internal steps, represented as

τ constructors, and visible events, emitting natural numbers,

represented as β constructors. Such a datatype can for in-

stance be thought of as the observable trace of an interactive

program’s execution.

We fix the lattice of interest to P(stream×stream) in the

rest of the paper.

Defining a concatenation operation over streams, concat,

is straightforward: let concat
def

= ν .concatF where

concatF concat_
def

= λs k . case s of
| ϵ ⇒ k
| τ · s ⇒ τ · (concat_ s k)
| β(n) · s ⇒ β(n) · (concat_ s k)

We write s ++ t for concat s t .
Reasoning about these streams naturally requires to prove

that concat respects an equivalence relation over streams,

which justifies reasoning principles such as: s ≈ t =⇒

s ++ k ≈ t ++ k . The usual notion of Leibniz equality is inade-

quate whenmanipulating codata-types. Instead, the standard

equivalences used to reason about such streams are the no-

tions of strong and weak bisimulations.

4.2 Bisimulation, equivalence up-to tau
A natural equivalence relation over stream is to require the

shape of both streams to match exactly, systematically pair-

ing the head constructors. This coinductive relation, known

as strong bisimulation, is convenient to work with, but too

restrictive in practice. Indeed, it not only observes the visible

events two systems emit when comparing them, but also

ensures that their internal steps match as well: in a sense, it

is a timing-sensitive equivalence of processes.

Equivalence up-to-tau is a form of weak bisimulation, a

coarser relation than strong bisimulation. It ignores any finite

amount of internal steps a process may take before reaching

its next external event. This relation is much more useful

in practice, and is notably the de facto standard used in

verified compilation to express the semantic preservation

criterion [Leroy 2009; Tan et al. 2016].

Equivalence up-to-tau has to be careful not to relate the

infinite sequence of τ with all streams. This is achieved by an

inductive-coinductive definition: the functor bisimF whose

greatest fixed point we take is itself defined recursively, but

fix bisimF (bL bR : bool) cloβ X
def

=

{(ϵ, ϵ)} ∪

{(τ · s, τ · t) | (s, t) ∈ X } ∪

{(β(n) · s, β(n) · t) | (s, t) ∈ cloβ (X), n ∈ N} ∪

{(τ · s, t) | bL = true ∧ (s, t) ∈ bisimF bL bR cloβ X } ∪

{(s, τ · t) | bR = true ∧ (s, t) ∈ bisimF bL bR cloβ X }

bisim bL bR
def

= GbisimF bL bR id ⊥

Figure 6.Definition of a family of bisimulations over streams

as a smallest fixed point. This nested structure makes it par-

ticularly delicate to work with without a carefully crafted

metatheory. Moreover, because strong and weak bisimilar-

ity have some common structure, it is beneficial for proof

engineering purposes to share as much of their common

metatheory as possible.

We demonstrate in this section how introducing a param-

eterized version of the weak bisimulation relation allows us

to derive a rich equational theory that alleviates the pain of

working with nested inductive-coinductive definitions. Our

new construction, gpaco, is instrumental to the proofs in

this theory.

4.3 A family of bisimulations
While weak bisimulation is the core relation we care about,

several related relations are relevant to prove our equational

theory. As a way to factor work, we start by defining in

Figure 6 bisim, a family of relations over streams. Let us for

now ignore its three parameters and focus at a high level on

the functor bisimF _ _ _ X. We use the fix keyword as

a notation to express bisimF itself is defined as a smallest

fixed point.

There are five ways we may relate two streams: 1. by

matching ϵ constructs, 2. by matching τ and co-recursing,

3. by matching identical β and co-recursing, 4. by stripping

a τ from the left and recursing or 5. by stripping a τ from

the right and recursing. Note the use of a recursive call when
stripping τ in the asymmetric cases (4) and (5): if we were

to iterate co-recursively, then an infinite co-recursive chain

of application of rule (4) would relate the silently diverging

stream to any stream.

7

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

The three parameters to bisimF refine the way these rules
can be used to derive different relations. The boolean bL, bR
flags enable or disable rules (4) and (5) respectively. The

cloβ parameter, of type P(stream × stream) → P(stream ×

stream) is slightly more subtle. When matching two external

events by rule (3), one does not have to relate the remaining

of the streams with respect to just a co-recursive call, but

instead can first quotient them by cloβ .
The practical use of the closure parameter will be delayed

to Section 5 where it will be instrumental in deriving the

necessary reasoning principles. For now, we set the cloβ pa-

rameter to the identity closure id in order to define the high

level relations we are interested in. It is straightforward to

check that bisimF bL bR cloβ is monotone for any mono-

tone cloβ , in particular for id. We therefore can define the

greatest fixed point bisim bL bR using paco.
We are now ready to derive concrete relations. First, if

both asymmetric rules are disabled, we have to exactly match

all constructors: this corresponds to strong bisimulation.

