
On the design and implementation of Modular Explicits

Samuel Vivien∗ Didier Rémy† Thomas Refis‡ Gabriel Scherer§

Presented at the OCaml workshop 2024, September 7

Abstract

We present and discuss the design and implementation of modular explicits, an extension
of OCaml first-class modules with module-dependent functions, functions taking first-class
modules as arguments. We show some difficulties with the present use of first-class modules
and how modular explicits solve them in a simpler, more direct way. Modular explicits are
fully compatible with, and can be presented as an extension of, first-class modules. Inter-
estingly, both the formalization and the implementation reuse the mechanism designed to
ensure principal types in the presence of semi-explicit first-class polymorphism and OCaml
polymorphic methods. Modular explicits are also meant to be the underlying language in
which modular implicits, i.e., module arguments left implicit from their signatures, should
be elaborated.

Introduction

The name modular explicits is coined from modular implicits an extension proposed by White,
Bour, and Yallop (2014) to provide OCaml with a mechanism similar to Haskell type classes
but based on, and compatible with, the module system of OCaml. This builds on two ideas:
implementing type classes as implicit arguments in Scala proposed by Oliveira, Moors, and
Odersky (2010), but emulating type classes at the module-level rather then at the core-level as
proposed by Dreyer, Harper, Chakravarty, and Keller (2007). Using implicit module arguments
rather than implicit core-level values, has many benefits as explained by White, Bour, and Yallop
(2014). After synthesis of implicit module arguments, we expect an intermediate representation
with explicit modules. Expressing this elaboration result as OCaml code is in fact possible
through a complex encoding (which we explain in the present document), but the result would
be quite involved and verbose in the current version of OCaml to the point of being hardly
readable. The reason is that modular implicits require a tight interaction between the core
language and the module language that is only possible via first-class modules, which were not
originally present in the OCaml module language, designed for programming in the large, and
are still limited.

Modular explicits are an extension of the OCaml module system that facilitates this inter-
action. They do not strictly increase expressiveness, but they considerably increase conciseness
and, in particular, reduce the amount of type annotations and boilerplate code that the user
should otherwise write. While modular explicits were initially designed to be used as the tar-
get of the elaboration of modular implicits, they are actually a standalone proposal, with its

∗OCamlPro and École Normale Supérieure, PSL Research University, France
†Inria Paris, France
‡Contributed while at Inria Paris and Tarides, France
§Inria Paris, France

1

own interesting programming patterns, independently of the possibility of leaving some module
arguments implicits. In order to help manipulate first-class functors, they give the illusion of
abstraction over module arguments in the core language. For this purpose, a new construct called
module-dependent functions, and its counterpart, module-dependent applications, are added to
expressions of the core language—they actually connect expressions of the core and module
languages.

Implementation

The first implementation of modular explicits was proposed by Ryan (2019); the discussion of
this work took a long time and the author is, to the best of our knowledge, unavailable to work on
it further. We worked on a second implementation (Vivien, 2024a), with a somewhat different
design taking into account feedback and discussions that followed the first proposal.1 This
document should also serve as a reference specification for this new implementation. Examples
marked in blue below have been processed automatically. When printed, their output appears
in green. Programs that do not typechecked are marked in red. These may fail to typecheck or
use some extension not yet available in the prototype. Other examples left in gray have not been
processed.

Plan

We start with a quick overview of modular explicits (§1). We then give a more detailed description
of modular explicits with motivating examples (§2), a formal presentation (§3), and implement
details (§4). We end with discussions (§6) on modular explicits and further extensions.

1 Overview

1.1 The limit of first-class modules

First-class modules, a feature present in OCaml since 3.12, allow a module M of signature S
to be packed as a value m of type (module S) using the construct (module S : M). A first-class
module can then be stored in data-structures or passed as argument to functions. A first-class
module such asm, i.e., a value of known type (module S) can then be unpacked with the construct

let module X = (val m) in a[X]

This binds X to a module of type S that can be used in the expression a2. If m were of
an unknown type, we should write (m : (module S)) instead of m. This situation occurs in
particular when x is a function argument, as in

fun x→ let module X = (val x : (module S)) in a[X] (1)

or equivalently, moving the annotation to the binding site,

fun x : (module S)→ let module X = (val x) in a[X]

1Our version is about to be submitted to the OCaml compiler. Our experimental version of the compiler with
modular explicits can be installed with opam, following instructions given athttps://github.com/samsa1/modular-
compiler-variants.

2By writing a[X] we mean an expression a in which X may occur.

2

https://github.com/samsa1/modular-compiler-variants
https://github.com/samsa1/modular-compiler-variants

Here, the first-class module is immediately unpacked as a module X which can then be used in
a[X]. As this is a common pattern, OCaml already offers the following concise abbreviation:

fun (module X : S)→ a[X]

giving the (useful) illusion that the function directly receives a module as argument.
Unfortunately, there is some limitation to this pattern when the signature S contains an

abstract type component, say type t. Looking at the equivalent form (1), it is clear that the
first-class module type (module S) of x contains an abstract type t, which when unpacked becomes
the abstract type X .t with a scope limited to the let-binding body, i.e., a[X]. Therefore, X .t
cannot occur free in the type of a[X], which is also the type of the let-binding, as it would
otherwise escape from its scope.

Example 1: fails with OCaml version 5.2.0

module type Type = sig type t end
let id (module A : Type) (x : A.t) = x

Error: This pattern matches values of type "A.t"
but a pattern was expected which matches values of type "’a"
The type constructor "A.t" would escape its scope

1.2 A tentative work around

When we write the function fun (module X : S) → a, we do not really mean a function of type
(∃α. (module S[α]))→ τ [α] but rather a polymorphic function of type ∀α. (module S[α])→ τ [α],
that is:

fun (type α)→ fun (module X : S[α])→ a[X]

where S[α] stands for S with type t = α. Hence, a function that accepts as argument any module
compatible with the signature S, i.e., with a type component t that might itself be an abstract
type or any concrete type, much as during the application of a functor functor (X : S) → M .
Using a universal binder that extends to the whole arrow type, instead of an existential binder
that could not appear in the type of the right-hand side, avoids the scope escaping problem.

module type Type = sig type t end
let id (type a) (module A : Type with type t = a) (x : A.t) = x

val id : (module A : Type with type t = ’a) → A.t → A.t = <fun>

Notice however that this amounts to re-encoding the convenient module-level type abstraction
mechanism into the core language, somewhat along the lines proposed by Blaudeau, Rémy,
and Radanne (2024), hence loosing the convenient and concise path-based approach of OCaml
modules. In particular, it does not scale well when S has multiple abstract types, possibly
introduced in submodules.

In fact, this encoding of abstract types with universal types, which may be a work around
in some cases, is no longer possible when t is a higher-kinded abstract type, such as List.t, since
OCaml core-level type variables cannot be of higher-rank. For example, there is no way to fix
the example below as we did before, as the (type a) construct cannot introduce a higher-kinded
type.

module type Type1 = sig type ’a t end

let id (module T : Type1) (x : ’a T.t) = x

3

Error: This pattern matches values of type ’a T.t
but a pattern was expected which matches values of type ’b
The type constructor T.t would escape its scope

Another limitation of that encoding is that we still have to deal with first-class polymorphism
when passing such a function, say f , to another higher-order function, say happy, that will apply
f several times to module arguments of different types:

let happy (f : σ) = . . . f(module M1) . . . f(module M2) . . .

a pattern that often occurs in some use cases of modular explicits, such as the emulation of
overloading.

Unfortunately, this is not allowed in OCaml when σ is polymorphic as is the case here.
OCaml offers some but still poor support for first-class polymorphism. Currently, we need to
encapsulate σ, either using semi-explicit polymorphism (Garrigue and Rémy, 1999) via objects
or records polymorphic fields or using a module-level wrapper. For instance, the following code
fails to typecheck because types int and bool are incompatible.

let app (f : (module Type with type t = ’a) → ’a → ’a) =
(f (module Int) 3, f (module Bool) true)

Error: This expression has type "(module Type with type t = Bool.t)"
but an expression was expected of type "(module Type with type t = Int.t)"
Type "Bool.t" = "bool" is not compatible with type "Int.t" = "int"

We may enforce polymorphism with an object wrapper:

let app (f : <m : ’a. (module Type with type t = ’a) → ’a → ’a >) =
(f#m (module Int) 3, f#m (module Bool) true)

or a module wrapper:

module type Fwrapper = sig val f : (module Type with type t = ’a) → ’a → ’a end
let app (module F : Fwrapper) = (F.f (module Int) 3, F.f (module Bool) true)

Both solution typechecks because we only loose polymorphism when accessing inside the wrapper,
which is here done at each call-site.

