Polarised Intermediate Representation of \-Calculus
with Sums

Guillaume Munch-Maccagnoni, Gabriel Scherer
Gallium — INRIA

LICS, July 6th 2015



The “no simpler” problem

As simple as possible, but no simpler.

When picking a formal system to study, am | faithfully modeling the
problem at hand, or reducing its complexity in essential ways?

Experience = important features that reveal pain points

More features == clutter risk (n?); need a very regular presentation

This talk:

e For program equivalence, sums (positives) are essential.

@ Polarized ufi is a good, regular syntax for programs.



(1 equivalence

(Ax.t) u =3 t{u/x] (t:A— B) —n M.t x

71','(1.'1,1'2) —>I3 t; (t:AXB) —n (7T1t,7T2t)



(1 equivalence

(Ax.t) u =3 t{u/x] (t:A— B) —n M.t x
71','(1.'1,1'2) —>/6 t; (t:AXB) —n (7T1t,7T2t)
0(ojt, x1.u1, Xo.u2) =5 uilt/xi]

(t: A+ B) = O(t, x1.01 X1, X2.02 X2)



(1 equivalence

(Ax.t) u =3 t{u/x] (t:A— B) —n M.t x
i (t1, t2) =gt (t: Ax B) =y (mt,m2t)
d(oit, x1.u1, x2.U2) =3 ui[t/xi]
(t: A+ B) =y (t, x1.01 X1, X2.02 X2)

?
(t, U) ~ 5(1’, X1.(0'1 X1, u), X2.(0'2 X2, U))



(1 equivalence

(Ax.t) u =3 t{u/x] (t:A— B) —n M.t x
i (t1, t2) =gt (t: Ax B) =y (mt,m2t)
d(oit, x1.u1, x2.U2) =3 ui[t/xi]
(t: A+ B) =y (t, x1.01 X1, X2.02 X2)

(t, u) £ 8(t, x1.(01x1, u), x0. (0230, 1)) K = (O, u)



(1 equivalence

(Ax.t) u =3 t{u/x] (t:A— B) —n M.t x
71','(1.'1,1'2) —>/6 t; (t:AXB) —n (7T1t,7T2t)

d(oit, x1.u1, x2.U2) =3 ui[t/xi]

VK[O],  K[t] —=n (t, x1.K[o1 x1], x2.K[o2 x2])

Sums seem to be trouble-makers.



Natural deduction, A-calculus are irregular

FA—-B TFHA M AL x Ag
r-B8 M- A

A+ B MAEC BrEC
N=¢C




Natural deduction, A-calculus are irregular

(5(1’, X1.(Ay.U1), XQ.()\y.Ug))
?
~ (/\y.5(t, X1.U1, X2.U2))



Natural deduction, A-calculus are irregular

(5(1’, X1.(Ay.U1), X2.()\y.U2))
?
~ (/\y.6(t, X1.U1, X2.U2))

((Ay.u1), (\y.u2)) 71 (Ay.u)
? ?
~ Ay.(u1, u2) ~ Ay.mu



Natural deduction, A-calculus are irregular

(5(1’, X1.(Ay.U1), X2.()\y.U2))
?
~ (/\y.5(t, X1.U1, X2.U2))

((Ay.u1), (\y.u2)) 71 (Ay.u)
? ?
~ Ay.(u1, u2) ~ Ay.mu

Which exchanges are “allowed”? List all possibilities?



Goal / Contribution

Goal: a regular syntax of terms, in which equivalence can be elegantly
expressed.

My take on our work: polarized uji, as studied in Guillaume
Munch-Maccagnoni's PhD thesis, provides such a syntax.



Goal / Contribution

Goal: a regular syntax of terms, in which equivalence can be elegantly
expressed.

My take on our work: polarized uji, as studied in Guillaume
Munch-Maccagnoni's PhD thesis, provides such a syntax.