Definition 4.1 (Strong bisimulation).

s � t
def

= bisim false false s t

At the opposite side, equivalence up-to-tau is defined by

allowing both rules: it is always fine to strip away finite

amounts of τ ’s on either side:

Definition 4.2 (Equivalence up-to-tau).

s ≈ t
def

= bisim true true s t

Finally, a third relation is often useful. By allowing only

one of the rules, we get an asymmetric relation expressing

that a stream is up-to-tau bisimilar to another, but contains

more τ :

Definition 4.3 (Over-approximation up-to-tau).

s ≳ t
def

= bisim true false s t

Notice the following subrelation inclusions: � ⊆ ≳ ⊆ ≈.

Unfortunately, the inductive-coinductive nature of weak

bisimulation in particular makes a property as elementary

as transitivity already a challenge to prove. The standard

approach is to seek stronger reasoning principle by intro-

ducing up-to techniques. We first consider reasoning up to

transitive closure.

4.3.1 Transitive closure of the bisimilarity relations
The native reasoning principle on streams only allows us

to step through the functor bisimF, forcing us systemati-

cally to nest an induction to account for possible bounded

stripping of τ s, which often requires a clever generalization

of the statement for it to hold inductively. Reasoning up-to

transitive closure enables a new reasoning principle: when

attempting to prove that two streams (s1, s2) belong to a re-

lation r , it may be sound in appropriate contexts to simply

substitute s1 or s2 for other bisimilar streams.

This intuition is formalized by introducing a family of

transitive closures parameterized by four booleans flags:

Definition 4.4 (Transitive closure up to bisimilarity).
(s1, s

′
1
) ∈ bisim bL bR (s ′

1
, s ′

2
) ∈ r (s2, s

′
2
) ∈ bisim b ′L b

′
R

(s1, s2) ∈ bisim_trans_clo bL bR b ′L b
′
R r

Each pair of flags defines the instances of bisim that are

allowed to be used to substitute for the left and right streams.

These closures are not all safe to use in arbitrary contexts.

Indeed, by setting all flags to true,we allow arbitrary rewrit-

ing up-to-tau:

Definition 4.5 (Undirected transitive closure).

U
def

= bisim_trans_clo true true true true

Let us emphasize why such arbitrary, undirected, up-to-tau
rewriting provided by U is an unsound principle in general.

Recall that a coinductive proof is in essence constructing

a cycle by being only allowed to invoke the coinduction

hypothesis once below a guard. In our case,U could hence

be misused to introduce a τ constructor that would then be

used as guard, allowing for circular reasoning. To illustrate

the problem concretely, let us assume for a moment that

the precondition of the Closure principle from Figure 5 is

available forU. The following proof would then be valid:

0ϵ ≈ 1ϵ
Init

⇐⇒ (0ϵ, 1ϵ) ∈ ĜeuttF ∅ ∅

Acc

⇐⇒ (0ϵ, 1ϵ) ∈ ĜeuttF ∅ {(0ϵ, 1ϵ)}
Closure(U)

⇐= (τ0ϵ, τ1ϵ) ∈ ĜeuttF ∅ {(0ϵ, 1ϵ)}
Step

⇐= (0ϵ, 1ϵ) ∈ ĜeuttF {(0ϵ, 1ϵ)} {(0ϵ, 1ϵ)}
Base

⇐= (0ϵ, 1ϵ) ∈ {(0ϵ, 1ϵ)} □

This minimal example show-cases how this unrestricted

up-to closure principle could introduce τ constructors that

would then be used as guards to wrongly justify the use of the

coinductive hypothesis. Thankfully, applying Closure(U)

is prohibited. Note however that had we justified the use

of the coinductive hypothesis by a β guard, the rewriting

would have been harmless.

We will come back to U in more detail by considering

a context-sensitive up-to technique in Section 5. But let us

focus for now on a better behaved instance:

Definition 4.6 (Directed transitive closure).