1.3 Module-dependent functions as first-class functors

An alternative solution suggested by White, Bour, and Yallop (2014) is to view and encode
fun (module X : S)→ a altogether as a first-class functor

(module S′ : functor (X : S)→ struct value = a end)

whose signature S′, equal to X .t → sig val value : τ [X .t] end, should be named and explicitly
given3 to build the first-class value or when passing it to another function. For our example of
polymorphic identity over a parametrized type Type1, this gives:

module type ID = functor (A : Type1) → sig val v : ’b A.t → ’b A.t end
module Id : ID = functor (A : Type1) → struct let v (x : ’b A.t) = x end
let id = (module Id : ID)

3One may sometimes work around using the module type of construct to derive S′ from the inferred type
of the functor before packing the functor.

4

This encoding can cope with higher-order abstract types and seems to cover all use cases.
However, it requires quite a few module-type manipulations, which quickly become cumber-

some, as module types cannot be passed directly to functors in OCaml but only when embedded
in structures—which must themselves be given a signature.

We give a more complete example in Figure 1 to simultaneously show how the encoding works
with higher-order abstract types and how it quickly becomes unpractical at large scale. Compare
the one-line definition of hof in example 3 and the dozen lines of its corresponding encoding in
example 4: direct use of module-dependent functions is more concise and clearer.

module type S = sig
type _ t
val f : ’a → ’a t

end

module List = struct
type ’a t = ’a list
let f x : _ t = [x]

end

Example 2: Shared definitions

let hof x = fun (module M : S) → M.f x
: ’a -> (module M : S) -> ’a M.t

let hoapp = hof 3 (module List)

Example 3: With a module dependent func-
tion

module type HOF = sig
type t
module F (M : S) :

sig val value : t M.t end
end

let hof (type a) (x : a) =
let module Hof = struct

type t = a
module F (M : S) =

struct let value = M.f x end
end in
(module Hof : HOF with type t = a)

: ’a -> (module HOF with type t = ’a)

let hoapp =
let module Hof = (val (hof 3)) in
let module H = Hof.F(List) in H.value

Example 4: With a first-class functor

Figure 1: Comparing module-dependent functions and first-class functors

1.4 Presentation of modular explicits

Modular explicits are a solution to the limitation of first-class modules, which they extend by
introducing a new type construction in the language, the module-dependent arrow (module X :
S) → τ where X may occur free in τ (as the origin of a path leading to an abstract type such
as X .P.t). The difference between the module-depend arrow (module X : S)→ τ and the usual
arrow whose domain is a module type (module S) → τ is syntactically small, but technically
significant: X : S acts as a binder for X with a scope limited to the codomain type τ . Hence,
(module X : S) → τ behaves as a first-class polymorphic type4 while (module S) → τ behaves
as a simple type.

Still, when X does not appear free in τ , the two forms mean the same and the implementation
will actually turn the module-dependent arrow type into an usual arrow type whose domain is a
first-class module type.

The typing of modular explicits is sketched in §3 for an idealized subset of OCaml that we
call SmallOCaml . As a result of the overlapping of the two kinds of arrows, there is also an

4Module-dependent arrow types are actually no more than first-class polymorphic types and in no way a
general form of dependent types. This agrees with the interpretation of modules Fω by (Blaudeau, Rémy, and
Radanne, 2024) and the specific positions of quantifiers in this interpretation.

5

overlapping of the typing rules, which is actually the main typechecking issue.
The key property is that when several typing rules applies, they always agree. In fact,

we should state it in contraposed form: the typing rules have been designed to prevent the
overlapping when the rule would not agree, which crucially relies on the fact that the domain
of module-dependent arrows should always be known for the type to be treated as a module-
dependent arrow, which we have so far left informal.

Indeed, to formalize this concept, we must reveal a detail that we have temporarily hidden
for sake of simplicity. Arrow types (module X : S) →ϵ τ and τ1 →ϵ τ2 both carry an additional
parameter ϵ, called a node-variable, that allows to distinguish between types that are known
(when ϵ is generalizable in the current context) and can be treated as dependent arrows from
types that are not yet known and should always be treated as non-dependent arrows. Node
variables are of a special kind and incompatible with usual type variables. This mechanism is also
necessary to ensure that type inference does not take a decision depending on the order in which
typing and unification constraints are solved, and thus to ensure principal types. Interestingly,
the way we distinguish known from guessed types of module-dependent-functions is quite close
to a recent proposal for adding semi-explicit polymorphic parameters by White (2023), which
itself is similar to the mechanism for typing semi-implicit first-class polymorphism in OCaml
introduced by Garrigue and Rémy (1999). More details will be given in §3.2.

1.5 Compatibility with first-class modules

Module-dependent functions are only typing artifacts: their runtime representation is the same as
functions taking first-class modules as arguments. This allows code-free coercions from the type
of the former to the type of the latter. In the implementation, the tricky part is the unification of
dependent and non-dependent arrow types, which is possible under certain conditions. Namely,
(module X : S1)→ τ1 and (module S2)→ τ2 are unifiable if and only if:

• inlining X in τ1 leads to (via type equivalence) a type τ1
′ that does not contain a reference

to X and
• (module S1)→ τ1

′ and (module S2)→ τ2 are unifiable.

Still, module-dependent functions can only accept immediate module expressions as arguments,
whose values can therefore not be chosen dynamically (see §3.2). Indeed, immediate module
expressions cannot be stored in data structures, the result of a conditional expression, or more
generally the result of a computation and first-class modules must be used instead in such cases.

2 Motivating examples

This section presents several programming patterns enabled by modular explicits, namely type
classes §2.1, emulation of higher-rank §2.2 and higher-kinded §2.3 types, encoding of Fω §2.5,
and fine-grained polymorphism §2.6.

2.1 Type classes with explicit applications

We briefly illustrate the use of module-dependent functions for the encoding of type classes, i.e.,
what they have first been designed for, but using explicit module abstractions and applications.
We only give a simple, textbook example. Advanced examples can be found in the original
paper on modular implicits by White, Bour, and Yallop (2014) and a recent, more systematic
exploration of their potential by Reader and Vlasits (2024); Reader et al. (2024).

6

We start by defining the class of types whose inhabitants can be compared for equality, along
with a generic equal function (sometimes also called a method) which when given an instance Eq
and two values of the supporting type, will check whether they are equal or not.

module type Eq = sig type t val equal : t → t → bool end

let equal (module X : Eq) x y = X.equal x y

We may now define two instances of Eq, one for type int and one for type bool.

module Eq_int = struct type t = int let equal x y = Int.equal x y end

module Eq_bool = struct
type t = bool
let equal x y = Bool.equal x y

end

(We could also have taken the Int and Bool modules of the standard library directly, which are
already instances of Eq, instead of defining Eq_int and Eq_bool.) We may then call the equal
method as in the following example:

let _ = equal (module Eq_int) 1 2 || equal (module Eq_bool) true true

Given an instance X of the Eq class, we may also construct an instance of Eq for lists of elements
of type X.t using the generic equal function defined above, i.e., by calling the equal method of
the Eq class:

module Eq_list (X : Eq) = struct
module rec FX : Eq with type t = X.t list = struct

type t = X.t list
let equal (x : t) y = match x, y with

| [], [] → true
| hx::tx, hy::ty → equal (module X) hx hy && equal (module FX) tx ty
| _ → false

end
include FX

end

let _ = equal (module Eq_list(Eq_int)) [1] [1;2]

This is more involved than the Haskell version, where the instance is implicitly recursive. Here.
we must be explicit about recursion (which is by default in Haskell), and we need to use recursive
modules. Inheritance is implemented by embedding a submodule of the inherited type:

module type Ord = sig
type t
module Eq : Eq with type t = t
val lt : t → t → bool

end

let lt (module X : Ord) x y = X.lt x y

When building instances, we simply define the submodule as an alias for the inherited class:

module Ord_int = struct
type t = int

7

module Eq = Eq_int
let lt x y = x - y < 0

end

The reason for embedding an alias instead of just including the parent is due to coherence
considerations in the context of modular implicits and is explained by White et al. (2014).
While these considerations do not apply in the context of modular explicits, we chose to remain
consistent with their encoding.

