
TOP

2003/5/20

page i

Advan
ed Topi
s in Types and Programming Languages

TOP

2003/5/20

page ii

TOP

2003/5/20

page iii

Advan
ed Topi
s in

Types and Programming Lan-

guages

Benjamin C. Pier
e, editor

The MIT Press

Cambridge, Massa
husetts

London, England

TOP

2003/5/20

page iv

Contents

Prefa
e 1

1 ML 2

By François Pottier and Didier Rémy

1.1 Preliminaries 2

1.2 What is ML? 3

1.3 Constraints 20

1.4 HM(X) 40

1.5 A purely
onstraint-based type system: PCB(X) 52

1.6 Constraint generation 58

1.7 Type soundness 63

1.8 Constraint solving 72

1.9 From ML-the-
al
ulus to ML-the-programming-language 86

1.10 Universal quanti�
ation in
onstraints 107

1.11 Rows 119

2 Logi
al Relations and a Case Study in Equivalen
e Che
king

139

By Karl Crary

2.1 The Equivalen
e Problem 140

2.2 Untyped Equivalen
e Che
king 141

2.3 Type-Driven Equivalen
e 143

2.4 An Equivalen
e Algorithm 144

2.5 Completeness: A First Attempt 147

2.6 Logi
al Relations 149

2.7 A Monotone Logi
al Relation 152

2.8 The Main Lemma 153

TOP

2003/5/20

page v

Contents v

2.9 The Fundamental Theorem 155

2.10 Notes 160

3 Typed Operational Reasoning 161

By Andrew Pitts

3.1 Introdu
tion 161

3.2 Motivating Examples 163

3.3 The Language 169

3.4 Contextual Equivalen
e 175

3.5 An Operationally-Based Logi
al Relation 180

3.6 Operational Extensionality 187

3.7 Notes 193

4 Dependent Types 196

By David Aspinall and Martin Hofmann

4.1 Pure �rst-order dependent types 201

4.2 Properties 205

4.3 Algorithmi
 typing and equality 207

4.4 Dependent sum types 212

4.5 The Cal
ulus of Constru
tions 214

4.6 Relating abstra
tions: Pure Type Systems 222

4.7 Implementation 224

4.8 Further reading 227

5

E�e
t

Types and Region-based Memory Management 230

By Fritz Henglein, Henning Makholm, and Henning Niss

5.1 Type-based program analysis 230

5.2 Value �ow analysis 231

5.3 E�e
ts 241

5.4 Region-based memory management 245

5.5 The Tofte-Talpin type system 254

5.6 Region inferen
e 263

5.7 More powerful models for region-based memory

management 266

5.8 Pra
ti
al region-based memory management systems 271

6 Substru
tural Type Systems 274

By David Walker

6.1 Stru
tural Properties 275

6.2 A Linear Type System 277

TOP

2003/5/20

page vi

vi Draft of May 20, 2003 Contents

6.3 Extensions and Variations 287

6.4 An Ordered Type System 300

6.5 Further Appli
ations 305

6.6 Notes 310

7 Proof-Carrying Code 313

By George Ne
ula

7.1 Overview of Proof Carrying Code 314

7.2 Formalizing the Safety Poli
y 319

7.3 Veri�
ation-Condition Generation 323

7.4 Soundness Proof 336

7.5 The Representation and Che
king of Proofs 340

7.6 Proof Generation 351

7.7 PCC Beyond Types 352

7.8 Con
lusion 355

8 Typed Assembly Language 358

By Greg Morrisett

8.1 TAL-0: Control-Flow-Safety 359

8.2 The TAL-0 Type System 363

8.3 TAL-1: Simple Memory-Safety 372

8.4 TAL-1 Changes to the Type System 378

8.5 Compiling to TAL-1 381

8.6 Some Real World Issues 384

8.7 S
aling to Other Language Features 386

8.8 Con
lusions 392

9 Design Issues in Advan
ed Module Systems 393

By Robert Harper and Benjamin C. Pier
e

9.1 Basi
 Modularity 394

9.2 Phase Distin
tion and Phase Separation 405

9.3 Data Abstra
tion 407

9.4 Hierar
hi
al Modularity 416

9.5 Families of Interfa
es 419

9.6 Families of Modules 423

9.7 Advan
ed Topi
s 433

9.8 Relation to Existing Languages 435

9.9 History and Further Reading 437

9.10 Other stu� 439

TOP

2003/5/20

page vii

Contents vii

10 Type De�nitions 440

By Christopher A. Stone

10.1 De�nitions in the Typing Context 442

10.2 De�nitions in Modules 457

10.3 Singleton Kinds 466

10.4 Notes 481

A Notational Conventions 483

A.1 Metavariable Names 483

A.2 Rule Naming Conventions 483

B Solutions to Sele
ted Exer
ises 487

Referen
es 536

Index 565

TOP

2003/5/20

page 2

1 ML

By François Pottier and Didier Rémy

1.1 Preliminaries

Names and renaming

Mathemati
ians and
omputer s
ientists use names to refer to arbitrary or

unknown obje
ts in the statement of a theorem, to refer to the parameters

of a fun
tion, et
. Names are
onvenient be
ause they are understandable

by humans; nevertheless, they
an be tri
ky. An in-depth treatment of the

di�
ulties asso
iated with names and renaming is beyond the s
ope of the

present
hapter: we en
ourage the reader to study Gabbay and Pitts' ex
ellent

series of papers (Gabbay and Pitts, 2002; Pitts, 2002b). Here, we merely re
all

a few notions that are used throughout this
hapter. Consider, for instan
e, an

indu
tive de�nition of the abstra
t syntax of a simple programming language,

the pure �-
al
ulus:

t ::= z j �z:t j t t

Here, the meta-variable z ranges over an in�nite set of variables�that is,

names�while the meta-variable t ranges over terms. As usual in mathemati
s,

we write �the variable z� and �the term t� instead of �the variable denoted by

z� and �the term denoted by t�. The above de�nition states that a term may

be a variable z, a pair of a variable and a term, written �z:t, or a pair of terms,

written t

1

t

2

. However, this is not quite what we need. Indeed, a

ording to

The (
urrently un�nished)
ode that a

ompanies this
hapter may be found at http:

//pauilla
.inria.fr/~remy/mlrow/. For spa
e reasons, some material, in
luding proofs,

exer
ises, and more, has been left out of this version. In the future, a full version of this

hapter that in
ludes the missing material will be made available at the same address. In

spite of these omissions, this
hapter is still oversize with respe
t to Benjamin's 100 page

barrier: we
urrently have roughly 135 pages of text and 15 pages of solutions to exer
ises.

We would appre
iate
omments and suggestions from the proofreaders as to how this
hapter

ould be made shorter, without severely
ompromising its interest or readability.

TOP

2003/5/20

page 3

1.2 What is ML? 3

this de�nition, the terms �z

1

:z

1

and �z

2

:z

2

are distin
t, while we would like

them to be a single mathemati
al obje
t, be
ause we intend �z:z to mean �the

fun
tion that maps z to z��a meaning that is independent of the name z.

To a
hieve this e�e
t, we
omplete the above de�nition by stating that the

onstru
tion �z:t binds z within t. One may also say that �z is a binder whose

s
ope is t. Then, �z:t is no longer a pair: rather, it is an abstra
tion of the

variable z within the term t. Abstra
tions have the property that the identity

of the bound variable does not matter; that is, �z

1

:z

1

and �z

2

:z

2

are the same

term. Informally, we say that terms are
onsidered equal modulo �-
onversion.

On
e the position and s
ope of binders are known, several standard notions

follow, su
h as the set of free variables of a term t, written fv(t), and the

apture-avoiding substitution of a term t

1

for a variable z within a term t

2

,

written [z 7! t

1

℄t

2

. For
on
iseness, we write fv (t

1

; t

2

) for fv (t

1

) [fv (t

2

). A

term is said to be
losed when it has no free variables.

A renaming is a total bije
tive mapping from variables to variables that

a�e
ts only a �nite number of variables. The sole property of a variable is its

identity, that is, the fa
t that it is distin
t from other variables. As a result,

at a global level, all variables are inter
hangeable: if a theorem holds in the

absen
e of hypotheses about any parti
ular variable, then any renaming of it

holds as well. We often make use of this fa
t. When proving a theorem T , we

say that a hypothesis H may be assumed wihout loss of generality (w.l.o.g.)

if the theorem T follows from the theorem H) T via a renaming argument,

whi
h is usually left impli
it.

If �z

1

and �z

2

are sets of variables, we write �z

1

�z

2

as a shorthand for

�z

1

\ �z

2

= ?, and say that �z

1

is fresh for �z

2

(or vi
e-versa). We say that �z is

fresh for t if and only if �z # fv(t) holds.

In this
hapter, we work with several distin
t varieties of names: program

variables, memory lo
ations, and type variables, the latter of whi
h may be

further divided into kinds. We draw names of di�erent varieties from disjoint

sets, ea
h of whi
h is in�nite.

1.2 What is ML?

The name �ML� appeared during the late seventies. It then referred to a

general-purpose programming language that was used as a meta-language

(when
e its name) within the theorem prover LCF (Gordon, Milner, and

Wadsworth, 1979b). Sin
e then, several new programming languages, ea
h

of whi
h o�ers several di�erent implementations, have drawn inspiration from

it. So, what does �ML� stand for today?

For a semanti
ist, �ML� might stand for a programming language featuring

�rst-
lass fun
tions, data stru
tures built out of produ
ts and sums, mutable

TOP

2003/5/20

page 4

4 Draft of May 20, 2003 1 ML

memory
ells
alled referen
es, ex
eption handling, automati
 memory man-

agement, and a
all-by-value semanti
s. This view en
ompasses the Standard

ML (Milner, Tofte, and Harper, 1990) and Caml (Leroy, 2000) families of

programming languages. We refer to it as ML-the-programming-language.

For a type theorist, �ML� might stand for a parti
ular breed of type sys-

tems, based on the simply-typed �-
al
ulus, but extended with a simple form

of polymorphism introdu
ed by let de
larations. These type systems have

de
idable type inferen
e; their type inferen
e algorithms
ru
ially rely on

�rst-order uni�
ation and
an be made e�
ient in pra
ti
e. In addition to

Standard ML and Caml, this view en
ompasses programming languages su
h

as Haskell (Hudak, Peyton Jones, Wadler, Boutel, Fairbairn, Fasel, Guzman,

Hammond, Hughes, Johnsson, Kieburtz, Nikhil, Partain, and Peterson, 1992)

and Clean (Brus, van Eekelen, van Leer, and Plasmeijer, 1987), whose seman-

ti
s is rather di�erent�indeed, it is pure and lazy�but whose type system

�ts this des
ription. We refer to it as ML-the-type-system. It is also referred

to as Hindley and Milner's type dis
ipline in the literature.

For us, �ML� might also stand for the parti
ular programming language

whose formal de�nition is given and studied in this
hapter. It is a
ore
al
ulus

featuring �rst-
lass fun
tions, let de
larations, and
onstants. It is equipped

with a
all-by-value semanti
s. By
ustomizing
onstants and their seman-

ti
s, one may re
over data stru
tures, referen
es, and more. We refer to this

parti
ular
al
ulus as ML-the-
al
ulus.

Why study ML-the-type-system today, su
h a long time after its initial

dis
overy? One may think of at least two reasons.

First, its treatment in the literature is often
ursory, be
ause it is
onsidered

either as a simple extension of the simply-typed �-
al
ulus (TAPL Chapter

9) or as a subset of Girard and Reynolds' System F (TAPL Chapter 23).

The former view is supported by the
laim that the let
onstru
t, whi
h

distinguishes ML-the-type-system from the simply-typed �-
al
ulus, may be

understood as a simple textual expansion fa
ility. However, this view only tells

part of the story, be
ause it fails to give an a

ount of the prin
ipal types prop-

erty enjoyed by ML-the-type-system, leads to a naïve type inferen
e algorithm

whose time
omplexity is exponential, and breaks down when the language

is extended with side e�e
ts, su
h as state or ex
eptions. The latter view is

supported by the fa
t that every type derivation within ML-the-type-system

is also a valid type derivation within an impli
ity-typed variant of System F.

Su
h a view is
orre
t, but again fails to give an a

ount of type inferen
e for

ML-the-type-system, sin
e type inferen
e for System F is unde
idable (Wells,

1999).

Se
ond, existing a

ounts of type inferen
e for ML-the-type-system (Milner,

1978; Damas and Milner, 1982; Tofte, 1988; Leroy, 1992; Lee and Yi, 1998;

TOP

2003/5/20

page 5

1.2 What is ML? 5

Jones, 1999) usually involve heavy manipulations of type substitutions. Su
h

an ubiquitous use of type substitutions is often quite obs
ure. Furthermore,

a
tual implementations of the type inferen
e algorithm do not expli
itly ma-

nipulate substitutions; instead, they extend a standard �rst-order uni�
ation

algorithm, where terms are updated in pla
e as new equations are dis
ov-

ered (Huet, 1976). Thus, it is hard to tell, from these a

ounts, how to write

an e�
ient type inferen
e algorithm for ML-the-type-system. Yet, in spite of

the in
reasing speed of
omputers, e�
ien
y remains
ru
ial when ML-the-

type-system is extended with expensive features, su
h as Obje
tive Caml's

obje
t types (Rémy and Vouillon, 1998) or polymorphi
 methods (Garrigue

and Rémy, 1999).

For these reasons, we believe it is worth giving an a

ount of ML-the-type-

system that fo
uses on type inferen
e and strives to be at on
e elegant and

faithful to an e�
ient implementation. To a
hieve these goals, we forego type

substitutions and instead put emphasis on
onstraints, whi
h o�er a number

of advantanges. First,
onstraints allow a modular presentation of type in-

feren
e as the
ombination of a
onstraint generator and a
onstraint solver.

Su
h a de
omposition allows reasoning separately about when a program is

orre
t, on the one hand, and how to
he
k whether it is
orre
t, on the

other hand. It has long been standard in the setting of the simply-typed �-

al
ulus (TAPL Chapter 22), but, to the best of our knowledge, has never

been proposed for ML-the-type-system. Se
ond, it is often natural to de-

�ne and implement the solver as a
onstraint rewriting system. Then, the

onstraint language allows reasoning not only about
orre
tness�is every

rewriting step meaning-preserving?�but also about low-level implementation

details, sin
e
onstraints are the data stru
tures manipulated throughout the

type inferen
e pro
ess. For instan
e, des
ribing uni�
ation in terms of multi-

equations (Jouannaud and Kir
hner, 1991) allows reasoning about the sharing

of nodes in memory, whi
h a substitution-based approa
h
annot a

ount for.

Last,
onstraints are more general than type substitutions, and allow des
rib-

ing many extensions of ML-the-type-system, among whi
h extensions with

re
ursive types, rows, subtyping, �rst-order uni�
ation under a mixed pre�x,

and more.

Before delving into the details of this new presentation of ML-the-type-

system, however, it is worth re
alling its standard de�nition. Thus, in what

follows, we �rst de�ne the syntax and operational semanti
s of the program-

ming language ML-the-
al
ulus, and equip it with a type system, known as

Damas and Milner's type system.

TOP

2003/5/20

page 6

6 Draft of May 20, 2003 1 ML

x; y ::= Identi�ers:

z Variable

m Memory lo
ation

 Constant

t ::= Expressions:

x Identi�er

�z:t Fun
tion

t t Appli
ation

let z = t in t Lo
al de�nition

v; w ::= Values:

z Variable

m Memory lo
ation

�z:t Fun
tion

 v

1

: : : v

k

Data

 2 Q

+

^ k � a(
)

 v

1

: : : v

k

Partial appli
ation

 2 Q

�

^ k < a(
)

E ::= Evaluation Contexts:

[℄ Empty
ontext

E t Left side of an appli
ation

v E Right side of an appli
ation

let z = E in t Lo
al de�nition

Figure 1-1: Syntax of ML-the-
al
ulus

ML-the-
al
ulus

The syntax of ML-the-
al
ulus is de�ned in Figure 1-1. It is made up of several

synta
ti

ategories.

Identi�ers group several kinds of names that may be referen
ed in a pro-

gram: variables, memory lo
ations, and
onstants. We let x and y range

over identi�ers. Variables�sometimes
alled program variables to avoid

ambiguity�are names that may be bound to values using � or let binding

forms; in other words, they are names for fun
tion parameters or lo
al de�-

nitions. We let z and f range over program variables. We sometimes write

for a program variable that does not o

ur free within its s
ope: for instan
e,

� :t stands for �z:t, provided z is fresh for t. Memory lo
ations are names

that represent memory addresses. By
onvention, memory lo
ations never ap-

pear in sour
e programs, that is, programs that are submitted to a
ompiler.

They only appear during exe
ution, when new memory blo
ks are allo
ated.

Constants are �xed names for primitive values and operations, su
h as integer

literals and integer arithmeti
 operations. Constants are elements of a �nite

or in�nite set Q. They are never subje
t to �-
onversion. Program variables,

memory lo
ations, and
onstants belong to distin
t synta
ti

lasses and may

never be
onfused.

The set of
onstants Q is kept abstra
t, so most of our development is

independent of its
on
rete de�nition. We assume that every
onstant
 has a

nonnegative integer arity a(
). We further assume that Q is partitioned into

subsets of
onstru
tors Q

+

and destru
tors Q

�

. Constru
tors and destru
tors

di�er in that the former are used to form values, while the latter are used to

TOP

2003/5/20

page 7

1.2 What is ML? 7

operate on values.

1.2.1 Example [Integers℄: For every integer n, one may introdu
e a nullary
on-

stru
tor n̂. In addition, one may introdu
e a binary destru
tor

^

+, whose appli-

ations are written in�x, so t

1

^

+ t

2

stands for the double appli
ation

^

+ t

1

t

2

of the destru
tor

^

+ to the expressions t

1

and t

2

. 2

Expressions�also known as program terms or programs�are the main syn-

ta
ti

ategory. Indeed, unlike pro
edural languages su
h as C and Java, fun
-

tional languages, in
luding ML-the-programming-language, suppress the dis-

tin
tion between expressions and statements. Expressions in
lude identi�ers,

�-abstra
tions, appli
ations, and lo
al de�nitions. The �-abstra
tion �z:t rep-

resents the fun
tion of one parameter named z whose result is the expression t,

or, in other words, the fun
tion that maps z to t. Note that the variable z

is bound within the term t, so (for instan
e) �z

1

:z

1

and �z

2

:z

2

are the same

obje
t. The appli
ation t

1

t

2

represents the result of
alling the fun
tion t

1

with a
tual parameter t

2

, or, in other words, the result of applying t

1

to t

2

.

Appli
ation is left-asso
iative, that is, t

1

t

2

t

3

stands for (t

1

t

2

) t

3

. The
on-

stru
t let z = t

1

in t

2

represents the result of evaluating t

2

after binding the

variable z to t

1

. Note that the variable z is bound within t

2

, but not within

t

1

, so for instan
e let z

1

= z

1

in z

1

and let z

2

= z

1

in z

2

are the same

obje
t. The
onstru
t let z = t

1

in t

2

has the same meaning as (�z:t

2

) t

1

,

but is dealt with in a more �exible way by ML-the-type-system. To sum up,

the syntax of ML-the-
al
ulus is that of the pure �-
al
ulus, extended with

memory lo
ations,
onstants, and the let
onstru
t.

Values form a subset of expressions. They are expressions whose evaluation

is
ompleted. Values in
lude identi�ers, �-abstra
tions, and appli
ations of

onstants, of the form
 v

1

: : : v

k

, where k does not ex
eed
's arity if
 is a

onstru
tor, and k is smaller than
's arity if
 is a destru
tor. In what follows,

we are often interested in
losed values, that is, values that do not
ontain

any free program variables. We use the meta-variables v and w for values.

1.2.2 Example: The integer literals : : : ;

�1;

^

0;

^

1; : : : are nullary
onstru
tors, so

they are values. Integer addition

^

+ is a binary destru
tor, so it is a value, and

so is every partial appli
ation

^

+ v. Thus, both

^

+

^

1 and

^

+

^

+ are values. An

appli
ation of

^

+ to two values, su
h as

^

2

^

+

^

2, is not a value. 2

1.2.3 Example [Pairs℄: Let (�; �) be a binary
onstru
tor. If t

1

are t

2

are expres-

sions, then the double appli
ation (�; �) t

1

t

2

may be
alled the pair of t

1

and

t

2

, and may be written (t

1

; t

2

). By the de�nition above, (t

1

; t

2

) is a value if

and only if t

1

and t

2

are both values. 2

Stores are �nite mappings from memory lo
ations to
losed values. A store �

represents what is usually
alled a heap, that is, a
olle
tion of data stru
tures,

TOP

2003/5/20

page 8

8 Draft of May 20, 2003 1 ML

ea
h of whi
h is allo
ated at a parti
ular address in memory and may
ontain

pointers to other elements of the heap. ML-the-programming-language allows

overwriting the
ontents of an existing memory blo
k�an operation some-

times referred to as a side e�e
t. In the operational semanti
s, this e�e
t is

a
hieved by mapping an existing memory lo
ation to a new value. We write

? for the empty store. We write �[m 7! v℄ for the store that maps m to v and

otherwise
oin
ides with �. When � and �

0

have disjoint domains, we write

��

0

for their union. We write dom(�) for the domain of � and range(�) for

the set of memory lo
ations that appear in its
odomain.

The operational semanti
s of a purely fun
tional language, su
h as the pure

�-
al
ulus, may be de�ned as a rewriting system on expressions. Be
ause ML-

the-
al
ulus has side e�e
ts, however, we de�ne its operational semanti
s as a

rewriting system on
on�gurations. A
on�guration t=� is a pair of an expres-

sion t and a store �. The memory lo
ations in the domain of � are
onsidered

bound within t=�, so (for instan
e) m

1

=(m

1

7!

^

0) and m

2

=(m

2

7!

^

0) are

the same obje
t. In what follows, we are often interested in
losed
on�gura-

tions, that is,
on�gurations t=� su
h that t has no free program variables

and every memory lo
ation that appears within t or within the range of �

is in the domain of �. If t is a sour
e program, its evaluation begins within

an empty store�that is, with the
on�guration t=?. Be
ause, by
onvention,

sour
e programs do not
ontain memory lo
ations, this is a
losed
on�gura-

tion. Furthermore, we shall see that all redu
ts of a
losed
on�guration are

losed as well. Please note that, instead of separating expressions and stores,

it is possible to make store fragments part of the syntax of expressions; this

idea, proposed in (Crank and Felleisen, 1991), is reminis
ent of the en
oding of

referen
e
ells in pro
ess
al
uli (Turner, 1995; Fournet and Gonthier, 1996).

A
ontext is an expression where a single subexpression has been repla
ed

with a hole, written [℄. Evaluation
ontexts form a stri
t subset of
ontexts. In

an evaluation
ontext, the hole is meant to highlight a point in the program

where it is valid to apply a redu
tion rule. Thus, the de�nition of evaluation

ontexts determines a redu
tion strategy: it tells where and in what order

redu
tion steps may o

ur. For instan
e, the fa
t that �z:[℄ is not an eval-

uation
ontext means that the body of a fun
tion is never evaluated�that

is, not until the fun
tion is applied, see R-Beta below. The fa
t that t E is

an evaluation
ontext only if t is a value means that, to evaluate an appli-

ation t

1

t

2

, one should fully evaluate t

1

before attempting to evaluate t

2

.

More generally, in the
ase of a multiple appli
ation, it means that arguments

should be evaluated from left to right. Of
ourse, other
hoi
es
ould be made:

for instan
e, de�ning E ::= : : : j t E j E v j : : : would enfor
e a right-to-left

evaluation order, while de�ning E ::= : : : j t E j E t j : : : would leave the eval-

uation order unspe
i�ed, e�e
tively allowing redu
tion to alternate between

TOP

2003/5/20

page 9

1.2 What is ML? 9

(�z:t) v �! [z 7! v℄t (R-Beta)

let z = v in t �! [z 7! v℄t (R-Let)

t=�

Æ

�!
t

0

=�

0

t=� �! t

0

=�

0

(R-Delta)

t=� �! t

0

=�

0

dom(�

00

) # dom(�

0

)

range(�

00

) # dom(�

0

n �)

t=��

00

�! t

0

=�

0

�

00

(R-Extend)

t=� �! t

0

=�

0

E [t℄=� �_ E [t

0

℄=�

0

(R-Context)

Figure 1-2: Semanti
s of ML-the-
al
ulus

both subexpressions, and making evaluation nondeterministi
. The fa
t that

let z = v in E is not an evaluation
ontext means that the body of a lo
al

de�nition is never evaluated�that is, not until the de�nition itself is redu
ed,

see R-Let below. We write E [t℄ for the expression obtained by repla
ing the

hole in E with the expression t.

Figure 1-2 de�nes �rst a relation�! between
on�gurations, then a relation

�_ between
losed
on�gurations. If t=� �! t

0

=�

0

or t=� �_ t

0

=�

0

holds,

then we say that the
on�guration t=� redu
es to the
on�guration t

0

=�

0

; the

ambiguity involved in this de�nition is benign. If t=� �! t

0

=� holds for every

store �, then we write t �! t

0

and say that the redu
tion is pure.

The key redu
tion rule is R-Beta, whi
h states that a fun
tion appli
a-

tion (�z:t) v redu
es to the fun
tion body, namely t, where every o

urren
e

of the formal argument z has been repla
ed with the a
tual argument v.