Abstract machine

wii programs are commands c, built as pairs (t|| e) of a term ¢t and
context e.



Abstract machine

wii programs are commands c, built as pairs (t|| e) of a term ¢t and
context e.

(tule) —R (tlu-e)
(Ax.t|u-e) —R (tlu/x] | e)

(u-e) is the “important” part that Ax.t destructs.



(tufe) —R (tlu-e)
Oxtlu-e) =g (tu/x]]e)



(tufe) —R (tlu-e)
Oxtlu-e) =g (tu/x]]e)

Idea 1: (t u) is just syntactic sugar for a term (e — (t | u- €)).
Let us write this pa. (t | u- ).



(tufe) —R (tlu-e)
Oxtlu-e) =g (tu/x]]e)

Idea 1: (t u) is just syntactic sugar for a term (e — (t | u- €)).
Let us write this pa. (t | u- ).

(na.c|l &) —g cle/al

Machines with sub-machines: abstract machine calculus



(tufe) —R (tlu-e)
Oxtlu-e) =g (tu/x]]e)

Idea 1: (t u) is just syntactic sugar for a term (e — (t | u- €)).
Let us write this pa. (t | u- ).

(na.c|l &) —g cle/al

Machines with sub-machines: abstract machine calculus

Idea 2: destructor syntax for Ax.t

(u(x-a).clu-e) =R cle/a,u/x]



(tufe) —R (tlu-e)
Oxtlu-e) =g (tu/x]]e)

Idea 1: (t u) is just syntactic sugar for a term (e — (t | u- €)).
Let us write this pa. (t | u- ).

(na.c|l &) —g cle/al

Machines with sub-machines: abstract machine calculus

Idea 2: destructor syntax for Ax.t

(u(x-a).clu-e) =R cle/a,u/x] (Ax.t) e pu(x - a). (t] o)



The regularity of duality

(po. c || €) —R cle/a]



The regularity of duality

(pa.c]l ) ~R cle/al
(t] fix. ) SR clt/



The regularity of duality

(e c|le) —R  cle/a]
(t] . o SRt/
(u(x-a).cllt-e) —R cle/a, t/x]



The regularity of duality

(e c|le) —R  cle/a]
(t] . o SRt/
(u(x-a).cllt-e) —R cle/a, t/x]
(



The regularity of duality

(po.c |l e) —R cle/a]
(t] fix. c) —R c[t/x]
(u(x-a).cllt-e) —R cle/a, t/x]
((t,u) [ 2(x, y)-c)



The regularity of duality

(po.c |l e) —R cle/a]
(t] fix. c) —R c[t/x]
(u(x-a).cllt-e) —R cle/a, t/x]
((t,u) [ 2(x, y)-c) —R clt/x u/y]



The regularity of duality

(.l e) -
(t] ix. c) SR /A
(u(x-a).c|t-e) —R cle/a, t/x]
((t;u) [ A(x, ). €) =R clt/xufy]
{



The regularity of duality

(.l e) -
(t] ix. c) SR /A
(u(x-a).c|t-e) —R cle/a, t/x]
((t;u) [ A(x, ). €) =R clt/xufy]
{



The regularity of duality

—R
—R
—R
—R
—R

cle/a]
clt/x]
cle/a, t/x]
c[t/x,u/y]
ci[t/xi]



The regularity of duality

(pa.c| e) —R cle/a]
(t] fix. c) —R clt/x]
(u(x-a).cllt-e) —R cle/a, t/x]
((t,u) [ 7i(x, ). c) =R clt/xuly]
(oit|il(o1x1).c1 | (o2x). c2])  —R cilt/xi]
(ul(rrar). a1 | (ma2). ] |mie) —R cile/ail



The regularity of duality

(pa.c| e) —R
(t] fix. c) —R
(u(x-a).c|t-e) —R
((t,u) [ 7i(x, ). c) —R
(oit|fl(o1x1).c1 | (o2x2).c2])  —R
(ul(r1a1). a1 | (ma2). ] [mie) —R