Finally, we can use Ord and the induced equality, as illustrated in the following example. The
full type annotation on search is needed as it is a recursive definition:

let rec (search : (module X : Ord) → X.t → X.t list → X.t option) =
fun (module X) x → function
| [] → None
| h::_ when equal (module X.Eq) x h → Some x
| _::t → search (module X) x t

let _ = search (module Ord_int) 2 [1; 2; 3]

2.2 Higher-rank types

In the examples of type classes, module abstractions are primarily used to abstract over dictio-
naries. Typically, dictionaries are modules with a distinguished type component t representing
the type at which the dictionary is implemented and a set of operations provided by the class at
this type. (We also use functors building dictionaries from other subdictionaries.)

There is a surprisingly interesting subcase of module-dependent functions where module-
dependent abstractions and applications are only used to emulate type abstractions and applica-
tions.

We can already use abstract types to enforce polymorphism. For instance, let us define a
biased function that choose between two values of any given type:

let bias (type a) (x : a) (y : a) = if Random.int 3 > 0 then x else y

val bias : ’a → ’a → ’a = <fun>

This ensures that the function works for any type a and not just for some instance of a. Still,
polymorphism is left implicit as if the type polymorphism had been inferred: Reusing the previous
signature Type of modules just carrying a type field t, we may redefine bias as follows:

let bias (module A:Type) (x : A.t) (y : A.t) = if Random.bool() then x else y

val bias : (module A : Type) → A.t → A.t → A.t = <fun>

In particular, using bias at some particular type now requires the expected type as an explicit
module argument.

let my_int = bias (module struct type t = int end) 7 42

As a counterpart, we may now receive either as a polymorphic function as argument, for example
to choose between heterogeneous pairs:

type choice = (module A:Type) → A.t → A.t → A.t

let choose_pair (choose : choice)

8

(module A:Type) (module B:Type) (x1, x2) (y1, y2) =
choose (module A) x1 y1, choose (module B) x2 y2

module Tint = struct type t = int end

module Tbool = struct type t = bool end

let choose_int_bool_pair choose = choose_pair choose (module Tint) (module Tbool)

val choose_int_bool_pair :
choice → Tint.t * Tbool.t → Tint.t * Tbool.t → Tint.t * Tbool.t = <fun>

Notice that the modules even if they require a single type as argument must be instantiated.
Even if that type could have been easily be infered.

A recent proposal, coined functor type arguments by Vivien (2024b), allows type arguments
to be used directly as parameters of functors. With this extension, we can then define a module
wrapper:

module T(type a) = struct type t = a end

Then, Tint could be defined as the application T(type int), and be inlined as a path. We can
then write without prior definition but that of T:

let choose_int_bool_pair choose = choose_pair choose (module T(type int))
(module T(type bool))

Or even let the inference mechanism infer polymorphism.

let choose_pair choose = choose_pair choose (module T(type _))
(module T(type _))

See §6 for other extensions, independent of modular explicits, but useful for modular explicits.
While this example only uses rank-2 polymorphism, the method extends to more complex

types at higher ranks. We illustrate this on the well-known encoding of the existential type ∃α. τ
as the polymorphic type ∀α. (∀β. τ → β)→ α, but for a particular type τ . For instance, consider
delaying a computation by pairing a function with its argument:

type (’a, ’b) delay = (’a → ’b) * ’a

Ideally, we wish to hide ’a in (’a, ’b) delay if we are just delaying the computation to eventu-
ally perform the application. That is, we wish to give it the existential type ∃ ’a. (’a, ’b) delay,
say ’b frozen defined as:

type ’a frozen =
(module A:Type) → ((module B:Type) → (B.t, ’a) delay → A.t) → A.t

let freeze (type a) (type b) (f : a → b) (x : a) : b frozen =
fun (module A:Type) (body : (module B:Type) → (B.t, b) delay → A.t) →

body (module T(type a)) (f, x)

val freeze : (’a → ’b) → ’a → ’b frozen = <fun>

Having hidden the parameter of the function, we may now build lists of heterogeneous frozen
computations:

let two = [freeze ((=) 1) 0; freeze not false]

9

The converse function is

let unfreeze (type b) (fx : b frozen) =
fx (module (T(type b))) (fun (module A:Type) (f, x) → f x)

val unfreeze : ’b frozen → ’b = <fun>

We may then get the list of evaluated results as:

let two_defrost = List.map unfreeze two

Notice that we could also have defined

let unfreeze’ (module B:Type) (fx : B.t frozen) =
fx (module B) (fun (module A:Type) (f, x) → f x)

val unfreeze’ : (module B:Type) → B.t frozen → B.t

remaining in the explicit encoding of polymorphism. This is even a bit shorter, but this now
requires an explicit type argument when applied, as indicated by the inferred type.

In fact, there is inter-convertibility between the two variants with implicit and explicit poly-
morphism as shown below:

let _unfreeze’ (module B : Type) fx = unfreeze fx
let _unfreeze (type a) fx = unfreeze’ (module T(type a))

Unfortunately, this only works for toplevel polymorphism, and only explicit polymorphism can
be used for inner polymorphism.

2.3 Higher-kinded types

We have emulated first-class polymorphism with dependent functions by abstracting over mod-
ules of signature Type. We may as well abstract over modules whose type definition is a type
operator.

module type Monad = sig
type ’a m
val bind : ’a m → (’a → ’b m) → ’b m
val return : ’a → ’a m

end

Then, we may write functions such as:

let bind (module M : Monad) = M.bind

val bind : (module M : Monad) → ’a M.m → (’a → ’b M.m) → ’b M.m = <fun>

That is, functions using higher-kinded polymorphism.

Alternative representation of type operators

We may also encode type operators as functors taking a module of signature Type as argument:

module type Op = functor (A:Type) → Type
let twice (module F : Op) (f : (module A:Type) → F(A).t → A.t)

(module A:Type) (x : F(F(A)).t) =
f (module A) (f (module F(A)) x)

10

val twice :
(module F : Op) → ((module A:Type) → A.t → F(A).t) →

(module A:Type) → A.t → F(F(A)).t

module Tlist (A:Type) = T(type A.t list)
let hd_of_hd =

let hd (module A:Type) : Tlist(A).t → A.t = List.hd in
twice (module Tlist) hd

val hd_of_hd : (module A : Type) → Tlist(Tlist(A)).t → A.t = <fun>

We may turn explicit polymorphism into implicit polymorphism as seen earlier:

let hd_of_hd_ (type a) x =
hd_of_hd (module struct type t = a end) x

val hd_of_hd_ : ’a list list → ’a = <fun>

The advantage of using functor abstraction to provide type operators is that the approach is more
regular and transparently extend to higher kinds, e.g., operators taking operators as arguments.

Limitation While modular explicits brings type abstraction at higher kinds in OCaml, the
encoding of types of higher kinds only exits at the module-level. In particular, we still do not have
core-level kinds and cannot have parameters of a type definition of higher kinds. An independent
extension of OCaml with primitive higher kinds would also be possible and could allow that.

2.4 Mixing higher-kinded types and higher-order types

Since modular explicits allows for both explicit higher kinds and higher-order types, we may
freely combine them and so reach the power of Fω.

To illustrate this, we generalize the encoding of existential types given above on the particular
case of frozen computations. Thanks to abstraction over type operations, we may provide a
general encoding of existential types into universal types in Fω, i.e., one that is parameterized
by an arbitrary type ∃α.τ , technically by a type operator F representing the type function
λα : Type. τ .

Namely, the CPS encoding of the existential type ∃α.F (α) is:

module Exists (F : Op) = struct
type t = (module B:Type) → ((module A:Type) → F(A).t → B.t) → B.t

end

The introduction of such an existential type is the pack function:

let pack (module F : Op) (module A:Type) (x : F(A).t) : Exists(F).t =
fun (module B:Type) (body : (module A:Type) → F(A).t → B.t) →

body (module A) x

The elimination or unpacking of an encoded existential value is then just its application to the
continuation, which should be of type ∀β. (∀α. F (α) → β), here encoded as the dependent type
(module A : Type)→ F (A).t→ B.t:

let unpack (module F : Op) (v : Exists(F).t) (module B:Type)
(k : (module A:Type) → F(A).t → B.t) = (v (module B) k)

11

We may then recover the first-order implementation of frozen computations of §2.2 just using
our higher-order pack and unpack functions:

module Frozen (B:Type) (A:Type) = struct type t = (A.t, B.t) delay end

let freeze (type a) (type b) (f : a → b) (x : a) =
pack (module Frozen(T(type b))) (module T(type a)) (f, x)

let unfreeze (type a) x =
unpack (module Frozen(T(type a))) x (module T(type a))

(fun (module A:Type) (f, x) → f x)

The function freeze and unfreeze use explicit polymorphism:

val freeze :
(’a → ’b) → ’a →

(module B:Type) → ((module A:Type) → (A.t, ’b) delay → B.t) → B.t
val unfreeze :

((module B:Type) → ((module A:Type) → (A.t, ’a) delay → B.t) → B.t) → ’a

One would perhaps prefer to see the following signatures:

val freeze : (’a → ’b) → ’a → Exists(Frozen(T(type ’b))).t = freeze
val unfreeze : Exists(Frozen(T(type ’b))).t → ’b = unfreeze

Unfortunately, the free variable ’b is not currently allowed in path (type ’b), hence the signatures
need to be expanded.