The �
onstru
t, whi
h prevented the fun
tion body t from being evaluated,

disappears, so the new term may (in general) be further redu
ed. Be
ause

ML-the-
al
ulus adopts a
all-by-value strategy, rule R-Beta is appli
able

only if the a
tual argument is a value v. In other words, a fun
tion
annot

be invoked until its a
tual argument has been fully evaluated. Rule R-Let

is very similar to R-Beta. Indeed, it spe
i�es that let z = v in t has the

same behavior, with respe
t to redu
tion, as (�z:t) v. We remark that sub-

stitution of a value for a program variable throughout a term is expensive, so

R-Beta and R-Let are never implemented literally: they are only a simple

spe
i�
ation. A
tual implementations usually employ runtime environments,

whi
h may be understood as a form of expli
it substitutions (Abadi, Cardelli,

Curien, and Lévy, 1991). Please note that our
hoi
e of a
all-by-value re-

du
tion strategy is fairly arbitrary, and has essentially no impa
t on the type

system; the programming language Haskell (Hudak, Peyton Jones, Wadler,

Boutel, Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, Kieburtz,

TOP

2003/5/20

page 10

10 Draft of May 20, 2003 1 ML

Nikhil, Partain, and Peterson, 1992), whose redu
tion strategy is known as

lazy or
all-by-need, also relies on Hindley and Milner's type dis
ipline.

Rule R-Delta des
ribes the semanti
s of
onstants. It merely states that a

ertain relation

Æ

�! is a subset of �!. Of
ourse, sin
e the set of
onstants is

unspe
i�ed, the relation

Æ

�! must be kept abstra
t as well. We require that,

if t=�

Æ

�! t

0

=�

0

holds, then

(i) t is of the form
 v

1

: : : v

n

, where
 is a destru
tor of arity n; and

(ii) dom(�) is a subset of dom(�

0

).

Condition (i) ensures that Æ-redu
tion
on
erns full appli
ations of destru
-

tors only, and that these are evaluated in a

ordan
e with the
all-by-value

strategy. Condition (ii) ensures that Æ-redu
tion may allo
ate new memory

lo
ations, but not deallo
ate existing lo
ations. In parti
ular, a �garbage
ol-

le
tion� operator, whi
h destroys unrea
hable memory
ells,
annot be made

available as a
onstant. Doing so would not make mu
h sense anyway in the

presen
e of R-Extend, whi
h states that any valid redu
tion is also valid in

a larger store. Condition (ii) allows proving that, if t=� redu
es to t

0

=�

0

, then

dom(�) is a subset of dom(�

0

); this is left as an exer
ise to the reader.

1.2.4 Example [Integers,
ontinued℄: The operational semanti
s of integer ad-

dition may be de�ned as follows:

^

k

1

^

+

^

k

2

Æ

�!

\

k

1

+ k

2

(R-Add)

The left-hand term is the double appli
ation

^

+

^

k

1

^

k

2

, while the right-hand

term is the integer literal

^

k, where k is the sum of k

1

and k

2

. The distin
tion

between obje
t level and meta level (that is, between

^

k and k) is needed here

to avoid ambiguity. 2

1.2.5 Example [Pairs,
ontinued℄: In addition to the pair
onstru
tor de�ned

in Example 1.2.3, we may introdu
e two destru
tors �

1

and �

2

of arity 1. We

may de�ne their operational semanti
s as follows, for i 2 f1; 2g:

�

i

(v

1

; v

2

)

Æ

�! v

i

(R-Proj)

Thus, our treatment of
onstants is general enough to a

ount for pair
on-

stru
tion and destru
tion; we need not build these features expli
itly into the

language. 2

1.2.6 Exer
ise [Booleans, Re
ommended, FF℄: Let true and false be

nullary
onstru
tors. Let if be a ternary destru
tor. Extend the operational

semanti
s with

if true v

1

v

2

Æ

�!
v

1

(R-True)

TOP

2003/5/20

page 11

1.2 What is ML? 11

if false v

1

v

2

Æ

�! v

2

(R-False)

Let us use the synta
ti
 sugar if t

0

then t

1

else t

2

for the triple appli
ation

of if t

0

t

1

t

2

. Explain why these de�nitions do not quite provide the expe
ted

behavior. Without modifying the semanti
s of if, suggest a new de�nition of

the synta
ti
 sugar if t

0

then t

1

else t

2

that
orre
ts the problem. 2

1.2.7 Example [Sums℄: Booleans may in fa
t be viewed as a spe
ial
ase of the

more general
on
ept of sum. Let inj

1

and inj

2

be unary
onstru
tors,
alled

respe
tively left and right inje
tions. Let
ase be a ternary destru
tor, whose

semanti
s is de�ned as follows, for i 2 f1; 2g:

ase (inj

i

v) v

1

v

2

Æ

�!
v

i

v

(R-Case)

Here, the value inj

i

v is being s
rutinized, while the values v

1

and v

2

, whi
h

are typi
ally fun
tions, represent the two arms of a standard
ase
onstru
t.

The rule sele
ts an appropriate arm (here, v

i

) based on whether the value un-

der s
rutiny was formed using a left or right inje
tion. The arm v

i

is exe
uted

and given a

ess to the data
arried by the inje
tion (here, v). 2

1.2.8 Exer
ise [F, 9℄: Explain how to en
ode true, false and the if
onstru
t

in terms of sums. Che
k that the behavior of R-True andR-False is properly

emulated. 2

1.2.9 Example [Referen
es℄: Let ref and ! be unary destru
tors. Let := be a

binary destru
tor. We write t

1

:= t

2

for the double appli
ation := t

1

t

2

.

De�ne the operational semanti
s of these three destru
tors as follows:

ref v=?

Æ

�! m=(m 7! v) if m is fresh for v

(R-Ref)

!m=(m 7! v)

Æ

�! v=(m 7! v)

(R-Deref)

m := v=(m 7! v

0

)

Æ

�! v=(m 7! v)

(R-Assign)

A

ording to R-Ref, evaluating ref v allo
ates a fresh memory lo
ation

m and binds v to it. Be
ause
on�gurations are
onsidered equal up to �-

onversion of memory lo
ations, the
hoi
e of the name m is irrelevant, pro-

vided it is
hosen fresh for v, so as to prevent inadvertent
apture of the

memory lo
ations that appear free within v. By R-Deref, evaluating !m re-

turns the value bound to the memory lo
ation m within the
urrent store. By

R-Assign, evaluating m := v dis
ards the value v

0

urrently bound to m and

produ
es a new store where m is bound to v. Here, the value returned by the

assignment m := v is v itself; in ML-the-programming-language, it is usually

a nullary
onstru
tor (), pronoun
ed unit. 2

1.2.10 Example [Re
ursion℄: Let fix be a binary destru
tor, whose operational

semanti
s is:

TOP

2003/5/20

page 12

12 Draft of May 20, 2003 1 ML

fix v

1

v

2

Æ

�! v

1

(fix v

1

) v

2

(R-Fix)

fix is a �xpoint
ombinator: it e�e
tively allows re
ursive de�nitions of

fun
tions. Indeed, the
onstru
t letre
 f = �z:t

1

in t

2

provided by ML-

the-programming-language may be viewed as synta
ti
 sugar for let f =

fix (�f:�z:t

1

) in t

2

. 2

Rule R-Context
ompletes the de�nition of the operational semanti
s by

de�ning �_, a relation between
losed
on�gurations, in terms of �!. The

rule states that redu
tion may take pla
e not only at the term's root, but also

deep inside it, provided the path from the root to the point where redu
tion

o

urs forms an evaluation
ontext. This is how evaluation
ontexts determine

an evaluation strategy. As a purely te
hni
al point, be
ause �_ relates
losed

on�gurations only, we do not need to require that the memory lo
ations in

dom(�

0

n�) be fresh for E : indeed, every memory lo
ation that appears within

E must be a member of dom(�).

1.2.11 Exer
ise [FF, Re
ommended, 9℄: Assuming the availability of Booleans

and
onditionals, integer literals, subtra
tion, multipli
ation, integer
ompar-

ison, and a �xpoint
ombinator, most of whi
h were de�ned in previous ex-

amples, de�ne a fun
tion that
omputes the fa
torial of its integer argument,

and apply it to

^

3. Determine, step by step, how this expression redu
es to a

value. 2

It is straightforward to
he
k that, if t=� redu
es to t

0

=�

0

, then t is not

a value. In other words, values are irredu
ible: they represent a
ompleted

omputation. The proof is left as an exer
ise to the reader. The
onverse,

however, does not hold: if t=� is irredu
ible with respe
t to �_, then t is not

ne
essarily a value. In that
ase, the
on�guration t=� is said to be stu
k. It

represents a runtime error, that is, a situation that does not allow
omputation

to pro
eed, yet is not
onsidered a valid out
ome. A
losed sour
e program

t is said to go wrong if and only if the
on�guration t=? redu
es to a stu
k

on�guration.

1.2.12 Example: Runtime errors typi
ally arise when destru
tors are applied to

arguments of an unexpe
ted nature. For instan
e, the expressions + 1 m and

�

1

2 and !3 are stu
k, regardless of the
urrent store. The program let z =

^

+

^

+ in z 1 is not stu
k, be
ause

^

+

^

+ is a value. However, its redu
t through

R-Let is

^

+

^

+ 1, whi
h is stu
k, so this program goes wrong. The primary

purpose of type systems is to prevent su
h situations from arising. 2

1.2.13 Example: The
on�guration !m=� is stu
k if m is not in the domain of �.

In that
ase, however, !m=� is not
losed. Be
ause we
onsider �_ as a rela-

tion between
losed
on�gurations only, this situation
annot arise. In other

TOP

2003/5/20

page 13

1.2 What is ML? 13

words, the semanti
s of ML-the-
al
ulus never allows the
reation of dan-

gling pointers. As a result, no parti
ular pre
autions need be taken to guard

against them. Several strongly typed programming languages do neverthe-

less allow dangling pointers in a
ontrolled fashion (Tofte and Talpin, 1997;

Crary, Walker, and Morrisett, 1999b; DeLine and Fähndri
h, 2001; Grossman,

Morrisett, Jim, Hi
ks, Wang, and Cheney, 2002a). 2

Damas and Milner's type system

ML-the-type-system was originally de�ned by Milner (1978). Here, we repro-

du
e the de�nition given a few years later by Damas and Milner (1982), whi
h

is written in a more standard style: typing judgements are de�ned indu
tively

by a
olle
tion of typing rules. We refer to this type system as DM.

To begin, we must de�ne types. In DM, like in the simply-typed �-
al
ulus,

types are �rst-order terms built out of type
onstru
tors and type variables.

We begin with several
onsiderations
on
erning the spe
i�
ation of type
on-

stru
tors.

First, we do not wish to �x the set of type
onstru
tors. Certainly, sin
e ML-

the-
al
ulus has fun
tions, we need to be able to form an arrow type T ! T

0

out of arbitrary types T and T

0

; that is, we need a binary type
onstru
tor!.

However, be
ause ML-the-
al
ulus in
ludes an unspe
i�ed set of
onstants,

we
annot say mu
h else in general. If
onstants in
lude integer literals and

integer operations, as in Example 1.2.1, then a nullary type
onstru
tor int is

needed; if they in
lude pair
onstru
tion and destru
tion, as in Examples 1.2.3

and 1.2.5, then a binary type
onstru
tor � is needed; and so on.

Se
ond, it is
ommon to refer to the parameters of a type
onstru
tor by

position, that is, by numeri
 index. For instan
e, when one writes T ! T

0

,

it is understood that the type
onstru
tor ! has arity 2, that T is its �rst

parameter, known as its domain, and that T

0

is its se
ond parameter, known

as its
odomain. Here, however, we refer to parameters by names, known as

dire
tions. For instan
e, we de�ne two dire
tions domain and
odomain and let

the type
onstru
tor ! have arity fdomain ;
odomaing. The extra generality

a�orded by dire
tions is exploited in the de�nition of nonstru
tural subtyping

(Example 1.3.9) and in the de�nition of rows (Se
tion 1.11).

Last, we allow types to be
lassi�ed using kinds. As a result, every type
on-

stru
tor must
ome not only with an arity, but with a ri
her signature, whi
h

des
ribes the kinds of the types to whi
h it is appli
able and the kind of the

type that it produ
es. A distinguished kind ? is asso
iated with �normal� types,

that is, types that are dire
tly as
ribed to expressions and values. For instan
e,

the signature of the type
onstru
tor! is fdomain 7! ?;
odomain 7! ?g) ?,

be
ause it is appli
able to two �normal� types and produ
es a �normal� type.

TOP

2003/5/20

page 14

14 Draft of May 20, 2003 1 ML

Introdu
ing kinds other than ? allows viewing some terms as ill-formed types;

this is illustrated, for instan
e, in Se
tion 1.11. In the simplest
ase, however,

? is really the only kind, so the signature of a type
onstru
tor is nothing but

its arity (a set of dire
tions), and every term is a well-formed type, provided

every appli
ation of a type
onstru
tor respe
ts its arity.

1.2.14 Definition: Let d range over a �nite or denumerable set of dire
tions. Let �

range over a �nite or denumerable set of kinds. Let ? be a distinguished kind.

Let K range over partial mappings from dire
tions to kinds. Let F range over

a �nite or denumerable set of type
onstru
tors, ea
h of whi
h has a signature

of the formK) �. The domain ofK is referred to as the arity of F , while � is

referred to as its image kind. We write � instead of K) � when K is empty.

Let ! be a type
onstru
tor of signature fdomain 7! ?;
odomain 7! ?g) ?.

2

The type
onstru
tors and their signatures
olle
tively form a signature S.

In the following, we assume that a �xed signature S is given and that every

type
onstru
tor in it has �nite arity, so as to ensure that types are ma
hine

representable. However, in Se
tion 1.11, we shall expli
itly work with several

distin
t signatures, some of whi
h involve type
onstru
tors of denumerable

arity.

A type variable is a name that is used to stand for a type. For simpli
-

ity, we assume that every type variable is branded with a kind, or, in other

words, that type variables of distin
t kinds are drawn from disjoint sets. Ea
h

of these sets of type variables is individually subje
t to �-
onversion: that

is, renamings must preserve kinds. Atta
hing kinds to type variables is only

a te
hni
al
onvenien
e: in pra
ti
e, every operation performed during type

inferen
e preserves the property that every type is well-kinded, so it is not

ne
essary to keep tra
k of the kind of every type variable. It is only ne
essary

to
he
k that all types supplied by the user, within type de
larations, type

annotations, or module interfa
es, are well-kinded.

1.2.15 Definition: For every kind �, let V

�

be a disjoint, denumerable set of type

variables. Let X, Y, and Z range over the set V of all type variables. Let

�

X and

�

Y range over �nite sets of type variables. We write

�

X

�

Y for the set

�

X [

�

Y and

often write X for the singleton set fXg. We write ftv(o) for the set of free type

variables of an obje
t o. 2

The set of types, ranged over by T, is the free many-kinded term algebra

that arises out of the type
onstru
tors and type variables.

1.2.16 Definition: A type of kind � is either a member of V

�

, or a term of the form

F fd

1

7! T

1

; : : : ; d

n

7! T

n

g, where F has signature fd

1

7! �

1

; : : : ; d

n

7! �

n

g)

� and T

1

; : : : ; T

n

are types of kind �

1

; : : : ; �

n

, respe
tively. 2

TOP

2003/5/20

page 15

1.2 What is ML? 15

As a notational
onvention, we assume that, for every type
onstru
tor F ,

the dire
tions that form the arity of F are impli
itly ordered, so that we may

say that F has signature �

1

 : : :
�

n

) � and employ the syntax F T

1

: : : T

n

for appli
ations of F . Appli
ations of the type
onstru
tor! are written in�x

and asso
iate to the right, so T! T

0

! T

00

stands for T! (T

0

! T

00

).

In order to give meaning to the free type variables of a type, or, more

generally, of a typing judgement, traditional presentations of ML-the-type-

system, in
luding Damas and Milner's, employ type substitutions. Most of

our presentation avoids substitutions and uses
onstraints instead. However,

we do need substitutions on a few o

asions, espe
ially when relating our

presentation to Damas and Milner's.

1.2.17 Definition: A type substitution � is a total, kind-preserving mapping of type

variables to types that is the identity everywhere but on a �nite subset of V ,

whi
h we
all the domain of � and write dom(�). The range of �, whi
h we

write range(�), is the set ftv(�(dom(�))). A type substitution may naturally be

viewed as a total, kind-preserving mapping of types to types. In the following,

we write

�

X # � for

�

X # (dom(�) [range(�)). We write � n

�

X for the restri
tion

of � outside

�

X, that is, the restri
tion of � to V n

�

X. We sometimes let ' denote

a type substitution. 2

If

~

X and

~

T are respe
tively a ve
tor of distin
t type variables and a ve
tor

of types of the same (�nite) length, su
h that, for every index i, X

i

and T

i

have the same kind, then [

~

X 7!

~

T℄ denotes the substitution that maps X

i

to T

i

for every index i. The domain of [

~

X 7!

~

T℄ is a subset of

�

X, the set underlying

the ve
tor

~

X. Its range is a subset of ftv(

�

T), where

�

T is the set underlying the

ve
tor

~

T. Every substitution � may be written under the form [

~

X 7!

~

T℄, where

�

X = dom(�). Then, � is idempotent if and only if

�

X # ftv(

�

T) holds.

As pointed out earlier, types are �rst-order terms; that is, in the grammar

of types, none of the produ
tions binds a type variable. As a result, every type

variable that appears within a type T appears free within T. This situation is

identi
al to that of the simply-typed �-
al
ulus. Things be
ome more inter-

esting when we introdu
e type s
hemes. As its name implies, a type s
heme

may des
ribe an entire family of types; this e�e
t is a
hieved via universal

quanti�
ation over a set of type variables.

1.2.18 Definition: A type s
heme S is an obje
t of the form 8

�

X:T, where T is a type

of kind ? and the type variables

�

X are
onsidered bound within T. 2

One may view the type T as the trivial type s
heme 8?:T, where no type

variables are universally quanti�ed, so types may be viewed as a subset of type

s
hemes. The type s
heme 8

�

X:T may be viewed as a �nite way of des
ribing

the possibly in�nite family of types of the form [

~

X 7!

~

T℄T, where

~

T is arbitrary.

TOP

2003/5/20

page 16

16 Draft of May 20, 2003 1 ML

�(x) = S

� ` x : S

(dm-Var)

�; z : T ` t : T

0

� ` �z:t : T! T

0

(dm-Abs)

� ` t

1

: T! T

0

� ` t

2

: T

� ` t

1

t

2

: T

0

(dm-App)

� ` t

1

: S �; z : S ` t

2

: T

� ` let z = t

1

in t

2

: T

(dm-Let)

� ` t : T

�

X # ftv (�)

� ` t : 8

�

X:T

(dm-Gen)

� ` t : 8

�

X:T

� ` t : [

~

X 7!

~

T℄T

(dm-Inst)

Figure 1-3: Typing rules for DM

Su
h types are
alled instan
es of the type s
heme 8

�

X:T. Note that, throughout

most of this
hapter, we work with
onstrained type s
hemes, a generalization

of DM type s
hemes (De�nition 1.3.2).

Typing environments, or environments for short, are used to
olle
t assump-

tions about an expression's free identi�ers.

1.2.19 Definition: An environment � is a �nite ordered sequen
e of pairs of a

program identi�er and a type s
heme. We write ? for the empty environment

and ; for the
on
atenation of environments. An environment may be viewed as

a �nite mapping from program identi�ers to type s
hemes by letting �(x) = S

if and only if � is of the form �

1

; x : S; �

2

, where �

2

ontains no assumption

about x. The set of de�ned program identi�ers of an environment �, written

dpi(�), is de�ned by dpi (?) = ? and dpi (�; x : S) = dpi (�) [fxg. 2

To
omplete the de�nition of Damas and Milner's type system, there

remains to de�ne typing judgements. A typing judgement takes the form

� ` t : S, where t is an expression of interest, � is an environment, whi
h typ-

i
ally
ontains assumptions about t's free program identi�ers, and S is a type

s
heme. Su
h a judgement may be read: under assumptions �, the expression

t has the type s
heme S. By abuse of language, it is sometimes said that t has

type S. A typing judgement is valid (or holds) if and only if it may be derived

using the rules that appear in Figure 1-3. An expression t is well-typed within

the environment � if and only if some judgement of the form � ` t : S holds;

it is ill-typed within � otherwise.

Rule dm-Var allows fet
hing a type s
heme for an identi�er x from the

environment. It is equally appli
able to program variables, memory lo
ations,

and
onstants. If no assumption
on
erning x appears in the environment �,

then the rule isn't appli
able. In that
ase, the expression x is ill-typed within

��
an you prove it? Assumptions about
onstants are usually
olle
ted in

TOP

2003/5/20

page 17

1.2 What is ML? 17

a so-
alled initial environment �

0

. It is the environment under whi
h
losed

programs are type
he
ked, so every subexpression is type
he
ked under some

extension � of �

0

. Of
ourse, the type s
hemes assigned by �

0

to
onstants

must be
onsistent with their operational semanti
s; we say more about this

later (Se
tion 1.7). Rule dm-Abs spe
i�es how to type
he
k a �-abstra
tion

�z:t. Its premise requires the body of the fun
tion, namely t, to be well-typed

under an extra assumption, whi
h
auses all free o

urren
es of z within t to

re
eive a
ommon type T. Its
on
lusion forms the arrow type T ! T

0

out of

the types of the fun
tion's formal parameter, namely T, and result, namely

T

0

. It is worth noting that this rule always augments the environment with

a type T�re
all that, by
onvention, types form a subset of type s
hemes�

but never with a nontrivial type s
heme. dm-App states that the type of a

fun
tion appli
ation is the
odomain of the fun
tion's type, provided that the

domain of the fun
tion's type is a valid type for the a
tual argument. dm-

Let
losely mirrors the operational semanti
s: whereas the semanti
s of the

lo
al de�nition let z = t

1

in t

2

is to augment the runtime environment

by binding z to the value of t

1

prior to evaluating t

2

, the e�e
t of dm-Let

is to augment the typing environment by binding z to a type s
heme for

t

1

prior to type
he
king t

2

. dm-Gen turns a type into a type s
heme by

universally quantifying over a set of type variables that do not appear free in

the environment; this restri
tion is dis
ussed in Example 1.2.20 below. dm-

Inst, on the
ontrary, turns a type s
heme into one of its instan
es, whi
h may

be
hosen arbitrarily. These two operations are referred to as generalization

and instantiation. The notion of type s
heme and the rules dm-Gen and dm-

Inst are
hara
teristi
 of ML-the-type-system: they distinguish it from the

simply-typed �-
al
ulus.

1.2.20 Example: It is unsound to allow generalizing type variables that appear free

in the environment. For instan
e,
onsider the typing judgement z : X ` z :

X (1), whi
h, a

ording to dm-Var, is valid. Applying an unrestri
ted version

of dm-Gen to it, we obtain z : X ` z : 8X:X (2), when
e, by dm-Inst, z : X `

z : Y (3). By dm-Abs and dm-Gen, we then have ? ` �z:z : 8XY:X ! Y. In

other words, the identity fun
tion has unrelated argument and result types!

Then, the expression (�z:z)

^

0

^

0, whi
h redu
es to the stu
k expression

^

0

^

0,

has type s
heme 8Z:Z. So, well-typed programs may
ause runtime errors: the

type system is unsound.

What happened? It is
lear that the judgement (1) is
orre
t only be
ause

the type assigned to z is the same in its assumption and in its right-hand

side. For the same reason, the judgements (2) and (3)�the former of whi
h

may be written z : X ` z : 8Y:Y�are in
orre
t. Indeed, su
h judgements de-

feat the very purpose of environments, sin
e they disregard their assumption.

TOP

2003/5/20

page 18

18 Draft of May 20, 2003 1 ML

By universally quantifying over X in the right-hand side only, we break the

onne
tion between o

urren
es of X in the assumption, whi
h remain free,

and o

urren
es in the right-hand side, whi
h be
ome bound. This is
orre
t

only if there are in fa
t no free o

urren
es of X in the assumption. 2

It is a key feature of ML-the-type-system that dm-Abs may only introdu
e

a type T, rather than a type s
heme, into the environment. Indeed, this allows

the rule's
on
lusion to form the arrow type T ! T

0

. If instead the rule were

to introdu
e the assumption z : S into the environment, then its
on
lusion

would have to form S ! T

0

, whi
h is not a well-formed type. In other words,

this restri
tion is ne
essary to preserve the strati�
ation between types and

type s
hemes. If we were to remove this strati�
ation, thus allowing universal

quanti�ers to appear deep inside types, we would obtain an impli
itly-typed

version of System F (TAPL Chapter 23). Type inferen
e for System F is

unde
idable (Wells, 1999), while type inferen
e for ML-the-type-system is de-

idable, as we show later, so this design
hoi
e has a rather drasti
 impa
t.

1.2.21 Exer
ise [F, Re
ommended℄: Build a type derivation for the expression

�z

1

:let z

2

= z

1

in z

2

within DM. 2

1.2.22 Exer
ise [F, Re
ommended℄: Let int be a nullary type
onstru
tor of sig-

nature ?. Let �

0

onsist of the bindings

^

+ : int! int! int and

^

k : int, for

every integer k. Can you �nd derivations of the following valid typing judge-

ments? Whi
h of these judgements are valid in the simply-typed �-
al
ulus,

where let z = t

1

in t

2

is synta
ti
 sugar for (�z:t

2

) t

1

?

�

0

` �z:z : int! int

�

0

` �z:z : 8X:X! X

�

0

` let f = �z:z

^

+

^

1 in f

^

2 : int

�

0

` let f = �z:z in f f

^

2 : int

Show that the expressions

^

1

^

2 and �f:(f f) are ill-typed within �

0

. Could

these expressions be well-typed in a more powerful type system? 2

1.2.23 Exer
ise [FF℄: In fa
t, the rules shown in Figure 1-3 are not exa
tly Damas

and Milner's original rules. In (Damas and Milner, 1982), the generalization

and instantiation rules are:

� ` t : S X 62 ftv(�)

� ` t : 8X:S

(dm-Gen')

� ` t : 8

�

X:T

�

Y # ftv(8

�

X:T)

� ` t : 8

�

Y:[

~

X 7!

