Polarised Intermediate Representation of \-Calculus
with Sums

Guillaume Munch-Maccagnoni, Gabriel Scherer
Gallium — INRIA

LICS, July 6th 2015



The “no simpler” problem

As simple as possible, but no simpler.

When picking a formal system to study, am | faithfully modeling the
problem at hand, or reducing its complexity in essential ways?

Experience = important features that reveal pain points

More features == clutter risk (n?); need a very regular presentation

This talk:

e For program equivalence, sums (positives) are essential.

@ Polarized ufi is a good, regular syntax for programs.
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(Ax.t) u =3 t{u/x] (t:A— B) —n M.t x
71','(1.'1,1'2) —>/6 t; (t:AXB) —n (7T1t,7T2t)
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Sums seem to be trouble-makers.
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(5(1’, X1.(Ay.U1), X2.()\y.U2))
?
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Which exchanges are “allowed”? List all possibilities?
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(tule) —R (tlu-e)
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(u-e) is the “important” part that Ax.t destructs.
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Idea 1: (t u) is just syntactic sugar for a term (e — (t | u- €)).
Let us write this pa. (t | u- ).
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Machines with sub-machines: abstract machine calculus

Idea 2: destructor syntax for Ax.t

(u(x-a).clu-e) =R cle/a,u/x] (Ax.t) e pu(x - a). (t] o)
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The regularity of duality

(pa.c| e) —R
(t] fix. c) —R
(u(x-a).c|t-e) —R
((t,u) [ 7i(x, ). c) —R
(oit|fl(o1x1).c1 | (o2x2).c2])  —R
(ul(r1a1). a1 | (ma2). ] [mie) —R

(Under the hood: confluence, polarization)

cle/a]
c[t/x]
cle/a, t/x]
c[t/x,uly]
cilt/xi]
cile/ai]
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Taking control (away)

In the general case, ¢ has free variables x; ... x, and free co-variables
aj...0p:

ci(x1: A1, X ApFar i Biy ..o an By)

This is classical logic!
pa. ¢ is an elegant control operator

callcc(t) < H (x|l a))- a>

Intuitionistic restriction: one single co-variable %, binding occurences
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Reductions, expansions

Analog of 7-expansion rules such as t ~, Ax.(t x)

—E w(x - %) (t] x-*)

—g Axy)-((x,y)]e)

—g [Al(o1x).(o1x][ e) | (02y). (o2 ] €)]
—E px.(t]*)

—g Ax.(x]e)

® ~ O M r+

n-expansions are perfectly regular.

10
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The structure of good R-normal forms

((t,u) || A(x,y). ) reducible
((t,u) ] fix. c) reducible
((t; )| al(o1x)- e | (02y)- ca]) bad
((t,u) %) good (constructor)
(u(x - *). ¢ *) good (abstractor)
General form: phase structure
fo= IS | (VI

Modulo E-expansions, we can assume that S or V contain either an
abstractor, or only constructors or single-variable p, fi.

x|V - fi(x, x2). f) —E (x| V-mayy | a(x, x2). )

11



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(f | x - *) <f”x-

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (f ] x- Al(o1y)-

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (] x-El(ory)-(o1y %)

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (Flx-Allory)-{ory %) | (022).

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-%) (Fx-Allory)-{ory [ %) [ (o22)- (F | x - %)

12



Computing the RE-equivalence of two R-normal forms

x: X, f:X=>Y+2)FY+Z
(f x) O(f x, y.ory, z.f x)

Traduction as (R-normal) configurations:

(Flx-=) (Fx-Allory)-{ory [ %) [ (o22)- (F | x - )])

12



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

x-fiw. (w| fillory). o1y 190 | (022). (F[x- i’ (w'|) ) 1>>

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(F]x-fw. (w]*))
(¢ (w] allor ).ty 1) a2 (¢ x- pw w'1) 1))

Step 2: commuting phases up in the term, respecting scope only.