2.5 Light-weight encoding of Fω

The illustrative encoding of existential types into modular explicits actually works for the full
system Fω, which we demonstrate in this section. The definition of Fω is left implicit. We write
e, σ and κ for terms, types, and types of Fω, so as to distinguish them from expression a and
types τ of the core language and M and S of the signature language. However, we reuse type
variables x and α of the core language for Fω, which are mapped to expression variables and
module variables in the translation, respectively.

More precisely, the translation of terms of Fω into modular explicits is defined in Figure 2.
You may ignore the gray lines at first. The encoding uses the functor T that takes a type as
argument as a direct parameter, as in the example above.

The target of the encoding, modular explicits, is stratified between core-level expressions
and module-level expressions, but module-level expressions are only used to encode types, using
functors but only to encode higher-order types. Therefore, functors and their applications could
be fully erased during compilation (assuming that polymorphism is restricted to values) as no
runtime value depends on them.

In particular, a source expression e of Fω of type σ (which is itself always of the base kind ⋆)
is translated to an expression of core-level type JσK♭. More precisely, a variable, a function, or
an application of type τ is translated to a core-level expression; by contrast, a type abstraction
Λα : κ. e or a type application e τ is translated to a dependent-abstraction fun α : JκK → JeK
or a dependent application JeK (module JτK) with the same computational content as JeK—since
modules used in the encoding never manipulate anything else but type components. Notice that
JσK is a module-level expression of signature JκK.

The translation of types is slightly more involved because of the stratification of modular
explicits: a type σ of kind κ in Fω can be translated to a module-level expression JσK of kind JκK

12

module type Type = sig type t end
module T (type α) = struct type t = α end

module type Kind = sig module type K end
module Type = struct module type K = Type end
module Arrow(A : Kind)(B : Kind) = struct module type K = functor (: A.K)→ B.K end

J⋆K♯ ≜ Type

Jκ→ κ′K♯ ≜ Arrow(JκK♯)(Jκ′K♯)
JκK ≜ JκK♯.K

Jλα : κ. σK ≜ functor (α : JκK)→ JσK
Jσ σ′K ≜ JσK (Jσ′K)

JαK ≜ α

Jσ : ⋆K ≜ T (type JσK♭)

Jσ → σ′K♭ ≜ JσK♭ → Jσ′K♭

J∀α : κ. σK♭ ≜ (module α : JκK)→ϵ JσK♭

Jσ : ⋆K♭ ≜ JσK.t

J⋆K ≜ Type

Jκ→ κ′K ≜ functor (: JκK)→ Jκ′K

J∅K ≜ ∅
JΓ, α : κK ≜ JΓK, α : JκK
JΓ, x : σK ≜ JΓK, x : JσK♭

JxK ≜ x

Je e′K ≜ JeK Je′K
Jλx : σ. eK ≜ λx : JσK♭. JeK

JΛα : κ. eK ≜ fun (module α : JκK)→ JaK
Je σK ≜ e (module JσK)

Figure 2: Encoding of Fω with modular explicits.

and also to a core-level type JσK♭—but only when κ is the kind ⋆. Besides, there are coercions
between the two levels: we may project a module expression M of signature Type into a core-level
type M.t and, conversely, a core-level type JσK♭ may need to be lifted to a module-level type
T (type JσK♭) of signature Type. We slightly abuse the notation in Figure 2 where the lines Jσ : ⋆K
and Jσ : ⋆K♭ are default cases that should only be used when σ is of kind ⋆ and the preceding
cases do not apply. This should avoid building types expressions of the form T (type JσK.t) or
T (type JσK♭).t. which would be correct but could be reduced to JσK and JσK♭ respectively.

Syntactic restrictions When ignoring the gray, the translation is slightly incorrect as it
encode kinds with signature that are not named paths. Indeed Jκ→ κ′K is a functor expression.
As a result, the encoding requires an extension of the current proposal as discussed in §6.2 or
some post-processing pass to extrude those definitions using let module X = M in e expressions.
In fact, with such an extension, we could as well have inlined T (type JσK♭) as struct type t =
JσK end in JσK.

In practice, we just use a few higher-order kinds, the most common being ⋆→ ⋆, which could
then be predefined as we did for Op in §2.4.

Interestingly, there is a slight modification of the encoding that fixes the problem. This is
the gray code. Instead of translating a kind directly to its signature JκK, we lift it to a module
JκK♭ containing a module type definition equal to module type K = JκK. This way we can use
a functor Arrow to build the lifted signature of Jκ → κ′K♭ from JκK♭ and Jκ′K♭. Then we recover
JκK as the projection JτK♭.K. The rest of the encoding is unchanged.

For example, the signature Op of §2.4 could have be defined as Arrow(Type)(Type).K , which
is a path, and therefore could have been inlined.

Core-level polymorphism So far, the target of the translation of Fω does not use core-level
polymorphism. However, we may easily enrich the source language to do so by distinguishing

13

two subsets of variables α and β where β would be restricted to type abstraction of let-bound
expressions and be translated into implicit core-level type polymorphism, as follows:

e ::= . . . | let x = Λβ̄. e in e | e τ

Jlet x = Λβ̄. e in e′K ≜ let x = Λ(type β̄). JeK in Je′K Je τK ≜ JeK JβK♭ ≜ β

Core-level type constants and type operators We may also add base types such as int
and base type operators such as list , with the following translation:

JintK♭ = int Jlist τK♭ = list JτK♭

Then, Jλα : ⋆. list αK would be translated to functor (α : Type) → T (type list int) which
we may bind to some module List. If we similarly bind JintK to Int, we could then translate
Jlist intK either to List(JintK) or directly to T (list int), as both forms are equivalent.

Soundness of the encoding The encoding preserves convertibility: that is, σ ≡ σ′ implies
JσK ≡ Jσ′K. It also preserves typability. If Γ ⊢ a : σ, then JΓK ⊢ JaK : JσK.

Beyond Fω The encoding we have shown here only uses modules for carrying type information.
Of course, modules may simultaneously carry values, as in most examples with modules. Modules
may also carry module type definitions.

2.6 Fine-grain polymorphism

So far, we have looked at examples where modular explicits allow to explicitly quantify over
some type, and over some types equipped with specific operations. But we can also use them to
quantify over types that match specific properties. For instance types whose values are known
to be represented as int’s at runtime:

module type Immediate = sig type t [immediate] end
let f (module I:Immediate) (i : I.t) = ((* something necessarily dirty *))

This is yet another (heavy) way to attach information to the type of parameters than the one
proposed in the OCaml pull request Allow explicit binders for type variables #10437, but one
that scales to higher-kinded types. For example, quantitation over injective types can be done
as follows:

type (_, _) eq = Refl : (’a, ’a) eq
module type Injective = sig type !’a t end
let strip (module A : Injective) (type a) (type b) =

fun (Refl : (a A.t, b A.t) eq) → (Refl : (a, b) eq)

3 Formal presentation

We formalize modular explicits in a small subset of OCaml called SmallOCaml , focusing
on the typing of core-language expressions, including first-class modules, but taking typing of
modules for granted.