~

T℄T

(dm-Inst')

TOP

2003/5/20

page 19

1.2 What is ML? 19

where 8X:S stands for 8X

�

X:T if S stands for 8

�

X:T. Show that the
ombination

of dm-Gen' and dm-Inst' is equivalent to the
ombination of dm-Gen and

dm-Inst. 2

DM enjoys a number of ni
e theoreti
al properties, whi
h have pra
ti
al

impli
ations. First, under suitable hypotheses about the semanti
s of
on-

stants, about the type s
hemes that they re
eive in the initial environment,

and�in the presen
e of side e�e
ts�under a slight restri
tion of the syntax

of let
onstru
ts, it is possible to show that the type system is sound: that is,

well-typed (
losed) programs do not go wrong. This essential property ensures

that programs that are a

epted by the type
he
ker may be
ompiled without

runtime
he
ks. Furthermore, it is possible to show that there exists an algo-

rithm that, given a (
losed) environment � and a program t, tells whether t

is well-typed with respe
t to �, and if so, produ
es a prin
ipal type s
heme S.

A prin
ipal type s
heme is su
h that (i) it is valid, that is, � ` t : S holds, and

(ii) it is most general, that is, every judgement of the form � ` t : S

0

follows

from � ` t : S by dm-Inst and dm-Gen. (For the sake of simpli
ity, we have

stated the properties of the type inferen
e algorithm only in the
ase of a

losed environment �; the spe
i�
ation is slightly heavier in the general
ase.)

This implies that type inferen
e is de
idable: the
ompiler does not require

expressions to be annotated with types. It also implies that, under a �xed

environment �, all of the type information asso
iated with an expression t

may be summarized in the form of a single (prin
ipal) type s
heme, whi
h is

very
onvenient.

Road map

Before proving the above
laims, we �rst generalize our presentation by mov-

ing to a
onstraint-based setting. The ne
essary tools, namely the
onstraint

language, its interpretation, and a number of
onstraint equivalen
e laws, are

introdu
ed in Se
tion 1.3. In Se
tion 1.4, we des
ribe the standard
onstraint-

based type system HM(X) (Odersky, Sulzmann, and Wehr, 1999a; Sulzmann,

Müller, and Zenger, 1999; Sulzmann, 2000). We prove that, when
onstraints

are made up of equations between free, �nite terms, HM(X) is a reformula-

tion of DM. In the presen
e of a more powerful
onstraint language, HM(X)

is an extension of DM. In Se
tion 1.5, we propose an original reformula-

tion of HM(X), dubbed PCB(X), whose distin
tive feature is to exploit type

s
heme introdu
tion and instantiation
onstraints. In Se
tion 1.6, we show

that, thanks to the extra expressive power a�orded by these
onstraint forms,

type inferen
e may be viewed as a
ombination of
onstraint generation and

onstraint solving, as promised earlier. Indeed, we de�ne a
onstraint genera-

tor and relate it with PCB(X). Then, in Se
tion 1.7, we give a type soundness

TOP

2003/5/20

page 20

20 Draft of May 20, 2003 1 ML

theorem. It is stated purely in terms of
onstraints, but�thanks to the results

developed in the previous se
tions�applies equally to PCB(X), HM(X), and

DM.

Throughout this
ore material, the syntax and interpretation of
onstraints

are left partly unspe
i�ed. Thus, the development is parameterized with re-

spe
t to them�hen
e the unknown X in the names HM(X) and PCB(X).

We really des
ribe a family of
onstraint-based type systems, all of whi
h

share a
ommon
onstraint generator and a
ommon type soundness proof.

Constraint solving, however,
annot be independent of X : on the
ontrary,

the design of an e�
ient solver is heavily dependent on the syntax and inter-

pretation of
onstraints. In Se
tion 1.8, we
onsider
onstraint solving in the

parti
ular
ase where
onstraints are made up of equations interpreted in a

free tree model, and de�ne a
onstraint solver on top of a standard �rst-order

uni�
ation algorithm.

The remainder of this
hapter deals with extensions of the framework. In

Se
tion 1.9, we explain how to extend ML-the-
al
ulus with a number of fea-

tures, in
luding data stru
tures, pattern mat
hing, and type annotations. In

Se
tion 1.10, we extend the
onstraint language with universal quanti�
ation

and des
ribe a number of extra features that require this extension, in
luding

a di�erent �avor of type annotations, polymorphi
 re
ursion, and �rst-
lass

universal and existential types. Last, in Se
tion 1.11, we extend the
onstraint

language with rows and des
ribe their appli
ations, whi
h in
lude extensible

variants and re
ords.

1.3 Constraints

In this se
tion, we de�ne the syntax and logi
al meaning of
onstraints. Both

are partly unspe
i�ed. Indeed, the set of type
onstru
tors (De�nition 1.2.14)

must
ontain at least the binary type
onstru
tor!, but might
ontain more.

Similarly, the syntax of
onstraints involves a set of so-
alled predi
ates on

types, whi
h we require to
ontain at least a binary subtyping predi
ate �,

but might
ontain more. Furthermore, the logi
al interpretation of type
on-

stru
tors and of predi
ates is left almost entirely unspe
i�ed. This freedom

allows reasoning not only about Damas and Milner's type system, but also

about a family of
onstraint-based extensions of it.

Type
onstru
tors other than ! and predi
ates other than � will never

expli
itly appear in the de�nition of our
onstraint-based type systems, pre-

isely be
ause the de�nition is parametri
 with respe
t to them. They
an

(and usually do) appear in the type s
hemes assigned to
onstru
tors and

destru
tors by the initial environment �

0

.

The introdu
tion of subtyping has little impa
t on the
omplexity of our

TOP

2003/5/20

page 21

1.3 Constraints 21

� ::= type s
heme:

8

�

X[C℄:T

C;D ::=
onstraint:

true truth

false falsity

P T

1

: : :T

n

predi
ate appli
ation

C ^ C
onjun
tion

9

�

X:C existential quanti�
ation

def x : � in C type s
heme introdu
tion

x � T type s
heme instantiation

� ::= Typing environments:

?

x : �

�; �

C;D ::= Synta
ti
 sugar for
onstraints:

: : : As before

� � T De�nition 1.3.3

let x : � in C De�nition 1.3.3

9� De�nition 1.3.3

def � in C De�nition 1.3.4

let � in C De�nition 1.3.4

9� De�nition 1.3.4

Figure 1-4: Syntax of type s
hemes and
onstraints

proofs, yet in
reases the framework's expressive power. When subtyping is not

desired, we interpret the predi
ate � as equality.

Syntax

We now de�ne the syntax of
onstrained type s
hemes and of
onstraints, and

introdu
e some extra
onstraint forms as synta
ti
 sugar.

1.3.1 Definition: Let P range over a �nite or denumerable set of predi
ates, ea
h

of whi
h has a signature of the form �

1

 : : :
 �

n

) �, where n � 0. Let �

be a distinguished predi
ate of signature ?
 ?) �. 2

1.3.2 Definition: The syntax of type s
hemes and
onstraints is given in Figure 1-

4. It is further restri
ted by the following requirements. In the type s
heme

8

�

X[C℄:T and in the
onstraint x � T, the type T must have kind ?. In the

onstraint P T

1

: : :T

n

, the types T

1

; : : : ; T

n

must have kind �

1

; : : : ; �

n

, respe
-

tively, if P has signature �

1

 : : :
�

n

) �. We write 8

�

X:T for 8

�

X[true℄:T, whi
h

allows viewing DM type s
hemes as a subset of
onstrained type s
hemes. 2

We write T

1

� T

2

for the binary predi
ate appli
ation � T

1

T

2

, and
all it a

subtyping
onstraint. By
onvention, 9 and def bind tighter than ^; that is,

9

�

X:C^D is (9

�

X:C)^D and def x : � in C^D is (def x : � in C)^D. In 8

�

X[C℄:T,

the type variables

�

X are bound within C and T. In 9

�

X:C, the type variables

�

X are bound within C. The sets of free type variables of a type s
heme �

and of a
onstraint C, written ftv(�) and ftv(C), respe
tively, are de�ned

a

ordingly. In def x : � in C, the identi�er x is bound within C. The sets

TOP

2003/5/20

page 22

22 Draft of May 20, 2003 1 ML

of free program identi�ers of a type s
heme � and of a
onstraint C, written

fpi(�) and fpi (C), respe
tively, are de�ned a

ordingly. Please note that x

o

urs free in the
onstraint x � T.

We immediately introdu
e a number of derived
onstraint forms:

1.3.3 Definition: Let � be 8

�

X[C℄:T. If

�

X # ftv (T

0

) holds, then � � T

0

(read: T

0

is

an instan
e of �) stands for the
onstraint 9

�

X:(C^T � T

0

). We write 9� (read:

� has an instan
e) for 9

�

X:C and let x : � in C for 9� ^ def x : � in C. 2

Constrained type s
hemes generalize Damas and Milner's type s
hemes,

while our de�nition of instantiation
onstraints generalizes Damas and Mil-

ner's instan
e relation (De�nition 1.2.18). Let us draw a
omparison. First,

Damas and Milner's instan
e relation yields a �yes/no� answer, and is purely

synta
ti
: for instan
e, the type Y ! Z is not an instan
e of 8X:X ! X in

Damas and Milner's sense, be
ause Y and Z are distin
t type variables. In

our presentation, on the other hand, 8X:X ! X � Y ! Z is not an assertion;

rather, it is a
onstraint, whi
h by de�nition is 9X:(true ^ X ! X � Y ! Z).

We later prove that it is equivalent to 9X:(Y � X ^ X � Z) and to Y � Z, or,

if subtyping is interpreted as equality, to Y = Z. That is, � � T

0

represents a

ondition on (the types denoted by) the type variables in ftv(�; T

0

) for T

0

to

be an instan
e of �, in a logi
al, rather than purely synta
ti
, sense. Se
ond,

the de�nition of instantiation
onstraints involves subtyping, so as to ensure

that any supertype of an instan
e of � is again an instan
e of � (see rule

C-ExTrans in Figure 1-6 and Lemma 1.3.17). This is
onsistent with the

purpose of subtyping, whi
h is to allow supplying a subtype where a super-

type is expe
ted (TAPL Chapter 15). Third and last, every type s
heme now

arries a
onstraint. The
onstraint C, whose free type variables may or may

not be members of

�

X, restri
ts the instan
es of the type s
heme 8

�

X[C℄:T. This

is expressed in the instantiation
onstraint 9

�

X:(C ^ T � T

0

), where the val-

ues that

�

X may assume are restri
ted by the requirement that C be satis�ed.

This requirement vanishes in the
ase of DM type s
hemes, where C is true.

Our notions of
onstrained type s
heme and of instantiation
onstraint are

standard: they are exa
tly those of HM(X) (Odersky, Sulzmann, and Wehr,

1999a).

The
onstraint true, whi
h is always satis�ed, mainly serves to indi
ate the

absen
e of a nontrivial
onstraint, while false, whi
h has no solution, may

be understood as the indi
ation of a type error. Composite
onstraints in-

lude
onjun
tion and existential quanti�
ation, whi
h have their standard

meaning, as well as type s
heme introdu
tion and type s
heme instantiation

onstraints, whi
h are similar to Gustavsson and Svenningsson's
onstraint

abstra
tions (2001b). In short, the
onstru
t def x : � in C binds the name x

to the type s
heme � within the
onstraint C. If C
ontains a sub
onstraint of

TOP

2003/5/20

page 23

1.3 Constraints 23

the form x � T, where this o

urren
e of x is free in C, then this sub
onstraint

a
quires the meaning � � T. Thus, the
onstraint x � T is indeed an instantia-

tion
onstraint, where the type s
heme that is being instantiated is referred to

by name. The
onstraint def x : � in C may be viewed as an expli
it substitu-

tion of the type s
heme � for the name x within C. Later (Se
tion 1.5), we use

su
h expli
it substitutions to supplant typing environments. That is, where

Damas and Milner's type system augments the
urrent typing environment

(dm-Abs, dm-Let), we introdu
e a new def binding in the
urrent
onstraint;

where it looks up the
urrent typing environment (dm-Var), we employ an in-

stantiation
onstraint. The point is that it is then up to a
onstraint solver to

hoose a strategy for redu
ing expli
it substitutions�for instan
e, one might

wish to simplify � before substituting it for x within C�whereas the use of

environments in standard type systems su
h as DM and HM(X) imposes an

eager substitution strategy, whi
h is ine�
ient and thus never literally imple-

mented. The use of type s
heme introdu
tion and instantiation
onstraints

allows separating
onstraint generation and
onstraint solving without
om-

promising e�
ien
y, or, in other words, without introdu
ing a gap between

the des
ription of the type inferen
e algorithm and its a
tual implementation.

Although the algorithm that we plan to des
ribe is not new, its des
ription in

terms of
onstraints is: to the best of our knowledge, the only
lose relative of

our def
onstraints is to be found in (Gustavsson and Svenningsson, 2001b).

Fähndri
h, Rehof, and Das's instantiation
onstraints (2000) are also related,

but may be re
ursive and are meant to be solved using a semi-uni�
ation

pro
edure, as opposed to a uni�
ation algorithm extended with fa
ilities for

reating and instantiating type s
hemes, as in our
ase.

One
onsequen
e of introdu
ing
onstraints inside type s
hemes is that some

type s
hemes have no instan
es at all, or have instan
es only if a
ertain

onstraint holds. For instan
e, the type s
heme � = 8X[bool = int℄:X, where

the nullary type
onstru
tors int and bool have distin
t interpretations, has

no instan
es; that is, no
onstraint of the form � � T

0

has a solution. The

type s
heme � = 8Z[X = Y ! Z℄:Z has an instan
e only if X = Y ! Z holds

for some Z; in other words, for every T

0

, � � T

0

entails 9Z:(X = Y ! Z).

(We de�ne entailment on page 29.) We later prove that the
onstraint 9�

is equivalent to 9Z:� � Z, where Z 62 ftv(�) (Exer
ise 1.3.23). That is, 9�

expresses the requirement that � have an instan
e. Type s
hemes that do not

have an instan
e indi
ate a type error, so in many situations, one wishes to

avoid them; for this reason, we often use the
onstraint form let x : � in C,

whi
h requires � to have an instan
e and at the same time asso
iates it with

the name x. Be
ause the def form is more primitive, it is easier to work with

at a low level, but it is no longer expli
itly used after Se
tion 1.3; we always

use let instead.

TOP

2003/5/20

page 24

24 Draft of May 20, 2003 1 ML

1.3.4 Definition: Environments � remain as in De�nition 1.2.19, ex
ept DM type

s
hemes S are repla
ed with
onstrained type s
hemes �. We write dfpi(�)

for dpi(�) [fpi (�). We de�ne def ? in C = C and def �; x : � in C =

def � in def x : � in C. Similarly, we de�ne let ? in C = C and let �; x :

� in C = let � in let x : � in C. We de�ne 9? = true and 9(�; x : �) =

9� ^ def � in 9�. 2

In order to establish or express
ertain laws of equivalen
e between
on-

straints, we need
onstraint
ontexts. A
ontext is a
onstraint with zero, one,

or several holes, written [℄. The syntax of
ontexts is as follows:

C ::= [℄ j C j C ^ C j 9

�

X:C j def x : � in C j def x : 8

�

X[C℄:T in C

The appli
ation of a
onstraint
ontext C to a
onstraint C, written C[C℄, is

de�ned in the usual way. Be
ause a
ontext may have any number of holes,

C may disappear or be dupli
ated in the pro
ess. Be
ause a hole may appear

in the s
ope of a binder, some of C's free type variables and free program

identi�ers may be
ome bound in C[C℄. We write dtv (C) and dpi (C) for the

sets of type variables and program identi�ers, respe
tively, that C may thus

apture. We write let x : 8

�

X[C℄:T in C for 9

�

X:C ^ def x : 8

�

X[C℄:T in C. Being

able to state su
h a de�nition is why we require multi-hole
ontexts. We let

range over existential
onstraint
ontexts, de�ned by X ::= [℄ j 9

�

X:X .

Meaning

We have de�ned the syntax of
onstraints and given an informal des
ription

of their meaning. We now give a formal de�nition of the interpretation of

onstraints. We begin with the de�nition of a model :

1.3.5 Definition: For every kind �, let M

�

be a nonempty set, whose elements

are the ground types of kind �. In the following, t ranges over M

�

, for some

� that may be determined from the
ontext. For every type
onstru
tor F of

signature K) �, let F denote a total fun
tion from M

K

into M

�

, where

the indexed produ
t M

K

is the set of all mappings of domain dom(K) that

map every d 2 dom(K) to an element of M

K(d)

. For every predi
ate P of

signature �

1

 : : :
 �

n

) �, let P denote a predi
ate on M

�

1

� : : : �M

�

n

.

We require the predi
ate � on M

?

�M

?

to be a partial order. 2

For the sake of
onvenien
e, we abuse notation and write F for both the

type
onstru
tor and its interpretation; similarly for predi
ates. We freely

assume that a binary equality predi
ate, whose interpretation is equality on

M

�

, is available at every kind �, so T

1

= T

2

, where T

1

and T

2

have kind �, is

a well-formed
onstraint.

TOP

2003/5/20

page 25

1.3 Constraints 25

By varying the set of type
onstru
tors, the set of predi
ates, the set of

ground types, and the interpretation of type
onstru
tors and predi
ates, one

may de�ne an entire family of related type systems. We informally refer to the

olle
tion of these
hoi
es as X . Thus, the type systems HM(X) and PCB(X),

des
ribed in Se
tions 1.4 and 1.5, are parameterized by X .

The following examples give standard ways of de�ning the set of ground

types and the interpretation of type
onstru
tors.

1.3.6 Example [Synta
ti
 models℄: For every kind �, let M

�

onsist of the

losed types of kind �. Then, ground types are types that do not have any

free type variables, and form the so-
alled Herbrand universe. Let every type

onstru
tor F be interpreted as itself. Models that de�ne ground types and

interpret type
onstru
tors in this manner are referred to as synta
ti
. 2

1.3.7 Example [Tree models℄: Let a path � be a �nite sequen
e of dire
tions.

The empty path is written � and the
on
atenation of the paths � and �

0

is

written � ��

0

. Let a tree be a partial fun
tion t from paths to type
onstru
tors

whose domain is nonempty and pre�x-
losed and su
h that, for every path

� in the domain of t, if the type
onstru
tor t(�) has signature K) �,

then � � d 2 dom(t) is equivalent to d 2 dom(K) and, furthermore, for every

d 2 dom(K), the type
onstru
tor t(� � d) has image kind K(d). If � is in

the domain of t, then the subtree of t rooted at �, written t=�, is the partial

fun
tion �

0

7! t(� � �

0

). A tree is �nite if and only if it has �nite domain. A

tree is regular if and only if it has a �nite number of distin
t subtrees. Every

�nite tree is thus regular. Let M

�

onsist of the �nite (resp. regular) trees

t su
h that t(�) has image kind �: then, we have a �nite (resp. regular) tree

model.

If F has signature K) �, one may interpret F as the fun
tion that maps

T 2 M

K

to the ground type t 2 M

�

de�ned by t(�) = F and t=d = T (d)

for d 2 dom(T), that is, the unique ground type whose head symbol is F and

whose subtree rooted at d is T (d). Then, we have a free tree model. Please

note that free �nite tree models
oin
ide with synta
ti
 models, as de�ned in

the previous example. 2

Rows (Se
tion 1.11) are interpreted in a tree model, albeit not a free one.

The following examples suggest di�erent ways of interpreting the subtyping

predi
ate.

1.3.8 Example [Equality models℄: The simplest way of interpreting the sub-

typing predi
ate is to let � denote equality on every M

�

. Models that do so

are referred to as equality models. When no predi
ate other than equality is

available, we say that the model is equality-only. 2

TOP

2003/5/20

page 26

26 Draft of May 20, 2003 1 ML

1.3.9 Example [Stru
tural, nonstru
tural subtyping℄: Let a varian
e �

be a nonempty subset of f�;+g, written � (
ontravariant), + (
ovariant),

or � (invariant) for short. De�ne the
omposition of two varian
es as an

asso
iative
ommutative operation with + as neutral element and su
h that

�� = + and �� = �� = �. Now,
onsider a free (�nite or regular) tree

model, where every dire
tion d
omes with a �xed varian
e �(d). De�ne the

varian
e �(�) of a path � as the
omposition of the varian
es of its elements.

Let 6 be a partial order on type
onstru
tors su
h that (i) if F

1

6 F

2

holds

and F

1

and F

2

have signature K

1

) �

1

and K

2

) �

2

, respe
tively, then K

1

and K

2

agree on the interse
tion of their domains and �

1

and �

2

oin
ide;

and (ii) F

0

6 F

1

6 F

2

implies dom(F

0

) \ dom(F

2

) � dom(F

1

). Let 6

+

, 6

�

,

and 6

�

stand for 6, >, and =, respe
tively. Then, de�ne the interpretation

of subtyping as follows: if t

1

; t

2

2M

�

, let t

1

� t

2

hold if and only if, for every

path � 2 dom(t

1

) \ dom(t

2

), t

1

(�) 6

�(�)

t

2

(�) holds. It is not di�
ult to

he
k that � is a partial order on everyM

�

. The reader is referred to (Kozen,

Palsberg, and S
hwartzba
h., 1995) for more details about this
onstru
tion.

Models that de�ne subtyping in this manner are referred to as nonstru
tural

subtyping models.

A simple nonstru
tural subtyping model is obtained by letting the dire
tions

domain and
odomain be
ontra- and
ovariant, respe
tively, and introdu
ing,

in addition to the type
onstru
tor !, two type
onstru
tors ? and > of

signature ?. This gives rise to a model where ? is the least ground type,

> is the greatest ground type, and the arrow type
onstru
tor is, as usual,

ontravariant in its domain and
ovariant in its
odomain.

A typi
al use of nonstru
tural subtyping is in type systems for re
ords. One

may, for instan
e, introdu
e a
ovariant dire
tion
ontent of kind ?, a kind

�, a type
onstru
tor abs of signature �, a type
onstru
tor pre of signature

f
ontent 7! ?g) �, and let pre 6 abs. This gives rise to a model where pre

t � abs holds for every t 2 M

?

. This form of subtyping is
alled nonstru
tural

be
ause
omparable ground types may have di�erent shapes, su
h as ? and

? ! >, or pre > and abs. Nonstru
tural subtyping has been studied, for

example, in (Kozen, Palsberg, and S
hwartzba
h., 1995; Palsberg, Wand, and

O'Keefe, 1997; Pottier, 2001b; Niehren and Priesnitz, 2003). Se
tion 1.11 says

more about type
he
king operations on re
ords.

An important parti
ular
ase arises when any two type
onstru
tors related

by 6 have the same arity. In that
ase, it is not di�
ult to show that any two

ground types related by subtyping must have the same shape, that is, if t

1

� t

2

holds, then dom(t

1

) and dom(t

2

)
oin
ide. For this reason, su
h an interpre-

tation of subtyping is usually referred to as atomi
 or stru
tural subtyping. It

has been studied in the �nite (Mit
hell, 1984, 1991b; Frey, 1997; Rehof, 1997;

Kun
ak and Rinard, 2003; Simonet, 2003) and regular (Tiuryn and Wand,

TOP

2003/5/20

page 27

1.3 Constraints 27

1993)
ases. Stru
tural subtyping is often used in automated program analy-

ses that enri
h standard types with atomi
 annotations without altering their

shape. 2

Our last example suggests a predi
ate other than equality and subtyping.

1.3.10 Example [Conditional
onstraints℄: Consider a nonstru
tural subtyp-

ing model. For every type
onstru
tor F of image kind � and for every kind

�

0

, let (F 6 �) � � �) be a predi
ate of signature �
 �

0

 �

0

) �. Thus, if T

0

has kind � and T

1

, T

2

have the same kind, then F 6 T

0

) T

1

� T

2

is a well-

formed
onstraint,
alled a
onditional subtyping
onstraint. Its interpretation

is de�ned as follows: if t

0

2 M

�

and t

1

; t

2

2 M

�

0

, then F 6 t

0

) t

1

� t

2

holds if and only if F 6 t

0

(�) implies t

1

� t

2

. In other words, if t

0

's head

symbol ex
eeds F a

ording to the ordering on type
onstru
tors, then the

subtyping
onstraint t

1

� t

2

must hold; otherwise, the
onditional
onstraint

holds va
uously. Conditional
onstraints have been studied e.g. in (Reynolds,

1969a; Heintze, 1993; Aiken, Wimmers, and Lakshman, 1994; Pottier, 2000;

Su and Aiken, 2001). 2

Many other kinds of
onstraints exist; see e.g. (Comon, 1993).

Throughout this
hapter, we assume (unless stated otherwise) that the set

of type
onstru
tors, the set of predi
ates, and the model�whi
h, together,

form the parameter X�are arbitrary and �xed.

As usual, the meaning of a
onstraint is a fun
tion of the meaning of its

free type variables, whi
h is given by a ground assignment. The meaning of

free program identi�ers may be de�ned as part of the
onstraint, if desired,

using a def pre�x, so it need not be given by a separate assignment.

1.3.11 Definition: A ground assignment � is a total, kind-preserving mapping from

V into M. Ground assignments are extended to types by �(F T

1

: : : T

n

) =

F (�(T

1

); : : : ; �(T

n

)). Then, for every type T of kind �, �(T) is a ground type

of kind �. Whether a
onstraint C holds under a ground assignment �, written

� ` C (read: � satis�es C), is de�ned by the rules in Figure 1-5. A
onstraint

C is satis�able if and only if � ` C holds for some �. It is false if and only if

� ` def � in C holds for no ground assignment � and environment �. 2

Let us now explain the rules that de�ne
onstraint satisfa
tion (Figure 1-

5). They are syntax-dire
ted: that is, to a given
onstraint, at most one rule

applies. It is determined by the nature of the �rst
onstru
t that appears

under a maximal def pre�x. CM-True states that a
onstraint of the form

def � in true is a tautology, that is, holds under every ground assignment. No

rule mat
hes
onstraints of the form def � in false, whi
h means that su
h

onstraints do not have a solution. CM-Predi
ate states that the meaning

TOP

2003/5/20

page 28

28 Draft of May 20, 2003 1 ML

� ` def � in true (CM-True)

P (�(T

1

); : : : ; �(T

n

))

� ` def � in P T

1

: : : T

n

(CM-Predi
ate)

� ` def � in C

1

� ` def � in C

2

� ` def � in (C

1

^ C

2

)

(CM-And)

�[

~

X 7!

