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This paper introduces Choice Trees (CTrees), a monad for modeling nondeterministic, recursive, and impure

programs in Coq. Inspired by Xia et al.’s ITrees, this novel data structure embeds computations into coinductive

trees with three kind of nodes: external events, and two variants of nondeterministic branching. This apparent

redundancy allows us to provide shallow embedding of denotational models with internal choice in the

style of ccs, while recovering an inductive LTS view of the computation. CTrees inherit a vast collection of

bisimulation and refinement tools, with respect to which we establish a rich equational theory.

We connect CTrees to the ITrees infrastructure by showing how a monad morphism embedding the former

into the latter permits to use CTrees to implement nondeterministic effects. We demonstrate the utility of

CTrees by using them to model concurrency semantics in two case studies: ccs and cooperative multithreading.
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1 INTRODUCTION

Reasoning about and modeling nondeterministic computations is important for many purposes. For-
mal specifications use nondeterminism to abstract away from the details of implementation choices.
Accounting for nondeterminism is crucial when reasoning about the semantics of concurrent and
distributed systems, which are, by nature, nondeterministic due to races between threads, locks, or
message deliveries. Consequently, precisely defining nondeterministic behaviors and developing
the mathematical tools to work with those definitions has been an important research endeavor,
and has led to the development of formalisms like nondeterministic automata, labeled transition
systems and relational operational semantics [Bergstra et al. 2001], powerdomains [Smyth 1976],
or game semantics [Abramsky and Melliès 1999; Rideau and Winskel 2011], among others, all of
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which have been used to give semantics to nondeterministic programming language features such
as concurrency [Harper 2016; Milner 1989; Sangiorgi and Walker 2001].

In this paper, we are interested in developing tools for modeling nondeterministic computations
in a dependent type theory such as Coq’s CIC [Team 2022]. Although any of the formalisms
mentioned above could be used for such purposes (and many have been [Kang et al. 2017; Koenig
and Shao 2020; Lee et al. 2020; Oliveira Vale et al. 2022; Sevcík et al. 2013]), those techniques offer
various tradeoffs when it comes to the needs of formalization: automata, and labeled transitions
systems, while offering powerful bisimulation proof principles, are not easily made modular (except,
perhaps, with complex extensions to the framework [Henrio et al. 2016]). Relationally-defined
operational semantics are flexible and expressive, but again suffer from issues of compositionality,
which makes it challenging to build general-purpose libraries that support constructing complex
models. Conversely, powerdomains and game semantics are more denotational approaches, aiming
to ensure compositionality by construction; however, the mathematical structures involved are
themselves very complex, typically involving many relations and constraints [Abramsky and
Melliès 1999; Melliès and Mimram 2007; Rideau and Winskel 2011] that are not easy to implement
in constructive logic (though there are some notable exceptions [Koenig and Shao 2020; Oliveira Vale
et al. 2022]). Moreover, in all of the above-mentioned approaches, there are other tensions at play.
For instance, how “deep” the embedding is affects the amount of effort needed to implement a
formal semantics—“shallower” embeddings typically allow more re-use of metalanguage features,
e.g., meta-level function application can obviate the need to define and prove properties about a
substitution operation; “deeper” embeddings can side-step meta-level limitations (such as Coq’s
insistence on pure, total functions) at the cost of additional work to define the semantics. Moreover,
these tradeoffs can have significant impact on how difficult it is to use other tools andmethodologies:
for instance, to use QuickChick [Lampropoulos and Pierce 2018], one must be able to extract an
executable interpreter from the semantics, something that isn’t always easy or possible.
This paper introduces a new formalism designed specifically to facilitate the definition of and

reasoning about nondeterministic computations in Coq’s dependent type theory. The key idea is
to update Xia, et al.’s interaction trees (ITrees) framework [Xia et al. 2020] with native support for
nondeterminisic “choice nodes” that represent internal choices made during computation. The
main technical contributions of this paper are to introduce the definition of these CTrees (“choice
trees”) and to develop the suitable metatheory and equational reasoning principles to accommodate
that change.
We believe that CTrees offer an appealing, and novel, point in the design space of formalisms

for working with nondeterministic specifications within type theory. Unlike purely relational
specifications, CTrees build nondeterminism explicitly into a datatype, as nodes in a tree, and the
nondeterminism is realized propositionally at the level of the equational theory, which determines
when two CTree computations are in bisimulation. This means that the user of CTrees has more
control over how to represent nondeterminism and when to apply the incumbent propositional
reasoning. By reifying the choice construct into a data structure, one can write meta-level functions
that manipulate CTrees, rather than working entirely within a relation on syntax. This design
allows us to bring to bear the machinery of monadic interpreters to refine the nondeterminism into
an (executable) implementation. While ITrees can represent such choice nodes, in our experience,
using that feature to model “internal” nondeterminism is awkward: the natural equational theory
for ITrees is too fine, and other techniques, such as interpretation into Prop, don’t work out neatly.

At the same time, the notion of bisimulation for CTrees is still connected to familiar definitions
like those from labeled transition systems (LTS), meaning that much of the well-developed theory
from prior work can be imported whole-sale. Indeed, we define bisimilarity for CTrees by viewing
them as LTSs and applying standard definitions. The fact that the definition of bisimulation ends up
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being subtle and nontrivial is a sign that we gain something by working with the CTrees: like their
ITree predecessors, CTrees have compositional reasoning principles, the type is a monad, and the
useful combinators for working with ITrees, namely sequential composition, iteration and recursion,
interpretation, etc., all carry over directly. CTrees, though, further allow us to conveniently, and
flexibly, define nondeterminstic semantics, ranging from simple choice operators to various flavors
of parallel composition. The benefit is that, rather than just working with a “raw” LTS directly,
we can construct one using the CTrees combinators—this is a big benefit because, in practice, the
LTS defining the intended semantics of a nondeterministic programming language cannot easily
be built in a compositional way without using some kind of intermediate representation, which
is exactly what CTrees provides (see the discussion about Figure 3). A key technical novelty of
our CTrees definition is that it makes a distinction between stepping choices (which correspond
to g transitions and introduce new LTS states) and delayed choices (which don’t correspond to a
transition and don’t create a state in the LTS). This design allows for compositional construction of
the LTS and generic reasoning rules that are usable in any context.
The net result of our contributions is a library, entirely formalized in Coq, that offers flexible

building blocks for constructing nondeterministic, and hence concurrent, models of computation.
To demonstrate the applicability of this library, we use it to implement the semantics from two
different formalisms: ccs [Milner 1989] and a language with cooperative threads inspired from
the literature [Abadi and Plotkin 2010]. Crucially, in both of these scenarios, we are able to define
the appropriate parallel composition combinators such that the semantics of the programming
language can be defined fully compositionally (i.e., by straightforward induction on the syntax).
Moreover, we recover the classic definition of program equivalence for ccs directly from the
equational theory induced by the encoding of the semantics using CTrees; for the language with
cooperative threading, we prove some standard program equivalences.
To summarize, this paper makes the following contributions:

• We introduce CTrees, a novel data structure for defining nondeterministic computations in
type theory, along with a set of combinators for building semantic objects using CTrees.
• We develop the appropriate metatheory needed to reason about strong and weak bisimilarity
of CTrees, connecting their semantics to concepts familiar from labeled transition systems.
• We show that CTrees admit appropriate notions of refinement and that we can use them to
construct monadic interpreters; we show that ITrees can be faithfully embedded into CTrees.
• We demonstrate how to use CTrees in two case studies: (1) to define a semantics for Milner’s
classic ccs and prove that the resulting derived equational theory coincides with the one
given by the standard operational semantics, and (2) to model cooperative multithreading
with support for fork and yield operations and prove nontrivial program equivalences.

All of our results have been implemented in Coq, and all claims in this paper are fully mechanically
verified. For expository purposes, we stray away from Coq’s syntax in the body of this paper, but
systematically link our claims to their formal counterpart via hyperlinks represented as ( ).
The remainder of the paper is organized as follows. The next section gives some background

about interaction trees and monadic interpreters, along with a discussion of the challenges of
modeling nondeterminism, laying the foundation for our results. We introduce the CTrees data
structure and its main combinators in Section 3. Section 4 introduces several notions of equivalences
over CTrees—(coinductive) equality, strong bisimilarity, weak bisimilarity, and trace equivalence—
and describes its core equational theory. Section 5 describes how to interpret uninterpreted events
in an ITree into “choice” branches in a CTree, as well as how to define the monadic interpretation
of events from CTrees. Section 6 describes our first case study, a model for ccs. Section 7 describes
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CoInductive itree (E: Type → Type) (R: Type) : Type :=

| Ret (r: R) (* computation terminating with value r *)

| Vis {A: Type} (e : E A) (k : A → itree E R) (* event e yielding an answer in A *)

| later (t: itree E R). (* "silent" tau transition with child t *)

Fig. 1. Interaction trees: definition

our second case study, a model for the imp language extended with cooperative multithreading.
Finally, Section 8 discusses related work and concludes.

2 BACKGROUND

2.1 Interaction Trees and Monadic Interpreters

Monadic interpreters have grown to be an attractive way to mechanize the semantics of a wide
class of computational systems in dependent typed theory, such as the one found in many proof
assistants, for which the host language is purely functional and total. In the Coq ecosystem,
interaction trees [Xia et al. 2020] provide a rich library for building and reasoning about such
monadic interpreters. By building upon the free(r) monad [Kiselyov and Ishii 2015; Letan et al.
2018], one can both design highly reusable components, as well as define modular models of
programming languages more amenable to evolution. By modeling recursion coinductively, in
the style of Capretta’s delay monad [Altenkirch et al. 2017; Capretta 2005], such interpreters can
model non-total object languages while retaining the ability to extract correct-by-construction,
executable, reference interpreters. By generically lifting monadic implementations of effects into
a monad homomorphism, complex interpreters can be built by stages, starting from an initial
structure where all effects are free and incrementally introducing their implementation. Working
in a proof assistant, these structures are well suited for reasoning about program equivalence and
program refinement: each monadic structure comes with its own notion of refinement, and the
layered infrastructure gives rise to increasingly richer equivalences [Yoon et al. 2022a], starting
from the free monad, which comes with no associated algebra.