D
def

= bisim_trans_clo true false true false

The D closure disables the second flag used in the setting

of each bisimulation considered. This means that a stream

may be substituted by a bisimilar one, only if the new one

contains fewer τ s than the previous one. It is intuitively

clear that this substitution is always sound since it cannot

introduce a guard. Moreover, this transitivity principle is in

practice the most general one that we shall consider. It will

8

Generalized Parameterized Coinduction CPP’20, January 2020, New Orleans, LA USA

be the instance of the base closure that we will provide to

gpaco in the construction we introduce in Section 5.

This soundness and generality are expressed by proving

that D provides a sound up-to reasoning principle with re-

spect to ≈. This soundness holds in the sense thatD satisfies

the precondition from Lemma 3.12 with respect to the func-

tor euttF
def

= bisimF true true.
Lemma 3.12 allows us to move from a proof of a paco

predicate, ≈ being the one of concern, to a gpaco counterpart
setup with D as the base closure.

Lemma 4.7 (Initialization forD with respect to euttF). For
any cloβ monotone such thatD◦cloβ ⊆ cloβ ◦D,D is weakly
compatible for euttF cloβ .

We can at this stage already establish a certain number of

facts about our instances of bisim. By picking in particular

cloβ = id, the closure used in the definition of euttF, we
can derive the following reasoning principle by applying

Closure*.

Theorem 4.8 (≈ is a congruence for ≳).

s ′ ≳ s s ′ ≈ t ′ t ′ ≳ t
s ≈ t

We then prove that bisim defines equivalence relations:

Lemma 4.9. � and ≈ are equivalence relations. ≳ is reflexive
and transitive.

And finally show that bisim bL bR is a congruence for each

constructor of euttF.

4.3.2 Concat closure
Proving the monoidal laws and congruence rules relating

concat to weak bisimulation is greatly simplified by a second

reasoning principle: the ability to reason up-to prefix. When

attempting to relate two streams defined as concatenations, it

should be possible to discharge their prefixes by proving they

are bisimilar. The following closure captures this reasoning

principle:

Definition 4.10 (Concat closure).

h1 ≈ h2 (t1, t2) ∈ r

(h1 ++ t1,h2 ++ t2) ∈ C r

The soundness of the closure is embodied by showing that

Lemma 3.10 can be instantiated for C with respect to euttF,
with D for the base closure:

Lemma 4.11 (Compatibility of C with respect to euttF).
For any cloβ monotone such that C ◦ cloβ ⊆ cloβ ◦ C and
id ⊆ cloβ , we have C ⊆ ḠD

euttF cloβ
.

Lemma 4.11 essentially states that all instances of bisim
are congruences for concat in the first argument. In partic-

ular we can prove that � is a congruence for concat:

Theorem 4.12 (� is a congruence for concat).
h1 � h2 t1 � t2
h1 ++ t1 � h2 ++ t2

With these tools in hand, we can prove the expected

monoidal laws. In particular, Theorem 4.12 greatly simplifies

the proof of associativity.

Theorem 4.13 ((stream,++) forms a monoid).

ϵ ++ s � s s ++ ϵ � s (r ++ s) ++ t � r ++ (s ++ t)

5 An equational theory for weak
bisimulations

Section 4 introduced the stream datatype and two equiva-

lence relations upon it: a strong bisimulation that constrains

them to be structurally identical, and a weak bisimulation

that quotient them up-to finite amount of internal steps. We

have shown that two reasoning principles may be proved

sound when reasoning about weak bisimulations: up-to tran-

sitivity with respect to addition of taus, D, and up-to concat

closures, C.

However, even with the support from gpaco, reasoning
about streams remains a technical challenge. In particular,

we noticed that up-to transitivity with respect to general

equivalence up-to-tau, U, is sound in contexts guarded by a

β , but not when guarded by a τ .
In order to alleviate these difficulties, we abstract away

from the low-level use of gpaco and define through this

section a new context-sensitive weak bisimulation relation,

euttG. We prove that this relation satisfies a rich equa-

tional theory, notably supporting context-sensitive up-to

techniques, and is sound with respect to weak bisimulation.

By doing so, we hence internalize much of the complexity

inherent to coinductive reasoning over weak bisimulation

and provide an interface exposing the higher level reasoning

principles specific to weak bisimulations of streams.

5.1 A context-sensitive weak bisimulation
We leverage the expressivity of gpaco to define the parame-

terized weak bisimulation euttG rβ rτ дβ дτ . Before getting
to its formal definition, we sketch the intuition it carries.

The relation takes four parameters, each of type P(stream×
stream), which correspond respectively to information that

has been unlocked by a visible step or an internal step, or

that remains guarded behind a visible step or an internal

step.