~

t℄ ` def � in C

�

X # ftv(�)

� ` def � in 9

�

X:C

(CM-Exists)

� ` def �

1

in � � T

0

x 62 dpi (�

2

)

� ` def �

1

; x : �; �

2

in x � T

0

(CM-Instan
e)

Figure 1-5: Meaning of
onstraints

of a predi
ate appli
ation is given by the predi
ate's interpretation within the

model. More spe
i�
ally, if P 's signature is �

1

 : : :
 �

n

) �, then, by well-

formedness of the
onstraint, every T

i

is of kind �

i

, so �(T

i

) is a ground type

in M

�

i

. By De�nition 1.3.5, P denotes a predi
ate on M

�

1

� : : :�M

�

n

, so

the rule's premise is mathemati
ally well-formed. It is independent of �, whi
h

is natural, sin
e a predi
ate appli
ation has no free program identi�ers. CM-

And requires ea
h of the
onjun
ts to be valid in isolation. The information

in � is made available to ea
h bran
h. CM-Exists allows the type variables

~

X to denote arbitrary ground types

~

t within C, independently of their image

through �. We impli
itly require

~

X and

~

t to have mat
hing kinds, so that

�[

~

X 7!

~

t℄ remains a kind-preserving ground assignment. The side
ondition

�

X # ftv (�)�whi
h may always be satis�ed by suitable �-
onversion of the

onstraint 9

�

X:C�prevents free o

urren
es of the type variables

�

X within �

from being unduly a�e
ted. CM-Instan
e
on
erns
onstraints of the form

def � in x � T

0

. The
onstraint x � T

0

is turned into � � T

0

, where, a

ording

to the se
ond premise, � is �(x). Please re
all that
onstraints of su
h a form

were introdu
ed in De�nition 1.3.3. The environment � is repla
ed with a

suitable pre�x of itself, namely �

1

, so that the free program identi�ers of �

retain their meaning.

It is intuitively
lear that the
onstraints def x : � in C and [x 7! �℄C have

the same meaning, where the latter denotes the
apture-avoiding substitution

of � for x throughout C. As a matter of fa
t, it would have been possible to

use this equivalen
e as a de�nition of the meaning of def
onstraints, but the

present style is pleasant as well. This
on�rms our (informal)
laim that the

def form is an expli
it substitution form.

It is possible for a
onstraint to be neither satis�able nor false. Consider,

for instan
e, the
onstraint 9Z:x � Z. Be
ause the identi�er x is free, CM-

Instan
e is not appli
able, so the
onstraint is not satis�able. Furthermore,

TOP

2003/5/20

page 29

1.3 Constraints 29

pla
ing it within the
ontext let x : 8X:X in [℄makes it satis�ed by every ground

assignment, so it is not false. Here, the assertions �C is satis�able� and �C is

false� are opposite when fpi (C) = ? holds, whereas in a standard �rst-order

logi
, they always are.

In a judgement of the form � ` C, the ground assignment � applies to the

free type variables of C. This is made pre
ise by the following statements. In

the se
ond one, Æ is
omposition and �(C) is the
apture-avoiding appli
ation

of the type substitution � to C.

1.3.12 Lemma: If

�

X # ftv(C) holds, then � ` C and �[

~

X 7!

~

t℄ ` C are equivalent. 2

1.3.13 Lemma: � Æ � ` C and � ` �(C) are equivalent. 2

Reasoning with
onstraints

Be
ause
onstraints lie at the heart of our treatment of ML-the-type-system,

most of our proofs involve establishing logi
al properties of
onstraints, that

is, entailment or equivalen
e assertions. Let us �rst de�ne these notions.

1.3.14 Definition: We write C

1

 C

2

, and say that C

1

entails C

2

, if and only if,

for every ground assignment � and for every environment �, � ` def � in C

1

implies � ` def � in C

2

. We write C

1

� C

2

, and say that C

1

and C

2

are

equivalent, if and only if C

1

 C

2

and C

2

 C

1

hold. 2

This de�nition measures the strength of a
onstraint by the set of pairs

(�;�) that satisfy it, and
onsiders a
onstraint stronger if fewer su
h pairs

satisfy it. In other words, C

1

entails C

2

when C

1

imposes stri
ter requirements

on its free type variables and program identi�ers than C

2

does. We remark

that C is false if and only if C � false holds. It is straightforward to
he
k

that entailment is re�exive and transitive and that � is indeed an equivalen
e

relation.

We immediately exploit the notion of
onstraint equivalen
e to de�ne what

it means for a type
onstru
tor to be
ovariant,
ontravariant, or invariant with

respe
t to one of its parameters. Let F be a type
onstru
tor of signature �

1

: : :
�

n

) �. Let i 2 f1; : : : ; ng. F is
ovariant (resp.
ontravariant , invariant)

with respe
t to its i

th

parameter if and only if, for all types T

1

; : : : ; T

n

and

T

0

i

of appropriate kinds, the
onstraint F T

1

: : :T

i

: : : T

n

� F T

1

: : : T

0

i

: : : T

n

is equivalent to T

i

� T

0

i

(resp. T

0

i

� T

i

, T

i

= T

0

i

). We let the reader
he
k the

following fa
ts: (i) in an equality model, these three notions
oin
ide; (ii) in

an equality free tree model, every type
onstru
tor is invariant with respe
t

to ea
h of its parameters; and (iii) in a nonstru
tural subtyping model, if the

dire
tion d has been de
lared
ovariant (resp.
ontravariant, invariant), then

every type
onstru
tor whose arity in
ludes d is
ovariant (resp.
ontravariant,

TOP

2003/5/20

page 30

30 Draft of May 20, 2003 1 ML

invariant) with respe
t to d. In the following, we require the type
onstru
tor

! to be
ontravariant with respe
t to its domain and
ovariant with respe
t to

its
odomain�a standard requirement in type systems with subtyping (TAPL

Chapter 15). These properties are summed up by the following equivalen
e

law:

T

1

! T

2

� T

0

1

! T

0

2

� T

0

1

� T

1

^ T

2

� T

0

2

(C-Arrow)

Please note that this is a high-level requirement about the interpretation of

types and of the subtyping predi
ate. In an equality free tree model, for in-

stan
e, it is always satis�ed. In a nonstru
tural subtyping model, it boils

down to requiring that the dire
tions domain and
odomain be de
lared
on-

travariant and
ovariant, respe
tively. In the general
ase, we do not have any

knowledge of the model, and
annot formulate a more pre
ise requirement.

Thus, it is up to the designer of the model to ensure that C-Arrow holds.

We also exploit the notion of
onstraint equivalen
e to de�ne what it means

for two type
onstru
tors to be in
ompatible. Two type
onstru
tors F

1

and F

2

with the same image kind are in
ompatible if and only if all
onstraints of the

form F

1

~

T

1

� F

2

~

T

2

and F

2

~

T

2

� F

1

~

T

1

are false; then, we write F

1

./ F

2

. Please

note that in an equality free tree model, any two distin
t type
onstru
tors are

in
ompatible. In the following, we often indi
ate that a newly introdu
ed type

onstru
tor must be isolated . We impli
itly require that, whenever ea
h of F

1

and F

2

is isolated, F

1

and F

2

be in
ompatible. Thus, the notion of �isolation�

provides a
on
ise and modular way of stating a
olle
tion of in
ompatibility

requirements. We
onsider the type
onstru
tor ! isolated.

Entailment is preserved by arbitrary
onstraint
ontexts, as stated by

the following theorem. As a result,
onstraint equivalen
e is a
ongruen
e.

Throughout this
hapter, these fa
ts are often used impli
itly.

1.3.15 Theorem [Congruen
e℄: C

1

 C

2

implies C[C

1

℄
 C[C

2

℄. 2

We now give a series of lemmas that provide useful entailment laws.

The following is a standard property of existential quanti�
ation.

1.3.16 Lemma: C
 9

�

X:C. 2

The following lemma states that any supertype of an instan
e of � is also

an instan
e of �.

1.3.17 Lemma: � � T ^ T � T

0

 � � T

0

. 2

The next lemma gives another interesting simpli�
ation law.

1.3.18 Lemma: X 62 ftv (T) implies 9X:(X = T) � true. 2

The following lemma states that, provided D is satis�ed, the type T is an

instan
e of the
onstrained type s
heme 8

�

X[D℄:T.

TOP

2003/5/20

page 31

1.3 Constraints 31

1.3.19 Lemma: D
 8

�

X[D℄:T � T. 2

This te
hni
al lemma helps justify De�nition 1.3.21 below.

1.3.20 Lemma: Let Z 62 ftv(C; �; T). Then, C
 � � T holds if and only if C ^ T �

Z
 � � Z holds. 2

It is useful to de�ne what it means for a type s
heme �

1

to be more general

than a type s
heme �

2

. Our informal intent is for �

1

� �

2

to mean: every

instan
e of �

2

is an instan
e of �

1

. In De�nition 1.3.3, we have introdu
ed

the
onstraint form � � T as synta
ti
 sugar. Similarly, one might wish to

make �

1

� �

2

a derived
onstraint form; however, this is impossible, be
ause

neither universal quanti�
ation nor impli
ation are available in the
onstraint

language. We
an, however, exploit the fa
t that these logi
al
onne
tives

are impli
it in entailment assertions by de�ning a judgement of the form

C
 �

1

� �

2

, whose meaning is: under the
onstraint C, �

1

is more general

than �

2

.

1.3.21 Definition: We write C
 �

1

� �

2

if and only if Z 62 ftv(C; �

1

; �

2

) implies

C ^ �

2

� Z
 �

1

� Z. We write C
 �

1

� �

2

when both C
 �

1

� �

2

and

C
 �

2

� �

1

hold. 2

This notation is not ambiguous be
ause the assertion C
 � � T, whose

meaning was initially given by De�nitions 1.3.3 and 1.3.14, retains the same

meaning under the new de�nition�this is shown by Lemma 1.3.20 above.

The next lemma provides a way of exploiting the ordering between type

s
hemes introdu
ed by De�nition 1.3.21. It states that a type s
heme o

urs

in
ontravariant position when it is within a def pre�x. In other words, the

more general the type s
heme, the weaker the entire
onstraint.

1.3.22 Lemma: C
 �

1

� �

2

implies C ^ def x : �

2

in D
 def x : �

1

in D. 2

The following exer
ise generalizes this result to let forms.

1.3.23 Exer
ise [FF, 9℄: Prove that Z 62 ftv (�) implies 9� � 9Z:� � Z. Explain

why, as a result, C
 �

1

� �

2

implies C ^ 9�

2

 9�

1

. Use this fa
t to prove

that C
 �

1

� �

2

implies C ^ let x : �

2

in D
 let x : �

1

in D. 2

The next lemma states that, modulo equivalen
e, the only
onstraint that

onstrains x without expli
itly referring to it is false.

1.3.24 Lemma: C
 x � T and x 62 fpi (C) imply C � false. 2

The following lemma states that the more universal quanti�ers are present,

the more general the type s
heme.

TOP

2003/5/20

page 32

32 Draft of May 20, 2003 1 ML

1.3.25 Lemma: let x : 8

�

X[C

1

℄:T in C

2

 let x : 8

�

X

�

Y[C

1

℄:T in C

2

. 2

Conversely, and perhaps surprisingly, it is sometimes possible to remove

some type variables from the universal quanti�er pre�x of a type s
heme

without
ompromising its generality. This is the
ase when the value of these

type variables is determined in a unique way. In short, C determines

�

Y if and

only if, given the values of ftv(C) n

�

Y and given that C holds, it is possible to

re
onstru
t, in a unique way, the values of

�

Y.

1.3.26 Definition: C determines

�

Y if and only if, for every environment �, two

ground assignments that satisfy def � in C and that
oin
ide outside

�

Y must

oin
ide on

�

Y as well. 2

Two
on
rete instan
es of determina
y, one of whi
h is valid only in free

tree models, are given by Lemma 1.8.7 on page 82. Determina
y is exploited

by the equivalen
e law C-LetAll in Figure 1-6.

We now give a toolbox of
onstraint equivalen
e laws. It is worth noting

that they do not form a
omplete axiomatization of
onstraint equivalen
e�

in fa
t, they
annot, sin
e the syntax and meaning of
onstraints is partly

unspe
i�ed.

1.3.27 Theorem: All equivalen
e laws in Figure 1-6 hold. 2

Let us explain. C-And and C-AndAnd state that
onjun
tion is
ommu-

tative and asso
iative. C-Dup states that redundant
onjun
ts may be freely

added or removed, where a
onjun
t is redundant if and only if it is entailed

by another
onjun
t. Throughout this
hapter, these three laws are often used

impli
itly. C-ExEx and C-Ex* allow grouping
onse
utive existential quan-

ti�ers and suppressing redundant ones, where a quanti�er is redundant if and

only if it does not o

ur free within its s
ope. C-ExAnd allows
onjun
tion

and existential quanti�
ation to
ommute, provided no
apture o

urs; it is

known as a s
ope extrusion law. When the rule is oriented from left to right, its

side-
ondition may always be satis�ed by suitable �-
onversion. C-ExTrans

states that it is equivalent for a type T

0

to be an instan
e of � or to be a super-

type of some instan
e of �. We remark that the instan
es of a monotype are

its supertypes, that is, by De�nition 1.3.3, T � T

0

and T � T

0

are equivalent.

As a result, spe
ializing C-ExTrans to the
ase where � is a monotype, we

�nd that T � T

0

is equivalent to 9Z:(T � Z ^ Z � T

0

), for fresh Z, a standard

equivalen
e law. When oriented from left to right, it be
omes an interesting

simpli�
ation law: in a
hain of subtyping
onstraints, an intermediate vari-

able su
h as Z may be suppressed, provided it is lo
al, as witnessed by the

existential quanti�er 9Z. C-InId states that, within the s
ope of the binding

x : �, every free o

urren
e of x may be safely repla
ed with �. The restri
-

tion to free o

urren
es stems from the side-
ondition x 62 dpi (C). When the

TOP

2003/5/20

page 33

1.3 Constraints 33

C

1

^ C

2

� C

2

^ C

1

(C-And)

(C

1

^ C

2

) ^ C

3

� C

1

^ (C

2

^ C

3

) (C-AndAnd)

C

1

^ C

2

� C

1

if C

1

 C

2

(C-Dup)

9

�

X:9

�

Y:C � 9

�

X

�

Y:C (C-ExEx)

9

�

X:C � C if

�

X # ftv(C) (C-Ex*)

(9

�

X:C

1

) ^ C

2

� 9

�

X:(C

1

^ C

2

) if

�

X # ftv(C

2

) (C-ExAnd)

9Z:(� � Z ^ Z � T

0

) � � � T

0

if Z 62 ftv(�; T

0

) (C-ExTrans)

let x : � in C[x � T

0

℄ � let x : � in C[� � T

0

℄ (C-InId)

if x 62 dpi(C) and dtv(C) # ftv(�) and fxg [dpi(C) # fpi(�)

let � in C � 9� ^ C if dpi(�) # fpi(C) (C-In*)

let � in (C

1

^ C

2

) � (let � in C

1

) ^ (let � in C

2

) (C-InAnd)

let � in (C

1

^ C

2

) � (let � in C

1

) ^ C

2

if dpi(�) # fpi(C

2

) (C-InAnd*)

let � in 9

�

X:C � 9

�

X:let � in C if

�

X # ftv(�) (C-InEx)

let �

1

; �

2

in C � let �

2

; �

1

in C (C-LetLet)

if dpi(�

1

) # dpi(�

2

) and dpi(�

2

) # fpi(�

1

) and dpi(�

1

) # fpi(�

2

)

let x : 8

�

X[C

1

^ C

2

℄:T in C

3

� C

1

^ let x : 8

�

X[C

2

℄:T in C

3

if

�

X # ftv(C

1

) (C-LetAnd)

let �; x : 8

�

X[C

1

℄:T in C

2

� let �; x : 8

�

X[let � in C

1

℄:T in C

2

(C-LetDup)

if

�

X # ftv(�) and dpi(�) # fpi(�)

let x : 8

�

X[9

�

Y:C

1

℄:T in C

2

� let x : 8

�

X

�

Y[C

1

℄:T in C

2

if

�

Y # ftv(T) (C-LetEx)

let x : 8

�

X

�

Y[C

1

℄:T in C

2

� 9

�

Y:let x : 8

�

X[C

1

℄:T in C

2

(C-LetAll)

if

�

Y # ftv(C

2

) and 9

�

X:C

1

determines

�

Y

9X:(T � X ^ let x : X in C) � let x : T in C if X 62 ftv(T; C) (C-LetSub)

~

X =

~

T ^ [

~

X 7!

~

T℄C �

~

X =

~

T ^ C (C-Eq)

true � 9

�

X:(

~

X =

~

T) if

�

X # ftv(

�

T) (C-Name)

[

~

X 7!

~

T℄C � 9

�

X:(

~

X =

~

T ^ C) if

�

X # ftv(

�

T) (C-NameEq)

Figure 1-6: Constraint equivalen
e laws

TOP

2003/5/20

page 34

34 Draft of May 20, 2003 1 ML

rule is oriented from left to right, its other side-
onditions, whi
h require the

ontext let x : � in C not to
apture �'s free type variables or free program

identi�ers, may always be satis�ed by suitable �-
onversion. C-In*
omple-

ments the previous rule by allowing redundant let bindings to be simpli�ed.

We remark that C-InId and C-In* provide a simple pro
edure for eliminating

let forms. C-InAnd states that the let form
ommutes with
onjun
tion; C-

InAnd* spells out a
ommon parti
ular
ase. C-InEx states that it
ommutes

with existential quanti�
ation. When the rule is oriented from left to right, its

side-
ondition may always be satis�ed by suitable �-
onversion. C-LetLet

states that let forms may
ommute, provided they bind distin
t program iden-

ti�ers and provided no free program identi�ers are
aptured in the pro
ess.

C-LetAnd allows the
onjun
t C

1

to be moved outside of the
onstrained

type s
heme 8

�

X[C

1

^C

2

℄:T, provided it does not involve any of the universally

quanti�ed type variables

�

X. When oriented from left to right, the rule yields

an important simpli�
ation law: indeed, taking an instan
e of 8

�

X[C

2

℄:T is less

expensive than taking an instan
e of 8

�

X[C

1

^ C

2

℄:T, sin
e the latter involves

reating a
opy of C

1

, while the former does not. C-LetDup allows pushing

a series of let bindings into a
onstrained type s
heme, provided no
apture

o

urs in the pro
ess. It is not used as a simpli�
ation law but as a tool in

some proofs. C-LetEx states that it does not make any di�eren
e for a set

of type variables

�

Y to be existentially quanti�ed inside a
onstrained type

s
heme or part of the type s
heme's universal quanti�ers. Indeed, in either

ase, taking an instan
e of the type s
heme means produ
ing a
onstraint

where

�

Y is existentially quanti�ed. C-LetAll provides a restri
ted
onverse

of Lemma 1.3.25. Together, C-LetEx and C-LetAll allow�in some situ-

ations only�to hoist existential quanti�ers out of the left-hand side of a let

form.

1.3.28 Example: C-LetAll would be invalid without the
ondition that 9

�

X:C

1

determines

�

Y. Consider, for instan
e, the
onstraint let x : 8Y:Y ! Y in (x �

int ! int ^ x � bool ! bool) (1), where int and bool are in
ompatible

nullary type
onstru
tors. By C-InId and C-In*, it is equivalent to 9Y:(Y!

Y � int! int)^9Y:(Y! Y � bool! bool), that is, true. Now, if C-LetAll

was valid without its side-
ondition, then (1) would also be equivalent to

9Y:let x : Y! Y in (x � int! int^x � bool! bool), whi
h by C-InId and

C-In* is 9Y:(Y! Y � int! int^Y! Y � bool! bool). By C-Arrow and

C-ExTrans, this is int = bool, that is, false. Thus, the law is invalid in this

ase. It is easy to see why: when the type s
heme �
ontains a 8Y quanti�er,

every instan
e of � re
eives its own 9Y quanti�er, making Y a distin
t (lo
al)

type variable; when Y is not universally quanti�ed, however, all instan
es of �

share referen
es to a single (global) type variable Y. This
orresponds to the

TOP

2003/5/20

page 35

1.3 Constraints 35

intuition that, in the former
ase, � is polymorphi
 in Y, while in the latter
ase,

it is monomorphi
 in Y. Lemma 1.3.25 states that, when deprived of its side-

ondition, C-LetAll is only an entailment law, as opposed to an equivalen
e

law. Similarly, it is in general invalid to hoist an existential quanti�er out of

the left-hand side of a let form. To see this, one may study the (equivalent)

onstraint let x : 8X[9Y:X = Y! Y℄:X in (x � int! int ^ x � bool! bool).

Naturally, in the above examples, the side-
ondition �true determines Y�

does not hold: by De�nition 1.3.26, it is equivalent to �two ground assignments

that
oin
ide outside Ymust
oin
ide on Y as well�, whi
h is false as soon asM

?

ontains two distin
t elements, su
h as int and bool here. There are
ases,

however, where the side-
ondition does hold. For instan
e, we later prove that

9X:Y = int determines Y; see Lemma 1.8.7. As a result, C-LetAll states that

let x : 8XY[Y = int℄:Y! X in C (1) is equivalent to 9Y:let x : 8X[Y = int℄:Y!

X in C (2), provided Y 62 ftv(C). The intuition is simple: be
ause Y is for
ed

to assume the value int by the equation Y = int, it makes no di�eren
e

whether Y is or isn't universally quanti�ed. We remark that, by C-LetAnd,

(2) is equivalent to 9Y:(Y = int ^ let x : 8X:Y ! X in C) (3). In an e�
ient

onstraint solver, simplifying (1) into (3) before using C-InId to eliminate the

let form is worthwhile, sin
e doing so obviates the need for
opying the type

variable Y and the equation Y = int at every free o

urren
e of x inside C. 2

C-LetSub is the analogue of an environment strengthening lemma: roughly

speaking, it states that, if a
onstraint holds under the assumption that x has

type X, where X is some supertype of T, then it also holds under the assumption

that x has type T. The last three rules deal with the equality predi
ate. C-Eq

states that it is valid to repla
e equals with equals; note the absen
e of a

side-
ondition. When oriented from left to right, C-Name allows introdu
ing

fresh names

~

X for the types

~

T. As always,

~

X stands for a ve
tor of distin
t type

variables. Of
ourse, this makes sense only if the de�nition is not
ir
ular, that

is, if the type variables

�

X do not o

ur free within the terms

�

T. When oriented

from right to left, C-Name may be viewed as a simpli�
ation law: it allows

eliminating type variables whose value has been determined. C-NameEq is

a
ombination of C-Eq and C-Name. It shows that applying an idempotent

substitution to a
onstraint C amounts to pla
ing C within a
ertain
ontext.

This immediately yields a proof of the following fa
t:

1.3.29 Lemma: C
 D implies �(C)
 �(D). 2

It is important to stress that, be
ause the e�e
t of a type substitution may

be emulated using equations,
onjun
tion, and existential quanti�
ation, there

is no need ever to employ type substitutions in the de�nition of a
onstraint-

based type system�it is possible, instead, to express every
on
ept in terms

TOP

2003/5/20

page 36

36 Draft of May 20, 2003 1 ML

of
onstraints. In this
hapter, we follow this route, and use type substitutions

only when dealing with the type system DM, whose histori
al formulation is

substitution-based.

So far, we have
onsidered def a primitive
onstraint form and de�ned the

let form in terms of def,
onjun
tion, and existential quanti�
ation. The moti-

vation for this approa
h was to simplify the proof of several
onstraint equiv-

alen
e laws. However, in the remainder of this
hapter, we work with let forms

ex
lusively and never employ the def
onstru
t. As a result, it is possible, from

here on, to dis
ard def and pretend that let is primitive. This
hange in per-

spe
tive o�ers us a few extra properties, stated in the next two lemmas. First,

every
onstraint that
ontains a false sub
onstraint must be false. Se
ond, no

satis�able
onstraint has a free program identi�er.

1.3.30 Lemma: C[false℄ � false. 2

1.3.31 Lemma: If C is satis�able, then fpi(C) = ?. 2

Reasoning with
onstraints in an equality-only synta
ti
 model

We have given a number of equivalen
e laws that are valid with respe
t to any

interpretation of
onstraints, that is, within any model. However, an important

spe
ial
ase is that of equality-only synta
ti
 models. Indeed, in that spe
i�

setting, our
onstraint-based type systems are in
lose
orresponden
e with

DM. In short, we aim to prove that every satis�able
onstraint admits a

anoni
al solved form, to show that this notion
orresponds to the standard

on
ept of a most general uni�er, and to establish a few te
hni
al properties

of most general uni�ers.

Thus, let us now assume that
onstraints are interpreted in an equality-only

synta
ti
 model. Let us further assume that, for every kind �, (i) there are at

least two type
onstru
tors of image kind � and (ii) for every type
onstru
tor

F of image kind �, there exists t 2 M

�

su
h that t(�) = F . We refer to models

that violate (i) or (ii) as degenerate; one may argue that su
h models are of

little interest. The assumption that the model is nondegenerate is used in the

proof of Lemmas 1.3.32 and 1.3.39.

Under these new assumptions, the interpretation of equality
oin
ides with

its syntax: every equation that holds in the model is in fa
t a synta
ti
 truism.