Interaction trees are coinductive data structures for representing (potentially divergent) compu-
tations that interact with an external environment through visible events. A definition of the ITree
datatype is shown in Figure 1.1 The datatype takes as its first parameter a signature—described as a
family of types E : Type→ Type—that specifies the set of interactions the computation may have
with the environment. The Vis constructor builds a node in the tree representing such an interaction,
followed by a continuation indexed by the return type of the event. The second parameter, R, is the
result type, the type of values that the entire computation may return, if it halts. The constructor
Ret builds such a pure computation, represented as a leaf. Finally, the later constructor models
an internal, non-observable step of computation, allowing the representation of silently diverging
computations; it is also used for guarding corecursive definitions.2

To illustrate the approach supported by ITrees, and motivate the contributions of this paper, we
consider how to define the semantics for a simple imperative programming language, imp:

comm ≜ skip | G ::= 4 | 21; 22 | while 1 do 2

1The signature of ITrees is presentedwith a positive coinductive datatype for expository purposes. The actual implementation

is defined in the negative style.
2The ITree library uses Tau to represent later nodes. Tau and g are overloaded in our context, so we rename it to later

here to avoid ambiguity. CTrees will replace the later (i.e. Tau) constructor with a more general construct anyway.
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Jwhile true do skipK JG ::= 0; G ::= ~K JG ::= ~K

later

later

later

wr x 0

rd y

wr x 0

tt

wr x 1

tt

. . . wr x n

tt

. . .

rd y

wr x 0

tt

wr x 1

tt

. . . wr x n

tt

. . .

Fig. 2. Example ITrees denoting the imp programs ?1, ?2, and ?3.

The language contains a skip construct, assignments, sequential composition, and loops—we
assume a simple language of expressions, 4 , that we omit here. Consider the following imp programs:

?1 ≜ while true do skip ?2 ≜ G ::= 0; G ::= ~ ?3 ≜ G ::= ~

Following a semantic model for imp built on ITrees in the style of Xia et al. [Xia et al. 2020], one
builds a semantics in two stages. First, commands are represented as monadic computations of
type itree MemE unit: commands do not return values, so the return type of the computation is the
trivial unit type; interactions with the memory are (at first) left uninterpreted, as indicated by the
event signature MemE. This signature encodes two operations: rd yields a value, while wr yields only
the acknowledgment that the operation took place, which we encode again using unit.

Variant MemE : Type → Type :=

| rd (x : var) : MemE value

| wr (x : var) (v : value) : MemE unit

Indexing by the value type in the continuation of rd events gives rise to non-unary branches in
the tree representing these programs. For instance, the programs ?1, ?2, ?3 are, respectively, modeled
at this stage by the trees shown in Figure 2. These diagrams omit the Vis and Ret constructors,
because their presence is clear from the picture. For example, the second tree would be written as

?2 = Vis (wr x 0) (fun _⇒ Vis (rd y) (fun ans⇒ (Vis (wr x ans) (fun _⇒ Ret tt)))).

The later nodes in the first tree are the guards from Capretta’s monad: because the computation
diverges silently, it is modeled as an infinite sequence of such guards. The equivalence used for
computations in the ITree monad is a weak bisimulation, dubbed equivalence up-to taus (eutt),
which allows one to ignore finite sequences of later nodes when comparing two trees. It remains
termination-sensitive: the silently diverging computation is not equivalent to any other ITree.

With ITrees, no assumptions about the semantics of the uninterpreted memory events is made.
Although one would expect ?2 and ?3 to be equivalent as imp programs, their trees are not eutt
since the former starts with a different event than the latter. This missing algebraic equivalence
is concretely recovered at the second stage of modeling: imp programs are given a semantics by
interpreting the trees into the state monad, by handling the MemE events. This yields computations
in stateT mem (itree voidE) unit, or, unfolding the definition, mem→ itree voidE (mem * unit).
Here, voidE is the “empty” event signature, such that an ITree at that type either silently diverges
or deterministically returns an answer. For ?2 and ?3, assuming an initial state m, the computations
become (writing the trees horizontally to save space):

interp ℎ<4< J?2K m = later − later − later − (m{G ← 0}{G ← m(~)}, CC)

interp ℎ<4< J?3K m = later − later − (m{G ← m(~)}, CC)
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The later nodes are introduced by the interpretation of the memory events. More precisely, an
interp combinator applies the handler ℎ<4< to the rd and wr nodes of the trees, implementing their
semantics in terms of the state monad. Assuming an appropriate implementation of the memory,
one can show that m{G ← 0}{G ← m(~)} and m{G ← m(~)} are extensionally equal, and hence ?2
and ?3 are eutt after interpretation.

2.2 Nondeterminism

While the story above is clean and satisfying for stateful effects, nondeterminism is much more
challenging. Suppose we extend imp with a branching operator br p or q whose semantics is to
nondeterministically pick a branch to execute. This new feature is modeled very naturally using
a boolean-indexed flip event, creating a binary branch in the tree. The new event signature, a
sample use, and the corresponding tree are shown below:

Variant Flip : Type → Type :=

| flip : Flip bool.

Vis flip (fun b⇒ if b then p else q)

flip

J?K J@K

Naturally, as with memory events, flip does not come with its expected algebra: associativ-
ity, commutativity and idempotence. To recover these necessary equations to establish program
equivalences such as ?3 ≡ br ?2 or ?3, we need to find a suitable monad to interpret flip into.
Zakowski et al. used this approach in the Vellvm project [Zakowski et al. 2021] for formalizing

the nondeterministic features of the LLVM IR. Their model consists of a propositionally-specified
set of computations: ignoring other effects, the monad they use is itree E _→ Prop. The equiva-
lence they build on top of it essentially amounts to a form of bijection up-to equivalence of the
contained monadic computations. However, this approach suffers from several drawbacks. First,
one of the monadic laws is broken: the bind operation does not associate to the left. Although
stressed in the context of Vellvm [Zakowski et al. 2021] and Yoon et al.’s work on layered monadic
interpreters [Yoon et al. 2022b], this issue is not specific to ITrees but rather to an hypothetical
“Prop Monad Transformer”, i.e. to "fun M X => M X -> Prop", as pointed out previously in [Maillard
et al. 2020]. The definition is furthermore particularly difficult to work with. Indeed, the corre-
sponding monadic equivalence is a form of bijection up-to setoid: for any trace in the source, we
must existentially exhibit a suitable trace in the target. The inductive nature of this existential is
problematic: one usually cannot exhibit upfront a coinductive object as witness, they should be
produced coinductively. Second, the approach is very much akin to identifying a communicating
system with its set of traces, except using a richer structure, namely monadic computations, instead
of traces: it forgets all information about when nondeterministic choices are made. As has been well
identified by the process calculi tradition, and while trace equivalence is sometimes the desired
relation, such a model leads to equivalences of programs that are too coarse to be compositional in
general. In a general purpose semantics library, we believe we should strive to provide as much
compositional reasoning as possible and thus our tools support both trace equivalence, and bisimu-
lations [Bloom et al. 1988]. Third, because the set of computations is captured propositionally, this
interpretation is incompatible with the generation of an executable interpreter by extraction, losing
one of the major strengths of the ITree framework. Zakowski et al. work around this difficulty by
providing two interpretations of their nondeterministic events, and formally relating them. But this
comes at a cost — the promise of a sound interpreter for free is broken — and with constraints —
non-determinism must come last in the stack of interpretations, and combinators whose equational
theory is sensible to nondeterminism are essentially impossible to define.

This difficulty with properly tackling nondeterminism extends also to concurrency. Lesani et al.
used ITrees to prove the linearizability of concurrent objects [Lesani et al. 2022]. Here too, they rely
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on sets of linearized traces and consider their interleavings. While a reasonable solution in their
context, that approach strays from the monadic interpreter style and fails to capture bisimilarity.

This paper introduces CTrees, a suitable monad for modeling nondeterministic effects. As with
ITrees, the structure is compatible with divergence, external interaction through uninterpreted
events, extraction to executable reference interpreters, and monadic interpretation. The core
intuition is based on the observation that the tree-like structure from ITrees is indeed the right
one for modeling nondeterminism. The problem arises from how the ITrees definition of eutt
observes which branch is taken, requiring that all branches be externally visible: while appropriate
to model nondeterminism that results from a lack of information, it does not correspond to true
internal choice. Put another way, thinking of the trees as labeled transition systems, ITrees are
deterministic. With CTrees, we therefore additionally consider truly branching nodes, explicitly
build the associated nondeterministic LTS, and define proper bisimulations on the structure.

The resulting definitions are very expressive. As foreseen, they form a propermonad, validating all
monadic laws up-to coinductive structure equality, they allow us to establish desired imp equations
such as ?3 ≡ br ?2 or ?3, but they also scale to model ccs and cooperative multithreading.
Before getting to that, and to better motivate our definitions, let us further extend our toy

language with a block construction that cannot reduce, and a print instruction that simply prints
a dot. We will refer to this language as ImpBr.

comm ≜ skip | G ::= 4 | 21; 22 | while 1 do 2 | br 21 or 22 | block | print

Consider the program ? ≜ br (while true do print) or block. Depending on the intended
operational semantics associated with br, this program can have one of two behaviors: (1) either
to always reactively print an infinite chain of dots, or (2) to become nondeterministically either
similarly reactive, or completely unresponsive.

When working with (small-step) operational semantics, the distinction between these behaviors
is immediately apparent in the reduction rule for br (we only show rules for the left branch here).

br 21 or 22→ 21
BrInternal

21 → 2 ′1

br 21 or 22 → 2 ′1
BrDelayed

BrInternal specifies that br may simply reduce to the left branch, while BrDelayed specifies
that br can reduce to any state reachable from the left branch. From an observational perspective,
the former situation describes a system where, although we do not observe which branch has been
taken, we do observe that a branch has been taken. On the contrary, the latter only progresses if
one of the branches can progress, we thus directly observe the subsequent evolution of the chosen
branch, but not the branching itself.
In order to design the right monadic structure allowing for enough flexibility to model either

behavior, it is useful to look ahead and anticipate how we will reason about program equivalence,
as described in detail in Section 4. The intuition we follow is to interpret our computations as
labeled transition systems and define bisimulations over those, as is generally done in the process
algebra literature. From this perspective, the imp program ? may correspond to three distinct LTSs
depending on the intended semantics, as shown in Figure 3.

Figure 3a describes the case where picking a branch is an unknown external event, hence where
taking a specific branch is an observable action with a dedicated label: this situation is naturally
modeled by a Vis node in the style of ITrees, that is Jbr ? or@K ≜ +8B flip _1 ·if 1 then J?K else J@K.
Figure 3b corresponds to BrInternal: both the stuck and the reactive states are reachable, but

we do not observe the label of the transition. This transition exactly corresponds to the internal g
step of process algebra. This situation is captured by introducing a new kind of node in our data

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 61. Publication date: January 2023.