14

https://github.com/ocaml/ocaml/pull/10437

P ::= X | P.X | P (P) | P (type π) Path

π ::= t | P.t
τ ::= α | ρ | τ →ϵ τ | (module X : Q)→ϵ τ | . . . Types
| (module (type t))→ϵ τ Explicit type arguments
| σ → τ Explicit polymorphic arguments

γ ::= α | ϵ Type & node variables
σ ::= ∀γ̄. τ Type schemes

Q ::= T | P.T | Q with type t = τ Named signatures
S ::= Q | sig D̄ end | functor (X : T)→ S

| functor (type t)→ S Signature
D ::= val ℓ : σ | type t | type t = τ

| module X : S | module type T = S Specification

a ::= x | P.ℓ | fun x→ a | a a | let x = a in a | fun (x : τ)→ a Core expressions
| let module X = M in a | (module Q : M) First-class modules
| fun (module X : Q)→ a | a (module N) Modular explicits
| fun (module (type t))→ a
| fun (x : σ)→ a

M ::= P | struct d̄ end | (M : S) | (val m : S) | (val m)
| M(N) | functor (X : S)→M
| functor (type t)→M Module

N ::= M | (type τ)
d ::= val ℓ = a | type t | type t = τ
| module X = M | module type T = S Declaration

Figure 3: Syntax of SmallOCaml

15

3.1 SmallOCaml

The syntax of (a mini subset of) OCaml is given in Figure 3. First-class modules are introduce
with expression (module S : Q) that inject a name module M as a first-class core-language value.
This requies an explicit annotation Q unless the expected signature Q can be determined from
the context. Conversely, (val x : Q) reifies a first-class module x as a module expression M .
It comes with explicit annotations Q by default, which may however be omitted when the type
of x, hence the signature Q is known.

For type dependent functions we introduce of a new form of arrow type (module X : Q)→ϵ τ ,
the module-dependent arrow type and functions to construct and use them.

Syntactic productions in gray correspond to the extension to explicit functor type arguments
and to functions with semi-explicit polymorphic arguments. These can be ignored at first. There
are discussed in at the end of this section. The former are not part of the typing rules for sake
of conciseness (they do not raise technical issues). The latter need not be there but are used as
an easier illustration of the typing rules.

Identifiers Still, as SmallOCaml include a presentation of modules, it much larger than
core OCaml. We distinguish identifiers X for modules, t for types, T for module types x for
expressions. All of them can also be prefixed by a path P , which is a module name, an application
of a path to a path, or a projection of a path on a module name.

Node variables Both module-dependent and usual arrow types carry a node variable ϵ that
helps keep track of sharing and ensure the existence of principal types. The annotations have
been grayed so that they may easily be ignored at first glance, as in fact OCaml does by default
(hence breaking the principal type property). Node variables are new to modular explicits: they
were first introduced in OCaml for semi-explicit polymorphism by Garrigue and Rémy (1999)
and are already used in OCaml to pass immediate first-class modules as arguments without the
need for a signature annotation.

Node variables and type variables are of different kinds and cannot be mixed. Node variables
may only be substituted by other node variables and type variables by types. Still, they often
behave the same and we use γ to range over both of them. Type schemes are types that may be
polymorphic in both kinds of variables.

Node variables matter in inferred types, but do not often matter in source terms, as the
typing rule will rename them. We may thus omit then, in which case the corresponding nodes
should be understood as having fresh node variables.

Named signatures A named signature Q is a particular form of signature. It may be just a
signature name T , a path projection on a name T , or a constrained signature Q with type t = τ .
Named signatures are used as types of first-class modules. This is just a syntactic restriction
enforced by OCaml for simplicity and efficiency of the implementation and conciseness of printed
types, which may mention paths but not signatures. Still, the with type t = τ construct allows
named signatures to contain core-language types at their leaves, including explicitly bound type
variables, e.g.,. by (type a), but not flexible type variables such as α. Named signatures are
used for all core-level expressions, i.e., module-dependent arrows, module-dependent functions,
and first-class modules, but not for module-level expressions.

Arrow types We remind that module variable X acts as a binding in (module X : Q) →ϵ τ
whose scope extends to τ and hence may appear in τ . There is an overlap between the two kinds
of arrows (module X : Q)→ϵ τ and (module Q)→ϵ τ when X does not actually appear in τ , in

16

Var
x : σ ∈ Γ

Γ ⊢ x : σ

Fun
Γ, x : τ ′ ⊢ a : τ

Γ ⊢ fun x→ a : τ ′ →ϵ τ

App
Γ ⊢ a1 : τ2 →ϵ τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Gen
Γ ⊢M : σ γ#Γ

Γ ⊢M : ∀γ. σ

InstT
Γ ⊢M : ∀α. σ

Γ ⊢M : σ[α← τ]

InstN
Γ ⊢ x : ∀ϵ. σ

Γ ⊢ x : σ[ϵ← ϵ′]

Mod
Γ ⊢M : Q

Γ ⊢ (module Q : M) : ∀ϵ̄. (module Q)

AppM
Γ ⊢ a1 : ∀ϵ. (module Q)→ϵ τ Γ ⊢M : Q

Γ ⊢ a1 (module M) : τ

AppD
Γ ⊢M ⇝ P

Γ ⊢ a1 : ∀ϵ. (module X : Q)→ϵ τ Γ ⊢M : Q

Γ ⊢ a1 (module M) : τ [X ← P]

FunD
Γ,X : ∀ϵ̄. Q2 ⊢ a : τ (Q) : Q1 ⇒ ∀ϵ̄. Q2

Γ ⊢ fun (module X : Q)→ a : (module X : Q1)→ϵ τ

FunP
Γ, x : ∀ϵ̄. σ2 ⊢ a : τ (σ) : σ1 ⇒ ∀ϵ̄. σ2

Γ ⊢ fun (x : σ)→ a : σ1 →ϵ τ

AppP
Γ ⊢ a1 : ∀ϵ. σ →ϵ τ Γ ⊢ a2 : σ

Γ ⊢ a1 a2 : τ

Figure 4: Typing rules for functions and applications (simplified)

which case they actually mean the same thing—and the implementation, which treats them as
two different type constructors, will freely convert the former into the latter in such cases. Here,
(module Q) →ϵ τ is really a usual arrow τ0 →ϵ τ where τ0 happens to be a first-class module
type (module Q).

We distinguish regular functions fun x → a, which expect an expression as a parameter,
from explicit functions fun (module X : Q)→ a, which expect a module as an argument, whose
signature Q must have been explicitly given.

Similarly, we distinguish the regular application a1 a2 from the application to an immediate
module expression a1 (module M). While we may also turn a module into a first-class module
expression (module Q : M), which can then be stored in a data-structure or passed to functions,
the immediate applications a (module M) does not require an explicit signature Q for M when
the type of a is known.

Explicit functor type arguments We come back to the extension of modular explicits with
explicit functor type arguments that we have used in the examples. This extensions allows the
grayed syntactic constructions. In particular, module arguments N may now be an inlined type
argument (type τ). However, for the moment τ is still reduced to a named type π when appearing
inside a path P as defined in Figure 3. However, it could in principle be any type τ , modulo the
option to allow or not free type variables in module signatures (see the discussion in §6). The
extension does not raise technical difficulty. Hence, we ignore it for sake of simplicity in the rest
of this section.

3.2 Typing rules

An excerpt of typing rules for expressions is given on Figure 4. The judgment Γ ⊢ M : Q for
typing modules is not affected by this extension and is omitted. For people with some knowledge

17

of OCaml, it should be enough to take it intuitively. Otherwise, we refer the reader to Leroy
(1995).

Rule Mod turn a module M into a first-class module of type module Q which can then be
treated by the typechecker as a parametrized nominal types, whereQ is of the form P.T with type
ti = τ i∈I

i , which provdides the name P.T and each with type ti = τi clause stands for a param-
eter instantiated by τi. This can thus be passed to functions without anontations as any other
core-level values. They will eventually be destructed with let module X = M in a where the
module expression M would be (val x : S), i.e. to inject a first-class module value x into the
language of modules.

Rule AppM allows to elude the annotation when a module M is turned into a first-class value
to be immediately passed to a function expecting a first-class module of a known type.

There are actually just two new rules FunD and AppD for typing module-dependent functions
and their application to immediate module arguments.

Finally, rules FunP and AppP allows semi-explicit polymorphic parameters (White, 2023).
We present them here as they are similar to, but simpler than, the typing of immediate first-class
module arguments.

Functions with semi-explicitly typed arguments Let us start with rule FunP. At first,
one could take τ1 and ∀ϵ̄. τ2 to be equal to τ , which would look less surprising, as the relation
(τ) : τ ⇒ τ always hold. However, this would require the type annotation to be equal to the
type of the argument and the type of x could not be considered as known while typing a.