The key idea in distinguishing the kind of constructor

that has released or still locks the information is to allow for

context-sensitive up-to techniques. Indeed, an incremental

coinductive proof can be thought as a game of exploration

whose goal is to close all paths explored by coming back to

a previously explored state. By substituting a stream for a

weakly bisimilar one, we may compromise all states reached

by taking τ steps, but we remain certain that a cycle is found

9

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

if we get back to a state reached under a β step. As such, β
guards are stronger that τ guards when reasoning up-to-tau.

The main tool we will use to enable more reasoning prin-

ciples under β guards than τ guards is the cloβ argument

introduced in the definition of bisim, Figure 6, and which

has been left unexploited through Section 4. Recall that this

parameter is a closure up-to which the remaining streams

may be quotiented during the corecursive call under a β
constructor. The closure we consider is defined as follows:

Definition 5.1 (Closure for external events).

Vдβ r
def

= ḠD
euttF id U(r ∪ дβ).

The closure Vдβ is best understood right to left. At its

core, it simply extends the relation r with the β guarded

knowledgeдβ . Since it will only be accessible under β guards,

it is also sound to close this knowledge up to undirected
transitivity, U, to allow for arbitrary rewriting by weak

bisimilarity. Finally, by definition of bisimF, using Vдβ in

place of the cloβ argument permits its use right as we strip

off a pair of β constructors. Specifically, if the goal is of the

form β(n) · s ≈ β(n) · t, thenVдβ can be used to relate s and t .
However, we sometimes want to delay the use of this closure:

say the goal is of the form β(n) ·p ++ s ≈ β(n) ·p ++ t, we need
to first reason up-to concatenation and only then use Vдβ
to relate s and t . Wrapping the whole closure into a call to

gpaco is a convenient way to make this possible.

We now turn to the definition of euttG itself:

Definition 5.2 (Parameterized weak bisimulation).

euttG rβ rτ дβ дτ
def

= ĜD
euttF (Vдβ)

(U(rβ) ∪ rτ)) дτ

The definition of euttG is a slightly intimidating instance

of gpaco. Let us walk through each of its arguments. First,

the base closure provided is D: in any context, it is sound

to work up to directed transitivity. Now since both rβ and

rτ are information that has been unlocked previously, their

union is provided as accessible, except that, as in the case

of дβ under V, the β unlocked knowledge is additionally

closed by U – undirected transitivity. The functor whose

greatest fixed point we take is naturally euttF; going under

the functor hence guarantees that we go either under a τ or

a β guard. We therefore set дτ to be always unlocked under

the functor, as expressed by its position as last parameter of

gpaco. Finally, the additional knowledge дβ is ensured to be

only unlocked when the functor is applied by going under β
guards by being provided as a parameter toV in the closure

passed to euttF.
Having motivated the definition of euttG by the intuitive

reasoning principles it should satisfy, we formalize these

principles in the following subsection.

5.2 An equational theory for euttG
The interface provided by our theory is summarized by the

set of rules described in Figure 7. They are split into four

categories. The soundness rules relate equivalence up-to-tau
and euttG. The knowledge manipulation rules provide the

core coinductive principles specialized to weak bisimulation.

The stream processing rules give specialized principles to

step under euttF constructors. Finally, we provide support
for three up-to reasoning principles. All rules maintain the

following implicit invariant for euttG: rβ ⊆ rτ ⊆ дτ ⊆ дβ .

Soundness The relation between euttG and ≈ is similar

to the one between paco and gpaco: it is an intermediary

construct one transits to in order to conduct a proof.

The soundness of the overall approach is hence encapsu-

lated into two rules. First, the Init rule states that one can

always move during a proof of weak bisimulation into the

euttG realm by assuming no initial knowledge.

Theorem 5.3 (Init).

(s, t) ∈ euttG ∅ ∅ ∅ ∅ =⇒ s ≈ t

Using Init, we can hence start a euttG-based proof. Con-

versely, since euttG is purely an intermediary to conduct

proofs about weak bisimulation, Final is key to invoke any

pre-established ≈-equation: for any state of accumulated

knowledge, euttG always contains ≈.

Theorem 5.4 (Final).

s ≈ t =⇒ (s, t) ∈ euttG rβ rτ дβ дτ

Knowledge manipulation The euttG relation shields the

user from its internals as much as possible by providing its

own reasoning principles with respect to the four knowledge

arguments it carries. First, the Base case echoes its gpaco
counterpart by giving access to all unlocked knowledge.

Theorem 5.5 (Base).