61:8 Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic

? A402

BCD2:

flip

true

f
l
i
p

fa
ls
e

print

( )

(a) Observation: branches

? A402

BCD2:

g

g

print

( )

(b) Observation: branching

? A402
print

( )

print

( )

(c) Observation: none

Fig. 3. Three possible semantics for the program ? , from an LTS perspective

structure, a �A( branch, that maps in our bisimulations defined in Section 4 to a nondeterministic
internal step. For this semantics, we thus have Jbr ? or @K ≜ �A 2

(
_1 · if 1 then J?K else J@K.3

Figure 3c corresponds to BrDelayed but raises the question: how do we build such a behavior? A
natural answer can be to assume that it is the responsibility of the model, i.e., the function mapping
imp’s syntax to the semantic domain, CTrees, to explicitly build this LTS. Here, J?K would be an
infinite sequence of Vis print nodes, containing no other node. While that would be convenient for
developing the meta-theory of CTrees, this design choice would render them far less compositional
(and hence less useful) than we want them to be. Indeed, we want our models to be defined as
computable functions by recursion on the syntax, whenever possible. But to build this LTS directly,
the model for br p or q needs to introspect the models for J?K and J@K to decide whether they can
take a step, and hence whether it should introduce a branching node. But, in general, statically
determining whether the next reachable instruction is block is intractable, so that introspection
will be hard (or impossible) to implement. We thus extend CTrees with a third category of node, a
�A� node, which does not directly correspond to states of an LTS. Instead, �A� nodes aggregate
sub-trees such that the (inductively reachable) �A� children of a �A� node are “merged” in the LTS
view of the CTree. This design choice means that, for the BrDelayed semantics, the model is again
trivial to define: Jbr ? or @K ≜ �A 2

�
_1 · if 1 then J?K else J@K, but the definition of bisimilarity for

CTrees ensures that the behavior of J?K is exactly the LTS in Figure 3c.
Although BrDelayed and its corresponding LTS in Figure 3c is one example in which �A� nodes

are needed, we will see another concrete use in modeling ccs in Section 6. Similar situations arise
frequently, for modeling mutexes, locks, and other synchronization mechanisms (e.g., the “await”
construct in Encore [Brandauer et al. 2015]), dealing with crash failures in distributed systems,
encoding relaxed-consistency shared memory models (e.g., the ThreadPromise rule of promising
semantics [Kang et al. 2017]). The �A� construct is needed whenever the operational semantics
includes a rule whose possible transitions depend on the existence of other transitions, i.e. for any
rule of the shape shown below, when it may sometimes be the case (usually due to nondeterminism)
that % ↛:

% → % ′

� [%] → � [% ′]
ContingentStep

The point is that to implement the LTS corresponding to ContingentStep without using a �A�
node would require introspection of % to determine whether it may step, which is potentially
non-computable. The �A� node bypasses the need for that introspection at representation time,
instead pushing it to the characterization of the CTree as an LTS, which is used only for reasoning
about the semantics. The presence of the �A� nodes retains the constructive aspects of the model,

3The 2 indicates the arity of the branching.
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(* Core datatype *)

CoInductive ctree (E : Type → Type) (R : Type) :=

| Ret (r : R) (* a pure computation *)

| Vis {X : Type} (e : E X) (k : X → ctree) (* an external event *)

| brS (n : nat) (k : fin n → ctree) (* stepping branching *)

| brD (n : nat) (k : fin n → ctree) (* delayed branching *)

(* Bind, sequencing computations *)

CoFixpoint bind {E T U} (t : ctree E T) (k : T → ctree E U) : ctree E U :=

match u with

| Ret r ⇒ k r

| Vis e h ⇒ Vis e (fun x ⇒ bind (h x) k)

| brS n h ⇒ brS n (fun x ⇒ bind (h x) k)

| brD n h ⇒ brD n (fun x ⇒ bind (h x) k)

end

(* Unary guards *)

Definition Guard (t : ctree E R) : ctree E R := brD 1 (fun _ ⇒ t)

Definition Step (t : ctree E R) : ctree E R := brS 1 (fun _ ⇒ t)

(* Main fixpoint combinator *)

CoFixpoint iter {I: Type} (body : I → ctree E (I + R)) : I → ctree E R :=

bind (body i) (fun lr ⇒ match lr with

| inr r ⇒ Ret r

| inl i ⇒ Guard (iter body i)

end)

Notation "E { F" := (∀ X, E X → F X)

(* Atomic ctrees triggering a single event *)

Definition trigger : E { ctree E := fun R (e : E R) ⇒ Vis e (fun x ⇒ Ret x)

(* Atomic branching ctrees *)

Definition brS : ctree E (fin n) := fun n ⇒ brS n (fun x ⇒ Ret x)

Definition brD : ctree E (fin n) := fun n ⇒ brD n (fun x ⇒ Ret x)

Fig. 4. CTrees: definition and core combinators ( )

in particular the ability to interpret these nodes at later stages, for instance to obtain an executable
version of the semantics.

3 CTREES: DEFINITION AND COMBINATORS

3.1 Core Definitions

We are now ready to define our core datatype, displayed in the upper part of Figure 4. The
definition remains close to a coinductive implementation of the free monad, but hardcodes support
for an additional effect: unobservable, nondeterministic branching. The CTree datatype, much like
an ITree, is parameterized by a signature of (external) events E encoded as a family of types, and a
return type R. It is defined as a coinductive tree4 with four kind of nodes: pure computations (Ret),
external events (Vis), internal branching with implicitly associated g step (brS), and delayed internal
branching (brD). The continuation following external events is indexed by the return type specified
by the emitted event. For the sake of simpler exposition, we restrict both internal branches to be

4The actual implementation uses a negative style with primitive projections. We omit this technical detail in the presentation.
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(* Stuck processes *)

Definition stuckE (e : E void) : ctree E void := trigger e

Definition stuckS : ctree E void := brS 0

Definition stuckD : ctree E void := brD 0

CoFixpoint spinD : ctree E R := Guard spinD

CoFixpoint spinD_nary n : ctree E R := brD n ;; spinD_nary n

BCD2:

(* Spinning processes *)

CoFixpoint spinS : ctree E R := Step spinS

CoFixpoint spinS_nary n : ctree E R := brS n ;; spinS_nary n B?8=

g

Fig. 5. Concrete representations of stuck and spinning LTSs

of finite width: their continuation are indexed by finite types fin, but this is not a fundamental
limitation.5 When using finite branching, we abuse notation and write, for instance, �A 2

(
C D for

the computation branching with two branches, rather than explicitly spelling out the continuation
which branches on the choice index: fun i⇒ match i with 0⇒ t | 1⇒ u end.

The remainder of Figure 4 displays (superficially simplified) definitions of the core combinators.
As expected, ctree E forms a monad for any interface E: the bind combinator simply lazily crawls the
potentially infinite first tree, and passes the value stored in any reachable leaf to the continuation.
The iter combinator is central to encoding looping and recursive features: it takes as argument a
body, body, intended to be iterated, and is defined such that the computation returns either a new
index over which to continue iterating, or a final value; iter ties the recursive knot. Its definition
is analogous to the one for ITrees, except that we need to ask ourselves how to guard the cofix:
if body is a constant, pure computation, unguarded corecursion would be ill-defined. ITrees use
a later node for this purpose. Here, we instead use a unary delayed branch as a guard, written
Guard. We additionally write Step for the unary stepping branch—we will discuss how they relate
in Section 5.3. The minimal computations respectively triggering an event e, generating observable
branching, or delaying a branch, are defined as trigger, �A=

(
, and �A=

�
.

Convenience in building models comes at a cost: many CTrees represent the same LTS. Figure 5
illustrates this by defining several CTrees implementing the stuck LTS and the silently spinning one.
The stuckS and stuckD correspond to internal choices with no outcome, while stuckE is a question
to the environment that cannot be answered, leaving the computation hanging; the spinD* trees
are infinitely deep, but never find in their structure a transition to take. We define formally the
necessary equivalences on computations to prove this informal statement in Section 4. The astute
reader may wonder whether both kind of branching nodes really are necessary. While convenient,
we show in Section 4.5 that �A( can be expressed in terms of �A� and Step.

3.2 A Hint of Introspection: Heads of Computations

�A� nodes avoid the need for introspection on trees to model something as generic as a delayed
branching construct such as the one specified by BrDelayed. However, introspection becomes
necessary to build a tree that depends on the reachable external actions of the sub-trees. This is
the case for example for ccs’s parallel operator that we model in Section 6. The set of reachable
external actions is not computable in general, as we may have to first know if the computation
to the left of a sequence terminates before knowing if the events contained in the continuation

5We actually also support an extended version of the structure that defines enhanced CTrees, with arbitrary branching over

indexes specified in the type of the data structure by an interface akin to E.
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Variant action E R :=

| ARet (r : R)

| ABr {n} (k : fin n → ctree E R)

| AVis {X} (e : E X) (k : X → ctree E R).

CoFixpoint head {E X} (t : ctree E X) : ctree E (action E X) :=

match t with

| Ret x ⇒ Ret (ARet x) | Vis e k ⇒ Ret (AVis e k) | brS n k ⇒ Ret (ABr k)

| BrD n k ⇒ BrD n (fun i ⇒ head (k i))

end.

Fig. 6. Lazily computing the set of reachable observable nodes ( )

are reachable. We are, however, in luck, as we have at hand a semantic domain able to represent
potentially divergent computations: CTrees themselves!
The head combinator, described on Figure 6, builds a pure, potentially diverging computation

only made of delayed choices, and whose leaves contain all reachable subtrees starting with an
observable node. These “immediately” observable trees are captured in an action datatype, which
is used as the return type of the built computation. The head6 combinator simply crawls the tree by
reconstructing all delayed branches, until it reaches a subtree with any other node at its root; it
then returns that subtree as the corresponding action.

4 EQUIVALENCES AND EQUATIONAL THEORY FOR CTREES

Section 3 introduced CTrees, the domain of computations we consider, as well as a selection of
combinators upon it. We now turn to the question of comparing computations represented as CTrees
for notions of equivalence and refinement. In particular, we formalize the LTS representation of a
CTree that we have followed to justify our definitions. This section first introduces a (coinductive)
syntactic equality of CTrees, then it recovers the traditional notions of strong and weak bisimilarity
of processes, as well as trace equivalence, for an LTS derived from the tree structure. We equip
these notions with a primitive equational theory for CTrees; this theory provides the building
blocks necessary for deriving domain-specific equational theories, such as the ones established in
Section 6 for ccs, and in Section 7 for cooperative scheduling.