The use of relation (τ) : τ1 ⇒ ∀ϵ̄. τ2 allows more freedom. Formally, the relation (τ) : τ1 ⇒
∀ϵ̄. τ2 is composed of all triples of the form

(η(τ)) : θ(τ)⇒ θ(∀ϵ̄. τ)

where η may only substitutes node variables, while θ may substitute both node and type variables.
That is, starting with τ0 we may first take a term τ that is equal to τ0 except on its node variables
that are decorrelated (i.e., τ0 = ητ for some η); we then pick ϵ̄ to be any subset of the node
variables of τ ′ (taking the whole set is better) and any substitution θ (of both type and node
variables) to return (τ0) : θ(τ)⇒ θ(∀ϵ̄. τ).

The order of operations matters as the substitution θ may introduce new node variables that
will then be the same on both τ1 and τ2. The decorrelation of node variables mean that their
values in the annotation do not matter (we could have equivalently removed node-variables on
source annotations). Their generalization in ∀ϵ̄. τ2 allows ϵ̄ to be considered as known while
typing a. The substitution θ amounts to interpret free variables of the annotation τ as flexible
variables that may be guessed, i.e., unified during type inference.

Rule AppG allows a polymorphic argument to be passed to a function expecting a polymor-
phic parameter without an annotation as long as the type of the function is known, i.e., the
annotation ϵ on the arrow type is polymorphic. Otherwise, an annotation on the function will
be needed, which will make ϵ polymorphic on the type after the annotation.

Module-dependent functions Rule FunD is similar to FunP but takes a first-class module
as argument. We somehow assume X of type Q2, an instance of (a decorrelated copy of) Q while
typing the body a with type τ and returns (module X : Q1)→ϵ τ where Q1 is the same instance
of another decorrelated copy of Q.

The relation (Q) : Q1 ⇒ ∀ϵ̄. Q2 is just a special case of (τ) : τ1 ⇒ ∀ϵ̄. τ2 when τ is (module Q).
In fact, since OCaml does not currently allow Q to have free type variables, types Q1, Q and
Q2 may only differ by the nodes. (This restriction of OCaml is not actually required for the

18

typing of modular explicits, and expressions Q with type t = τ could allow free type variables
to appear in τ .)

First-class modules Mod turns a module M of type Q into a first-class module of type
∀ϵ̄. (module Q). Here, since Q is the type of a module, it cannot contain free type variables but
it may still contain node variables that may be freely renamed.

Applications There are three typing rules for applications:

• Rule AppD for module-dependent application can only be used when the type is known
(ϵ#Γ) to be a module-dependent function type (module X : Q)→ϵ τ and the argument of
the application is an immediate first-class module (module M) where M is of type Q and
can be elaborated to a path P , which we write Γ ⊢M⇝P . However, in practice we removed
the limitation of elaboration to a path P (see §4.2).

• Rule AppM for non-dependent application can be used when the type is known (ϵ#Γ) to
be (module Q)→ϵ τ and the argument of the application is an immediate first-class module
(module M) where M is of type Q.

• Otherwise, we default to a normal application App of an expression a1 to an expression
a2. Hence a1 is a non dependent arrow whose domain may be unknown (ϵ need not be
polymorphic).

Rule Mod turns a module M into a first-class expression. It requires an explicit signature Q.
Hence, as a particular case of Rule App, a2 may still be a first-class module (module Q : M),

but it has be to explicitly annotated with a signature Q, since Q is not known from context
(otherwise, rule AppM should have been used).

Γ ⊢ a1 : (module Q)→ϵ τ1

Γ ⊢M : Q

Γ ⊢ (module Q : M) : (module Q)
Mod

Γ ⊢ a1 (module Q : M)
App

That is, even though the domain of the type a a1 τ2 happens to be (module Q), the specification
Rule App does not allow the use of such information to elude the annotation on the argument of
a1, thus forcing an explicit annotation. This has the advantage to let type inference proceed in
any order, since even if we learn information by guessing earlier, it will not bring any advantage,
so that the same guessing could have happen later.

Due to the compatibility between (module X : Q) →ϵ τ and (module Q) → τ when X does
not appear free in τ , rules AppD and AppM are not exclusive. However, being able to apply both
means that X does not appear free in τ . Thus, both types τ [X ← P] an τ are equal: whichever
rule is used we obtain the same resulting type. Hence, this overlapping of rules does not break
principal types.

3.3 Tracking the unknowns

Typing rules AppD and AppM for applications both require the type of a to be known, which is
ensured by the universal quantifier ∀ϵ. Equivalently, we could have written Γ ⊢ a1 : (module X :
Q)→ϵ τ for the first premise and added the side condition ϵ#Γ.

This still allows to guess types, but prevent the use of guessed types as known types. For
instance, an attempt typing fun f → a[f (module M)] will fail, as if we guessed that f had
the module-dependent type (module X : S) →ϵ τ5, then ϵ would appear in the typing context

5During type inference, this would amount to substituting the unknown type α of f that appears in the typing
context by (module X : S) →ϵ τ .

19

preventing from its generalization while typing the expression f (module M) and rule AppD

would not apply.
By contrast, FunD introduces a node variable ϵ in the type (module X : Q) →ϵ τ of its

conclusion, which may be taken fresh for Γ, thus letting the (module-dependent) arrow type be
considered as known. Typically, in an expression of the form

let f = fun (module X : Q)→ a0 in a[f (module M)]

variable ϵ will be generalized in the type of f so that the application f (module M) can be typed
without the need for an annotation on M .

A guessed type may also be turned into a known type using a type annotation of the form
(a : σ). This is actually syntactic sugar for (τ) a, i.e., the application of the retyping function
(τ) to a, where (τ) stands for fun (x : τ) → x, of principal type ∀ϵ̄, ᾱ. τ1 → τ2 where τ1 and τ2
are both equal to τ except for their node variables that are all distinct. A derived rule would be

Annot
Γ ⊢ a : τ1 (τ) : τ1 ⇒ ∀ϵ̄. τ2

Γ ⊢ (a : τ) : τ2

Alternatively, we could have taken type annotations on expressions as primitive with the typing
rule Annot and defined fun (x : τ)→ a as syntactic sugar for fun x→ let x = (x : τ) in a.

3.3.1 Principal types

The typing rules have been designed to preserve the principal type property. This is just a
conjecture for the moment. A formal proof would require a specification of typing rules for
modules (or abstract the result up to appropriate assumptions on the typing of modules). Still,
the key for the proof are node-variables, which are used is a slightly different but similar way to
semi-explicit polymorphism introduced in OCaml by Garrigue and Rémy (1999).

3.4 Greedy inference

The requirement that the arrow node variable be polymorphic in rules AppD and AppM just
prevents guessing polymorphism. Removing this requirement would preserve type soundness but
would break the distinction between known types and inferred types. Not only we would loose
the principal type property, but typability would likely become intractable.

This would actually allow instantiating type variables by arbitrary module-dependent arrow
types, even inventing module-types that do not appear elsewhere !

However, an implementation need not do that. It may instantiate type variables by module-
dependent types only when some typing constraint requires it and thus never invent module-
dependent types. This is actually what OCaml does by default, when it is not explicitly required
to infer principal types. We call this process greedy inference: it infers polytypes when forced
to, and immediately treats them as known. Typechecking may then succeed or fail, depending
on the order in which type inference, hence type instantiation is being performed.

Soundness While the greedy typing rules break principality, they should still preserves type
soundness, as well as the original typing rules, which defines a subrelation. A proof of type safety
could be done by translation of SmallOCaml to Fω, following Blaudeau, Rémy, and Radanne
(2024), but it is out of the scope of this paper.

20

4 Implementation details

The implementation of modular explicits contains a few subtleties that should be reported.
Current type inference in OCaml typechecks n-ary applications τi →τ by pairing each ar-

gument with its expected type before typechecking the arguments. However when typing a
module-dependent function application, we typecheck the module before looking at the rest of
arguments.

As already mentioned, OCaml currently requires that Q has no free type variables (it may
still have node-variables).

Unification in OCaml links both types together. Thus, when unifying (module X1 : Q1)→ϵ

τ1 with (module X2 : Q2)→ϵ τ2 we need to unify τ1 and τ2 together, leaving us a type τ which is
a mix of both. However τ1 and τ2 did not live in the same context. Thus we also unify X1 with
X2 in order to ensure the validity of (module X1 : Q1)→ϵ τ and (module X2 : Q2)→ϵ τ .

As with first-class modules, the arguments of two module-dependent functions are compatible
only if both modules have the same runtime representation and are coercible to one another, i.e.,
the values in the same order but types can change position. By contrast, ground coercion requires
only the same runtime representation and one way of coercion.