(s, t) ∈ rβ ∪ rτ =⇒ (s, t) ∈ euttG rβ rτ дβ дτ

The accumulation theorem is once again key to make

parameterized coinductive reasoning possible. It states that

in order to prove that a set x of pairs of streams belongs to

euttG, one can extend the guarded knowledge by assuming

that x is contained in this knowledge:

Theorem 5.6 (Acc).

x ⊆ euttG rβ rτ дβ дτ ⇐⇒ x ⊆ euttG rβ rτ (дβ∪x) (дτ ∪x)

Stream processing Three principles allow us to process

each of the stream constructors. Naturally, it is trivial to

show that terminating streams can be matched.

Theorem 5.7 (Ret).

(ϵ, ϵ) ∈ euttG rβ rτ дβ дτ

Internal events can be consumed on each side, which grant

access to the τ guarded knowledge.

Theorem 5.8 (τ step).

(t, s) ∈ euttG rβ дτ дβ дτ =⇒ (τ ·s, τ ·t) ∈ euttG rβ rτ дβ дτ
10

Generalized Parameterized Coinduction CPP’20, January 2020, New Orleans, LA USA

Soundness
(s, t) ∈ euttG ∅ ∅ ∅ ∅

s ≈ t Init

s ≈ t
(s, t) ∈ euttG rβ rτ дβ дτ

Final

Knowledge manipulation
(s, t) ∈ rβ ∪ rτ

(s, t) ∈ euttG rβ rτ дβ дτ
Base

x ⊆ euttG rβ rτ (дβ ∪ x) (дτ ∪ x)

x ⊆ euttG rβ rτ дβ дτ
Acc

Stream processing

(ϵ, ϵ) ∈ euttG rβ rτ дβ дτ
Ret

(s, t) ∈ euttG rβ дτ дβ дτ

(τ · s, τ · t) ∈ euttG rβ rτ дβ дτ
τ_Step

(s, t) ∈ euttG дβ дβ дβ дβ

(β(n) · s, β(n) · t) ∈ euttG rβ rτ дβ дτ
β_Step

Up to reasoning
(s, t) ∈ D(euttG rβ rτ дβ дτ)

(s, t) ∈ euttG rβ rτ дβ дτ
TransD

(s, t) ∈ U(euttG rβ rβ дβ rβ)

(s, t) ∈ euttG rβ rτ дβ дτ
TransU

(s, t) ∈ C(euttG rβ rτ дβ дτ)

(s, t) ∈ euttG rβ rτ дβ дτ
ConcatC

Figure 7. Equational theory for parameterized equivalence up-to tau. D,U and C are the closures for which up-to reasoning

is possible: directed and undirected transitivity, and concatenation.

Finally, visible steps propagate the guarded knowledge to

all parameters.

Theorem 5.9 (β step).

(t, s) ∈ euttG дβ дβ дβ дβ

=⇒ (β(n) · s, β(n) · t) ∈ euttG rβ rτ дβ дτ

Up-to reasoning Finally, three up-to reasoning principles

are supported. As developed in Section 4, directed transitive

closure and concatenation closure are sound in all contexts.

This gets reflected in the simplicity of rules transD and

concatC: one can simply make a call to the corresponding

closure at any time.

Theorem 5.10 (Directed transitive closure).

(s, t) ∈ D(euttG rβ rτ дβ дτ) =⇒ (s, t) ∈ euttG rβ rτ дβ дτ

Theorem 5.11 (Concat closure).

(s, t) ∈ C(euttG rβ rτ дβ дτ) =⇒ (s, t) ∈ euttG rβ rτ дβ дτ

The third principle, undirected transitive closure, is more

interesting. We internalize the intuition that it is only sound

while guarded by β guards by overwriting all weakly avail-

able and guarded knowledge by the strongly available one:

Theorem 5.12 (Undirected transitive closure).

(s, t) ∈ U(euttG rβ rβ дβ rβ) =⇒ (s, t) ∈ euttG rβ rτ дβ дτ

We now illustrate a use of this interface.