The
onverse, of
ourse, holds in every model.

1.3.32 Lemma: If true
 T = T

0

holds, then T and T

0

oin
ide. 2

In a synta
ti
 model, ground types are �nite trees. As a result,
y
li
 equa-

tions, su
h as X = int! X, are false.

1.3.33 Lemma: X 2 ftv (T) and T 62 V imply (X = T) � false. 2

TOP

2003/5/20

page 37

1.3 Constraints 37

A solved form is a
onjun
tion of equations, where the left-hand sides are

distin
t type variables that do not appear in the right-hand sides, possibly

surrounded by a number of existential quanti�ers. Our de�nition is identi-

al to Lassez, Maher and Marriott's solved forms (1988) and to Jouannaud

and Kir
hner's tree solved forms (1991), ex
ept we allow for prenex existen-

tial quanti�ers, whi
h are made ne
essary by our ri
her
onstraint language.

Jouannaud and Kir
hner also de�ne dag solved forms, whi
h may be expo-

nentially smaller. Be
ause we de�ne solved forms only for proof purposes, we

need not take performan
e into a

ount at this point. The e�
ient
onstraint

solver presented in Se
tion 1.8 does manipulate graphs, rather than trees.

Type s
heme introdu
tion and instantiation
onstru
ts
annot appear within

solved forms; indeed, provided the
onstraint at hand has no free program

identi�ers, they
an be expanded away. For this reason, their presen
e in the

onstraint language has no impa
t on the results
ontained in this se
tion.

1.3.34 Definition: A solved form is of the form 9

�

Y:(

~

X =

~

T), where

�

X # ftv(

�

T). 2

Solved forms o�er a
onvenient way of reasoning about
onstraints be
ause

every satis�able
onstraint is equivalent to one. In other words, every
on-

straint is equivalent to either a solved form or false. This property is estab-

lished by the following lemma, whose proof provides a simple but e�e
tive

pro
edure to rewrite a
onstraint to either a solved form or false.

1.3.35 Lemma: Let fpi (C) = ?. Then, C is equivalent to either a solved form or

false. 2

Proof: We �rst establish that every
onjun
tion of equations is equivalent

to either a solved form or false. To do so, we present Robinson's uni�
ation

algorithm (1971) as a rewriting system. The system's invariant is to operate on

onstraints of the form either

~

X =

~

T;C, where

�

X # ftv(

�

T; C) and the semi
olon

is interpreted as a distinguished
onjun
tion, or false. We identify equations

in C up to
ommutativity. The system is de�ned as follows:

~

X =

~

T; X = X ^ C !

~

X =

~

T;C

~

X =

~

T; F

~

T

1

= F

~

T

2

^ C !

~

X =

~

T;

~

T

1

=

~

T

2

^ C

~

X =

~

T; F

1

~

T

1

= F

2

~

T

2

^ C ! false

if F

1

6= F

2

~

X =

~

T; X = T ^ C !

~

X = [X 7! T℄

~

T ^ X = T; [X 7! T℄C

if X 62 ftv(T)

~

X =

~

T; X = T ^ C ! false

if X 2 ftv(T) and T 62 V

It is straightforward to
he
k that the above invariant is indeed preserved

by the rewriting system. Let us
he
k that
onstraint equivalen
e is also pre-

served. For the �rst rule, this is immediate. For the se
ond and third rules, it

TOP

2003/5/20

page 38

38 Draft of May 20, 2003 1 ML

follows from the fa
t that we have assumed a free tree model; for the fourth

rule, a
onsequen
e of C-Eq; for the last rule, a
onsequen
e of Lemma 1.3.33.

Furthermore, the system is terminating; this is witnessed by an ordering where

false is the least element and where
onstraints of the form

~

X =

~

T;C are ordered

lexi
ographi
ally, �rst by the number of type variables that appear free within

C, se
ond by the size of C. Last, a normal form for this rewriting system must

be of the form either

~

X =

~

T; true, where (by the invariant)

�

X # ftv(

�

T)�that

is, a solved form, or false.

Next, we show that the present lemma holds when C is built out of equa-

tions,
onjun
tion, and existential quanti�
ation. Orienting C-ExAnd from

left to right yields a terminating rewriting system that preserves
onstraint

equivalen
e. The normal form of C must be 9

�

Y:C

0

, where C

0

is a
onjun
tion

of equations. By the previous result, C

0

is equivalent to either a solved form

or false. Be
ause solved forms are preserved by existential quanti�
ation and

be
ause 9

�

Y:false is false, the same holds of C.

Last, we establish the result in the general
ase. We assume fpi (C) = ? (1).

Orienting C-InId and C-In* from left to right yields a terminating rewriting

system that preserves
onstraint equivalen
e. The normal form C

0

of C
annot

ontain any type s
heme introdu
tion forms; given (1), it
annot
ontain any

instantiation forms either. Thus, C

0

is built out of equations,
onjun
tion, and

existential quanti�
ation only. By the previous result, it is equivalent to either

a solved form or false, whi
h implies that the same holds of C. 2

It is possible to impose further restri
tions on solved forms. A solved form

9

�

Y:(

~

X =

~

T) is
anoni
al if and only if its free type variables are exa
tly

�

X. This

is stated, in an equivalent way, by the following de�nition.

1.3.36 Definition: A
anoni
al solved form is a
onstraint of the form 9

�

Y:(

~

X =

~

T),

where ftv(

�

T) �

�

Y and

�

X #

�

Y. 2

1.3.37 Lemma: Every solved form is equivalent to a
anoni
al solved form. 2

It is easy to des
ribe the solutions of a
anoni
al solved form: they are the

ground re�nements of the substitution [

~

X 7!

~

T℄.

1.3.38 Lemma: A ground assignment � satis�es a
anoni
al solved form 9

�

Y:(

~

X =

~

T)

if and only if there exists a ground assignment �

0

su
h that �(

~

X) = �

0

(

~

T). As

a result, every
anoni
al solved form is satis�able. 2

Proof: Let 9

�

Y:(

~

X =

~

T) be a
anoni
al solved form. By CM-Exists and CM-

Predi
ate, � satis�es 9

�

Y:(

~

X =

~

T) if and only if there exists

~

t su
h that �[

~

Y 7!

~

t℄(

~

X) = �[

~

Y 7!

~

t℄(

~

T). Thanks to the hypotheses

�

X #

�

Y and ftv(

�

T) �

�

Y, this is

equivalent to the existen
e of a ground assignment �

0

su
h that �(

~

X) = �

0

(

~

T).

TOP

2003/5/20

page 39

1.3 Constraints 39

Thus, for every ground assignment �

0

, �

0

[

~

X 7! �

0

(

~

T)℄ satis�es 9

�

Y:(

~

X =

~

T), whi
h

proves that this
onstraint is satis�able. 2

Together, Lemmas 1.3.37 and 1.3.38 imply that every solved form is sat-

is�able. Our interest in
anoni
al solved forms stems from the following

fundamental property, whi
h provides a synta
ti

hara
terization of entail-

ment between
anoni
al solved forms: if 9

�

Y

1

:(

~

X =

~

T

1

) is more spe
i�
 than

9

�

Y

2

:(

~

X =

~

T

2

), in a logi
al sense, then

~

T

1

re�nes

~

T

2

, in a synta
ti
 sense. The

onverse also holds (
an you prove it?), but is not needed here.

1.3.39 Lemma: If 9

�

Y

1

:(

~

X =

~

T

1

)
 9

�

Y

2

:(

~

X =

~

T

2

), where both sides are
anoni
al solved

forms, then there exists a type substitution ' su
h that

~

T

1

= '(

~

T

2

). 2

As a
orollary, we �nd that
anoni
al solved forms are unique up to �-

onversion and up to C-Ex*, provided the set

�

X of their free type variables is

�xed.

1.3.40 Lemma: If the
anoni
al solved forms 9

�

Y

1

:(

~

X =

~

T

1

) and 9

�

Y

2

:(

~

X =

~

T

2

) are

equivalent, then there exists a renaming � su
h that

~

T

1

= �(

~

T

2

). 2

Please note that the fa
t that the
anoni
al solved forms 9

�

Y

1

:(

~

X

1

=

~

T

1

)

and 9

�

Y

2

:(

~

X

2

=

~

T

2

) are equivalent does not imply that

�

X

1

and

�

X

2

oin
ide.

Consider, for example, the
anoni
al solved forms true and 9Y:(X = Y), whi
h

by C-NameEq are equivalent. One might wish to further restri
t
anoni
al

solved forms by requiring

�

X to be the set of essential type variables of the

onstraint 9

�

Y:(

~

X =

~

T), that is, the set of the type variables that appear free

in all equivalent
onstraints. However, as far our te
hni
al development is

on
erned, it seems more
onvenient not to do so. Instead, we show that it is

possible to expli
itly restri
t or extend

�

X when needed (Lemma 1.3.43).

The following de�nition allows entertaining a dual view of
anoni
al solved

forms, either as
onstraints or as idempotent type substitutions. The latter

view is
ommonly found in standard treatments of uni�
ation (Lassez, Maher,

and Marriott, 1988; Jouannaud and Kir
hner, 1991) and in
lassi
 presenta-

tions of ML-the-type-system.

1.3.41 Definition: If [

~

X 7!

~

T℄ is an idempotent substitution of domain

�

X, let

9[

~

X 7!

~

T℄ denote the
anoni
al solved form 9

�

Y:(

~

X =

~

T), where

�

Y = ftv(

�

T).

An idempotent substitution � is a most general uni�er of the
onstraint C if

and only if 9� and C are equivalent. 2

By de�nition, equivalent
onstraints admit the same most general uni�ers.

Many properties of
anoni
al solved forms may be reformulated in terms of

most general uni�ers. By Lemmas 1.3.31, 1.3.35, and 1.3.37, every satis�able

onstraint admits a most general uni�er. By Lemma 1.3.40, if [

~

X 7!

~

T

1

℄ and

TOP

2003/5/20

page 40

40 Draft of May 20, 2003 1 ML

[

~

X 7!

~

T

2

℄ are most general uni�ers of C, then

~

T

1

and

~

T

2

oin
ide up to a

renaming. Conversely, if [

~

X 7!

~

T℄ is a most general uni�er of C and if

�

X # �

holds, then [

~

X 7! �

~

T℄ is also a most general uni�er of C; indeed, these two

substitutions
orrespond to �-equivalent
anoni
al solved forms.

The following result relates the substitution � to the
anoni
al solved form

9�, stating that every ground re�nement of the former satis�es the latter.

1.3.42 Lemma: �(9�) � true. 2

The following lemma o�ers two te
hni
al results: the domain of a most

general uni�er of C may be restri
ted so as to be
ome a subset of ftv (C); it

may also be extended to in
lude arbitrary fresh variables. The next lemma is

a simple
orollary.

1.3.43 Lemma: Let � be a most general uni�er of C. If

�

Z # ftv(C), then � n

�

Z is also

a most general uni�er of C. If

�

Z # �, then there exists a most general uni�er

of C that extends � and whose domain is dom(�) [

�

Z. 2

1.3.44 Lemma: Let �

1

and �

2

be most general uni�ers of C. Let

�

X = dom(�

1

) \

dom(�

2

). Then, �

1

(

�

X) and �

2

(

�

X)
oin
ide up to a renaming. 2

Our last te
hni
al result relates the most general uni�ers of C with the most

general uni�ers of 9X:C. It states that the former are extensions of the latter.

Furthermore, under a few freshness
onditions, every most general uni�er of

9X:C may be extended to yield a most general uni�er of C.

1.3.45 Lemma: If � is a most general uni�er of C, then � nX is a most general uni�er

of 9X:C. Conversely, if � is a most general uni�er of 9X:C and X # � and

ftv(9X:C) � dom(�), then there exists a type substitution �

0

su
h that �

0

extends �, �

0

is a most general uni�er of C, and dom(�

0

) = dom(�) [X. 2

1.4 HM(X)

Constraint-based type systems appeared during the 1980s (Mit
hell, 1984; Fuh

and Mishra, 1988) and were widely studied during the following de
ade (Cur-

tis, 1990; Aiken and Wimmers, 1993; Jones, 1994a; Smith, 1994; Palsberg,

1995; Trifonov and Smith, 1996; Fähndri
h, 1999; Pottier, 2001b). We now

present one su
h system, baptized HM(X) be
ause it is a parameterized ex-

tension of Hindley and Milner's type dis
ipline; the meaning of the parameter

X was explained on page 24. Its original des
ription is due to Odersky, Sulz-

mann, and Wehr (1999a). Sin
e then, it has been
ompleted in a number of

works (Sulzmann, Müller, and Zenger, 1999; Sulzmann, 2000; Pottier, 2001a;

TOP

2003/5/20

page 41

1.4 HM(X) 41

Skalka and Pottier, 2002). Ea
h of these presentations introdu
es minor vari-

ations. Here, we follow (Pottier, 2001a), whi
h is itself inspired by (Sulzmann,

Müller, and Zenger, 1999).

De�nition

Our presentation of HM(X) relies on the
onstraint language introdu
ed in

se
tion 1.3. Te
hni
ally, our approa
h of
onstraints is more dire
t than that

of (Odersky, Sulzmann, and Wehr, 1999a). We interpret
onstraints within a

model, give
onjun
tion and existential quanti�
ation their standard mean-

ing, and derive a number of equivalen
e laws (Se
tion 1.3). Odersky et al., on

the other hand, do not expli
itly rely on a logi
al interpretation; instead, they

axiomatize
onstraint equivalen
e, that is, they
onsider a number of equiva-

len
e laws as axioms. Thus, they ensure that their high-level proofs, su
h as

type soundness and
orre
tness and
ompleteness of type inferen
e, are in-

dependent of the low-level details of the logi
al interpretation of
onstraints.

Their approa
h is also more general, sin
e it allows dealing with other log-

i
al interpretations�su
h as �open-world� interpretations, where
onstraints

are interpreted not within a �xed model, but within a family of extensions

of a �
urrent� model. In this
hapter, we have avoided this extra layer of ab-

stra
tion, for the sake of de�niteness; however, the
hanges required to adopt

Odersky et al.'s approa
h would not be extensive, sin
e the forth
oming proofs

do indeed rely mostly on
onstraint equivalen
e laws, rather than on low-level

details of the logi
al interpretation of
onstraints.

Another slight departure from Odersky et al.'s work lies in the fa
t that

we have enri
hed the
onstraint language with type s
heme introdu
tion and

instantiation forms, whi
h were absent in the original presentation of HM(X).

To prevent this addition from a�e
ting HM(X), we require the
onstraints

that appear in HM(X) typing judgements to have no free program identi�ers.

Please note that this does not prevent them from
ontaining let forms; we shall

in fa
t exploit this feature when establishing an equivalen
e between HM(X)

and the type system presented in se
tion 1.5, where the new
onstraint forms

are e�e
tively used.

The type system HM(X)
onsists of a four-pla
e judgement whose parame-

ters are a
onstraint C, an environment �, an expression t, and a type s
heme

�. A judgement is written C;� ` t : � and is read: under the assumptions

C and �, the expression t has type �. One may view C as an assumption

about the judgement's free type variables and � as an assumption about t's

free program identi�ers. Please re
all that � now
ontains
onstrained type

s
hemes, and that � is a
onstrained type s
heme.

We would like the validity of a typing judgement to depend not on the

TOP

2003/5/20

page 42

42 Draft of May 20, 2003 1 ML

�(x) = � C
 9�

C;� ` x : �

(hmx-Var)

C; (�; z : T) ` t : T

0

C;� ` �z:t : T! T

0

(hmx-Abs)

C;� ` t

1

: T! T

0

C;� ` t

2

: T

C;� ` t

1

t

2

: T

0

(hmx-App)

C;� ` t

1

: � C; (�; z : �) ` t

2

: T

C;� ` let z = t

1

in t

2

: T

(hmx-Let)

C ^D;� ` t : T

�

X # ftv(C;�)

C ^ 9

�

X:D;� ` t : 8

�

X[D℄:T

(hmx-Gen)

C;� ` t : 8

�

X[D℄:T

C ^D;� ` t : T

(hmx-Inst)

C;� ` t : T C
 T � T

0

C;� ` t : T

0

(hmx-Sub)

C;� ` t : �

�

X # ftv(�; �)

9

�

X:C;� ` t : �

(hmx-Exists)

Figure 1-7: Typing rules for HM(X)

syntax, but only on the meaning of its
onstraint assumption. We enfor
e this

point of view by
onsidering judgements equal modulo equivalen
e of their

onstraint assumptions. In other words, the typing judgements C;� ` t : �

and D;� ` t : � are
onsidered identi
al when C � D holds. As a result,

it does not make sense to analyze the syntax of a judgement's
onstraint

assumption. A judgement is valid, or holds, if and only if it is derivable via

the rules given in Figure 1-7. Please note that a valid judgement may involve

an unsatis�able
onstraint. A program t is well-typed within the environment

� if and only if a judgement of the form C;� ` t : � holds for some satis�able

onstraint C.

Let us now explain the rules. Like dm-Var, hmx-Var looks up the environ-

ment to determine the type s
heme asso
iated with the program identi�er x.

The
onstraint C that appears in the
on
lusion must be strong enough to

guarantee that � has an instan
e; this is expressed by the se
ond premise.

This te
hni
al requirement is used in the proof of Lemma 1.4.1. hmx-Abs,

hmx-App, and hmx-Let are identi
al to dm-Abs, dm-App, and dm-Let,

respe
tively, ex
ept that the assumption C is made available to every sub-

derivation. We re
all that the type T may be viewed as the type s
heme

8?[true℄:T (De�nitions 1.2.18 and 1.3.2). As a result, types form a subset of

type s
hemes, whi
h implies that �; z : T is a well-formed environment and

C;� ` t : T a well-formed typing judgement. To understand hmx-Gen, it

is best to �rst
onsider the parti
ular
ase where C is true. This yields the

following, simpler rule:

D;� ` t : T

�

X # ftv (�)

9

�

X:D;� ` t : 8

�

X[D℄:T

(hmx-Gen')

TOP

2003/5/20

page 43

1.4 HM(X) 43

The se
ond premise is identi
al to that of dm-Gen: the type variables that

are generalized must not o

ur free within the environment. The
on
lusion

forms the type s
heme 8

�

X[D℄:T, where the type variables

�

X have be
ome uni-

versally quanti�ed, but are still subje
t to the
onstraint D. Please note that

the type variables that o

ur free in D may in
lude not only

�

X, but also other

type variables, typi
ally free in �. The rule's
on
lusion
arries the
onstraint

9

�

X:D, thus re
ording the requirement that the newly formed type s
heme

should have an instan
e; again, this is used in the proof of Lemma 1.4.1.

hmx-Gen may be viewed as a more liberal version of hmx-Gen', whereby

part of the
urrent
onstraint, namely C, need not be
opied if it does not

on
ern the type variables that are being generalized, namely

�

X. This opti-

mization is important in pra
ti
e, be
ause C may be very large. An intuitive

explanation for its
orre
tness is given by the
onstraint equivalen
e law C-

LetAnd, whi
h expresses the same optimization in terms of let
onstraints.

Be
ause HM(X) does not use let
onstraints, the optimization is hard-wired

into the typing rule. hmx-Inst allows taking an instan
e of a type s
heme.

The reader may be surprised to �nd that,
ontrary to dm-Inst, it does not

involve a type substitution. Instead, the rule merely drops the universal quan-

ti�er, whi
h amounts to applying the identity substitution

~

X 7!

~

X. One should

re
all, however, that type s
hemes are
onsidered equal modulo �-
onversion,

so it is possible to rename the type s
heme's universal quanti�ers prior to

using hmx-Inst. The reason why this provides su�
ient expressive power

appears in the proof of Theorem 1.4.7 below. The
onstraint D
arried by

the type s
heme is re
orded as part of the
urrent
onstraint in hmx-Inst's

on
lusion. The subsumption rule hmx-Sub allows a type T to be repla
ed

at any time with an arbitrary supertype T

0

. Be
ause both T and T

0

may have

free type variables, whether T � T

0

holds depends on the
urrent assumption

C, whi
h is why the rule's se
ond premise is an entailment assertion. An op-

erational explanation of hmx-Sub is that it requires all uses of subsumption

to be expli
itly re
orded in the
urrent
onstraint. Please note that hmx-Sub

remains a useful and ne
essary rule even when subtyping is interpreted as

equality: then, it allows exploiting the type equations found in C. Last, hmx-

Exists allows the type variables that o

ur only within the
urrent
onstraint

to be
ome existentially quanti�ed. As a result, these type variables no longer

o

ur free in the rule's
on
lusion; in other words, they have be
ome lo
al to

the subderivation rooted at the premise. One may prove that the presen
e

of hmx-Exists in the type system does not augment the set of well-typed

programs, but does augment the set of valid typing judgements; it is a pleas-

ant te
hni
al
onvenien
e. Indeed, be
ause judgements are
onsidered equal

modulo
onstraint equivalen
e,
onstraints may be transparently simpli�ed at

any time. (By simplifying a
onstraint, we mean repla
ing it with an equiva-

TOP

2003/5/20

page 44

44 Draft of May 20, 2003 1 ML

lent
onstraint whose synta
ti
 representation is
onsidered simpler.) Bearing

this fa
t in mind, one �nds that an e�e
t of rule hmx-Exists is to enable

more simpli�
ations: be
ause
onstraint equivalen
e is a
ongruen
e, C � D

implies 9

�

X:C � 9

�

X:D, but the
onverse does not hold in general. For instan
e,

there is in general no way of simplifying the judgement X � Y � Z;� ` t : �,

but if it is known that Y does not appear free in � or �, then hmx-Exists

allows deriving 9Y:(X � Y � Z);� ` t : �, whi
h is the same judgement as

X � Z;� ` t : �. Thus, an interesting simpli�
ation has been enabled. Please

note that X � Y � Z � X � Z does not hold, while, a

ording to C-ExTrans,

9Y:(X � Y � Z) � X � Z does.

We now establish a few simple properties of the type system HM(X). Our

�rst lemma is a minor te
hni
al property.

1.4.1 Lemma: C;� ` t : � implies C
 9�. 2

The next lemma states that strengthening a judgement's
onstraint assump-

tion preserves its validity. In other words, weakening a judgement preserves its

validity. It is worth noting that in traditional presentations, whi
h rely more

heavily on type substitutions, the analogue of this result is a type substitution

lemma; see for instan
e (Tofte, 1988, Lemma 2.7), (Leroy, 1992, Proposition

1.2), (Skalka and Pottier, 2002, Lemma 3.4). Here, the lemma further states

that weakening a judgement does not alter the shape of its derivation, a useful

property when reasoning by indu
tion on type derivations.

1.4.2 Lemma [Weakening℄: If C

0

 C, then every derivation of C;� ` t : � may

be turned into a derivation of C

0

;� ` t : � with the same shape. 2

Proof: The proof is by stru
tural indu
tion on a derivation of C;� ` t : �.

In ea
h proof
ase, we adopt the notations of Figure 1-7.

Æ Case hmx-Var. The rule's
on
lusion is C;� ` x : �. Its premises are

�(x) = � (1) and C
 9� (2). By hypothesis, we have C

0

 C (3). By

transitivity of entailment, (3) and (2) imply C

0

 9� (4). By hmx-Var, (1)

and (4) yield C

0

;� ` x : �.

Æ Cases hmx-Abs, hmx-App, hmx-Let. By the indu
tion hypothesis and

by hmx-Abs, hmx-App, or hmx-Let, respe
tively.

Æ Case hmx-Gen. The rule's
on
lusion is C ^ 9

�

X:D;� ` t : 8

�

X[D℄:T. Its

premises are C^D;� ` t : T (1) and

�

X # ftv(C;�) (2). By hypothesis, we have

C

0

 C ^ 9

�

X:D (3). We may assume, w.l.o.g.,

�

X # ftv(C

0

) (4). Applying the

indu
tion hypothesis to (1) and to the entailment assertion C

0

^C^D
 C^D,

we obtain C

0

^C ^D;� ` t : T (5). By hmx-Gen, applied to (5), (2) and (4),

we get C

0

^C ^9

�

X:D;� ` t : 8

�

X[D℄:T (6). By (3) and C-Dup, the
onstraints

C

0

^ C ^ 9

�

X:D and C

0

are equivalent, so (6) is the goal C

0

;� ` t : 8

�

X[D℄:T.

TOP

2003/5/20

page 45

1.4 HM(X) 45

Æ Case hmx-Inst. The rule's
on
lusion is C ^ D;� ` t : T. Its premise

is C;� ` t : 8

�

X[D℄:T (1). By hypothesis, C

0

entails C ^ D (2). Be
ause (2)

implies C

0

 C, the indu
tion hypothesis may be applied to (1), yielding

C

0

;� ` t : 8

�

X[D℄:T (3). By hmx-Inst, we obtain C

0

^ D;� ` t : T (4).

Be
ause (2) implies C

0

� C

0

^D, (4) is the goal C

0

;� ` t : T.

Æ Case hmx-Sub. The rule's
on
lusion is C;� ` t : T

0

. Its premises are

C;� ` t : T (1) and C
 T � T

0

(2). By hypothesis, we have C

0

 C (3).

Applying the indu
tion hypothesis to (1) and (3) yields C

0

;� ` t : T (4). By

transitivity of entailment, (3) and (2) imply C

0

 T � T

0

(5). By hmx-Sub,

(4) and (5) yield C

0

;� ` t : T

0

.