Exhaustiveness and redundancy checks when pattern matching on GADTs isn’t complete due
to the undecidability of this problem (Garrigue and Normand, 2017). As all first-class modules
are considered compatible, we don’t compare the arguments of two module dependent functions.
Thus (module X1 : Q1) →ϵ τ1 and (module X2 : Q2) →ϵ τ2 are considered compatible if τ1 and
τ2 are compatible in an incomplete context (because we don’t add X1 and X2 to the context).

4.1 Typing of recursive functions

When typing recursive functions, we try to ”guess” the type of function before typing the body.
This allows more precise error messages. However, in the case of polymorphism we cannot do this
without a complete annotation. This problem already exists in OCaml currently with type a.
For example the two following codes fails to type:

let rec search (type a) (module X : Ord with type t = a)
(x : X.t) : X.t list → X.t option = function

| [] → None
| h::_ when equal (module X.Eq) x h → Some x
| _::t → search (module X) x t

Error: The signature for this packaged module couldn’t be inferred.

let rec search (module X : Ord) (x : X.t) : X.t list → X.t option = function
| [] → None
| h::_ when equal (module X.Eq) x h → Some x
| _::t → search (module X) x t

Error: The signature for this packaged module couldn’t be inferred.

The reason being that we cannot approximate the type inside a scope definition such as (type a)
or (module X : Ord), thus we give the most permissive type to search before typing the body of
the function : an unconstrained type variable.

The solution is to annotate the recursive definition itself:

let rec (search : (module X : Ord) → X.t → X.t list → X.t option) =
fun (module X) x → function

21

| [] → None
| h::_ when equal (module X.Eq) x h → Some x
| _::t → search (module X) x t

let _ = search (module Ord_int) 2 [1; 2; 3]

This typechecks because this provides sufficient annotation to search to know its type before
typing the body.

4.2 Path condition of dependent application

Functor type arguments, discussed just above solve the particular problem of module arguments
restricted to a single type definition. These can now be inlined. Although a common case, this
is just a particular instance of functor arguments that should be allowed to be inlined.

The typing rules restrictsmodule arguments M in a (module M) to be extractable to a path
P , which includes, in particular, type annotation M : Q. This restriction is not necessary but
written for the sake of readability. Indeed, one could always see a (module M) as let module
X = M in a (module X) when M is not a path P . The scope of X is then restricted to the
expression a (module X) and therefore X cannot appear in its type. Thus this scope restriction
is a safe guard for all soundness problems that could arise if X contains abstract types.

4.3 Greedy OCaml inference

By default, the OCaml typechecker is order dependent, i.e., some programs are accepted based
on the order in which type inference proceeds. Modular explicits are also impacted by this and
are typechecked by default in greedy mode. We use the same mechanism as with labels, first-
class modules, and polymorphic methods to allow the user to receive warnings (which can be
turned into errors that reject the program) when non-principal types are inferred, i.e., using the
-principal option.

The choice of the greedy mode as the default is to avoid duplicating types at some program
points in order to decorrelate node variables, which could significantly slow down typechecking.
This also allows removing some type annotations, but this is not fragile as not stable by program
transformations.

5 Polymorphic parameters

A recent extension by White (2023) proposed to allow polymorphic parameters as arguments to
functions, allowing the user to write:

1: let f = fun (x : σ)→ a0 in
2: let h = fun (f : σ →ϵ τ)→ a1[f a2] in
3: h f

On the first line we defined a function f whose parameter expects a value of a polymorphic type
σ that can be used in a0 at different instances. The inferred type of f is σ → τ . On the second
line, we define a higher-order function that receives a function f of type σ → τ as argument that
can be applied to an argument a2 without any explicit type annotation—but will indeed have to
be at least as polymorphic as σ. Finally, we apply h to f .

22

This extensions uses the two following typing rules:

Fun
Γ, x : ∀ϵ̄. σ2 ⊢ a : τ (σ) : σ1 ⇒ ∀ϵ̄. σ2

Γ ⊢ fun (x : σ)→ a : σ1 →ϵ τ

App
Γ ⊢ a1 : σ →ϵ τ ϵ#Γ Γ ⊢ a2 : σ

Γ ⊢ a1 a2 : τ

Just extending the relation (τ) : τ1 ⇒ ∀ϵ̄. τ2 to type schemes in the obvious way.
Interestingly, when σ is closed, this can be encoded as:

let module type S = sig val value : σ end in
let f = fun (module X : S)→ let x = X .value in a0 in
let h = fun (f : σ →ϵ τ)→ a1[f (module struct let value = a2 end)] in
h f

using a non-dependent first-class module. The amount of information to be provided is similar,
i.e., just the type σ of the parameter of f , except that it has to be defined as a named signature,
which make it more involved when the type is not closed. This results in a situation similar to
the one shown on Figure 1.

6 Discussion

Modular explicits are just about manipulating first-class functors as module-depend functions.
They provide syntactic and typing shortcuts that avoid the unpractical boiler plate encoding,
and facilitate programming with modules at a smaller scale.

Still, despite the conciseness their provide, some programming patterns they enable remain
somewhat verbose. This is due to several restrictions on the typing of first-class modules that
are orthogonal to modular explicits, but still have an impact on modular explicits, which in turn
calls for further extensions of the module language.

For example, functor type arguments, which we used to have shorter, more convincing code-
pattern examples, are strictly speaking not part of modular explicits. Below, we discuss a few
other small extensions that could improve the users experience with modular explicits. Although
they are all orthogonal extensions to modular explicits, they are even more striking in the presence
of modular explicits and should be considered altogether with modular explicits, at least to ensure
coherent design choices.

While we argue that modular explicits are a standalone proposal, they will still be used as the
target of elaboration of modular implicits. Hence, the syntax of modular implicits should also
be taken into account when introducing modular explicits, so that we may later easily switch
between implicit and explicit modular arguments. We may also benefit from the rich set of
programming patterns and examples that have been explored for modular implicits by Reader
et al. (2024), and their recommendations (Reader and Vlasits, 2024), most of which should also
be relevant for modular explicits.

6.1 Compatibility with first-class modules

There has been discussions in the OCaml community on whether module-dependent function
types should be an extension of first-class module types or a different construct with convertibility
between the two views.

Treating them as two different constructions avoids the overlapping. Then, only the new
construct, module-dependent functions, need to be understood in isolation, which is simpler to
comprehend than the overloaded superposition of two closed but different constructs.

23

Identifying them may arguably benefit to the user who can then think of modular explicits
as just an extension of first-class modules without the need for a deep, formal understanding of
the differences between their two faces.

A consensus seems to have emerged in favor of identifying them. We have shown that both
typings agree when the two constructs overlap, which therefore makes it possible to identify them
as a single construct.

6.2 More inlining

One of the main limitations we encountered when programming with modular explicits is the
restriction that module arguments and their signatures should to be named paths.

In some cases, we could work around use the let module X = M in a[X] construct. Still, in
these cases, it would be more convenient to allow M to be inlined. Of course, this may change
the evaluation order or duplicate some computation, although we may expect that M be an
applicative module and X just used once in most cases.

However, a primitive treatment relaxing this restriction would indeed be preferable.

6.2.1 Functor type arguments

In examples above, we have used functor type arguments, a proposal by Vivien (2024b) currently
under discussion in the OCaml community, although they are not part of modular explicits per
say. In the simplest form of this extension, the functor functor (type t) → M [t] is to be
understood as functor (Xτ : Type) → M [Xτ .t] where Type is a predefined module type equal
to sig type t end for some fixed, reserved field t and (module type τ) as an argument means
(module Tτ) where Tτ is the predefined module equal to struct type t = τ end.

Therefore, functor (type t) → M [t] behaves as a functor and blocks the evaluation of the
body, which is then performed and repeated at each application site. An alternative choice would
be that type abstraction behaves as in the core language and does not block the evaluation, while
as a counterpart the body would be restricted to be a value form.

Perhaps surprisingly, our previous examples only used one such functor T defined as fun (type
a)→ struct type t = a end to inline module arguments restricted to a single type–and not turn
them into type arguments. The reason is that the syntax (type t) for module type abstraction
is conflicting with the core language syntax for explicit type abstraction and therefore does not
allow to write a module dependent function that receives a (type a) argument. This has to be
fixed.