5.3 Practical use of euttG
Consider the following two streams:

s0 ≈ 0 s ′
0

s ′
0
≈ r ++ s1 s1 ≈ 1 s ′

1
s ′

1
≈ 2 s ′

0

t0 ≈ 0 t ′
0

t ′
0
≈ r ′ ++ t1 t1 ≈ 1 t ′

1
t ′
1
≈ 2 t ′

0

This example differs from Figure 4 in that each of the states

are related to one another by weak bisimilarity. To prove that

s0 ≈ t0 and s1 ≈ t1, the same proof as before using just gpaco

X0 ⊆ ν .euttF
Init

⇐= X0 ⊆ euttG ∅ ∅ ∅ ∅
Acc

⇐= X0 ⊆ euttG ∅ ∅ X0 X0

TransU

⇐= {(0 s ′
0
, 0 t ′

0
), (1 s ′

1
, 1 t ′

1
)} ⊆ euttG ∅ ∅ X0 ∅

β_Step
⇐= X1 ⊆ euttG X0 X0 X0 X0

Acc

⇐= X1 ⊆ euttG X0 X0 (X0 ∪ X1) (X0 ∪ X1)

lhs: (s ′
0
, t ′

0
) ∈ euttG X0 X0 (X0 ∪ X1) (X0 ∪ X1)

TransU

⇐= (r ++ s1, r
′ ++ t1) ∈ euttG X0 X0 (X0 ∪ X1) X0

ConcatC

⇐= (s1, t1) ∈ euttG X0 X0 (X0 ∪ X1) X0

Base

⇐= (s1, t1) ∈ X0 □

rhs: (s ′
1
, t ′

1
) ∈ euttG X0 X0 (X0 ∪ X1) (X0 ∪ X1)

TransU

⇐= (2 s ′
0
, 2 t ′

0
) ∈ euttG X0 X0 (X0 ∪ X1) X0

β_Step
⇐= (s ′

0
, t ′

0
) ∈ euttG (X0∪X1) (X0∪X1) (X0∪X1) (X0∪X1)

Base

⇐= (s ′
0
, t ′

0
) ∈ X0 ∪ X1 □

Figure 8. Practical use of euttG: a proof example

will not work, since we need to useU, a context-sensitive

closure. However, the proof remains straightforward using

euttG, as depicted in Figure 8.

Notice in particular how TransU allows us to rewrite up-

to-tau equations, at the cost each time of losing the knowl-

edge locked behind a τ guard.

5.4 Essential need for the base closure
We show that the companion closure is inconsistent with

the rules of euttG, so that it cannot be used as a base closure.
To this end, for any definition of euttG satisfying the rules
in Figure 7, suppose that it is closed under the companion

cpnF for F = bisimF bL bR cloβ with arbitrary bL , bR , cloβ :

cpnF (euttG rβ rτ дβ дτ) ⊆ euttG rβ rτ дβ дτ (1)

11

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

We derive a contradiction. Let X = {(1ϵ, 2ϵ)} and Y =
{(01ϵ, 02ϵ)}. First, for ⊤ = stream × stream, we have:

cpnF (Y) = F (⊤) (2)

The proof of (2) is given in Appendix A. Then we have:

X ⊆ U(F (X)) (since (τ1ϵ, τ2ϵ) ∈ F (X))

⊆ U(F (⊤)) = U(cpnF (Y)) (by (2))

⊆ U(cpnF (euttG ∅ ∅ X ∅)) (by β_Step)

⊆ U(euttG ∅ ∅ X ∅) (by (1))

⊆ euttG ∅ ∅ X ∅ (by TransU)

⊆ euttG ∅ ∅ X X (by monotonicity)

Therefore, by Acc, we have X ⊆ euttG ∅ ∅ ∅ ∅ and thus, by

Init, 1ϵ ≈ 2ϵ , which is a contradiction.

The root of the issue is that the companion construction

contains non-structural junks when provided a false assump-

tion like Y above. Where we would want cpnF (Y) to contain
exactly the pairs of streams equivalent moduloY , it also ends
up containing nonsensical pairs such as (τ1ϵ, τ2ϵ).

6 Implementation in the Coq proof
assistant and scaled case-study

We implemented gpaco and its theory as described through

Section 3 in the Coq proof assistant. The formalization is

built as an extension of the paco library and available at:

Redacted for anonymity.

Since the implementation builds directly on top of paco,
it is fully backward compatible: the new gpaco reasoning

principles are applicable to any coinductive object defined via

paco, with no change in the definitions. As was the case with
the original library, we provide high level tactics mapping

to each reasoning principle described in Figure 5.

6.1 Large Scale Case-Study: Interaction Trees
For sake of exposition and self-containment, we have pre-

sented here a case-study built on streams and their monoidal

structure. The motivation for the development of this tech-

nique however stemmed from a more complex application:

interaction trees [Xia et al. 2020] are a coinductive structure

similar to streams, but branching in the sense that the visible

events are followed by a continuation over the type of the

emitted event. Interaction trees can be equipped with a bind
operation similar to the concat operation, and proved to

form a monad.