(Under the hood: confluence, polarization)

cle/a]
c[t/x]
cle/a, t/x]
c[t/x,uly]
cilt/xi]
cile/ai]



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callce(t) ® pa. (t|( ) a)



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callce(t) ® pa. (t|( ) a)



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:
ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callcc(t) < H (x|l a))- a>



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callcc(t) < H (x|l a))- a>

Intuitionistic restriction: one single co-variable %, binding occurences
shadow each other.

pox (2] (u0x - %) (x] %)) )



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callcc(t) < H (x|l a))- a>

Intuitionistic restriction: one single co-variable %, binding occurences
shadow each other.

pox (2] (u0x - %) (x] %)) )



Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callcc(t) < H (x|l a))- a>

Intuitionistic restriction: one single co-variable %, binding occurences
shadow each other.

pox (] (u0x - %), (x %)) %)



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t—)E

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t—)E

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t —)E M(X‘*).

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t —)E M(X‘*).

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t oo ) (t] )

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t oo ) (t] )

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t g plx %) (t] x %)

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t oo () (t]x %)
e > f(xy) ()l

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

t —)E
e —)E
e —)E

plx -
filx,
Al

*) (] x- %)

y)-{(xy) [ e)
(01x). (o1x ] €) | (02y). (o2 | €)]

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

—E w(x - %) (t] x-*)

—g Axy)-((x,y)]e)

—g [Al(o1x).(o1x][ e) | (02y). (o2 ] €)]
—E px.(t]*)

—g Ax.(x]e)

® ~ M M -+

10



Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

—E w(x - %) (t] x-*)

—g Axy)-((x,y)]e)

—g [Al(o1x).(o1x][ e) | (02y). (o2 ] €)]
—E px.(t]*)

—g Ax.(x]e)

® ~ O M r+

n-expansions are perfectly regular.

10



The structure of good R-normal forms

((t,u) | i(x, y)- c) reducible

11



The structure of good R-normal forms

((t,u) || A(x,y). ) reducible
((t,u)| pix. c) reducible

11



The structure of good R-normal forms

((t,u) || A(x,y). ) reducible
((t,u) || mix. c) reducible

((t;u) [ al(o1x). e | (02y). c2]) bad

11



The structure of good R-normal forms

((t,u) | a(x,y).c) reducible
((t,u) || mix. c) reducible
((t; )| al(o1x)- e | (02y)- ca]) bad

((t,u) ]| good (constructor)

11



The structure of good R-normal forms

((t,u) [ fi(x, ). €) reducible
((t,u) || px. ) reducible

((t, u) | Bl(o1 x). c1 | (02)- c2]) bad

((t, u) | %) good (constructor)
(u(x - *). ¢ *) good (abstractor)

11



The structure of good R-normal forms

((t,u) | a(x,y).c) reducible

((t,u) || mix. c) reducible

((t,u) | al(o1x). e1 | (2y). c2]) bad

((t,u) ]| good (constructor)
(u(x - *). ¢ *) good (abstractor)

General form: phase structure

fuo= ]S | (VI

11



The structure of good R-normal forms

((t,u) || A(x,y). ) reducible
((t,u) ] fix. c) reducible
((t; )| al(o1x)- e | (02y)- ca]) bad
((t,u) %) good (constructor)
(u(x - *). ¢ *) good (abstractor)
General form: phase structure
fo= IS | (VI

Modulo E-expansions, we can assume that S or V contain either an
abstractor, or only constructors or single-variable p, fi.

x|V - fi(x, x2). f) —E (x| V-mayy | a(x, x2). )

11



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(f | x - *) <f”x-

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (f ] x- Al(o1y)-

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (] x-El(ory)-(o1y %)

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (Flx-Allory)-{ory %) | (022).