Æ Case hmx-Exists. The rule's
on
lusion is 9

�

X:C;� ` t : �. Its premises

are C;� ` t : � (1) and

�

X # ftv (�; �) (2). By hypothesis, we have C

0

9

�

X:C (3). We may assume, w.l.o.g.,

�

X # ftv(C

0

) (4). Applying the indu
tion

hypothesis to (1) and to the entailment assertion C

0

^ C
 C, we obtain

C

0

^ C;� ` t : � (5). By hmx-Exists, (5) and (2) yield 9

�

X:(C

0

^ C);� `

t : � (6). By (4) and C-ExAnd, the
onstraint 9

�

X:(C

0

^ C) is equivalent to

C

0

^9

�

X:C, whi
h, by (3) and C-Dup, is equivalent to C

0

. Thus, (6) is the goal

C

0

;� ` t : �. 2

We do not give a dire
t type soundness proof for HM(X). Instead, in se
-

tion 1.5, we prove that it is equivalent to another type system, whi
h later

is itself proven sound. A dire
t type soundness result, based on a denota-

tional semanti
s, may be found in (Odersky, Sulzmann, and Wehr, 1999a).

Another type soundness proof, whi
h follows Wright and Felleisen's synta
ti

approa
h (1994b), appears in (Skalka and Pottier, 2002). Last, a hybrid ap-

proa
h, whi
h
ombines some of the advantages of the previous two, is given

in (Pottier, 2001a).

An alternate presentation of HM(X)

The presentation of HM(X) given in Figure 1-7 has only four syntax-dire
ted

rules out of eight. It is a good spe
i�
ation of the type system, but it is far

from an algorithmi
 des
ription. As a �rst step towards su
h a des
ription,

we provide an alternate presentation of HM(X), where generalization is per-

formed only at let expressions and instantiation takes pla
e only at referen
es

to program identi�ers (Figure 1-8). It has the property that all judgements

are of the form C;� ` t : T, rather than C;� ` t : �. The following theorem

states that the two presentations are indeed equivalent.

1.4.3 Theorem: C;� ` t : T is derivable via the rules of Figure 1-8 if and only if

it is a valid HM(X) judgement. 2

TOP

2003/5/20

page 46

46 Draft of May 20, 2003 1 ML

�(x) = 8

�

X[D℄:T

C ^D;� ` x : T

(hmd-VarInst)

C; (�; z : T) ` t : T

0

C;� ` �z:t : T! T

0

(hmd-Abs)

C;� ` t

1

: T! T

0

C;� ` t

2

: T

C;� ` t

1

t

2

: T

0

(hmd-App)

C ^D;� ` t

1

: T

1

�

X # ftv(C;�)

C ^ 9

�

X:D; (�; z : 8

�

X[D℄:T

1

) ` t

2

: T

2

C ^ 9

�

X:D;� ` let z = t

1

in t

2

: T

2

(hmd-LetGen)

C;� ` t : T C
 T � T

0

C;� ` t : T

0

(hmd-Sub)

C;� ` t : T

�

X # ftv(�; T)

9

�

X:C;� ` t : T

(hmd-Exists)

Figure 1-8: An alternate presentation of HM(X)

This theorem shows that the rule sets of Figures 1-7 and 1-8 derive the

same monomorphi
 judgements, that is, the same judgements of the form

C;� ` t : T. The fa
t that judgements of the form C;� ` t : �, where �

is a not a monotype,
annot be derived using the new rule set is a te
hni
al

simpli�
ation, without deep signi�
an
e; the �rst two exer
ises below shed

some light on this issue.

1.4.4 Exer
ise [FF℄: Show that both rule sets lead to the same set of well-typed

programs. 2

1.4.5 Exer
ise [FF℄: Show that, if hmx-Gen is added to the rule set of Figure 1-

8, then both rule sets derive exa
tly the same judgements. 2

1.4.6 Exer
ise [FFF, 9℄: Show that it is possible to simplify the presentation

of Damas and Milner's type system in an analogous manner. That is, de�ne an

alternate set of typing rules for DM, whi
h allows deriving judgements of the

form � ` t : T; then, show that this new rule set is equivalent to the previous

one, in the same sense as above. Whi
h auxiliary properties of DM does your

proof require? A solution is given in (Clément, Despeyroux, Despeyroux, and

Kahn, 1986). 2

Relating HM(X) with Damas and Milner's type system

In order to explain our interest in HM(X), we wish to show that it is more

general than Damas and Milner's type system. Sin
e HM(X) really is a family

of type systems, we must make this statement more pre
ise. First, every mem-

ber of the HM(X) family
ontains DM. Conversely, DM
ontains HM(=), the

TOP

2003/5/20

page 47

1.4 HM(X) 47

onstraint-based type system obtained by spe
ializing HM(X) to the setting

of an equality-only synta
ti
 model.

The �rst of these assertions is easy to prove, be
ause the mapping from

DM judgements to HM(X) judgements is essentially the identity: every valid

DM judgement may be viewed as a valid HM(X) judgement under the trivial

assumption true. This statement relies on the fa
t that the DM type s
heme

8

�

X:T is identi�ed with the
onstrained type s
heme 8

�

X[true℄:T, so DM type

s
hemes (resp. environments) form a subset of HM(X) type s
hemes (resp.

environments). Its proof is routine, ex
ept perhaps in the
ase of dm-Inst,

where it is shown how the e�e
t of applying a substitution in DM is emulated

by strengthening the
urrent
onstraint in HM(X).

1.4.7 Theorem: If � ` t : S holds in DM, then true;� ` t : S holds in HM(X). 2

Proof: The proof is by stru
tural indu
tion on a derivation of � ` t : S. In

ea
h proof
ase, we adopt the notations of Figure 1-3.

Æ Case dm-Var. The rule's
on
lusion is � ` x : S. Its premise is �(x) =

S (1). By de�nition and by C-Ex*, the
onstraint 9S is equivalent to true.

By applying hmx-Var to (1) and to the assertion true
 true, we obtain

true;� ` x : S.

Æ Cases dm-Abs, dm-App, dm-Let. By the indu
tion hypothesis and by

hmx-Abs, hmx-App or hmx-Let, respe
tively.

Æ Case dm-Gen. The rule's
on
lusion is � ` t : 8

�

X:T. Its premises are

� ` t : T (1) and

�

X # ftv(�) (2). Applying the indu
tion hypothesis to (1)

yields true;� ` t : T (3). Furthermore, (2) implies

�

X # ftv(true;�) (4). By

hmx-Gen, (3) and (4) yield true;� ` t : 8

�

X[true℄:T.

Æ Case dm-Inst. The rule's
on
lusion is � ` t : [

~

X 7!

~

T℄T. Its premise

is � ` t : 8

�

X:T (1). We may assume, w.l.o.g.,

�

X # ftv(�;

�

T) (2). Applying

the indu
tion hypothesis to (1) yields true;� ` t : 8

�

X[true℄:T (3). By hmx-

Inst, (3) implies true;� ` t : T (4). By Lemma 1.4.2, we may weaken this

judgement so as to obtain

~

X =

~

T;� ` t : T (5). Using C-Eq, C-ExTrans,

and C-ExAnd, it is possible to establish

~

X =

~

T
 T = [

~

X 7!

~

T℄T (6). Applying

hmx-Sub to (5) and (6), we �nd

~

X =

~

T;� ` t : [

~

X 7!

~

T℄T (7). Last, (2)

implies

�

X # ftv(�; [

~

X 7!

~

T℄T) (8). Applying hmx-Exists to (7) and (8), we

obtain 9

�

X:(

~

X =

~

T);� ` t : [

~

X 7!

~

T℄T (9). By (2) and C-Name, the
onstraint

9

�

X:(

~

X =

~

T) is equivalent to true, so (9) is the goal. 2

We are now interested in proving that HM(=), as de�ned above, is
ontained

within DM. To this end, we must translate every HM(=) judgement to a DM

judgement. It qui
kly turns out that this is possible if the original judgement's

onstraint assumption is satis�able.

TOP

2003/5/20

page 48

48 Draft of May 20, 2003 1 ML

We begin by explaining how an HM(=) is translated into a DM type s
heme.

Su
h a translation is made possible by the fa
t that the de�nition of HM(=)

assumes an equality-only synta
ti
 model. Indeed, in that setting, every sat-

is�able
onstraint admits a most general uni�er (De�nition 1.3.41), whose

properties we make essential use of.

In fa
t, we must not only translate a type s
heme, but also apply a type

substitution to it. Instead of separating these steps, we perform both at on
e,

and parameterize the translation by a type substitution �. (It does not appear

that separating them would help.) The de�nition of J�K

�

is somewhat involved:

it is given in the statement of the following lemma, whose proof establishes

that the de�nition is indeed well-formed.

1.4.8 Lemma: Consider a type s
heme � and an idempotent type substitution �

su
h that ftv(�) � dom(�) (1) and 9�
 9� (2). Write � = 8

�

X[D℄:T, where

�

X # � (3). Then, there exists a type substitution �

0

su
h that �

0

extends

�, dom(�

0

) is dom(�) [

�

X, and �

0

is a most general uni�er of 9� ^ D. Let

�

Y = ftv(�

0

(

�

X)) n range(�). Then, the translation of � under �, written J�K

�

, is

the DM type s
heme 8

�

Y:�

0

(T). This is a well-formed de�nition. Furthermore,

ftv(J�K

�

) � range(�) holds. 2

Proof: By (2), 9� is equivalent to 9� ^ 9�, whi
h may be written 9� ^ 9

�

X:D.

By (3) and C-ExAnd, this is 9

�

X:(9� ^D). Thus, be
ause � is a most general

uni�er of 9�, � is also a most general uni�er of 9

�

X:(9� ^D) (4). Furthermore,

ftv(9

�

X:(9� ^ D)) is ftv(9� ^ 9�), whi
h by de�nition of 9� and by (1) is a

subset of dom(�) (5). By (4), (3), (5), and Lemma 1.3.45, there exists a type

substitution �

0

su
h that �

0

extends � (6) and �

0

is a most general uni�er of

9� ^D (7) and dom(�

0

) = dom(�) [

�

X (8).

Let us now de�ne

�

Y = ftv(�

0

(

�

X)) n range(�) and J�K

�

= 8

�

Y:�

0

(T). By (1), we

have ftv(T) �

�

X[dom(�). Applying �

0

and exploiting (6), we �nd ftv(�

0

(T)) �

ftv(�

0

(

�

X)) [range(�), whi
h by de�nition of

�

Y may be written ftv(�

0

(T)) �

�

Y [range(�). Subtra
ting

�

Y on ea
h side, we �nd ftv(J�K

�

) � range(�) (9).

To show that the de�nition of J�K

�

is valid, there remains to show that it

does not depend on the
hoi
e of

�

X or �

0

. To prove the former, it su�
es to es-

tablish

�

X # ftv(J�K

�

), whi
h indeed follows from (3) and (9). As for the latter,

be
ause of the
onstraints imposed by (6), (7), and (8), and by Lemma 1.3.44,

distin
t
hoi
es of �

0

may di�er only by a renaming of ftv (�

0

(

�

X)) n range(�),

that is,

�

Y. So, we must
he
k

�

Y # ftv(J�K

�

), whi
h holds by de�nition. 2

Please note that if � is in fa
t a type T, where ftv(T) � dom(�), then

�

X is

empty, so �

0

is �,

�

Y is empty, and JTK

�

= �(T). In other words, the translation

of a type under � is its image through �. More generally, the translation of an

un
onstrained type s
heme (that is, a type s
heme whose
onstraint is true)

is its image through �, as stated by the following exer
ise.

TOP

2003/5/20

page 49

1.4 HM(X) 49

1.4.9 Exer
ise [FF, 9℄: Prove that J8

�

X:TK

�

, when de�ned, is �(8

�

X:T). 2

The translation be
omes more than a mere type substitution when applied

to a nontrivial
onstrained type s
heme. Some examples of this situation are

given below.

1.4.10 Example: Let � = 8XY[X = Y ! Y℄:X. Let � be the identity substitution.

The type s
heme � is
losed and the
onstraint 9� is equivalent to true, so

J�K

�

is de�ned. We must �nd a type substitution �

0

whose domain is XY and

that is a most general uni�er of X = Y ! Y. All su
h substitutions are of the

form [X 7! (Z! Z); Y 7! Z℄, where Z is fresh. We have ftv(�

0

(XY)) = Z, when
e

J�K

�

= 8Z:Z! Z. Note that the
hoi
e of Z does not matter, sin
e it is bound

in J�K

�

. Roughly speaking, the e�e
t of the translation was to repla
e the

body X of the
onstrained type s
heme with its most general solution under

the
onstraint X = Y! Y.

Let � = 8XY

1

[X = Y

1

! Y

2

℄:X. Let � = [Y

2

7! Z

2

℄. We have ftv (�) =

Y

2

� dom(�). The
onstraint 9� is equivalent to true, so J�K

�

is de�ned. We

must �nd a type substitution �

0

whose domain is XY

1

Y

2

that extends � and

that is a most general uni�er of X = Y

1

! Y

2

. All su
h substitutions are of

the form [X 7! (Z

1

! Z

2

); Y

1

7! Z

1

; Y

2

7! Z

2

℄, where Z

1

is fresh. We have

ftv(�

0

(XY

1

)) n range(�) = Z

1

Z

2

n Z

2

= Z

1

, when
e J�K

�

= 8Z

1

:Z

1

! Z

2

. The

type variable Z

2

is not universally quanti�ed�even though it appears in the

image of X, whi
h was universally quanti�ed in ��be
ause Z

2

is the image of

Y

2

, whi
h was free in �. 2

Before atta
king the main theorem, let us establish a
ouple of te
hni
al

properties of the translation. First, J�K

�

is insensitive to the behavior of �

outside ftv (�), a natural property, sin
e our informal intent is for � to be

applied to �.

1.4.11 Lemma: If �

1

and �

2

oin
ide on ftv(�), then J�K

�

1

and J�K

�

2

are either both

unde�ned, or both de�ned and identi
al. 2

Se
ond, if C
 � � T

0

holds, then the translations of � and T

0

under a

most general uni�er of C are in Damas and Milner's instan
e relation. One

might say, roughly speaking, that the instan
e relation is preserved by the

translation.

1.4.12 Lemma: Let ftv(�; T

0

) � dom(�) (1) and 9�
 9� (2). Let 9�
 � � T

0

(3).

Then, �(T

0

) is an instan
e of the DM type s
heme J�K

�

. 2

Proof: Write � = 8

�

X[D℄:T, where

�

X # � (4) and

�

X # ftv (T

0

) (5). By (1),

(2), and (4), one may de�ne �

0

,

�

Y, and J�K

�

exa
tly as in the statement of

Lemma 1.4.8. By (5) and De�nition 1.3.3, (3) is synonymous with 9�
 9

�

X:(D^

TOP

2003/5/20

page 50

50 Draft of May 20, 2003 1 ML

T = T

0

). Reasoning in the same manner as in the �rst paragraph of the proof

of Lemma 1.4.8, we �nd that there exists a type substitution �

00

su
h that

�

00

extends �, dom(�

00

) is dom(�) [

�

X, and �

00

is a most general uni�er of

9� ^D ^ T = T

0

.

We have dom(�

0

) = dom(�

00

) (6). Furthermore, �

0

is a most general uni�er

of 9� ^D, while �

00

is a most general uni�er of 9� ^D ^ T = T

0

, whi
h implies

9�

00

 9�

0

(7). By Lemma 1.3.39, �

00

re�nes �

0

. That is, there exists a type

substitution ' su
h that �

00

is the restri
tion of ' Æ �

0

to dom(�) [

�

X (8). We

may require dom(') � range(�) [ftv(�

0

(

�

X)) (9) without
ompromising (8).

Consider X 2 dom(�). Be
ause �

00

extends �, we have �

00

(X) = �(X) (10).

Furthermore, by (8), we have �

00

(X) = ('Æ�

0

)(X) = ('Æ�)(X) (11). Using (10)

and (11), we �nd �(X) = '(�(X)). Be
ause this holds for every X 2 dom(�),

' must be the identity over range(�); that is, dom(') # range(�) (12) holds.

Combining (9) and (12), we �nd dom(') � ftv(�

0

(

�

X)) n range(�), that is,

dom(') �

�

Y (13).

By
onstru
tion of �

00

, we have 9�

00

 T = T

0

. By Lemma 1.3.29, this implies

�

00

(9�

00

)
 �

00

(T) = �

00

(T

0

), whi
h by Lemma 1.3.42 may be read true
 �

00

(T) =

�

00

(T

0

). By Lemma 1.3.32, �

00

(T) and �

00

(T

0

)
oin
ide. Be
ause by (1) ftv (T) is

a subset of dom(�)[

�

X and by (8), the former may be written '(�

0

(T)). By (1)

and be
ause �

00

extends �, the latter is �(T

0

). Thus, we have '(�

0

(T)) = �(T

0

).

Together with (13), this establishes that �(T

0

) is an instan
e of 8

�

Y:�

0

(T), that

is, J�K

�

. 2

We extend the translation to environments as follows. J?K

�

is ?. If 9�
 9�

holds, then J�; x : �K

�

is J�K

�

; x : J�K

�

, otherwise it is J�K

�

. Noti
e that J�K

�

ontains fewer bindings than �, whi
h ensures that bindings x : � for whi
h

9�
 9� does not hold will not be used in the translation. Please note that

J�K

�

is de�ned when ftv(�) � dom(�) holds.

We are now ready to prove the main theorem. Please note that, by requir-

ing � to be a most general uni�er of C, we also require C to be satis�able.

Judgements that
arry an unsatis�able
onstraint
annot be translated.

1.4.13 Theorem: Let C;� ` t : � hold in HM(=). Let � be a most general uni�er

of C su
h that ftv(�; �) � dom(�). Then, J�K

�

` t : J�K

�

holds in DM. 2

Proof: Let us �rst remark that, by Lemma 1.4.1, we have C
 9�. This

may be written 9�
 9�, whi
h guarantees that J�K

�

is de�ned. The proof

is by stru
tural indu
tion on an HM(=) typing derivation. We assume that

the derivation is expressed in terms of the rules of Figure 1-8, but split hmd-

LetGen into hmx-Let and hmx-Gen for the sake of readability.

Æ Case hmd-VarInst. The rule's
on
lusion is C ^ D;� ` x : T. By hy-

pothesis, � is a most general uni�er of C ^ D (1), and ftv(T) � dom(�) (2)

TOP

2003/5/20

page 51

1.4 HM(X) 51

holds. The rule's premise is �(x) = � (3), where � stands for 8

�

X[D℄:T. By

(1), we have 9� � C ^ D
 D
 9

�

X:D � 9� (4). Furthermore, we have

ftv(�) � ftv(�) � dom(�) (5). These fa
ts show that J�K

�

is de�ned. To-

gether with (3), this implies J�K

�

(x) = J�K

�

. By dm-Var, J�K

�

` x : J�K

�

(6)

follows. Now, by Lemma 1.3.19, we have D
 � � T, whi
h,
ombined with

9�
 D, yields 9�
 � � T (7). By (7), (4), (5), (2), and Lemma 1.4.12, we

�nd that �(T) is an instan
e of J�K

�

. Thus, applying dm-Inst to (6) yields

J�K

�

` t : �(T).

Æ Case hmd-Abs. The rule's
on
lusion is C;� ` �z:t : T! T

0

. Its premise

is C; (�; z : T) ` t : T

0

. Applying the indu
tion hypothesis to it yields J�K

�

; z :

�(T) ` t : �(T

0

). By dm-Abs, this implies J�K

�

` �z:t : �(T) ! �(T

0

), that is,

J�K

�

` �z:t : �(T! T

0

).

Æ Case hmd-App. By an extension of dom(�) to in
lude ftv (T), by the

indu
tion hypothesis, and by dm-App.

Æ Case hmx-Let. By an extension of dom(�) to in
lude ftv(�), by the

indu
tion hypothesis, and by dm-Let.

Æ Case hmx-Gen. The rule's
on
lusion is C^9�;� ` t : �, where � stands

for 8

�

X[D℄:T. By hypothesis, � is a most general uni�er of C ^ 9� (1), and

ftv(�; �) � dom(�) (2) holds. The rule's premises are C^D;� ` t : T (3) and

�

X # ftv(C;�) (4). We may further assume, w.l.o.g.,

�

X # � (5). Given (1), (2),

and (5), we may de�ne �

0

and

�

Y exa
tly as in Lemma 1.4.8. Then, �

0

is a most

general uni�er of 9� ^D, that is, C ^D. Furthermore, dom(�

0

) is dom(�)[

�

X,

whi
h by (2) is a superset of ftv(�; T). Thus, the indu
tion hypothesis applies

to �

0

and to (3), yielding J�K

�

0

` t : �

0

(T). Be
ause �

0

extends �, by (2)

and by Lemma 1.4.11, this may be read J�K

�

` t : �

0

(T) (6). A

ording to

Lemma 1.4.8, we have ftv(J�K

�

) � range(�), whi
h by
onstru
tion of

�

Y implies

�

Y # ftv(J�K

�

) (7). By dm-Gen, (6) and (7) yield J�K

�

` t : 8

�

Y:�

0

(T), that is,

J�K

�

` t : J�K

�

.

Æ Case hmd-Sub. The rule's
on
lusion is C;� ` t : T

0

. By hypothesis, �

is a most general uni�er of C (1), and ftv(�; T

0

) � dom(�) (2) holds. The

goal is J�K

�

` t : �(T

0

) (3). The rule's premises are C;� ` t : T (4) and

C
 T = T

0

(5). We may assume, w.l.o.g., ftv(T) # range(�) (6). Then,

by (6) and Lemma 1.3.43, we may extend the domain of �, so as to a
hieve

ftv(T) � dom(�) (7), without
ompromising (1) or (2) or a�e
ting the goal

(3). By (1), (2), and (7), the indu
tion hypothesis applies to (4), yielding

J�K

�

` t : �(T) (8). Now, thanks to (1), (5) may be read 9�
 T = T

0

, whi
h

by Lemmas 1.3.29 and 1.3.42 implies true
 �(T) = �(T

0

). Then, Lemma 1.3.32

shows that �(T) and �(T

0

)
oin
ide. As a result, (8) is the goal (3).

Æ Case hmd-Exists. The rule's
on
lusion is 9

�

X:C;� ` t : T. By hypothesis,

� is a most general uni�er of 9

�

X:C (1), and ftv(�; T) � dom(�) (2) holds. The

TOP

2003/5/20

page 52

52 Draft of May 20, 2003 1 ML

rule's premises are C;� ` t : T (3) and

�

X # ftv(�; T). We may assume,

w.l.o.g.,

�

X # � (4). As in the previous
ase, we may extend the domain of

� to guarantee ftv(9

�

X:C) � dom(�) (5). By (1), (4), (5), and Lemma 1.3.45,

there exists a type substitution �

0

su
h that �

0

extends � (6) and �

0

is a

most general uni�er of C. Applying the indu
tion hypothesis to �

0

and to (3)

yields J�K

�

0

` t : �

0

(T). By (2), (6), and Lemma 1.4.11, this may be read

J�K

�

` t : �(T). 2

Together, Theorems 1.4.7 and 1.4.13 yield a pre
ise
orresponden
e between

DM and HM(=): there exists a
ompositional translation from ea
h to the

other. In other words, they may be viewed as two equivalent formulations of

a single type system. One might also say that HM(=) is a
onstraint-based

formulation of DM. Furthermore, Theorem 1.4.7 states that every member of

the HM(X) family is an extension of DM. This explains our double interest in

HM(X), as an alternate formulation of DM, whi
h we believe is more pleasant,

for reasons already dis
ussed, and as a more expressive framework.

1.5 A purely
onstraint-based type system: PCB(X)

In the previous se
tion, we have presented HM(X), an elegant
onstraint-

based extension of Damas and Milner's type system. However, HM(X), as

des
ribed there, su�ers from a drawba
k. A typing judgement involves both

a
onstraint, whi
h represents an assumption about its free type variables,

and an environment, whi
h represents an assumption about its free program

identi�ers. At a let node, hmd-LetGen turns a part of the
urrent
onstraint,

namely D, into a type s
heme, namely 8

�

X[D℄:T, and stores it into the envi-

ronment. Then, at every o

urren
e of the let-bound variable, hmd-VarInst

retrieves this type s
heme from the environment and adds a
opy of D ba
k to

the
urrent
onstraint. In pra
ti
e, it is important to simplify the type s
heme

8

�

X[D℄:T before it is stored in the environment, be
ause it would be ine�
ient

to
opy an unsimpli�ed
onstraint. In other words, it appears that, in order to

preserve e�
ien
y,
onstraint generation and
onstraint simpli�
ation
annot

be separated.

Of
ourse, in pra
ti
e, it is not di�
ult to intermix these phases, so the

problem is not te
hni
al, but pedagogi
al. Indeed, we argued earlier that it is

natural and desirable to separate them. Type s
heme introdu
tion and elim-

ination
onstraints, whi
h we introdu
ed in Se
tion 1.3 but did not use in

the spe
i�
ation of HM(X), are intended as a means of solving this prob-

lem. In the present se
tion, we exploit them to give a novel formulation of

HM(X), whi
h no longer requires
opying
onstraints ba
k and forth between

the environment and the
onstraint assumption. In fa
t, the environment is

TOP

2003/5/20

page 53

1.5 A purely
onstraint-based type system: PCB(X) 53

C
 x � T

C ` x : T

(Var)

C ` t : T

0

let z : T in C ` �z:t : T! T

0

(Abs)

C

1

` t

1

: T! T

0

C

2

` t

2

: T

C

1

^ C

2

` t

1

t

2

: T

0

(App)

C

1

` t

1

: T

1

C

2

` t

2

: T

2

let z : 8V [C

1

℄:T

1

in C

2

` let z = t

1

in t

2

: T

2

(Let)

C ` t : T

C ^ T � T

0

` t : T

0

(Sub)

C ` t : T

�

X # ftv (T)

9

�

X:C ` t : T

(Exists)

Figure 1-9: Typing rules for PCB(X)

suppressed altogether: taking advantage of the new
onstraint forms, we en-

ode information about program identi�ers within the
onstraint assumption.

Presentation

We now employ the full
onstraint language (Se
tion 1.3). Typing judgements

take the form C ` t : T, where C may have free type variables and free

program identi�ers. The rules that allow deriving su
h judgements appear in

Figure 1-9. As before, we identify judgements up to
onstraint equivalen
e.