We have applied the techniques described in this paper to

derive an axiomatic interface to reason up-to-tau about inter-

action trees. This layer of abstraction has then been heavily

used to reason about this structure, and proved instrumental

in alleviating the induced difficulty.

The corresponding formal development can be browsed

at Redacted for anonymity.

7 Discussion and Related work
Paco and Companion We start by discussing how our

contribution builds on existing works, namely parameterized

coinduction (Paco) [Hur et al. 2013] and companion [Pous

2016], and how we improve on them.

As we reviewed in Section 2, Paco provides incremen-

tal reasoning by the parameterized fixed point Gf . It also

provides up-to reasoning by combining f with its greatest

respectful closure gresf (i.e., using Gf ◦ gresf). Pous [2016]

shows that the greatest compatible closure cpnf , called the

companion, coincides with gresf and directly admits the

incremental and up-to reasoning principles of Gf ◦ gresf .

Moreover, the companion admits second-order reasoning,

which provides incremental and up-to principles for reason-

ing about clo ⊑ cpnf .
In our work, we generalize the constructions in two direc-

tions. First, we use two parameters to track both the unlocked

and guarded knowledge. As briefly discussed in Section 3.2,

the companion construction with two parameters r and д
can be given by cpnf (r ⊔ f (cpnf (r ⊔ д)). Second, we pa-

rameterize the upper-bound of closures instead of using the

greatest compatible/respectful closure. The need for such

parameterization was shown in Section 5.4.

Distinguishing internal and visible steps [Sangiorgi and

Walker 2001, Exercise 2.4.64] and [Pous 2007] present up-

to techniques allowing different up-to closures for internal

and visible steps. Among them, [Pous 2007] gives a more

formal framework, where two notions of monotonicity (in

a more recent terminology, respectfulness) are defined. If

a relation R is τ -simulated (i.e., for internal steps) up-to a

monotonic closure and v-simulated (i.e., for visible steps)

up-to a weakly monotonic closure, then R is contained in

the weak (bi)similarity. Notably, up-to weak bisimulation is

only weakly monotonic.

Similarly, our work also presents an equational theory for

weak bisimulation where internal and visible steps admit dif-

ferent up-to closures. The main challenge we are addressing

is to combine such up-to closures with incremental reasoning

using four different kinds of knowledge: unlocked/guarded

knowledge for internal/visible steps.

Other related works In [Pous 2016], Pous introduced the

companion of a function f by characterizing it as the greatest
compatible function for f . Other works have sought more

constructivist approaches. Parrow and Weber [2016] give

an ordinal-based construction of the companion in classical

set theory. Analogously, it turns out that the companion can

be obtained in constructive type theory with an inductive

tower construction as studied by Schäfer et al. [Schäfer 2019;

Smolka et al. 2015].

We have chosen to build our approach on top of paco, but
other incremental coinductive techniques exist: incremental

12

Generalized Parameterized Coinduction CPP’20, January 2020, New Orleans, LA USA

pattern-based coinduction [Popescu and Gunter 2010], circu-

lar coinduction [Hausmann et al. 2005], parametric coinduc-

tion [Moss 2001]. We refer to Hur et al.’s related work [Hur

et al. 2013] for a thorough comparison.

Finally, we introduced through this paper the use of three

up-to techniques relevant to our domain of application. Nu-

merous others can be found in Pous [Pous 2016], both derived

from the companion and as part of the related work.

References
Daniel Hausmann, Till Mossakowski, and Lutz Schröder. 2005. Iterative

Circular Coinduction for CoCasl in Isabelle/HOL. In Fundamental Ap-
proaches to Software Engineering, Maura Cerioli (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 341–356.

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The

Power of Parameterization in Coinductive Proof. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’13). ACM, New York, NY, USA, 193–206.

https://doi.org/10.1145/2429069.2429093
Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.

ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814
Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. 2018.

Modular Verification of Programswith Effects and Effect Handlers in Coq.

In Formal Methods - 22nd International Symposium, FM 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018,
Proceedings. 338–354. https://doi.org/10.1007/978-3-319-95582-7_20

Lawrence S. Moss. 2001. Parametric Corecursion. Theor. Comput. Sci. 260,
1-2 (June 2001), 139–163. https://doi.org/10.1016/S0304-3975(00)00126-2

Joachim Parrow and Tjark Weber. 2016. The Largest Respectful Function.

