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This talk

An OCaml feature we wanted: constructor unboxing.

A general (language-agnostic) problem we solved:
unfolding of (recursive) type declarations, in a terminating way.
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Constructor unboxing
Single-constructor unboxing: in OCaml since November 2016

type id = Id of int [@@unboxed]

Extension proposed by Jeremy Yallop in March 2020:

OCaml RFC #14: constructor unboxing

type bignum =

| Small of int [@unboxed]

| Big of Gmp.t

(int and (Big of Gmp.t): disjoint representations)
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Head, head shape

We define the head of an OCaml value, in {Imm, Block} × Z, by:

the head of an immediate is the immediate itself
head(42) = (Imm, 42)

the head of a block is its tag
head("foo") = (Block, Obj.string tag) = (Block, 252)

We define the head shape of a type as set of heads of its values:

head(τ) = {head(v) | v : τ}

4



Unboxing specification

type bignum = match num with

| Small of int (* Block 0 *) | Small n -> ...

| Big of Gmp.t (* Block 1 *) | Big gmp -> ...

Unboxing constructors is valid if the head shapes remain disjoint.

type bignum = match num with

| Small of int [@unboxed] (* Imm Z *) | Small n -> ...

| Big of Gmp.t (* Block 0 *) | Big gmp -> ...

Constructors: runtime-checkable disjointness.
(Note: This morality is language-independent.)
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Problem (1/3)

How to compute the head shape of a type?

(In presence of recursive type declarations)
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Problem (2/3)

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

and ’a seq = Nil | Next of (unit -> ’a * ’a seq) [@unboxed]

type foo = Foo of int tree [@unboxed] | ...

shape(int tree)

= shape((int * int tree) seq)

= shape(Nil) + shape(unit -> (int * int tree) * ... seq)

= Imm 0 + function_shape

Expanding a type definition is a β-reduction.
Call-by-name normal form... with arbitrary recursion.

type t = U of u [@unboxed] | Bar

and u = T of t [@unboxed]

How to prevent nontermination?

7



Problem (2/3)

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

and ’a seq = Nil | Next of (unit -> ’a * ’a seq) [@unboxed]

type foo = Foo of int tree [@unboxed] | ...

shape(int tree)

= shape((int * int tree) seq)

= shape(Nil) + shape(unit -> (int * int tree) * ... seq)

= Imm 0 + function_shape

Expanding a type definition is a β-reduction.
Call-by-name normal form... with arbitrary recursion.

type t = U of u [@unboxed] | Bar

and u = T of t [@unboxed]

How to prevent nontermination?

7



Problem (2/3)

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]

and ’a seq = Nil | Next of (unit -> ’a * ’a seq) [@unboxed]

type foo = Foo of int tree [@unboxed] | ...

shape(int tree)

= shape((int * int tree) seq)

= shape(Nil) + shape(unit -> (int * int tree) * ... seq)

= Imm 0 + function_shape

Expanding a type definition is a β-reduction.
Call-by-name normal form... with arbitrary recursion.

type t = U of u [@unboxed] | Bar

and u = T of t [@unboxed]

How to prevent nontermination?

7



Problem (3/3)

How to compute the (CBN-)normal form of a type modulo unboxing?

(In presence of recursive type declarations.)

This is useful for many static analyses of types:
head shape, immediacy, etc.
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Attempt 1: rule out cycles statically

“Statically”: without expanding definitions.

(As done for type synonym/aliases.)

Problem: too restrictive

type ’a seq = ...

type ’a tree = Node of (’a * ’a tree) seq [@unboxed]
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Attempt 2: prevent repetition of whole types

Keep track of type inputs, abort if they come again during expansion.

Problem: may loop in presence of non-regular type parameters.

type ’a bad = Loop of (’a * ’a) bad [@unboxed]

int bad

→ (int * int) bad

→ ((int * int) * (int * int)) bad

→ ...
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Attempt 3: prevent repetition of head constructors

Keep track of constructors that have already been expanded.
Abort if an expanded constructor comes again in head position.

Problem: too restrictive

type ’a id = Id of ’a [@unboxed]

type foo = Foo of int id id [@unboxed]

foo []

→ int id id [foo]

→ int id [foo, id]

6→
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Solution: annotate (sub)expressions with expansion context

type ’a id = Id of ’a [@unboxed]

type ’a delay = Delay of ’a id [@unboxed]

type foo = Foo of int delay delay [@unboxed]

foo[]

→ int[foo] delay[foo] delay[foo]

→ int[foo] delay[foo] id[foo,delay]

→ int[foo] delay[foo]

→ int[foo] id[foo,delay]

→ int[foo]

Track when subexpressions appeared in the type,
not how they came to head position.

(Stephen Dolan remarks: similar to cpp termination control.)
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Termination proof

Suprisingly tricky!
https://github.com/ocaml/ocaml/pull/10479#issuecomment-876644067
With help from Stephen Dolan and Irène Waldspurger.
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Completeness ?

Our criterion: “Recursive calls” in type definitions
must be guarded by a boxed constructor.

(Complete for the pure first-order calculus.)
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Summary

Unboxed constructors: an optimization requiring type analysis.

Normalizing types in presence of cyclic references.

Thanks! Questions?
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