Let us review the rules. Var states that x has type T under any
onstraint

that entails x � T. Note that we no longer
onsult the type s
heme asso
iated

with x in the environment�indeed, there is no environment. Instead, we let

the
onstraint assumption re
ord the fa
t that the type s
heme should admit

T as one of its instan
es. Thus, in a judgement C ` t : T, any program identi-

�er that o

urs free within t typi
ally also o

urs free within C. Abs requires

the body t of a �-abstra
tion to have type T

0

under assumption C. Although

no expli
it assumption about z appears in the premise, C typi
ally
ontains

a number of instantiation
onstraints bearing on z, of the form z � T

i

. In

the rule's
on
lusion, C is wrapped within the pre�x let z : T in [℄, where T

is the type assigned to z. This e�e
tively requires every T

i

to denote a super-

type of T, as desired. Please note that z does not o

ur free in the
onstraint

let z : T in C, whi
h is natural, sin
e it does not o

ur free in �z:t. App

exhibits a minor stylisti
 di�eren
e with respe
t to hmx-App: its
onstraint

assumption is split between its premises. It is not di�
ult to prove that, when

weakening holds (see Lemma 1.5.2 below), this
hoi
e does not a�e
t the set

of valid judgements. This new presentation en
ourages reading the rules in

Figure 1-9 as the spe
i�
ation of an algorithm, whi
h, given t and T, pro-

TOP

2003/5/20

page 54

54 Draft of May 20, 2003 1 ML

du
es C su
h that C ` t : T holds. In the
ase of App, the algorithm invokes

itself re
ursively for ea
h of the two subexpressions, yielding the
onstraints

C

1

and C

2

, then
onstru
ts their
onjun
tion. Let is analogous to Abs: by

wrapping C

2

within a let pre�x, it gives meaning to the instantiation
on-

straints bearing on z within C

2

. The di�eren
e is that z may now be assigned

a type s
heme, as opposed to a monotype. An appropriate type s
heme is built

in the most straightforward manner from the
onstraint C

1

and the type T

1

that des
ribe t

1

. All of the type variables that appear free in the left-hand

premise are generalized, hen
e the notation 8V [C

1

℄:T

1

, whi
h is a
onvenient

shorthand for 8ftv(C

1

; T

1

)[C

1

℄:T

1

. The side-
ondition that �type variables that

o

ur free in the environment must not be generalized�, whi
h was present in

DM and HM(X), naturally disappears, sin
e judgements no longer involve an

environment. Sub again exhibits a minor stylisti
 di�eren
e with respe
t to

hmx-Sub: the
omments made about App above apply here as well. Exists

is essentially identi
al to hmx-Exists.

In the standard spe
i�
ation of HM(X), hmd-Abs and hmd-LetGen a

u-

mulate information in the environment. Through the environment, this infor-

mation is made available to hmd-VarInst, whi
h retrieves and
opies it. Here,

instead, no information is expli
itly transmitted. Where a program identi�er

is bound, a type s
heme introdu
tion
onstraint is built; where a program

identi�er is used, a type s
heme instantiation
onstraint is produ
ed. The two

are related only by our de�nition of the meaning of
onstraints.

The reader may be puzzled by the fa
t that Let allows all type variables

that o

ur free in its left-hand premise to be generalized. The following exer-

ise sheds some light on this issue.

1.5.1 Exer
ise [F, Re
ommended℄: Build a type derivation for the expression

�z

1

:let z

2

= z

1

in z

2

within PCB(X). Draw a
omparison with the solution

of Exer
ise 1.2.21. 2

The following lemma is an analogue of Lemma 1.4.2.

1.5.2 Lemma [Weakening℄: If C

0

 C, then every derivation of C ` t : T may be

turned into a derivation of C

0

` t : T with the same shape. 2

Proof: The proof is by stru
tural indu
tion on a derivation of C ` t : T. In

ea
h proof
ase, we adopt the notations of Figure 1-9.

Æ Case Var. By transitivity of entailment.

Æ Case Abs. The rule's
on
lusion is let z : T in C ` �z:t : T ! T

0

(1).

By hypothesis, we have C

0

 let z : T in C (2). We may assume, w.l.o.g.,

z 62 fpi (C

0

) (3). The rule's premise is C ` t : T

0

(4). Applying the indu
tion

hypothesis to (4) yields C ^C

0

` t : T

0

, whi
h by Abs implies let z : T in (C ^

TOP

2003/5/20

page 55

1.5 A purely
onstraint-based type system: PCB(X) 55

C

0

) ` �z:t : T ! T

0

(5). By (3) and C-InAnd*, let z : T in (C ^ C

0

) is

equivalent to (let z : T in C) ^ C

0

, whi
h by (2) and C-Dup is equivalent to

C

0

. Thus, (5) is the goal C

0

` �z:t : T! T

0

.

Æ Case App. By applying the indu
tion hypothesis to ea
h premise, using

the fa
t that C

0

 C

1

^ C

2

implies C

0

 C

1

and C

0

 C

2

.

Æ Case Let. Analogous to the
ase of Abs. The indu
tion hypothesis is

applied to the se
ond premise only.

Æ Case Sub. Analogous to the
ase of App.

Æ Case Exists. See the
orresponding
ase in the proof of Lemma 1.4.2. 2

Relating PCB(X) with HM(X)

Let us now provide eviden
e for our
laim that PCB(X) is an alternate pre-

sentation of HM(X). The next two theorems de�ne an e�e
tive translation

from HM(X) to PCB(X) and ba
k.

The �rst theorem states that if, within HM(X), t has type T under as-

sumptions C and �, then, within PCB(X), t also has type T, under some

assumption C

0

. The relationship C
 let � in C

0

states that C entails the

residual
onstraint obtained by
onfronting �, whi
h provides information

about the free program identi�ers in t, with C

0

, whi
h
ontains instantiation

onstraints bearing on these program identi�ers. The statement requires C

and � to have no free program identi�ers, whi
h is natural, sin
e they are

part of an HM(X) judgement. The hypothesis C
 9� ex
ludes the somewhat

pathologi
al situation where �
ontains
onstraints not apparent in C. This

hypothesis vanishes when � is the initial environment; see De�nition 1.7.3.

1.5.3 Theorem: Let C
 9�. Assume fpi (C;�) = ?. If C;� ` t : T holds in

HM(X), then there exists a
onstraint C

0

su
h that C

0

` t : T holds in

PCB(X) and C entails let � in C

0

. 2

Proof: The proof is by stru
tural indu
tion on a derivation of C;� ` t : T.

In ea
h proof
ase, we adopt the notations of Figure 1-8.

Æ Case hmd-VarInst. The rule's
on
lusion is C^D;� ` x : T. By hypoth-

esis, we have C ^ D
 9� (1) and fpi (C;D;�) = ? (2). The rule's premise

is �(x) = 8

�

X[D℄:T (3). By Var, we have x � T ` x : T, so there remains to

establish C ^D
 let � in x � T (4). By (3), (2), and C-InId, the
onstraint

let � in x � T is equivalent to let � in 8

�

X[D℄:T � T, whi
h, by (2) and C-In*,

is itself equivalent to 9�^ 8

�

X[D℄:T � T (5). By (1) and Lemma 1.3.19, C ^D

entails (5). We have established (4).

Æ Case hmd-Abs. The rule's
on
lusion is C;� ` �z:t : T! T

0

. Its premise

is C; (�; z : T) ` t : T

0

(1). The
onstraints 9� and 9(�; z : T) are equivalent,

TOP

2003/5/20

page 56

56 Draft of May 20, 2003 1 ML

so the indu
tion hypothesis applies to (1) and yields a
onstraint C

0

su
h

that C

0

` t : T

0

(2) and C
 let �; z : T in C

0

(3). Applying Abs to (2)

yields let z : T in C

0

` �z:t : T ! T

0

. There remains to
he
k that C entails

let � in let z : T in C

0

�but that is pre
isely (3).

Æ Case hmd-App. The rule's
on
lusion is C;� ` t

1

t

2

: T

0

. Its premises

are C;� ` t

1

: T ! T

0

(1) and C;� ` t

2

: T (2). Applying the indu
tion

hypothesis to (1) and (2), we obtain
onstraints C

0

1

and C

0

2

su
h that C

0

1

`

t

1

: T ! T

0

(3) and C

0

2

` t

2

: T (4) and C
 let � in C

0

1

(5) and C

let � in C

0

2

(6). By App, (3) and (4) imply C

0

1

^C

0

2

` t

1

t

2

: T

0

. Furthermore,

by C-InAnd, (5) and (6) yield C
 let � in C

0

1

^ C

0

2

.

Æ Case hmd-LetGen. The rule's
on
lusion is C ^ 9

�

X:D;� ` let z =

t

1

in t

2

: T

2

. By hypothesis, we have C ^ 9

�

X:D
 9� (1) and fpi (C;D;�) =

? (2). The rule's premises are C ^D;� ` t

1

: T

1

(3) and

�

X # ftv(C;�) (4)

and C ^ 9

�

X:D;�

0

` t

2

: T

2

(5), where �

0

is �; z : 8

�

X[D℄:T

1

. Applying the

indu
tion hypothesis to (3) yields a
onstraint C

0

1

su
h that C

0

1

` t

1

: T

1

(6)

and C ^D
 let � in C

0

1

(7). By (1), (2), and C-In*, we have C ^9

�

X:D
 9�

0

.

Thus, the indu
tion hypothesis applies to (5) and yields a
onstraint C

0

2

su
h

that C

0

2

` t

2

: T

2

(8) and C ^ 9

�

X:D
 let �

0

in C

0

2

(9). By Let, (6) and (8)

imply let z : 8V [C

0

1

℄:T

1

in C

0

2

` let z = t

1

in t

2

: T

2

(10). By Lemmas 1.3.25

and 1.5.2, (10) yields let z : 8

�

X[C

0

1

℄:T

1

in C

0

2

` let z = t

1

in t

2

: T

2

(11),

where the universal quanti�
ation is over

�

X only. There remains to establish

that C ^ 9

�

X:D entails let �; z : 8

�

X[C

0

1

℄:T

1

in C

0

2

(12). By (4), (2), and C-

LetDup, the
onstraint (12) is equivalent to let �; z : 8

�

X[let � in C

0

1

℄:T

1

in C

0

2

.

By (7), this
onstraint is entailed by let �; z : 8

�

X[C ^ D℄:T

1

in C

0

2

, whi
h by

(4) and C-LetAnd, is equivalent to C ^ let �; z : 8

�

X[D℄:T

1

in C

0

2

, that is,

C ^ let �

0

in C

0

2

. By (9), this
onstraint is entailed by C ^ 9

�

X:D.

Æ Case hmd-Sub. The rule's
on
lusion is C;� ` t : T

0

. Its premises are

C;� ` t : T (1) and C
 T � T

0

(2). Applying the indu
tion hypothesis to

(1) yields a
onstraint C

0

su
h that C

0

` t : T (3) and C
 let � in C

0

(4).

By Sub, (3) implies C

0

^ T � T

0

` t : T

0

. There remains to establish C

let � in (C

0

^ T � T

0

), whi
h follows from (4) and (2) by C-InAnd*.

Æ Case hmd-Exists. The rule's
on
lusion is 9

�

X:C;� ` t : T. Its premises

are C;� ` t : T (1) and

�

X # ftv (�; T) (2). By hypothesis, we have 9

�

X:C

9�, whi
h by Lemma 1.3.16 implies C
 9�. Thus, the indu
tion hypothesis

applies to (1) and yields a
onstraint C

0

su
h that C

0

` t : T (3) and C

let � in C

0

(4). By Exists, (3) and (2) imply 9

�

X:C

0

` t : T. There remains

to establish 9

�

X:C
 let � in 9

�

X:C

0

. By
ongruen
e of entailment, (4) implies

9

�

X:C
 9

�

X:let � in C

0

. The result follows by (2) and C-InEx. 2

The se
ond theorem states that if, within PCB(X), t has type T under

assumption C, then, within HM(X), t also has type T, under assumptions

TOP

2003/5/20

page 57

1.5 A purely
onstraint-based type system: PCB(X) 57

let � in C and �. The idea is simple: the
onstraint C represents a
ombined

assumption about the initial judgement's free type variables and free program

identi�ers. In HM(X), these two kinds of assumptions must be maintained

separately. So, we split them into a pair of an environment �, whi
h may be

hosen arbitrarily, provided it satis�es fpi (C) � dpi (�)�that is, provided it

de�nes all program variables of interest, and the residual
onstraint let � in C,

whi
h has no free program identi�ers, thus represents an assumption about

the new judgement's type variables only. Distin
t
hoi
es of � give rise to

distin
t HM(X) judgements, whi
h may be in
omparable; this is related to

the fa
t that ML-the-type-system does not have prin
ipal typings (Jim, 1995).

Again, the hypothesis fpi (�) = fpi (let � in C) = ? is natural, sin
e we wish

� and let � in C to appear in an HM(X) judgement.

1.5.4 Theorem: Assume fpi (�) = fpi (let � in C) = ? and C 6� false. If C ` t : T

holds in PCB(X), then let � in C;� ` t : T holds in HM(X). 2

Proof: The proof is by stru
tural indu
tion on a derivation of C ` t : T. In

ea
h proof
ase, we adopt the notations of Figure 1-9.

By Lemma 1.3.30, the hypothesis C 6� false is preserved whenever the in-

du
tion hypothesis is invoked. It is expli
itly used only in
ase Var, where it

guarantees that the identi�er at hand is bound in �.

Æ Case Var. The rule's
on
lusion is C ` x : T. Its premise is C
 x �

T (1). By Lemma 1.3.24, (1) and the hypothesis C 6� false imply x 2 fpi(C).

Be
ause let � in C has no free program identi�ers, this implies x 2 dpi (�),

that is, the environment � must de�ne x. Let �(x) = 8

�

X[D℄:T

0

(2), where

�

X # ftv(�; T) (3). By (2), hmd-VarInst, and hmd-Sub, we have D ^ T

0

�

T;� ` x : T. By (3) and hmd-Exists, this implies 9

�

X:(D^T

0

� T);� ` x : T (4).

Now, by (3), the
onstraint 9

�

X:(D ^ T

0

� T) may be written 8

�

X[D℄:T

0

� T (5).

The hypothesis fpi (�) = ? implies fpi (D) = ? (6). By (6), C-InId and C-

In*, (5) is equivalent to let � in x � T. Thus, (4) may be written let � in x �

T;� ` x : T. By (1), by
ongruen
e of entailment, and by Lemma 1.4.2, this

implies let � in C;� ` x : T.

Æ Case Abs. The rule's
on
lusion is let z : T in C ` �z:t : T ! T

0

. Its

premise is C ` t : T

0

(1). Let �

0

stand for �; z : T. Applying the indu
tion

hypothesis to (1) yields let �

0

in C;�

0

` t : T

0

. By hmd-Abs, this implies

let �

0

in C;� ` �z:t : T! T

0

.

Æ Case App. The rule's
on
lusion is C

1

^ C

2

` t

1

t

2

: T

0

. Its premises are

C

1

` t

1

: T ! T

0

and C

2

` t

2

: T. Applying the indu
tion hypothesis yields

respe
tively let � in C

1

;� ` t

1

: T ! T

0

and let � in C

2

;� ` t

2

: T, whi
h by

Lemma 1.4.2 and hmd-App imply let � in (C

1

^ C

2

);� ` t

1

t

2

: T

0

.

Æ Case Let. The rule's
on
lusion is let z : 8V [C

1

℄:T

1

in C

2

` let z =

TOP

2003/5/20

page 58

58 Draft of May 20, 2003 1 ML

t

1

in t

2

: T

2

. Its premises are C

1

` t

1

: T

1

(1) and C

2

` t

2

: T

2

(2). Let

�

X

stand for ftv(C

1

; T

1

). We may require, w.l.o.g.,

�

X # ftv(�; C

2

) (3). By hypoth-

esis, we have fpi (�) = ? (4). We also have fpi (let �; z : 8V [C

1

℄:T

1

in C

2

) = ?,

whi
h implies fpi (let � in C

1

) = ?. Thus, the indu
tion hypothesis ap-

plies to (1) and yields let � in C

1

;� ` t

1

: T

1

(5). Now, let � stand

for 8

�

X[let � in C

1

℄:T

1

and �

0

stand for �; z : �. We have fpi (�

0

) =

fpi(let �

0

in C

2

) = ?. Thus, the indu
tion hypothesis applies to (2) and

yields let �

0

in C

2

;�

0

` t

2

: T

2

(6). Let us now weaken (5) and (6) so as to

make them suitable premises for hmd-LetGen. Applying Lemma 1.4.2 to (5)

yields (let �

0

in C

2

) ^ (let � in C

1

);� ` t

1

: T

1

(7). Applying Lemma 1.4.2 to

(6) yields (let �

0

in C

2

) ^ 9

�

X:(let � in C

1

);�

0

` t

2

: T

2

(8). Last, (3) implies

�

X # ftv (�; let �

0

in C

2

) (9). Applying hmd-LetGen to (7), (9) and (8), we

obtain (let �

0

in C

2

)^9

�

X:(let � in C

1

);� ` let z = t

1

in t

2

: T

2

(10). Now, by

(4), (3), and C-LetDup, let �

0

in C

2

is equivalent to let �; z : 8

�

X[C

1

℄:T

1

in C

2

.

Using this fa
t, as well as (3), C-InEx, and C-InAnd, we �nd that the
on-

straint (let �

0

in C

2

) ^ 9

�

X:(let � in C

1

) is equivalent to let � in (let z :

8

�

X[C

1

℄:T

1

in C

2

^ 9

�

X:C

1

), whi
h by de�nition of the let form, is itself equiv-

alent to let �; z : 8

�

X[C

1

℄:T

1

in C

2

. Last, by de�nition of

�

X, this
onstraint is

let �; z : 8V [C

1

℄:T

1

in C

2

. Thus, (10) is the goal.

Æ Case Sub. The rule's
on
lusion is C^T � T

0

` t : T

0

. Its premise is C ` t :

T (1). Applying the indu
tion hypothesis to (1) yields let � in C;� ` t : T (2).

By Lemma 1.4.2 and hmd-Sub, (2) implies (let � in C) ^ T � T

0

;� ` t : T

0

,

whi
h by C-InAnd* may be written let � in (C ^ T � T

0

);� ` t : T

0

.

Æ Case Exists. The rule's
on
lusion is 9

�

X:C ` t : T. Its premises are C `

t : T (1) and

�

X # ftv(T) (2). We may further require, w.l.o.g.,

�

X # ftv(�) (3).

Applying the indu
tion hypothesis to (1) yields let � in C;� ` t : T (4).

Applying hmd-Exists to (2), (3), and (4), we �nd 9

�

X:let � in C;� ` t : T,

whi
h, by (3) and C-InEx, may be written let � in 9

�

X:C;� ` t : T. 2

As a
orollary, we �nd that, for
losed programs, the type systems HM(X)

and PCB(X)
oin
ide. In parti
ular, a program is well-typed with respe
t to

one if and only if it is well-typed with respe
t to the other. This supports the

view that PCB(X) is an alternate formulation of HM(X).

1.5.5 Theorem: Assume fpi (C) = ? and C 6� false. Then, C;? ` t : T holds in

HM(X) if and only if C ` t : T holds in PCB(X). 2

1.6 Constraint generation

We now explain how to redu
e type inferen
e problems for PCB(X) to
on-

straint solving problems. A type inferen
e problem
onsists of an expression

TOP

2003/5/20

page 59

1.6 Constraint generation 59

Jx : TK = x � T

J�z:t : TK = 9X

1

X

2

:(let z : X

1

in Jt : X

2

K ^ X

1

! X

2

� T)

Jt

1

t

2

: TK = 9X

2

:(Jt

1

: X

2

! TK ^ Jt

2

: X

2

K)

Jlet z = t

1

in t

2

: TK = let z : 8X[Jt

1

: XK℄:X in Jt

2

: TK

Figure 1-10: Constraint generation

t and a type T of kind ?. The problem is to determine whether t is well-typed

with type T, that is, whether there exists a satis�able
onstraint C su
h that

C ` t : T holds. This formulation of the problem may seem to require an

appropriate type T to be known in advan
e; this is not really the
ase, sin
e T

may be a type variable. A
onstraint solving problem
onsists of a
onstraint

C. The problem is to determine whether C is satis�able. To redu
e a type

inferen
e problem (t; T) to a
onstraint solving problem, we must produ
e

a
onstraint C that is both su�
ient and ne
essary for C ` t : T to hold.

Below, we explain how to
ompute su
h a
onstraint, whi
h we write Jt : TK.

We
he
k that it is indeed su�
ient by proving Jt : TK ` t : T. That is, the

onstraint Jt : TK is spe
i�
 enough to guarantee that t has type T. We say

that
onstraint generation is sound. We
he
k that it is indeed ne
essary by

proving that, for every
onstraint C, C ` t : T implies C
 Jt : TK. That is,

every
onstraint that guarantees that t has type T is at least as spe
i�
 as

Jt : TK. We say that
onstraint generation is
omplete. Together, these prop-

erties mean that Jt : TK is the least spe
i�

onstraint that guarantees that t

has type T.

We now see how to redu
e a type inferen
e problem to a
onstraint solving

problem. Indeed, if there exists a satis�able
onstraint C su
h that C ` t : T

holds, then, by the
ompleteness property, C
 Jt : TK holds, so Jt : TK is

satis�able. Conversely, the soundness property states that Jt : TK ` t : T

holds, so, if Jt : TK is satis�able, then there exists a satis�able
onstraint C

su
h that C ` t : T holds. In other words, t is well-typed with type T if and

only if Jt : TK is satis�able.

The existen
e of su
h a
onstraint is the analogue of the existen
e of prin
i-

pal type s
hemes in
lassi
 presentations of ML-the-type-system (Damas and

Milner, 1982). Indeed, a prin
ipal type s
heme is least spe
i�
 in the sense

that all valid types are substitution instan
es of it. Here, the
onstraint Jt : TK

is least spe
i�
 in the sense that all valid
onstraints entail it. Earlier, we have

established a
onne
tion between
onstraint entailment and re�nement of type

substitutions, in the spe
i�

ase of equality
onstraints interpreted over a free

algebra of �nite types; see Lemma 1.3.39.

TOP

2003/5/20

page 60

60 Draft of May 20, 2003 1 ML

The
onstraint Jt : TK is de�ned in Figure 1-10 by indu
tion on the stru
ture

of the expression t. We refer to these de�ning equations as the
onstraint

generation rules. The de�nition is quite terse. It is perhaps even simpler than

the de
larative spe
i�
ation of PCB(X) given in Figure 1-9; yet, we prove

below that the two are equivalent.

Before explaining the de�nition, we state the requirements that bear on

the type variables X

1

, X

2

, and X, whi
h appear bound in the right-hand sides

of the se
ond, third, and fourth equations. These type variables must have

kind ?. They must be
hosen distin
t (that is, X

1

6= X

2

in the se
ond equation)

and fresh in the following sense: type variables that appear bound in an equa-

tion's right-hand side must not appear free in the equation's left-hand side.

Provided this restri
tion is obeyed, di�erent
hoi
es of X

1

, X

2

, and X lead to

�-equivalent
onstraints�that is, to the same
onstraint, sin
e we identify

obje
ts up to �-
onversion�whi
h guarantees that the above equations make

sense. We remark that, sin
e expressions do not have free type variables, the

freshness requirement may be simpli�ed to: type variables that appear bound

in an equation's right-hand side must not appear free in T. However, this sim-

pli�
ation is rendered invalid by the introdu
tion of type annotations within

expressions (page 102). Please note that we are able to state a formal fresh-

ness requirement. This is made possible by the fa
t that Jt : TK has no free

type variables other than those of T, whi
h in turn depends on our expli
it

use of existential quanti�
ation.

Let us now review the four equations. The �rst one simply mirrors Var.

The se
ond one requires t to have type X

2

under the hypothesis that z has

type X

1

, and forms the arrow type X

1

! X

2

; this
orresponds to Abs. Here, X

1

and X

2

must be fresh type variables, be
ause we
annot in general guess the

expe
ted types of z and t. The expe
ted type T is required to be a supertype

of X

1

! X

2

; this
orresponds to Sub. We must bind the fresh type variables

X

1

and X

2

, so as to guarantee that the generated
onstraint is unique up

to �-
onversion. Furthermore, we must bind them existentially, be
ause we

intend the
onstraint solver to
hoose some appropriate value for them. This

is justi�ed by Exists. The third equation uses the fresh type variable X

2

to stand for the unknown type of t

2

. The subexpression t

1

is expe
ted to

have type X

2

! T. This
orresponds to App. The fourth equation, whi
h

orresponds to Let, is most interesting. It summons a fresh type variable X

and produ
es Jt

1

: XK. This
onstraint, whose sole free type variable is X, is

the least spe
i�

onstraint that must be imposed on X so as to make it a

valid type for t

1

. As a result, the type s
heme 8X[Jt

1

: XK℄:X, abbreviated �

in the following, is a prin
ipal type s
heme for t

1

. There remains to pla
e

Jt

2

: TK inside the
ontext let z : � in [℄. Indeed, when pla
ed inside this

ontext, an instantiation
onstraint of the form z � T

0

a
quires the meaning

TOP

2003/5/20

page 61

1.6 Constraint generation 61

� � T

0

, whi
h by de�nition of � and by Lemma 1.6.4 (see below) is equivalent

to Jt

1

: T

0

K. Thus, the
onstraint produ
ed by the fourth equation simulates a

textual expansion of the let
onstru
t, whereby every o

urren
e of z would

be repla
ed with t

1

. Thanks to type s
heme introdu
tion and instantiation

onstraints, however, this e�e
t is a
hieved without dupli
ation of sour
e
ode

or
onstraints. In other words,
onstraint generation has linear time and spa
e

omplexity; dupli
ation may take pla
e during
onstraint solving only.