4.1 Coinductive Proofs and Up-to Principles in Coq

Working with CTrees requires the use of several coinductive predicates and relations to describe
equivalences, refinements and invariants. Doing so at scale in Coq would be highly impractical if
only using its native support for coinductive proofs, but it is nowadays more feasible thanks to
library support [Hur et al. 2013; Pous 2016; Zakowski et al. 2020]. Our development relies on Pous’s
coinduction library [Pous 2022a] to define and reason about the various coinductive predicates
and relations we manipulate. We briefly recall the essential facilities, based on the companion [Pous
2016], that the library provides. In particular, we define a subset of candidate “up-to” functions—we
indicate in the subsequent subsections which ones constitute valid up-to principles for respectively
the structural equality and the strong bisimulation we manipulate. Note: this section is aimed at the
reader interested in understanding the internals of our library: it can be safely skipped at first read.
The core construction provided by the library is a greatest fixpoint operator (gfp 1:X) for any

complete lattice X, and monotone endofunction 1 : X→ X. In particular, the sort of Coq propositions

6The head t computation could be typed at the empty interface. It is in practice simpler to directly type it at the same

interface as the t.
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reflD?' ≜ {(G, G)} symD?' ≜ {(~, G) | ' G ~} transD?' ≜ {(G, I) | ∃~, ' G ~ ∧ ' ~ I}

VisD?' ≜ {(+8B 4 :,+ 8B 4 : ′) | ∀E, ' (: E) (: ′ E)}

bindD? (4@D8E) ' ≜ {(G >>= :,~ >>= ;) | 4@D8E G ~ ∧ ∀E, ' (: E) (; E)}

uptoD? (4@D8E) ' ≜ {(G,~) | ∃G ′ ~ ′, 4@D8E G G ′ ∧ ' G ′ ~ ′ ∧ 4@D8E ~ ′ ~}

Fig. 7. Main generic up-to principles used for relations of CTrees where R : rel (ctree E X)

Prop forms a complete lattice, as do any function from an arbitrary type into a complete lattice—
coinductive relations, of arbitrary arity, over arbitrary types, can therefore be built using this
combinator. We most often instantiate X with the complete lattice of binary relations over CTrees:
X := ctree E A→ ctree E A→ Prop for fixed parameters E and A. We write such binary relations
as rel(A,B) for A→ B→ Prop, and rel(A) for rel(A,A); for instance: X := rel(ctree E A).
The library provides tactic support for coinductive proofs based on Knaster-Tarski’s theorem:

any post fixpoint is below the greatest fixpoint. Specialized to relations on CTrees, the proof method
consists in exhibiting a relation R, that can be thought of as a set of pairs of trees, providing a “coinduc-
tion candidate”, and proving that (∀ t u, R t u→ b R t u)→ ∀ t u, R t u→ gfp b t u. The
major benefit of the companion is, however, to further provide support for proofs by enhanced

coinduction.
Given an endofunction 1, a (sound) enhanced coinduction principle, also known as an up-to

principle, relies on an additional function 5 : X→ X allowing one to work with bf (the composition
of 1 with 5 ) instead of 1: any post fixpoint of 15 is below the greatest fixpoint of 1. Concretely,
the user has now access to a new proof principle. Rather than having to “fall back” exactly into
their coinduction hypothesis after “stepping” through 1, they may first apply 5 . In the case of a
coinductive relation, simple examples of up-to principles include adding the diagonal or swapping
the arguments, allowing one to conclude by reflexivity or invoke symmetry regardless of the
coinduction candidate considered.

Significant effort has been invested in identifying classes of sound up-to principles, and developing
ways to combine them [Pous 2007; Sangiorgi 1998; Sangiorgi and Rutten 2012]. The companion
relies on one particular sub-class of sound principles that forms a complete lattice, the compatible

functions: we hence can conduct proofs systematically up-to the greatest compatible function,
dubbed the companion and written t1 . In practice, this means that a coinductive proof can, on-the-
fly, use any valid up-to principle drawn from the companion. We refer the interested reader to
the literature [Pous 2016] and our formal development for further details, and describe below the
specialization to CTrees of the up-to functions we use.
Figure 7 describes the main generic up-to principles we use for our relations on CTrees.7 Note

that since we are considering relations on CTrees, each of these principles, these candidates “5 ”,
are endofunctions of relations: for instance, reflD? is the constant diagonal relation, symD? builds
the symmetric relation, transD? is the composition of relations. The validity of reflD? , symD? and
transD? for a given endofunction 1 entails respectively the reflexivity, symmetry and transitivity of
the relations (1t1 ') and (t1 '). These two relations are precisely the ones involved during a proof
by coinduction up-to companion: the former as our goal, the latter as our coinduction hypothesis.
The VisD? and bindD? (_) up-to functions help when reasoning structurally, respectively allowing
to cross through Vis nodes and bind constructs during proofs by coinduction. Finally, validity of
the uptoD? (4@D8E) principle allows for rewriting via the 4@D8E relation during coinductive proofs
for 1.

7These are the core examples of library level up-to principles we provide. For our ccs case study, we also prove the traditional

language level ones.
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4.2 Coinductive Equality for CTree

Coq’s equality, eq, is not a good fit to express the structural equality of coinductive structures—
even the eta-law for a coinductive data structure does not hold up-to eq. We therefore define, as
is standard, a structural equality8 by coinduction equ: rel(ctree E A) (written � in infix). The
endofunction simply matches head constructors and behaves extensionally on continuations.

Definition 4.1. Structural equality ( )

equ ≜ gfp _' ·{(Ret E, Ret E)} ∪ {(+8B 4 :, + 8B 4 : ′) | ∀E, ' (: E) (: ′ E)} ∪

{(�A=� :, �A=� : ′) | ∀E, ' (: E) (: ′ E)} ∪ {(�A=( :, �A=( : ′) | ∀E, ' (: E) (: ′ E)}

The equ relation raises no surprises: it is an equivalence relation, and is adequate to prove all
eta-laws—for the CTree structure itself and for the cofixes we manipulate. Similarly, the usual
monadic laws are established with respect to equ.

Lemma 4.2. Monadic laws ( )

Ret E >>= : � : E G ← C ;; Ret G � C (C >>= :) >>= ; � C >>= (_G ⇒ : G >>= ;)

Of course, formal equational reasoning with respect to an equivalence relation other than eq

comes at the usual cost: all constructions introduced over CTrees must be proved to respect equ (in
Coq parlance, they must be Proper), allowing us to work painlessly with setoid-based rewriting.
Finally, we establish some enhanced coinduction principles for equ.

Lemma 4.3. Enhanced coinduction for equ ( )

reflD? , symD? , transD? , bindD? (�) and uptoD? (�) provide valid up-to principles for equ.

While equ, being a structural equivalence, is very comfortable to work with, it, naturally, is much
too stringent. To reason semantically about CTrees, we need a relation that remains termination
sensitive but allows for differences in internal steps, that still imposes a tight correspondence over
external events, but relaxes its requirement for nondeterministically branching nodes. We achieve
this by drawing from standard approaches developed for process calculi.

4.3 Looking at CTrees under the Lens of Labeled Transition Systems

To build a notion of bisimilarity between CTree computations, we associate a labeled transition
system to a CTree, as defined in Figure 8. This LTS exhibits three kinds of labels: a tau9 witnesses
a stepping branch, an obs e x observes the encountered event together with the answer from the
environment considered, and a val v is emitted when returning a value. Interestingly, there is
a significant mismatch between the structure of the tree and the induced LTS: the states of the
LTS correspond to the nodes of the CTree that are not immediately preceded by a delayed choice.
Accordingly, the definition of the transition relation between states inductively iterates over delayed
branches. Stepping branches and visible nodes map immediately to a set of transitions, one for each
outgoing edge; finally a return node generates a single ret transition, moving onto a stuck state,
encoded as a nullary branching node and written ∅. These rules formalize the intuition we gave in
Section 2.2 that allowed us to derive the LTSs of Figure 3 from the corresponding ImpBr terms.

Defining the property of a tree to be stuck, that is: C ↛ ≜ ∀; D, ¬(C
;
−→ D), we can make the

depictions from Figure 5 precise: nullary nodes are stuck by construction, since stepping would

8Note that for ITrees, this relation corresponds to what Xia et al. dub as strong bisimulation, and name eq_itree. We

carefully avoid this nomenclature here to reserve this term for the relation we define in Section 4.4
9We warn again the reader accustomed to ITrees to think of tau under the lens of the process algebra literature, and not as

a representation of ITree’s Tau constructor.
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label ≜ tau | obs 4 E | val E

: E
;
−→ C

�A=� :
;
−→ C �A=( :

tau
−−→ : E +8B 4 :

obs 4 E
−−−−−→ : E Ret E

val E
−−−−→ ∅

Fig. 8. Inductive characterisation of the LTS induced by a CTree ( )

C
;
−→ D ; ≠ val E

C >>= :
;
−→ D >>= :

C
val E
−−−−→ ∅ : E

;
−→ D

C >>= :
;
−→ D

C >>= :
;
−→ D

(; ≠ val E ∧ ∃C ′, C
;
−→ C ′ ∧ D � C ′ >>= :) ∨ (∃E, C

val E
−−−−→ ∅ ∧ : E

;
−→ D)

Fig. 9. Transitions under bind ( )

require a branch, while spinD_nary is proven to be stuck by induction, since it cannot reach any
step.

�A 0( ↛ �A 0� ↛ spinD_nary = ↛

The stepping relation interacts slightly awkwardly with bind: indeed, although a unit for bind,
the Ret construct is not inert from the perspective of the LTS. Non val transitions can therefore be
propagated below the left-hand-side of a bind, while a val transition in the prefix does not entail
the existence of a transition in the bind—Figure 9 describes the corresponding lemmas.

We additionally define the traditional weak transition B
;
=⇒ C on the LTS that can perform tau

transitions before or after the ; transition (and possibly be none if ; = g). This part of the theory
is so standard that we can directly reuse parts of the development for ccs that Pous developed
to illustrate the companion [Pous 2022b], with the exception that we need to work in a Kleene
Algebra with a model closed under equ rather than eq.

4.4 Bisimilarity

Having settled on the data structure and its induced LTS, we are back on a well-traveled road:
strong bisimilarity (referred simply as bisimilarity in the following) is defined in a completely
standard way over the LTS view of CTrees.

Definition 4.4 (Bisimulation for CTrees ( )). The progress function B1 for bisimilarity maps a
relation R over CTrees to the relation such that B1 ' B C holds if and only if:

∀; B ′, B
;
−→ B ′ =⇒ ∃C ′. B ′ R C ′ ∧ C

;
−→ C ′

and conversely

∀; C ′, C
;
−→ C ′ =⇒ ∃B ′. B ′ R C ′ ∧ B

;
−→ B ′

i.e.

B B1 R C

B ′
;

R C ′
;

Bisimilarity, written B ∼ C , is defined as the greatest fixpoint of B1: sbisim ≜ gfp B1.

All the traditional tools surrounding bisimilarity can be transferred to our setup. We omit the
details for spacing concerns, but additionally provide:

• weak bisimilarity, written B ≈ C , derived from the definition of the weak transition ( );
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G = ~

Ret G ∼ Ret ~
=====================

∀G, ℎ G ∼ : G

+8B 4 ℎ ∼ +8B 4 :
=========================

(∀G, ∃~, ℎ G ∼ : ~) ∧ (∀~, ∃G, ℎ G ∼ : ~)

�A=( ℎ ∼ �A<( :
===============================================================

(∀G, ∃~, ℎ G ∼ : ~) ∧ (∀~, ∃G, ℎ G ∼ : ~)

�A=� ℎ ∼' �A<� :

C ∼ D (∀G, 6 G ∼ : G)

C >>= 6 ∼ D >>= :

Guard C ∼ C
D ↛

�A 2� C D ∼ C
�A 2� C (�A 2� D E) ∼ �A 2� (�A

2
� C D) E �A 2� C D ∼ �A 2� D C

�A 2� C C ∼ C �A 2� (�A
2
� C D) E ∼ �A 3� C D E �A 2( C D ∼ �A 2( D C �A 2( C C ∼ Step C

Step C ≈ C spinD_nary = ∼ spinD_nary<
(= > 0 ∧< > 0) ∨ (= =< = 0)

spinS_nary = ∼ spinS_nary<

Fig. 10. Elementary equational theory for CTrees ( )

• a characterization of the traces (represented as colists) of a CTree, used to define trace-
equivalence (written ≡tr) ( );
• strong simulations (written ≲), defined as the greatest fixpoint of the half game for strong
bisimulation ( ).