6.2.2 Parametric signatures

More generally, we wish type signatures to have core language free (unification) type variables.
Then, signature definitions should be allowed to be parametrized by type variables, such as:

module type T (ᾱ) = S[ᾱ]

so that T (τ̄) can then be used to mean S[τ̄], if signatures could be inlined as described just
above in ??, or otherwise a named signature Tτ̄ that would have been predefined as module type
Tτ̄ = S[τ̄]. In fact, when S[ᾱ] is a signature sig D end[ᾱ], this can actually be emulated by
defining module type T = sig type t̄ D[t] end and seeing T (τ) as syntactic sugar for T with type
t̄ := τ̄ . Therefore, parametric signatures are just a more natural and standard notation for type
abstraction that prevent T to be used non-applied and avoids the introduction of useless names τ̄
for free the free type variables ᾱ.

The key point remains that signatures in general, may contain free type variables.

24

6.3 Polymorphic arguments

Technically, type inference for module-dependent functions is quite close to type inference for
polymorphic parameters. Indeed, if we allowed first-class module types to have free type vari-
ables, the latter could be emulated with the former. Still, when polymorphic arguments applies,
they are simpler than their encoding in terms of module-dependent functions. Hence, they are
not a redundant, but a useful complementary extension.

6.4 Transparent ascription

Since we presented modular explicits as the target of the elaboration of modular implicits, we
should mention another extension, transparent ascription, which although not necessary for mod-
ular explicits is a key for modular implicits. Hence, to be complete, we briefly discuss and explain
the need for transparent ascription in the presence of modular implicits.

When synthesizing modules from signatures, or more generally when the semantics is defined
by elaboration, it is necessary that all elaborations of the same program are observationally
equivalent, in which case we say that the program is coherent, so that its semantics is deterministic
and thus clearly defined. Programs for which the coherence cannot be ensured should be rejected.

While there are often several ways to infer a module of a given signature—just by module
applications taken from a database of implicit modules, it is often the case that all solutions
will actually compute the same module value and are thus observationally equivalent. While it
would be difficult to trace expression aliases by typechecking in the core-language expressions,
it is easier to prove this at the module-level, using applicative functors and path equivalences.
However, the actual typechecking of applicative modules in OCaml is too weak to track modular
aliases through functor applications. Hence, an extension to OCaml under consideration is to
add transparent ascription in paths to better keep track of module aliases. An explained above,
while essential for modular implicits, this is orthogonal to and not for modular explicits for
which there is no coherence problem. Hence, we leave this extension out of the modular explicit
proposal.

Conclusion

Modular explicits are a small extension to first-class modules. In principle, they do not increase
expressiveness. In practice however, they considerably improve conciseness and the interaction
between the core and module levels, by turning module-level first-class functors into core-level
module-dependent functions. This enables new programming patterns that were previously un-
practical, and programming with modules directly at the core-level.

Although types of module-dependent functions and functions over first-class modules are two
different constructions that are typed differently, their overlapping is made mostly transparent
to the user, who only sees one kind of arrow that can be treated as a module-dependent arrow
type when there is sufficient type annotations to know the dependency. Interestingly, the imple-
mentation reuses the OCaml existing trick to keep track of principal types and smoothly move
from dependent to non-dependent arrow types when needed.

Although modular explicits have been originally designed as the language in which modular
implicits will be elaborated, many examples of modular explicits need not implicit arguments
to be usable—or need not them at all. Hence, modular explicits are useful for themselves and
should made their way to the compiler as soon as possible.

Modular explicits allow modules to be used for programming in the small, which in turn
requires new extensions of the module system to further smoothen the interaction between the
module and core levels.

25

Acknowledgments

We would like to thank Vincent Laviron, the Flambda team, and all the other people at OCaml-
Pro for hosting the internship that lead to the implementation of modular explicits. We also
thank Leo White for his advices and code reviewing. We wish to acknowledge the work of
Matthew Ryan on his own implementation of modular explicits (Ryan, 2019), which lead to
various discussions on github that gave an insight on their implementation.

References

C. Blaudeau, D. Rémy, and G. Radanne. Fulfilling ocaml modules with transparency. In Pro-
ceedings of the 2024 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’24, New York, NY, USA, 2024. ACM.

D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular type classes. In M. Hofmann
and M. Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007, pages
63–70. ACM, 2007. ISBN 1-59593-575-4. doi: 10.1145/1190216.1190229. URL https://doi.
org/10.1145/1190216.1190229.

J. Garrigue and J. L. Normand. Gadts and exhaustiveness: Looking for the impossible. In ML
Family/OCaml, 2017. URL https://api.semanticscholar.org/CorpusID:10817992.

J. Garrigue and D. Rémy. Extending ML with semi-explicit higher-order polymorphism. In-
formation and Computation, 155(1/2):134–169, 1999. URL http://www.springerlink.com/
content/m303472288241339/. A preliminary version appeared in TACS’97.

X. Leroy. Applicative functors and fully transparent higher-order modules. In Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL
’95, pages 142–153, San Francisco, California, United States, 1995. ACM Press. ISBN 978-
0-89791-692-9. doi: 10.1145/199448.199476. URL http://portal.acm.org/citation.cfm?
doid=199448.199476.

B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits. In
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe,
Nevada, USA, pages 341–360, 2010. doi: 10.1145/1869459.1869489. URL https://doi.org/
10.1145/1869459.1869489.

P. Reader and D. Vlasits. Modular implicits internship report, 2024. URL https://github.
com/modular-implicits.github.io/report.pdf.

P. Reader, D. Vlasits, L. White, and J. Yallop. A repository of modular implicits packages, 2024.
URL https://github.com/modular-implicits/modular-implicits-opam.

M. Ryan. Modular explicits. On github https://github.com/ocaml/ocaml/pull/9187, Dec.
2019. OCaml pull request.

S. Vivien. Modular explicits, June 2024a. URL https://github.com/samsa1/
modular-compiler-variantshttps://github.com/samsa1/modular-compiler-variants.
Available as an OCaml variant on github.

26

https://doi.org/10.1145/1190216.1190229
https://doi.org/10.1145/1190216.1190229
https://api.semanticscholar.org/CorpusID:10817992
http://www.springerlink.com/content/m303472288241339/
http://www.springerlink.com/content/m303472288241339/
http://portal.acm.org/citation.cfm?doid=199448.199476
http://portal.acm.org/citation.cfm?doid=199448.199476
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1145/1869459.1869489
https://github.com/modular-implicits.github.io/report.pdf
https://github.com/modular-implicits.github.io/report.pdf
https://github.com/modular-implicits/modular-implicits-opam
https://github.com/ocaml/ocaml/pull/9187
https://github.com/samsa1/modular-compiler-variantshttps://github.com/samsa1/modular-compiler-variants
https://github.com/samsa1/modular-compiler-variantshttps://github.com/samsa1/modular-compiler-variants

S. Vivien. Type arguments from modules. On github https://github.com/ocaml/RFCs/blob/
27e94773c6b191a372ade263195dade779132dc2/rfcs/type_arguments_for_modules.md,
June 2024b. OCaml RFC.

L. White. Semi-explicit polymorphic parameters. Presentation at the Higher-order, Typed,
Inferred, Strict: ML Family workshops, sep 2023.

L. White, F. Bour, and J. Yallop. Modular implicits. In O. Kiselyov and J. Garrigue, ed-
itors, Proceedings ML Family/OCaml Users and Developers workshops, ML/OCaml 2014,
Gothenburg, Sweden, September 4-5, 2014., volume 198 of EPTCS, pages 22–63, 2014. doi:
10.4204/EPTCS.198.2. URL https://doi.org/10.4204/EPTCS.198.2.

27

https://github.com/ocaml/RFCs/blob/27e94773c6b191a372ade263195dade779132dc2/rfcs/type_arguments_for_modules.md
https://github.com/ocaml/RFCs/blob/27e94773c6b191a372ade263195dade779132dc2/rfcs/type_arguments_for_modules.md
https://doi.org/10.4204/EPTCS.198.2

	Overview
	The limit of first-class modules
	A tentative work around
	Module-dependent functions as first-class functors
	Presentation of modular explicits
	Compatibility with first-class modules

	Motivating examples
	Type classes with explicit applications
	Higher-rank types
	Higher-kinded types
	Mixing higher-kinded types and higher-order types
	Light-weight encoding of F
	Fine-grain polymorphism

	Formal presentation
	SmallOCaml
	Typing rules
	Tracking the unknowns
	Principal types

	Greedy inference

	Implementation details
	Typing of recursive functions
	Path condition of dependent application
	Greedy OCaml inference

	Polymorphic parameters
	Discussion
	Compatibility with first-class modules
	More inlining
	Functor type arguments
	Parametric signatures

	Polymorphic arguments
	Transparent ascription