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(F]x-fw. (w]*))
(¢ (w] altor ). tory 1) a2 {f xe awrs w'1))1))

Step 2: commuting phases up in the term, respecting scope only.

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(F]x-fw. (w]*))
<f x-iw. (w | illory) o1y 1% | (022). (F]lx-aw'. (w']+)) 1>>

Step 2: commuting phases up in the term, respecting scope only.

(r

s (| xaw. (w|[llory)-(ory 1) | (022)- (W' |0])) >

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

Step 2: commuting phases up in the term, respecting scope only.

(r

Step 3: merge identical phases

x-fiw. (w| fillory). o1y 190 | (022). (F[x- i’ (w'|) ) 1>>

s (| xaw (w [ llory)-(ory 1) | (022)- (W 19])) >

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

Step 2: commuting phases up in the term, respecting scope only.

(i

Step 3: merge identical phases

x-fiw. (w| fillory). o1y 190 | (022). (F[x- i’ (w'|) ) 1>>

s i (| xiw (w [ illory)-(ory 1) | (022)- (W' |9])) >

13



Computing the equivalence of two normal forms (1, 2, 3)

(Flx-=) (Fx-allory)-{ory [ %) [ (o22). (F | x - %)])

Step 1: long constructor phases

(] x- aw. (w )
<f

Step 2: commuting phases up in the term, respecting scope only.

(i

Step 3: merge identical phases

x-iw. (w | illo1y)- o1y %) | (022). (F]x-aw'. (w']+)) 1>>

s i (| xaw (w [ llory)-(ory 1) | (022). (W ]0])) >

(F [ o (wl illor y)- (o1 y 1) | (022). (w1401

13



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

?

¢ 2 (x| illory)- a1 | (o2y2)- )

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

(Flx- fiw. Cw )2(F | - fiw. (w il v )-(ory 1) | (o2 2)-Cw 0]))

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

xopw (w %) & xiw (wl Ellor y)-(ory 1) | (02 2)-(w [ #)])

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

w. (w %) & iw. (w | il(o1 v )-{ory %) ] (02 2)-{ w )]

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /x] 2 alo1yi/x] clozya/x] 2 el 02 2 /]

¢ 2 (x| illory)- a1 | (o2y2)- )

(w % = (W] alor y)-(ory %) [ (02 2). (w [)])

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /X];C1[01)/1/X] C[GzYz/X];Cz[Uz)Q /X]

¢ 2 (x| illory)- a1 | (o2y2)- )

?

(o1y [ %) ~(o1y =)

(w % = (W] alor y)-(ory %) [ (02 2). (w [R)])

14



Computing the equivalence of two normal forms (soleil)
We are left to compare

<f”x Caw. (w || %))

(¢ |- o (wl s ) oay 1) | (02 2)- ()

Final step: instead of a type-directed n-expansion, traverse both terms
and E-expand on demand (on all abstractors)

cloiy /X];C1[01)/1/X] C[GzYz/X];Cz[Uz)Q /X]

¢ 2 (x| illory)- a1 | (o2y2)- )

?

(ory %) 2 (oryl*) (022 [ = (022 |)

(w % = (W] alor y)-(ory %) | (02 72). (w [ )])

14



Conclusion

Take away: pji is an abstract-machine calculus with highly regular syntax,
reduction/expansion, and equational theory.

Plenty was left under the hood.

i uses a polarized evaluation order, subsuming call-by-name and
call-by-value.

wii supports effectful constructors (eg. function call); the polarized R and
E-equivalences are weaker than shown here.

We need to explicitly assume purity (commutativity, idempotence,
cancellability) to recover full 8.
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wii supports effectful constructors (eg. function call); the polarized R and
E-equivalences are weaker than shown here.

We need to explicitly assume purity (commutativity, idempotence,
cancellability) to recover full 8.

Thank you!
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