4.4.1 Core Equational Theory. Bisimilarity forms an equivalence relation satisfying a collection of
primitive laws for CTrees summed up in Figure 10. We use simple inference rules to represent an
implication from the premises to the conclusion, and double-lined rules to represent equivalences.
Each rule is proved as a lemma with respect to the definitions above.

The first four rules recover some structural reasoning on the syntax of the trees from its semantic
interpretation. These rules are much closer to what eutt provides by construction for ITrees: leaves
are bisimilar if they are equal, and computations performing the same external interaction must
remain point-wise bisimilar. Stepping branches, potentially of distinct arity, can be matched one
against another if and only if both domains of indexes can be injected into the other to reestablish
bisimilarity. In contrast, this condition is sufficient but not necessary for delayed branches, since
the points of the continuation structurally immediately accessible do not correspond to accessible
states in the LTS. Finally, bisimilarity is a congruence for bind.
Another illustration of this absence of equivalence for delayed branching nodes as head con-

structor is that such a computation may be strongly bisimilar to a computation with a different
head constructor. The simplest example is that sbisim can ignore (finite numbers of) Guard nodes.
Another example is that stuck processes behave as a unit for delayed branching nodes. We further-
more obtain the equational theory that we expect for nondeterministic effects. Delayed branching
is associative, commutative, idempotent, and can be merged into delayed branching nodes of larger
arity w.r.t. sbisim.10 In contrast, stepping branches are only commutative, and almost idempotent,
provided we introduce an additional Step. This Step can in turn be ignored by moving to weak
bisimilarity, making stepping branches commutative and properly idempotent; however, it crucially
remains not associative, a standard fact in process algebra.11

Finally, two delayed spins are always bisimilar (neither process can step) while two stepping
spins are bisimilar if and only if they are both nullary (neither one can step), or both non-nullary.

10Stating these facts generically in the arity of branching is quite awkward, we hence state them here for binary branching,

but adapting them at other arities is completely straightforward.
11This choice would be referred as external in this community
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Ret E ∼' Ret E

∀E, ' (: E) (: ′ E)

+8B 4 : ∼' +8B 4 : ′

(∀G, ∃~, ' (: G) (: ′ ~)) ∧ (∀~, ∃G, ' (: G) (: ′ ~))

�A=( : ∼' �A<( : ′

∀E, ' (: E) (: ′ E)

�A=( : ∼' �A=( : ′

(∀G, ∃~, (: G) ∼' (:
′ ~))∧(∀~, ∃G, (: G) ∼' (:

′ ~))

�A=� :∼' �A
<
� : ′

C ∼' D

Guard C ∼' Guard D

C ' D

Step C ∼' Step D

Fig. 11. Proof rules for coinductive proofs of sbisim ( )

We omit the formal equations for sake of space here, but we additionally prove that the iter

combinator deserves its name: the Kleisli category of the ctree E monad is iterative w.r.t. strong
bisimulation ( ). Concretely, we prove that the four equations described in [Xia et al. 2020],
Section 4, hold true. The fact that they hold w.r.t. strong bisimulation is a direct consequence of
the design choice taken in our definition of iter: recursion is guarded by a Guard. We conjecture
that one could provide an alternate iterator guarding recursion by a Step, and recover the iterative
laws w.r.t. weak bisimulation, but have not proved it and leave it as future work.
Naturally, this equational theory gets trivially lifted at the language level for ImpBr ( ). The

acute reader may notice that in exchange for being able to work with strong bisimulation, we have
mapped the silently looping program to spinD, hence identifying it with stuck processes. For an
alternate model observing recursion, one would need to investigate the use of the alternate iterator
mentioned above and work with weak bisimilarity.

4.4.2 Proof System for Bisimulation Proofs. As is usual, the laws in Figure 10, enriched with
domain-specific equations, allow for deriving further equations purely equationally. But to ease the
proof of these primitive laws, as well as new nontrivial equations requiring explicit bisimulation
proofs, we provide proof rules that are valid during bisimulation proofs.
Given a bisimulation candidate ', we write C ∼' D for B1 (tB1 ') : one needs to “play the

bisimulation game” by crossing B1, and may rely on ' to conclude by coinduction, while furthermore
being able to exploit the companion tB1 to leverage sound up-to principles. We depict the main rules
we use in Figure 11. These proof rules are notably convenient because they avoid an exponential
explosion in the number of cases in our proofs, which otherwise would arise due to the systematic
binary split entailed by the natural way to play the bisimulation game. These rules essentially match
up counterpart CTree constructors at the level of bisimilarity, but additionally make a distinction
as to whether applying the rule soundly acts as playing the game—i.e., the premises refer to ',
allowing to conclude using the coinduction hypothesis—or whether they do not—, i.e., the premises
still refer to ∼' . The latter situation arises when using the proof rules that strip off delayed branches
from the structure of our trees: on either side, they do not entail any step in the corresponding
LTSs, but rather correspond to recursive calls to its inductive constructor.
Furthermore, we provide a rich set of valid up-to principles:

Lemma 4.5. Enhanced coinduction for sbisim ( ) The functions reflD? , symD? , transD? , VisD? ,

bindD? (∼), uptoD? (�) and uptoD? (∼) provide valid up-to principles for sbisim.

In particular, the equation Guard C ∼ C can be used for rewriting during bisimulation proofs,
allowing for asymmetric stripping of guards.
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Definition interp (h : E { M) : ctree E { M := fun R ⇒

iter (fun t ⇒ match t with

| Ret r ⇒ ret (inr r)

| BrD n k ⇒ bind (mBrD n) (fun x ⇒ ret (inl (k x)))

| BrS n k ⇒ bind (mBrS n) (fun x ⇒ ret (inl (k x)))

| Vis e k ⇒ bind (h e) (fun x ⇒ ret (inl (k x)))

end).

Fig. 12. Interpreter for CTrees (class constraints omi�ed) ( )

4.5 Eliminating Nondeterministic Stepping Choices

Out of programming convenience, CTrees offer both stepping and delayed branching of arbitrary
arity. However, as hinted at in Section 3, this is superfluous: a stepping branch can always be
simulated by delaying the same choice, and guarding each branch by a unary Step. We make this
intuition formal by proving that the following combinator, precisely performing this transformation,
preserves the behavior of the computation with respect to sbisim.

Definition 4.6 (Elimination of nondeterministic stepping choice ( )).

Definition BrSElim {E X} (t : ctree E X) : ctree E X :=

iter (fun t ⇒ match t with

| Ret r ⇒ Ret (inr r)

| brD k ⇒ x � �A=
�
;; Ret (inl (k x))

| brS k ⇒ x � �A=
�
;; Step (Ret (inl (k x)))

| Vis e k ⇒ x � trigger e;; Ret (inl (k x))

end) t.

Lemma 4.7. Stepping nondeterministic branches can be eliminated ( ) ∀C, BrSElim C ∼ C

The proof of this statement is quite illustrative of bisimulation proofs over CTrees. We provide
its sketch in the extended version [Chappe et al. 2023] as a means to illustrate the layers of facilities
put in place in the formal development to allow for the translation of paper intuitions, most notably
the enhanced coinduction principles that the companion allows us to build. It also illustrates the
difficulties that the structure raises when bridging the distance between the syntax (the tree) and
its implicit semantics (the LTS).

5 INTERPRETATION FROM AND TO CTREES

The ITree ecosystem fundamentally relies on the incremental interpretation of effects, represented
as external events, into their monadic implementations. Through this section, we show how CTrees
fit into this narrative both by supporting the interpretation of their own external events, and by
being a suitable target monad for ITrees, for the implementation of nondeterministic branching.

5.1 Interpretation

ITrees support interpretation: provided a handler h:E { M implementing its signature of events E
into a suitable monad M, the (interp h):itree E { M combinator provides an implementation of
any computation into M. The only restriction imposed on the target monad M is that it must support
its own iter combinator, i.e., be iterative, so that the full coinductive nature of the tree can be
internalized in M. For this implementation to be sensible and amenable to verification in practice,
one must, however, check an additional property: interp h should form a monad morphism—in
particular, it should map eutt ITrees to equivalent monadic computations in M.
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Fig. 13. Two strongly bisimilar trees before interpretation (le�), but not a�er (right)

Unsurprisingly, given their structure, CTrees enjoy their own interp combinator. Its definition,
provided in Figure 12, is very close to its ITree counterpart. The interpreter relies on the CTree
version of iter, chaining the implementations of the external events in the process. The target
monad must naturally still be iterative, but must also explain how it internalizes branching nodes
through the mBrD and mBrS operations.
Perhaps more surprisingly, the requirement that interp h define a monad morphism unearths

interesting subtleties. Let us consider the elementary case where the interface E is implemented in
terms of (possibly pure) uninterpreted computations, that is when M := ctree F. The requirement
becomes: ∀C D, C ∼ D → interp h C ∼ interp h D. But this result does not hold for an arbitrary h:
intuitively, our definition for sbisim has implicitly assumed that implementations of external events
may eliminate reachable states in the computation’s induced LTS—through pure implementations—
but should not be allowed to introduce new ones.
The counter-example in Figure 13, where flip is the binary event introduced in Section 2.2,

fleshes out this intuition. Indeed, both trees are strongly bisimilar: each of them can emit the label
obs flip false by stepping to either the Ret 0 or Ret 2 node, or emit the label obs flip true by
stepping to either the Ret 1 or Ret 3 node. However, they are strongly bisimilar because the induced
LTS processes the question to the environment—flip— and its answer—false/true—in a single
step, such that the computations never observe that they have had access to distinct continuations.
However, if one were to introduce in the tree a Step node before the external events, for instance
using the handler h := fun e⇒ Step (trigger e), a new state allowing for witnessing the distinct
continuations would become available in the LTSs, leading to non-bisimilar interpreted trees.
We hence say a handler h : E { ctree F is simple if it implements each event e either as a

pure leaf, i.e., h e = Ret x, or simply translates it, i.e., h e = trigger f. Similarly, we say that
h : E { stateT S (ctree F) is simple if it is point-wise simple. We show that we recover the
desired property for the subclass of simple handlers:
Lemma 5.1 (Simple handlers interpret into monad morphisms ( )).

• If h : E { ctree F is simple, then ∀C D, C ∼ D → interp h C ∼ interp h D.