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (Fx-Allory)-{ory [ %) [ (o22)- (F | x - %)

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-=) (Fx-Allory)-{ory [ %) [ (o22)- (F | x - )])

12



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

x-fiw. (w| fillory). o1y 190 | (022). (F[x- i’ (w'|) ) 1>>

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(F]x-fw. (w]*))
(¢ (w] allor ).ty 1) a2 (¢ x- pw w'1) 1))

Step 2: commuting phases up in the term, respecting scope only.

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(F]x-fw. (w]*))
(¢ (w] altor ). tory 1) a2 {f xe awrs w'1))1))

Step 2: commuting phases up in the term, respecting scope only.

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(F]x-fw. (w]*))
<f x-iw. (w | illory) o1y 1% | (022). (F]lx-aw'. (w']+)) 1>>

Step 2: commuting phases up in the term, respecting scope only.

(r

s (| xaw. (w|[llory)-(ory 1) | (022)- (W' |0])) >

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

Step 2: commuting phases up in the term, respecting scope only.

(r

Step 3: merge identical phases

x-fiw. (w| fillory). o1y 190 | (022). (F[x- i’ (w'|) ) 1>>

s (| xaw (w [ llory)-(ory 1) | (022)- (W 19])) >

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

Step 2: commuting phases up in the term, respecting scope only.

(i

Step 3: merge identical phases

x-fiw. (w| fillory). o1y 190 | (022). (F[x- i’ (w'|) ) 1>>

s i (| xiw (w [ illory)-(ory 1) | (022)- (W' |9])) >

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

Step 2: commuting phases up in the term, respecting scope only.

(i

Step 3: merge identical phases

x-iw. (w | illo1y)- o1y %) | (022). (F]x-aw'. (w']+)) 1>>

s i (| xaw (w [ llory)-(ory 1) | (022). (W ]0])) >

(F [ o (wl illor y)- (o1 y 1) | (022). (w1401

13



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

?

¢ 2 (x| illory)- a1 | (o2y2)- )

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

(Flx- fiw. Cw )2(F | - fiw. (w il v )-(ory 1) | (o2 2)-Cw 0]))

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

xopw (w %) & xiw (wl Ellor y)-(ory 1) | (02 2)-(w [ #)])

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

w. (w %) & iw. (w | il(o1 v )-{ory %) ] (02 2)-{ w )]

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

(w % = (W] alor y)-(ory %) [ (02 2). (w [)])

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /X];C1[01)/1/X] C[GzYz/X];Cz[Uz)Q /X]

¢ 2 (x| illory)- a1 | (o2y2)- )

?

(o1y [ %) ~(o1y =)

(w % = (W] alor y)-(ory %) [ (02 2). (w [R)])

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /X];C1[01)/1/X] C[GzYz/X];Cz[Uz)Q /X]

¢ 2 (x| illory)- a1 | (o2y2)- )

?

(ory %) 2 (oryl*) (022 [ = (022 |)

(w % = (W] alor y)-(ory %) | (02 72). (w [ )])

14



Conclusion

Take away: pji is an abstract-machine calculus with highly regular syntax,
reduction/expansion, and equational theory.

Plenty was left under the hood.

i uses a polarized evaluation order, subsuming call-by-name and
call-by-value.

wii supports effectful constructors (eg. function call); the polarized R and
E-equivalences are weaker than shown here.

We need to explicitly assume purity (commutativity, idempotence,
cancellability) to recover full 8.

15



Conclusion

Take away: pji is an abstract-machine calculus with highly regular syntax,
reduction/expansion, and equational theory.

Plenty was left under the hood.

i uses a polarized evaluation order, subsuming call-by-name and
call-by-value.

wii supports effectful constructors (eg. function call); the polarized R and
E-equivalences are weaker than shown here.

We need to explicitly assume purity (commutativity, idempotence,
cancellability) to recover full 8.

Thank you!

15



	Context
	Syntax for duality