Logical Methods in Computer Science Volume 12, Issue 2 (June 2016).

https://doi.org/10.2168/LMCS-12(2:11)2016
Andrei Popescu and Elsa L. Gunter. 2010. Incremental Pattern-based Coin-

duction for Process Algebra and Its Isabelle Formalization. In Proceedings
of the 13th International Conference on Foundations of Software Science
and Computational Structures (FOSSACS’10). Springer-Verlag, Berlin, Hei-
delberg, 109–127. https://doi.org/10.1007/978-3-642-12032-9_9

Damien Pous. 2007. New up-to techniques for weak bisimulation. Theoretical
Computer Science 380, 1 (2007), 164 – 180. https://doi.org/10.1016/j.tcs.
2007.02.060 Automata, Languages and Programming.

Damien Pous. 2016. Coinduction All the Way Up. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’16).
ACM, New York, NY, USA, 307–316. https://doi.org/10.1145/2933575.
2934564

Davide Sangiorgi and David Walker. 2001. PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA.

Steven Schäfer. 2019. Engineering Formal Systems in Constructive Type
Theory. Ph.D. Dissertation. Saarland University.

Gert Smolka, Steven Schäfer, and Christian Doczkal. 2015. Transfinite

Constructions in Classical Type Theory. In Interactive Theorem Proving,
Christian Urban and Xingyuan Zhang (Eds.). Springer International

Publishing, Cham, 391–404.

Yong Kiam Tan, Magnus O.Myreen, Ramana Kumar, Anthony C. J. Fox, Scott

Owens, and Michael Norrish. 2016. A new verified compiler backend for

CakeML. In ICFP.
Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha,

Benjamin C. Pierce, and Steve Zdancewic. 2020. Interaction Trees. In

Proceedings of the 47th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’20). ACM, New York, NY,

USA.

13

https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-319-95582-7_20
https://doi.org/10.1016/S0304-3975(00)00126-2
https://doi.org/10.2168/LMCS-12(2:11)2016
https://doi.org/10.1007/978-3-642-12032-9_9
https://doi.org/10.1016/j.tcs.2007.02.060
https://doi.org/10.1016/j.tcs.2007.02.060
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564

CPP’20, January 2020, New Orleans, LA USA C. Hur, P. He, Y. Zakowski, and S. Zdancewic

A A property about companion
Let X = {(1ϵ, 2ϵ)} and Y = {(01ϵ, 02ϵ)}. We prove that

cpnF (Y) = F (⊤) for F = bisimF bL bR cloβ with arbitrary

bL , bR , cloβ .
We first define a function clo as follows:

clo(r) =


⊤ if X ⊆ r

F (⊤) else if Y ⊆ r
∅ otherwise

Then clo is trivially monotone and compatible as follows.

For any r , we show clo(F (r)) ⊆ F (clo(r)) by case analysis

on r . First, when X ⊆ r , we have clo(r) = ⊤. We also have

Y ⊆ F (X) ⊆ F (r) and X ⊈ F (r) by definition of F . Therefore,
we have clo(F (r)) = F (⊤) = F (clo(r)). Second, when X ⊈ r ,
we haveX ⊈ F (r) and Y ⊈ F (r) by definition of F . Therefore,
we have clo(F (r)) = ∅ ⊆ F (clo(r)).

Now, we have the following inequality:

F (⊤) = clo(Y) (by definition of clo)

⊆ cpnF (Y) (cpnF includes every compatible func.)

⊆ cpnF (F (X)) (by definition of F)

⊆ F (cpnF (X)) (cpnF itself is compatible)

⊆ F (⊤)

Therefore, we have cpnF (Y) = F (⊤).

14

	Abstract
	1 Introduction
	2 Background: paco and a motivating example
	2.1 Notations
	2.2 Parameterized Coinduction
	2.3 Example: paco's shortcomings

	3 Generalized Parameterized Coinduction
	3.1 Generalized incremental reasoning
	3.2 Up-to reasoning: generalized paco with closure

	4 Up-to-tau bisimulation of streams
	4.1 Streams
	4.2 Bisimulation, equivalence up-to tau
	4.3 A family of bisimulations

	5 An equational theory for weak bisimulations
	5.1 A context-sensitive weak bisimulation
	5.2 An equational theory for euttG
	5.3 Practical use of euttG
	5.4 Essential need for the base closure

	6 Implementation in the Coq proof assistant and scaled case-study
	6.1 Large Scale Case-Study: Interaction Trees

	7 Discussion and Related work
	References
	A A property about companion