• If h : E { stateT (ctree F) is simple, then ∀C D, C ∼ D → ∀B, interp h C B ∼ interp h D B.

The latter result is, in particular, sufficient to transport ImpBr equations established before
interpretation—such as the theory of br _ or _—through interpretation ( ). More generally, we
can reason after interpretation to establish equations relying both on the nondeterminism and state
algebras, for instance to establish the equivalence ?3 ≡ br ?2 or ?3 mentioned in Section 2.2 ( ).

5.2 Refinement

Interpretation provides a general theory for the implementation of external events. Importantly,
CTrees also support an analogous facility for the refinement of its internal branches: one can shrink
the set of accessible paths in a computation—and, in particular, determinize it.
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Definition refine (h : bool → ∀(n:nat), M (fin n)) : ctree E { M := fun R ⇒

iter (fun t ⇒ match t with

| Ret r ⇒ ret (inr r)

| BrD n k ⇒ bind (h false n) (fun x ⇒ ret (inl (k x)))

| BrS n k ⇒ bind (h true n) (fun x ⇒ ret (inl (k x)))

| Vis e k ⇒ bind (mtrigger e) (fun x ⇒ ret (inl (k x)))

end).

Fig. 14. Refiner for CTrees (class constraints omi�ed) ( )

Definition refine_cst (h : bool → ∀(n:nat), fin (S n)) : ctree E { ctree E :=

refine (fun b n ⇒ match n with

| O ⇒ stuckD

| S n ⇒ if b then Step (Ret (h b n)) else Guard (Ret (h b n))

end).

Definition refine_state (h : St → ∀(b:bool) (n:nat), St * fin (S n))

: ctree E { stateT St (ctree E) :=

refine (fun b n s ⇒ match n with O ⇒ stuckD | S n ⇒ Ret (h s b n) end).

Fig. 15. Constant and stateful refinements ( )

We provide, to this end, a new combinator, refine, defined in Figure 14. Similar to interp, it takes
as an argument a handler specifying how to implement our object of interest into a monad M. Since
here we are interested in the implementation of branching nodes, the handler describes how to
monadically choose a branch—the boolean flag allows for different behaviors between delayed and
stepping branches.12 As usual, the implementation monad must be iterative, but this time it must
also specify how to re-embed the external events using an operation called mtrigger (a concept
already used in Yoon et al. [Yoon et al. 2022a]).
As hinted at by the combinator’s name, the source program should be able to simulate the

refined program. Fixing M to ctree F, this is expressed as ∀C, refine h C ≲ C . However, one cannot
hope to obtain such a result for an arbitrary h, because it could implement internal branches
with an observable computation that can’t be simulated by C . We hence provide two illustrative
families of well-behaved refinements, depicted on Figure 15. Constant refinements, implemented
into ctree E, lift a function systematically, returning the same branch given the nature and arity of
the branching node. Stateful refinements carry a memory into a piece of state St and implement
the refinement into stateT St (ctree E) by using the current state to pick a branch, and update
the state. A particular example of such a stateful refinement is a round-robin scheduler.

Lemma 5.2. The constant and stateful refinements are proper refinements ( ) 13

∀ℎ C, refine_cst ℎ C ≲ C and ∀ℎ C B, refine_state ℎ C B ≲ C

Finally, the shallow nature of CTrees also offers testing opportunities. Xia et al. [Xia et al. 2020]
describe how external events such as IO interactions can alternatively be implemented in OCaml

and linked against at extraction. Similarly, we demonstrate on ImpBr how to execute a CTree

12This definition becomes even more uniformwith interp once we allow for parameterized, arbitrary indexing of branching

nodes, as in the enhanced CTrees branch of our development.
13The second theorem actually cannot be stated in the main development provided as artifact: the return types of the trees

are not identical — the refined tree computes additionally a final state. We prove it in the enhanced CTrees branch with

support for heterogeneous relations and arbitrary relations on labels.
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Definition inject {E} : itree E { ctree E := interp (fun e ⇒ trigger e).

Definition internalize {E} : ctree (Choose +' E) { ctree E :=

interp (fun e ⇒ match e with | inl1 (choose n) ⇒ �A=
(
| inr1 e ⇒ trigger e).

Definition embed {E} : itree (Choose +' E) { ctree E :=

fun _ t ⇒ internalize (inject t).

Fig. 16. Implementing external branching events into the CTree monad ( )

by running an impure refinement implemented in OCaml by picking random branches along the
execution.

5.3 ITree Embedding

We have used CTrees directly as a domain to represent the syntax of ImpBr, as well as in our
case studies (see Section 6 and 7). CTrees can, however, fulfill their promise sketched in Section 2,
and be used as a domain to host the monadic implementation of external representations of
nondeterministic events in an ITree.

To demonstrate this approach, we consider the family of events choose (n: nat) : Choose (fin n),
and aim to define an operator embed taking an ITree computation modeling nondeterministic branch-
ing using these events, and implementing them as stepping branches into a CTree. This operator,
defined in Figure 16, is the composition of two transformations. First, we inject ITrees into CTrees
by (ITree) interpretation. This injection rebuilds the original tree as a CTree, where Tau nodes
have become Guard nodes, and an additional Guard has been introduced in front of each external
event. Second, we internalize the external branching contained in a CTrees implementing a Choose
event, using the isomorphic stepping branch. The resulting embedding forms a monad morphism
transporting eutt ITrees into sbisim CTrees:

Lemma 5.3. embed respects eutt ( ) ∀C D, eutt C D =⇒ 4<143 (C) ∼ 4<143 (D)

The proof of this theorem highlights how Tau nodes in ITrees collapse two distinct concepts
that nondeterminism forces us to unravel in CTrees. The eutt relation is defined as the greatest
fixpoint of an inductive endofunction euttF. In particular, one can recursively and asymmetrically

strip finite amounts of Tau—the corecursion is completely oblivious to these nodes in the structures.
Corecursively, however, Tau nodes can be matched symmetrically—a construction that is useful
in exactly one case, namely to relate the silently spinning computation, Taul , to itself. From the
CTrees perspective, recursing in euttF corresponds to recursion in the definition of the LTS: Tau
nodes are Guard nodes. But corecursing corresponds to a step in the LTS: Taul corresponds to
Stepl . ITrees’ Tau thus corresponds to either a Guard or a Step. Nondeterminism forces us to
separate both concepts, as whether a node in the tree constitutes an accessible state in the LTS
becomes semantically relevant. We obtain two "dual" notions that have no equivalent in ITrees:
we may have finite amounts of asymmetric corecursive choices, i.e., finitely many Steps, and
structurally infinite stuck processes, i.e., Guardl .
In the proof of Lemma 5.3, this materializes by the fact that an induction on euttF leaves us

disappointed in the symmetric Tau case: we have no applicable induction hypothesis, but expose in
our embedding a Guard, which does not allow us to progress in the bisimulation. We must resolve
the situation by proving that being able to step in embed t implies that t is not Taul , i.e., that we
can inductively reach a Vis or a Ret node ( ).

Limitations: on guarding recursive calls using Guard. We have shown that CTrees equipped with
iter as recursor and strong bisimulation as equivalence form an iterative monad. Furthermore,
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building interpretation atop this iter combinator gives rise to a monad morphism respecting eutt,
hence is suitable for implementing non-deterministic effects represented as external in an ITree.

However, we stress that the underlying design choice in the definition of iter, guarding recursion
using Guard, is not without consequences. It has strong benefits, mainly that a lot of reasoning can
be performed against strong bisimulation. More specifically, this choice allows the user to reserve
weak bisimulation for the purposes of ignoring domain-specific steps of computations that may
be relevant both seen under a stepping or non-stepping lens—e.g., synchronizations in ccs—but
it does not impose this behavior on recursive calls. However, it also leads to a coarse-grained
treatment of silent divergence: in particular, the silently diverging ITree (an infinite chain of Tau)
is embedded into an infinite chain of Guard, which, we have seen, corresponds to a stuck LTS. For
some applications—typically, modeling other means of being stuck and later interpreting them
into a nullary branch—one would prefer to embed this tree into the infinite chain of Step to avoid
equating both computations. While one could rely on manually introducing a Step in the body
iterated upon when building the model, that approach is a bit cumbersome.

Instead, a valuable avenue would be to develop the theory accompanying the alternate iterator
mentioned in Section 4.4 and guarding recursion using Step. Naturally, the corresponding monad
would not be iterative with respect to strong bisimulation, but we conjecture that it would be
against weak bisimulation. From this alternate iterator would arise an alternative embedding of
ITrees into CTrees: we conjecture it would still respect eutt, but seen as a morphism into CTrees
equipped with weak bisimulation. The development accompanying this paper does not yet support
this alternate iterator, we leave implementing it to future work.
Currently, the user has the choice between (1) not observing recursion at all, but getting away

with strong bisimulation in exchange, (2) manually inserting Step at recursive calls that they chose
to observe. With support for this alternate iterator, the user would be given additional option to (3)
systematically tau-observe recursion, at the cost of working with weak bisimulation everywhere.

6 CASE STUDY: A MODEL FOR CCS

We claim that CTrees form a versatile tool for building semantic models of nondeterministic systems,
concurrent ones in particular. In this section, we illustrate the use of CTrees as a model of concurrent
communicating processes by providing a semantics for Milner’s Calculus of Communicating
Systems (ccs) [Milner 1989]. The results we obtain—the usual algebra, up-to principles, and precisely
the same equivalence relation as the usual operational-based strong bisimulation—are standard,
per se, but they are all established by exploiting the generic notion of bisimilarity of CTrees. The
result is a shallowly embedded model for ccs in Coq that could be easily, and modularly, combined
with other language features.

6.1 Syntax and Operational Semantics

The syntax and operational semantics of ccs are shown in Figure 17. The language assumes a
set of names, or communication channels, ranged over by c. For any name c, there is a co-name
c̄ satisfying ¯̄c = c. An action is represented by a label ; ; it is either a communication label c or c̄,
representing the sending/reception of a message on a channel, or the reserved action g , which
represents an internal action.
The standard operational semantics, shown in the figure, is expressed as a labeled transition

system, where states are terms % and labels are actions ; . The ccs operators are the following:
0 is the process with no behavior. A prefix process ; · % emits an action ; and then becomes the
process % . The internal choice P ⊕ Q behaves either like the process P or like the process Q, in the
same fashion as the BrInternal semantics for br in Section 2.2. The parallel composition of two
processes P ∥ Q interleaves the behavior of the two processes, while allowing the two processes
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; ::= g | c | c̄ P ::= 0 | ; · P | P ⊕ Q | P ∥ Q | ac · P | !P

0 · %
0
−→ccs %

%
;
−→ccs %

′

% ⊕ &
;
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′

&
;
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′
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−→ccs &

′

%
;
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′
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;
−→ccs %

′

Fig. 17. Syntax for ccs ( ) and its operational semantics ( )

0 ≜ ∅ 0·? ≜ trigger 0 ;; ? ?⊕@ ≜ �A 2� ? @ !? ≜ ? ∥!?

a2 ·% ≜ interp h_new 2 % where h_new 2 4 =

{

∅ if 4 = 02C 2 or 4 = 02C 2̄

trigger 4 otherwise

? ∥@ ≜ cofix � ? @ · �A 3� (? ′← head ? ;; actL � @ ? ′)

(@′← head @ ;; actR � ? @′)

(? ′← head ? ;; @′← head @ ;; 02C!' � ? ′ @′)

actL � @ (�A=
(
:) ≜ �A=

(
(_8 · � (: 8) @)

actL � @ (+8B 4 :) ≜ +8B 4 (_8 · � (: 8) @)

actR � ? (�A=
(
:) ≜ �A=

(
(_8 · � ? (: 8))

actR � ? (+8B 4 :) ≜ +8B 4 (_8 · � ? (: 8))

actLR � A A ′ ≜

{

Step · � (: ()) (: ′ ()) if ∃0. A = +8B (02C 0) : ∧ A ′ = +8B (02C 0̄) : ′

∅ otherwise

Fig. 18. Denotational model for ccs using ccs# as a domain ( )

to communicate. If the process P emits a name c and the process Q emits its co-name c̄, then the
two processes can progress simultaneously and the parallel composition emits an internal action g .
Channel restriction ac · P prevents the process P from emitting an action c or c̄: the operational
rule states that any emission of another action is allowed. Finally the replicated process !P behaves
as an unbounded replication of the process P . Operationally, !P has the behavior of % ∥!P .

6.2 Model

We define a denotational model for ccs using ctree actE void as domain, written ccs# in the
following. As witnessed by this type, processes do not return any value, but may emit actions
modeled as external events expecting unit for answer: Inductive actE ::= | act a : actE unit.
Figure 18 defines the semantic operators associated with each construct of the language. They are
written as over-lined versions of their syntactic counterparts, and defined over ccs#.

The empty process is modeled as a stuck tree—we cannot observe it. Actions are directly defined
as visible events, and thus the prefix triggers the action, and continues with the remaining of the
process. As discussed in Section 2.2, the delayed branching node fits exactly with the semantics of
the choice operator in ccs, only progressing if one of the composed terms progresses. Restriction
raises a minor issue: the compositional definition implies that the CTree for the restricted term has
already been produced when we encounter the restriction and, a priori, that tree might contain
visible actions on the name being restricted. We enforce scoping by replacing those actions by
a stuck tree, ∅, effectively cutting these branches. This is done using the interp operator from
CTrees, with h_new, a handler that does the substitution.
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Parallel composition is more intricate, as the operator requires significant introspection of the
composed terms. The traditional operational semantics of ccs is not explicitly constructive: each
of the three reduction rules depends on the existence of specific transitions in the sub-processes.

�A 3
�

head p

0

? ′∥@

0, ? ′
head q

0

? ∥@′

0, @′

head p

head q

Step

? ′∥@′

02C 2, ? ′

02C 2̄, @′

∅

otherwise

Fig. 19. Depiction of the tree resulting from ? ∥@

We perform this necessary introspection, in a
constructive way, defining the tree as an ex-
plicit cofixpoint, and using the head operator
introduced in Section 3.2. While the operation
head p precisely captures the desired set of ac-
tions that ? may perform, computing this set
could, in general, silently diverge. We therefore
cannot bluntly initiate the computation by se-
quencing the heads of ? and @, as divergence in
the former may render inaccessible valid tran-
sitions in the latter.14 Instead, we initiate the
computation with a ternary delayed choice: the
left (resp. middle) branch captures the behav-
iors starting with an interaction by ? (resp. @),
while the right branch captures the behaviors
starting with a synchronisation between ? and @. Essentially, the tree nondeterministically explores
the set of applicable instances of the three operational rules for parallel composition. In particular,
if the operational rule to step in the left (resp. right) process is non-applicable, the left (resp. middle)
branch of the resulting tree silently diverges. The right branch silently diverges if neither process
can step, but, in general, it also contains branches considering the interaction of incompatible
actions; we cut these branches by inserting ∅. In all cases, the operator continues corecursively,

having progressed in either or both processes. Figure 19 shows the CTree resulting from ? ∥@.

The last operator to consider is the replication !. In theory, it could be expressed in terms of

parallel composition directly, as the cofix !? ≜ ? ∥ !? . Unfortunately, although it is sound, defining

the ! operator in this way is too involved for Coq’s syntactic criterion on cofixes to recognize

that the corecursive call is guarded under ∥. To circumvent this difficulty, we use an auxiliary

operator, ? ∥!@, capturing the parallel composition of a process ? with a replicated process !@. It
nondeterministically explores the four kinds of interactions that such a process could exhibit: a step
in ? ; the creation of a copy of @ performing a step to ? ′, before being composed in parallel with ? ;
the creation of a copy of @ synchronizing with ? ; or the emission of two copies of @ synchronizing

one with another. We finally define the replication operator as !? ≜ ? ∥!? . We omit the formal

definition here, since it is similar to that for ∥, but point out the interested reader to its formal
counterpart ( ).
With these tools at hand, the model J·K : ccs→ ccs# is defined by recursion on the syntax.

Equational Theory. We provide a first validation of our model by proving that it satisfies the
expected equational theory with respect to CTrees’s notion of strong bisimulation, enabling the
usual algebraic reasoning advocated for process calculi. In particular, we prove that our definition

for the replication is sane in that it validates equationally the expected definition: !? ∼ !? ∥? ( ).

14Technically, the variant of ccs considered here actually cannot generate such a computation, so we could therefore rule

this case out extensionally. The case could, however, easily arise in a variant of ccs relying on recursive processes rather

than replication, and in other calculi, so we therefore favor this more general, reusable, approach.
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We also prove an illustrative collection of expected equations satisfied by our operators ( ):

?⊕@ ∼ @⊕? ?⊕(@⊕A ) ∼ (?⊕@)⊕A ?⊕0 ∼ ? ?⊕? ∼ ?

? ∥0 ∼ ? ? ∥@ ∼ @∥? ? ∥(@∥A ) ∼ (? ∥@)∥A

To facilitate these proofs, we first prove sound up-to principles at the level of ccs for each construc-

tor: strong bisimulation up-to 2 ·[·], [·]⊕[·], [·] ∥ [·], ![·], and a2 ·[·] are all valid principles, allowing
us to rewrite sbisim under semantic contexts during bisimulation proofs. Additionally to these
language-level up-to principles, we inherit the ones generically supported by sbisim (Lem. 4.5).

6.3 Equivalence with the Operational Strong Bisimilarity

In addition to proving that we recover in our semantic domain the expected up-to principles and
the right algebra, we furthermore show that the model is sound and complete with respect to
strong bisimulation compared to its operational counterpart. We do so by first establishing an
asymmetrical bisimulation between ccs and ccs#, matching operational steps over the syntax to
semantic steps in the CTree. We write ;̄ for the obvious translation of labels between both LTSs.

Definition 6.1 (Strong bisimulation between ccs and ccs#.). A relation R : A4; (ccs, ccs#) is a
strong bisimulation if and only if, for any label ; , ccs term % , and ccs# tree @.

% R @ ∧ %
;
−→ccs %

′
=⇒ ∃@′, % ′ R @′ ∧ @

;̄
−→ @′

and conversely

% R @ ∧ @
;̄
−→ @′ =⇒ ∃% ′. % ′ R @′ ∧ %

;
−→ % ′

% R @

% ′
;

R @′
;̄

ccs

Lemma 6.2 ( ). The relation ' ≜ {(%, @) | J%K ∼ @} is a strong bisimulation.

We derive from this result that the operational and semantic strong bisimulations define exactly
the same relation over ccs:

Lemma 6.3 ( ). ∀% &, J%K ∼ J&K iff % ∼ccs &

7 CASE STUDY: MODELING COOPERATIVE MULTITHREADING

As a second case study, we consider cooperative multithreading. Cooperative scheduling is used in
languages such as Javascript, async Rust, or Akka/Scala actors, but is also a very general model,
as preemptive multi-tasking is equivalent to cooperative scheduling where threads are willing to
yield (i.e., let other threads run) at any time. We extend the syntax of imp with two constructs:

comm ≜ skip | G ::= 4 | 21; 22 | while 1 do 2 | fork 21 22 | yield

The command fork forks two copies of the currently running program, the first of which first
runs 21 and the second of which first runs 22, before they each proceed with the rest of the program.
Importantly, 22 retains control, and 21 will only execute when 22 voluntarily yields control or ends.
This yielding of control is achieved by the yield statement, which signals that the current thread
stops and lets a new thread run—possibly the same one again.

This semantics implements a mechanism like the fork system call, which duplicates the current
process, but without a possibility for joining threads. For example, the program

(fork (G ::= 1) (yield; G ::= 2)); ~::= G

forks two copies of the program, with the “main” thread immediately yielding, allowing for either
thread to run next. Its semantics is to first spawn a thread for G ::= 1, then have the main thread
reach the yield, giving G ::= 1 a chance to run. Assuming the spawned thread goes next, it runs in
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sequence G ::= 1 and ~::= G , after which the main thread recovers control and finishes its execution.
~::= G is part of both threads and is thus executed twice, after each assignment to G .

Alternatively, some cooperative scheduling languages [Abadi and Plotkin 2010] consider a spawn
operator that simply spawns an independent thread: we can encode this behavior in several ways.
Notably, if spawn always occurs in tail position, there is no continuation to duplicate. For instance,
the program

fork G ::= 1 (fork (G ::= 2) skip)

spawns two threads that set G to different values, and terminates. The two spawned threads can
then be scheduled in either order, resulting in G = 1 or G = 2 in the final state. This constraint
could be syntactically enforced in the language if relevant. Alternatively, one can use the command
while true do yield to “terminate” a thread; for instance to prevent the first thread above from
reaching ~::= G . With fancier encodings using reserved shared-variables, nested “joins” and other
synchronization operations can be modeled. In this case study, we do not concern ourselves with
such extensions, and restrict ourselves to the formalization of the syntax described above.

7.1 Model

As with the approach described in Section 2, the semantics of the language is defined in two stages.
First, we represent statements as computations of type ctree (YieldE + SpawnE + MemE) unit, where
YieldE and SpawnE are used to represent yield and fork respectively. The remaining statements of
imp are defined in a standard way—we omit them. The new event families are defined as follows:

Variant YieldE : Type → Type :=

| Yield : YieldE unit.

Variant SpawnE : Type → Type :=

| Spawn : SpawnE bool.

Yield carries no additional information and acts purely as a signal to yield control, and Spawn

introduces a binary branch in the CTree, allowing us to store the asynchronous thread in one
branch and the main thread that continues running in the other branch. Formally, these events are
used to denote the corresponding statements:

JyieldK ≜trigger (Yield) Jfork 21 22K ≜ 1 ← trigger (Spawn) ;; if 1 then J21K else J22K

The second stage is more complex than the simple stateful interpretation of standard imp: we
need to interpret the concurrency-related events. In particular, since the semantics of these events
involves scheduling other threads that work together, we cannot hope to use interp, as is done

with memory events—this situation is similar to ∥ for ccs, in both cases the combinator cannot be
implemented as a simple fold. Instead, we define a custom interpreter for Spawn and Yield events,
namely a scheduler operating over a thread pool of threads, each of which is a CTree that may
contain Spawn and Yield events, and producing a final CTree devoid of these concurrency events.
As is usual with cooperative scheduling, the thread pool, encoded as a vector, contains a desig-

nated active thread, i.e., the currently running thread. We write E= for a vector of size =, and vector
operations for removing the 8-th element as E [−8], updating the 8-th element to G as E [8 ↦→ G], and
adding an element G to the front as G :: E (so G is the new 0-th element in the resulting vector).
The scheduler, schedule, is defined formally in Figure 20. References to schedule in its body

should be interpreted as corecursive calls—we abuse notations to lighten the presentation. It takes
two arguments: the thread pool, and the index of the active thread in the pool. If no thread is active,
the second argument is empty, written ⌊-⌋ (we use an option datatype in Coq). If there is an active
thread, ⌊8⌋, the schedule makes progress in that thread. Otherwise, schedule nondeterministically
chooses the next thread to run. If the thread pool is empty, then schedule emits a returning CTree.
In more detail, there are several ways the active thread may progress. If the thread performs
a branching or a memory operation, the schedule returns a CTree that also performs the same
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schedule E0 ⌊-⌋ ≜ ret ( )

schedule E= ⌊-⌋ ≜ �A=
(
(_8 · schedule E= ⌊8⌋) for = > 0

schedule E= ⌊8⌋ ≜

if E [8] = then

ret ( ) �A 1
�
(__ · schedule E [−8]=−1 ⌊-⌋)

�A<
(
: �A<

(
(_8 ′ · schedule E [8 ↦→ : 8 ′]= ⌊8⌋)

�A<
�
: �A<

�
(_8 ′ · schedule E [8 ↦→ : 8 ′]= ⌊8⌋)

+8B Yield : �A 1
�
(__ · schedule E [8 ↦→ : ( )]= ⌊-⌋)

+8B Spawn : �A 1
(
(__ · schedule (: true :: E [8 ↦→ : false])=+1 ⌊8 + 1⌋)

+8B e : +8B 4 (_G · schedule (E [8 ↦→ : G])= ⌊8⌋)

Fig. 20. The definition of schedule ( )

operation, and in each branch replaces the active thread (index 8) in the thread pool with its
continuation. If the active thread returns, it is removed from the thread pool; there is no active
thread after the removal. If the thread yields, then schedule removes the Yield and starts scheduling
with no active thread (which will nondeterminstically pick a new active thread, potentially the
same one again). If the thread spawns a new thread, then schedule adds the true branch of that
thread to the thread pool, updates the active thread to the false branch, and continues running on
the false branch (note that this shifts the active thread from index 8 to 8 + 1).

Using schedule, we can interpret the Yield and Spawn events in concert, allowing us to eliminate
them from the CTrees. We denote this “scheduled” semantics by SJ?K ≜ schedule [J?K]1 ⌊-⌋ :
ctree MemE unit: it denotes a CTree with only memory events. As described in Section 2.1, the final
step of the second stage of modeling our imp programs can use a handler for the memory events to
obtain a computation in the state monad of type stateT mem (ctree voidE) unit.

7.2 Equational Theory

The model described in Section 7.1 allows us to derive some program equivalences at source-level
w.r.t. weak bisimilarity of their models. For example, the following programs all just run 2 , though
some of them first perform some “invisible” steps related to concurrency ( ):

SJfork 2 skipK ≈ SJyield; 2K ≈ SJ2K

We use weak rather than strong bisimilarity since schedule can introduce stepping branches when
interpreting the two concurrency events. We emphasize that these equations are not compositional,
they only hold in the absence of additional concurrent threads, hence why yield behaves as a no
op: the monadic equivalence we obtain is a congruence for the source language after the first stage
of interpretation, but not after the second stage.
Other equations, especially ones that make use of multiple threads in nontrivial ways, rely on

the stability of schedule under sbisim:

Lemma 7.1 (schedule preserves ∼ ( )). If the delayed branches of every element of vectors E= and

F= have arity less than 2, and the elements of both vectors are strongly bisimilar up to a permutation

d , then schedule E= ⌊8⌋ ∼ scheduleF= ⌊d 8⌋.

The arity requirement is satisfied by all denotations of programs in this language. This condition
greatly simplifies the proof by constraining the shape that the strongly bisimilar CTrees can take.
Lemma 7.1 allows us to permute the thread pool, which is useful in examples such as ( ):

SJfork 21 (fork 22 skip)K ≈ SJfork 22 (fork 21 skip)K
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This program spawns two asynchronous threads then yields control to one of the two. This
equivalence captures the natural fact that it does not matter which thread is spawned first, since
neither can run until both are spawned.
Furthermore, Lemma 7.1 allows us to validate some simple optimizations that do not directly

involve reasoning about concurrency or memory, such as ( ):

SJfork 21 (fork (while true do yield) skip)K

≈ SJfork (yield; while true do yield) (fork 21 skip) K

Here, one of the spawned threads is a while loop, which we wish to unroll by one iteration. Crucially,
the loop and its unrolled form are strongly bisimilar, so this equivalence follows from Lemma 7.1
just as in the previous example. Other optimizations that can be done before interpreting events,
such as constant folding or dead code elimination, can be proven sound similarly.
Finally, equivalences involving memory operations are still valid as well ( ):

fork (G ::= 2) (G ::= 1) ≡ G ::= 2

where ≡ here refers to equivalence (≈ in this case) after interpreting both concurrency and memory
events. This result follows from the result in Section 5.1, which allows us to transport equations
made before interpreting state events into computations in the state monad after interpetation.

8 RELATED WORK

Since Milner’s seminal work on ccs [Milner 1989] and the c-calculus [Milner et al. 1992], process
algebras have been the topic of a vast literature [Bergstra et al. 2001]. We mention only a few
parts of it that are most relevant to our work. In the Coq realm, Lenglet et al. [Lenglet and Schmitt
2018] have formalized HOc , a minimal c-calculus, notably exhibiting the difficulty inherent to the
formal treatment of name extrusion. Beyond its formalization, dealing with scope extrusion as part
of a compositional semantics is known to be a challenging problem [Crafa et al. 2012; Cristescu
et al. 2013]. By restricting to ccs in our case study, we have side-stepped this difficulty. Foster et
al. [Foster et al. 2021] formalize in Isabelle/HOL a semantics for CSP and the Circus language using
a variant implementation of ITrees, where continuations to external events are partial functions.
However, they only model deterministic processes, leaving nondeterministic ones for future work.
This paper introduces the tools to address that problem. CSP has also been extensively studied by
Brookes [Brookes 2002] by providing a model based on the compositional construction of infinite
sets of traces: CTrees offer a complementary coinductive model to this more set-theoretic approach.
Brookes tackles questions of fairness, an avenue that we have not yet explored in our setup.
Formal semantics for nondeterminism are especially relevant when dealing with low-level

concurrent semantics. In shared-memory-based programming languages, rather than message
passing ones, concurrency gives rise to the additional challenge of modeling their memory models,
a topic that has received considerable attention. Understanding whether monadic approaches such
as the one proposed in this paper are viable to tackle such models vastly remains to be investigated.
Early suggestions that they may include Lesani et al. [Lesani et al. 2022] : the authors prove
correct concurrent objects implemented using ITrees, assuming a sequentially consistent model of
shared memory. They relate the ITrees semantics to a trace-based one to reason about refinement,
something that we conjecture would not be necessary when starting from CTrees. Operationally
specified memory models, in the style of which increasingly relaxed models have been captured
and sometimes formalized, intuitively seem to be a better fit. Major landmarks in this axis include
the work by Sevcík et al. on modeling TSO using a central synchronizing transition system linking
the program semantics to the memory model in the CompCertTSO compiler [Sevcík et al. 2013];
or Kang et al.’s promising semantics [Kang et al. 2017; Lee et al. 2020] that have captured large
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subsets of the C++11 concurrency model without introducing out-of-thin-air behaviors. On the
other side of the spectrum, axiomatic models in the style of Alglave et al.’s [Alglave et al. 2021,
2014] framework appear less likely to transpose to our constructive setup.
Our model for cooperative multithreading is partially reminiscent of Abadi and Plotkin’s

work [Abadi and Plotkin 2010]: they define a denotational semantics based on partial traces
that they prove fully abstract, and satisfying an algebra of stateful concurrency. The main difference
between the two approaches is that partial traces use the memory state explicitly to define the
composition of traces, where CTrees can express the semantics of a similar language independently
of the memory model. The formal model we describe here tackles a slightly different language than
theirs, but we should be able to adapt it reasonably easily to obtain a formalization of their work.
More recently, Din et al. [Din et al. 2017, 2022] have suggested a novel way to define semantics
based on the composition of symbolic traces, partially inspired by symbolic execution [King 1976].
They use it, in particular, to formalize actor languages, which rely on cooperative scheduling, with
a similar modularity as the one we achieve (orthogonal semantic features can be composed), but
not in a compositional way.
Our work brings proper support for nondeterminism to monadic interpreters in Coq. As with

ITrees however, the tools we provide are just right to conveniently build denotational models of
first order languages, such as ccs, but have difficulty retaining compositionality when dealing with
higher-order languages. In contrast, on paper, game semantics has brought a variety of techniques
lifting this limitation. In particular in a concurrent setup, event structures have spawned a successful
line of work [Castellan et al. 2017; Rideau and Winskel 2011] from which inspiration could be
drawn for further work on CTrees.

9 CONCLUSION AND PERSPECTIVES

We have introduced CTrees, a model for nondeterministic, recursive, and impure programs in
Coq. Inspired by ITrees, we have introduced two kinds of nondeterministic branching nodes, and
designed a toolbox to reason about these new computations. In addition to the Coq library presented
in this paper, we have developed an enhanced implementation (with heavier notations, but more
expressive) supporting arbitrary indexing of branches and heterogeneous bisimulations between
CTrees. We have illustrated the expressiveness of the framework through two significant case
studies. Both nonetheless offer avenues for further work, notably through an extension of ccs
to name passing à la c-calculus, and to further extend the equational theory for cooperative
multithreading that we currently support.
The restriction imposed on handlers in Section 5.1 suggests another perspective: rather than

requiring handlers to implement events in a non-observable way, we could prevent the programs
in Figure 13 from being bisimilar in the first place. We conjecture that this could be achieved by
tweaking the LTS so that external events induce two steps: the question to the environment first,
and the answer second, resulting in a finer grained bisimilarity. Whether such a finer bisimilarity
would still allow us to equate all the programs we want needs further investigation.
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