1.6.1 Exer
ise [F, 9℄: De�ne the size of an expression, of a type, and of a
on-

straint, viewed as abstra
t syntax trees. Che
k that the size of Jt : TK is linear

in the sum of the sizes of t and T. 2

We now establish several properties of
onstraint generation. We begin with

soundness, whose proof is straightforward.

1.6.2 Theorem [Soundness℄: Jt : TK ` t : T. 2

Proof: By indu
tion on the stru
ture of t.

Æ Case x. The goal x � T ` x : T follows from Var.

Æ Case �z:t. By the indu
tion hypothesis, we have Jt : X

2

K ` t : X

2

. By

Abs, this implies let z : X

1

in Jt : X

2

K ` �z:t : X

1

! X

2

. By Sub, this implies

let z : X

1

in Jt : X

2

K ^ X

1

! X

2

� T ` �z:t : T. Lastly, be
ause X

1

X

2

ftv(T)

holds, Exists applies and yields J�z:t : TK ` �z:t : T.

Æ Case t

1

t

2

. By the indu
tion hypothesis, we have Jt

1

: X

2

! TK ` t

1

:

X

2

! T and Jt

2

: X

2

K ` t

2

: X

2

. By App, this implies Jt

1

: X

2

! TK ^

Jt

2

: X

2

K ` t

1

t

2

: T. Be
ause X

2

62 ftv(T) holds, Exists applies and yields

Jt

1

t

2

: TK ` t

1

t

2

: T.

Æ Case let z = t

1

in t

2

. By the indu
tion hypothesis, we have Jt

1

:

XK ` t

1

: X and Jt

2

: TK ` t

2

: T. By Let, these imply let z : 8V [Jt

1

:

XK℄:X in Jt

2

: TK ` let z = t

1

in t

2

: T. Be
ause ftv (Jt

1

: XK) is X, the universal

quanti�
ation on V really bears on X alone. We have proved Jlet z = t

1

in t

2

:

TK ` let z = t

1

in t

2

: T. 2

The following lemmas are used in the proof of the
ompleteness property and

in a number of other o

asions. The �rst two state that Jt : TK is
ovariant with

respe
t to T. Roughly speaking, this means that enough subtyping
onstraints

are generated to a
hieve
ompleteness with respe
t to Sub.

1.6.3 Lemma: Jt : TK ^ T � T

0

entails Jt : T

0

K. 2

1.6.4 Lemma: X 62 ftv(T) implies 9X:(Jt : XK ^ X � T) � Jt : TK. 2

TOP

2003/5/20

page 62

62 Draft of May 20, 2003 1 ML

The next lemma gives a simpli�ed version of the se
ond
onstraint genera-

tion rule, in the spe
i�

ase where the expe
ted type is an arrow type. Then,

fresh type variables need not be generated; one may dire
tly use the arrow's

domain and
odomain instead.

1.6.5 Lemma: J�z:t : T

1

! T

2

K is equivalent to let z : T

1

in Jt : T

2

K. 2

We
on
lude with the
ompleteness property.

1.6.6 Theorem [Completeness℄: if C ` t : T, then C
 Jt : TK. 2

Proof: By indu
tion on the derivation of C ` t : T.

Æ Case Var. The rule's
on
lusion is C ` x : T. Its premise is C
 x � T,

whi
h is also the goal.

Æ Case Abs. The rule's
on
lusion is let z : T in C ` �z:t : T ! T

0

. Its

premise is C ` t : T

0

. By the indu
tion hypothesis, we have C
 Jt : T

0

K. By

ongruen
e of entailment, this implies let z : T in C
 let z : T in Jt : T

0

K,

whi
h, by Lemma 1.6.5, may be written let z : T in C
 J�z:t : T! T

0

K.

Æ Case App. The rule's
on
lusion is C

1

^ C

2

` t

1

t

2

: T

0

. Its premises are

C

1

` t

1

: T! T

0

and C

2

` t

2

: T. By the indu
tion hypothesis, we have C

1

Jt

1

: T! T

0

K and C

2

 Jt

2

: TK. Thus, C

1

^ C

2

entails Jt

1

: T! T

0

K ^ Jt

2

: TK,

whi
h, by C-NameEq, may be written 9X

2

:(X

2

= T^Jt

1

: X

2

! T

0

K^Jt

2

: X

2

K),

where X

2

62 ftv(T; T

0

). Forgetting about the equation X

2

= T, we �nd that

C

1

^ C

2

entails 9X

2

:(Jt

1

: X

2

! T

0

K ^ Jt

2

: X

2

K), whi
h is pre
isely Jt

1

t

2

: T

0

K.

Æ Case Let. The rule's
on
lusion is let z : 8V [C

1

℄:T

1

in C

2

` let z =

t

1

in t

2

: T

2

. Its premises are C

1

` t

1

: T

1

and C

2

` t

2

: T

2

. By the

indu
tion hypothesis, we have C

1

 Jt

1

: T

1

K and C

2

 Jt

2

: T

2

K, whi
h

implies let z : 8V [C

1

℄:T

1

in C

2

 let z : 8V [Jt

1

: T

1

K℄:T

1

in Jt

2

: T

2

K (1).

Now, let us establish true
 8X[Jt

1

: XK℄:X � 8V [Jt

1

: T

1

K℄:T

1

(2). By

de�nition, this requires proving 9

�

X

1

:(Jt

1

: T

1

K ^ T

1

� Z)
 9X:(Jt

1

: XK ^ X �

Z) (3), where

�

X

1

= ftv(T

1

) and Z 62 X

�

X

1

(4). By Lemma 1.6.3, (4), and C-

Ex*, the left-hand side of (3) entails Jt

1

: ZK. By (4) and Lemma 1.6.4, the

right-hand side of (3) is Jt

1

: ZK. Thus, (3) holds, and so does (2).

By (2) and Lemma 1.3.22, we have let z : 8V [Jt

1

: T

1

K℄:T

1

in Jt

2

: T

2

K

let z : 8X[Jt

1

: XK℄:X in Jt

2

: T

2

K (5). By transitivity of entailment, (1) and (5)

yield let z : 8V [C

1

℄:T

1

in C

2

 Jlet z = t

1

in t

2

: T

2

K.

Æ Case Sub. The rule's
on
lusion is C ^ T � T

0

` t : T

0

. Its premise is

C ` t : T. By the indu
tion hypothesis, we have C
 Jt : TK, whi
h implies

C^T � T

0

 Jt : TK^T � T

0

. By lemma 1.6.3 and by transitivity of entailment,

we obtain C ^ T � T

0

 Jt : T

0

K.

Æ Case Exists. The rule's
on
lusion is 9

�

X:C ` t : T. Its premises are

C ` t : T and

�

X # ftv(T) (1). By the indu
tion hypothesis, we haveC
 Jt : TK.

TOP

2003/5/20

page 63

1.7 Type soundness 63

By
ongruen
e of entailment, this implies 9

�

X:C
 9

�

X:Jt : TK (2). Furthermore,

(1) implies

�

X # ftv(Jt : TK) (3). By (3) and C-Ex*, (2) may be written

9

�

X:C
 Jt : TK. 2

1.7 Type soundness

We are now ready to establish type soundness for our type system. The state-

ment that we wish to prove is sometimes known as Milner's slogan: well-typed

programs do not go wrong (Milner, 1978). Below, we de�ne well-typedness in

terms of our
onstraint generation rules, for the sake of
onvenien
e, and estab-

lish type soundness with respe
t to that parti
ular de�nition. Theorems 1.4.7,

1.5.4, and 1.6.6 imply that type soundness also holds when well-typedness is

de�ned with respe
t to the typing judgements of DM, HM(X), or PCB(X).

We establish type soundness by following Wright and Felleisen's so-
alled syn-

ta
ti
 approa
h (1994b). The approa
h
onsists in isolating two independent

properties. Subje
t redu
tion, whose exa
t statement will be given below, im-

plies that well-typedness is preserved by redu
tion. Progress states that no

stu
k
on�guration is well-typed. It is immediate to
he
k that, if both prop-

erties hold, then no well-typed program
an redu
e to a stu
k
on�guration.

Subje
t redu
tion itself depends on a key lemma, usually known as a (term)

substitution lemma. We immediately give two versions of this lemma: the for-

mer is stated in terms of PCB(X) judgements, while the latter is stated in

terms of the
onstraint generation rules.

1.7.1 Lemma [Substitution℄: C ` t : T and C

0

` t

0

: T

0

imply let z

0

:

8

�

X

0

[C

0

℄:T

0

in C ` [z

0

7! t

0

℄t : T. 2

Proof: The proof is by stru
tural indu
tion on the derivation of C ` t : T.

In ea
h proof
ase, we adopt the notations of Figure 1-9. We write �

0

for

8

�

X

0

[C

0

℄:T

0

. We refer to the hypothesis C

0

` t

0

: T

0

as (1). We assume,

w.l.o.g.,

�

X

0

ftv(C; T) (2) and z

0

62 fpi (�

0

) (3).

Æ Case Var. The rule's
on
lusion is C ` x : T (4). Its premise is C
 x �

T (5). Two sub
ases arise.

Sub
ase x is z

0

. Applying Sub to (1) yields C

0

^ T

0

� T ` t

0

: T. By (2)

and Exists, this implies 9

�

X

0

:(C

0

^ T

0

� T) ` t

0

: T (6). Furthermore, by

(2) again, the
onstraint 9

�

X

0

:(C

0

^ T

0

� T) is �

0

� T, whi
h is equivalent to

let z

0

: �

0

in z

0

� T. As a result, (6) may be written let z

0

: �

0

in x � T `

[z

0

7! t

0

℄x : T (7).

Sub
ase x isn't z

0

. Then, [z

0

7! t

0

℄x is x. Thus, Var yields 9�

0

^ x � T `

[z

0

7! t

0

℄x : T. By C-In*, this may be read let z

0

: �

0

in x � T ` [z

0

7! t

0

℄x :

T, that is, again (7).

TOP

2003/5/20

page 64

64 Draft of May 20, 2003 1 ML

In either sub
ase, by (5), by
ongruen
e of entailment, and by Lemma 1.5.2,

(7) implies let z

0

: �

0

in C ` [z

0

7! t

0

℄t : T.

Æ Case Abs. The rule's
on
lusion is let z : T in C ` �z:t : T ! T

0

. Its

premise is C ` t : T

0

(8). We may assume, w.l.o.g., that z is distin
t from z

0

and does not o

ur free within t

0

or �

0

(9). Applying the indu
tion hypothesis

to (8) yields let z

0

: �

0

in C ` [z

0

7! t

0

℄t : T

0

, whi
h, by Abs, implies

let z : T in (let z

0

: �

0

in C) ` �z:[z

0

7! t

0

℄t : T! T

0

. By (9) and C-LetLet,

this may be written let z

0

: �

0

in (let z : T in C) ` [z

0

7! t

0

℄(�z:t) : T! T

0

.

Æ Case App. By the indu
tion hypothesis, by App, and by C-InAnd.

Æ Case Let. The rule's
on
lusion is let z : 8

�

X

1

[C

1

℄:T

1

in C

2

` let z =

t

1

in t

2

: T

2

, where

�

X

1

= ftv(C

1

; T

1

). Its premises are C

1

` t

1

: T

1

(10) and

C

2

` t

2

: T

2

(11). We may assume, w.l.o.g., that z is distin
t from z

0

and

does not o

ur free within t

0

or �

0

(12). We may also assume, w.l.o.g.,

�

X

1

#

ftv(�

0

) (13). Applying the indu
tion hypothesis to (10) and (11) respe
tively

yields let z

0

: �

0

in C

1

` [z

0

7! t

0

℄t

1

: T

1

(14) and let z

0

: �

0

in C

2

` [z

0

7!

t

0

℄t

2

: T

2

(15). Applying Let to (14) and (15) produ
es let z : 8V [let z

0

:

�

0

in C

1

℄:T

1

in let z

0

: �

0

in C

2

` [z

0

7! t

0

℄(let z = t

1

in t

2

) : T

2

(16). Now,

we have

let z

0

: �

0

; z : 8

�

X

1

[C

1

℄:T

1

in C

2

� let z

0

: �

0

; z : 8

�

X

1

[let z

0

: �

0

in C

1

℄:T

1

in C

2

(17)

� let z : 8

�

X

1

[let z

0

: �

0

in C

1

℄:T

1

; z

0

: �

0

in C

2

(18)

 let z : 8V [let z

0

: �

0

in C

1

℄:T

1

; z

0

: �

0

in C

2

(19)

where (17) follows from (13), (3), and C-LetDup; (18) follows from (12) and

C-LetLet; and (19) is by Lemma 1.3.25. Thus, applying Lemma 1.5.2 to (16)

yields let z

0

: �

0

; z : 8

�

X

1

[C

1

℄:T

1

in C

2

` [z

0

7! t

0

℄(let z = t

1

in t

2

) : T

2

.

Æ Case Sub. By the indu
tion hypothesis, by Sub, and by C-InAnd*.

Æ Case Exists. The rule's
on
lusion is 9

�

X:C ` t : T. Its premises are C `

t : T (20) and

�

X # ftv (T) (21). We may assume, w.l.o.g.,

�

X # ftv(�

0

) (22).

Applying the indu
tion hypothesis to (20) yields let z

0

: �

0

in C ` [z

0

7! t

0

℄t :

T, whi
h, by (21) and Exists, implies 9

�

X:let z

0

: �

0

in C ` [z

0

7! t

0

℄t : T (23).

By (22) and C-InEx, (23) is let z

0

: �

0

in 9

�

X:C ` [z

0

7! t

0

℄t : T. 2

1.7.2 Lemma: let z : 8

�

X[Jt

2

: T

2

K℄:T

2

in Jt

1

: T

1

K entails J[z 7! t

2

℄t

1

: T

1

K. 2

Before going on, let us give a few de�nitions and formulate several require-

ments. First, we must de�ne an initial environment �

0

, whi
h assigns a type

s
heme to every
onstant. A
ouple of requirements must be made to ensure

that �

0

is
onsistent with the semanti
s of
onstants, as spe
i�ed by

Æ

�!.

Se
ond, we must extend
onstraint generation and well-typedness to
on�gu-

rations, as opposed to programs, sin
e redu
tion operates on
on�gurations.

TOP

2003/5/20

page 65

1.7 Type soundness 65

Last, we must formulate a restri
tion to tame the intera
tion between side

e�e
ts and let-polymorphism, whi
h is unsound if unrestri
ted.

1.7.3 Definition: Let �

0

be an environment whose domain is the set of
onstants

Q. We require ftv(�

0

) = ?, fpi (�

0

) = ?, and 9�

0

� true. We refer to �

0

as

the initial typing environment. 2

1.7.4 Definition: Let ref be an isolated, invariant type
onstru
tor of signature

?) ?. A store type M is a �nite mapping from memory lo
ations to types. We

write refM for the environment that maps m to refM(m) when m is in the

domain ofM . Assuming dom(�) and dom(M)
oin
ide, the
onstraint J� :MK

is de�ned as the
onjun
tion of the
onstraints J�(m) : M(m)K, where m

ranges over dom(�). Under the same assumption, the
onstraint Jt=� : T=MK

is de�ned as Jt : TK ^ J� : MK. A
on�guration t=� is well-typed if and only

if there exist a type T and a store type M su
h that dom(�) = dom(M) and

the
onstraint let �

0

; refM in Jt=� : T=MK is satis�able. 2

The type ref T is the type of referen
es (that is, memory lo
ations) that

store data of type T. It must be invariant in its parameter, re�e
ting the fa
t

that referen
es may be read and written.

A store is a
omplex obje
t: it may
ontain values that indire
tly refer to

ea
h other via memory lo
ations. In fa
t, it is a representation of the graph

formed by obje
ts and pointers in memory, whi
h may
ontain
y
les. We rely

on store types to deal with su
h
y
les. In the de�nition of well-typedness,

the store type M imposes a
onstraint on the
ontents of the store�the value

�(m) must have type M(m)�but also plays the role of a hypothesis: by

pla
ing the
onstraint Jt=� : T=MK within the
ontext let refM in [℄, we give

meaning to free o

urren
es of memory lo
ations within Jt=� : T=MK, and

stipulate that it is valid to assume that m has type M(m). In other words, we

essentially view the store as a large, mutually re
ursive binding of lo
ations

to values. Sin
e no satis�able
onstraint may have a free program identi�er

(Lemma 1.3.31), every well-typed
on�guration must be
losed. The
ontext

let �

0

in [℄ gives meaning to o

urren
es of
onstants within Jt=� : T=MK.

We now de�ne a relation between
on�gurations that plays a key role in the

statement of the subje
t redu
tion property. The point of subje
t redu
tion is

to guarantee that well-typedness is preserved by redu
tion. However, su
h a

simple statement is too weak to be amenable to indu
tive proof. Thus, for the

purposes of the proof, we must be more spe
i�
. To begin, let us
onsider the

simpler
ase of a pure semanti
s, that is, a semanti
s without stores. Then,

we must state that if an expression t has type T under a
ertain
onstraint,

then its redu
t t

0

has type T under the same
onstraint. In terms of generated

onstraints, this statement be
omes: let �

0

in Jt : TK entails let �

0

in Jt

0

: TK.

TOP

2003/5/20

page 66

66 Draft of May 20, 2003 1 ML

Let us now return to the general
ase, where a store is present. Then, the

statement of well-typedness for a
on�guration t=� involves a store type M

whose domain is that of �. So, the statement of well-typedness for its redu
t

t

0

=�

0

must involve a store type M

0

whose domain is that of �

0

�whi
h is

larger if allo
ation o

urred. The types of existing memory lo
ations must

not
hange: we must request that M and M

0

agree on dom(M), that is, M

0

must extend M . Furthermore, the types assigned to new memory lo
ations in

dom(M

0

)ndom(M) might involve new type variables, that is, variables that do

not appear free in M or T. We must allow these variables to be hidden�that

is, existentially quanti�ed�otherwise the entailment assertion
annot hold.

These
onsiderations lead us to the following de�nition:

1.7.5 Definition: t=� v t

0

=�

0

holds if and only if, for every type T and for every

store type M su
h that dom(�) = dom(M), there exist a set of type variables

�

Y and a store type M

0

su
h that

�

Y # ftv(T;M) and ftv(M

0

) �

�

Y[ftv(M) and

dom(M

0

) = dom(�

0

) and M

0

extends M and

let �

0

; refM in Jt=� : T=MK

 9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K

The relation v is intended to express a
onne
tion between a
on�guration

and its redu
t. Thus, subje
t redu
tion may be stated as: (�_) � (v), that

is, v is indeed a
onservative des
ription of redu
tion. 2

We have introdu
ed an initial environment �

0

and used it in the de�nition

of well-typedness, but we haven't yet ensured that the type s
hemes assigned

to
onstants are an adequate des
ription of their semanti
s. We now formu-

late two requirements that relate �

0

with

Æ

�!. They are spe
ializations of

the subje
t redu
tion and progress properties to
on�gurations that involve

an appli
ation of a
onstant. They represent proof obligations that must be

dis
harged when
on
rete de�nitions of Q,

Æ

�!, and �

0

are given.

1.7.6 Definition: We require (i) (

Æ

�!) � (v); and (ii) if the
on�guration

 v

1

: : : v

k

=� (where k � 0) is well-typed, then either it is redu
ible, or

 v

1

: : : v

k

is a value. 2

The last point that remains to be settled before proving type soundness

is the intera
tion between side e�e
ts and let-polymorphism. The following

example illustrates the problem:

let r = ref �z:z in let = (r := �z:(z

^

+

^

1)) in !r true

This expression redu
es to true

^

+

^

1, so it must not be well-typed. Yet, if

natural type s
hemes are assigned to ref, !, and := (see Example 1.9.5), then

TOP

2003/5/20

page 67

1.7 Type soundness 67

it is well-typed with respe
t to the rules given so far, be
ause r re
eives the

polymorphi
 type s
heme 8X:ref (X ! X), whi
h allows writing a fun
tion of

type int ! int into r and reading it ba
k with type bool ! bool. The

problem is that let-polymorphism simulates a textual dupli
ation of the let-

bound expression ref �z:z, while the semanti
s �rst redu
es it to a value m,

ausing a new binding m 7! �z:z to appear in the store, then dupli
ates the

address m. The new store binding is not dupli
ated: both
opies of m refer to

the same memory
ell. For this reason, generalization is unsound in this
ase,

and must be restri
ted. Many authors have attempted to
ome up with a sound

type system that a

epts all pure programs and remains �exible enough in the

presen
e of side e�e
ts (Tofte, 1988; Leroy, 1992). These proposals are often

omplex, whi
h is why they have been abandoned in favor of an extremely

simple synta
ti
 restri
tion, known as the value restri
tion (Wright, 1995).

1.7.7 Definition: A program satis�es the value restri
tion if and only if all subex-

pressions of the form let z = t

1

in t

2

are in fa
t of the form let z = v

1

in t

2

.

In the following, we assume that either all
onstants have pure semanti
s, or

all programs satisfy the value restri
tion. 2

Put slightly di�erently, the value restri
tion states that only values may be

generalized. This eliminates the problem altogether, sin
e dupli
ating values

does not a�e
t a program's semanti
s. Note that any program that does not

satisfy the value restri
tion
an be turned into one that does and has the same

semanti
s: it su�
es to
hange let z = t

1

in t

2

into (�z:t

2

) t

1

when t

1

is not

a value. Of
ourse, su
h a transformation may
ause the program to be
ome

ill-typed. In other words, the value restri
tion
auses some perfe
tly safe pro-

grams to be reje
ted. In parti
ular, as stated above, it prevents generalizing

appli
ations of the form
 v

1

: : : v

k

, where
 is a destru
tor of arity k. This

is ex
essive, be
ause many destru
tors have pure semanti
s; only a few, su
h

as ref, allo
ate new mutable storage. Furthermore, we use pure destru
tors

to en
ode numerous language features (Se
tion 1.9). Fortunately, it is easy

to relax the restri
tion to allow generalizing not only values, but also a more

general
lass of nonexpansive expressions, whose syntax guarantees that su
h

expressions
annot allo
ate new mutable storage (that is, expand the domain

of the store). The term nonexpansive was
oined by Tofte (1988). Nonexpan-

sive expressions may in
lude appli
ations of the form
 t

1

: : : t

k

, where
 is a

pure destru
tor of arity k and t

1

; : : : ; t

k

are nonexpansive. Experien
e shows

that this slightly relaxed restri
tion is a

eptable in pra
ti
e. Some other im-

provements to the value restri
tion exist; see e.g. Exer
ise (Garrigue, 2002).

Another frequent limitation of the value restri
tion are
onstru
tor fun
tions,

that is, fun
tions that only build values, whi
h are treated as ordinary fun
-

tions and not as
onstru
tors, and their appli
ations are not
onsidered to be

TOP

2003/5/20

page 68

68 Draft of May 20, 2003 1 ML

values. For instan
e, in the expression let f =
 v in let z = f w in t where

 is a
onstru
tor of arity 2, the partial appli
ation
 v bound to f is a
on-

stru
tor fun
tion (of arity 1), but f w is treated as a regular appli
ation and

annot be generalized. Te
hni
ally, the e�e
t of the (stri
t) value restri
tion

is summarized by the following result.

1.7.8 Lemma: Under the value restri
tion, the produ
tion E ::= let z = E in t

may be suppressed from the grammar of evaluation
ontexts (Figure 1-1)

without altering the operational semanti
s. 2

We are done with de�nitions and requirements. We now
ome to the bulk

of the type soundness proof.

1.7.9 Theorem [Subje
t redu
tion℄: (�_) � (v). 2

Proof: Be
ause �! and �_ are the smallest relations that satisfy the rules

of Figure 1-2, it su�
es to prove that v satis�es these rules as well. We remark

that if, for every type T, Jt : TK
 Jt

0

: TK holds, then t=� v t

0

=� holds. (Take

�

Y = ? and M

0

=M and use the fa
t that entailment is a
ongruen
e to
he
k

that the
onditions of De�nition 1.7.5 are met.) We make use of this fa
t in

ases R-Beta and R-Let below.

Æ Case R-Beta. We have

J(�z:t) v : TK

� 9X:(J�z:t : X! TK ^ Jv : XK) (1)

� 9X:(let z : X in Jt : TK ^ Jv : XK) (2)

� 9X:let z : 8?[Jv : XK℄:X in Jt : TK (3)

 J[z 7! v℄t : TK (4)

where (1) is by de�nition of
onstraint generation; (2) is by Lemma 1.6.5; (3)

is by C-LetAnd; (4) is by Lemma 1.7.2 and C-Ex*.

Æ Case R-Let. We have

Jlet z = v in t : TK

= let z : 8X[Jv : XK℄:X in Jt : TK (1)

 J[z 7! v℄t : TK (2)

where (1) is by de�nition of
onstraint generation and (2) is by Lemma 1.7.2.

Æ Case R-Delta. This
ase is exa
tly requirement (i) in De�nition 1.7.6.

Æ Case R-Extend. Our hypotheses are t=� v t

0

=�

0

(1) and dom(�

00

) #

dom(�

0

) (2) and range(�

00

) # dom(�

0

n �) (3). Be
ause dom(�) must be

a subset of dom(�

0

), it is also disjoint with dom(�

00

). Our goal is t=��

00

v

t

0

=�

0

�

00

(4). Thus, let us introdu
e a type T and a store type of domain

TOP

2003/5/20

page 69

1.7 Type soundness 69

dom(��

00

), or (equivalently) two store types M and M

00

whose domains are

respe
tively dom(�) and dom(�

00

). By (1), there exist type variables

�

Y and

a store type M

0

su
h that

�

Y # ftv(T;M) (5) and ftv(M

0

) �

�

Y [ftv(M)

and dom(M

0

) = dom(�

0

) and M

0

extends M (6) and let �

0

; refM in Jt=� :

T=MK
 9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K. We may further require, w.l.o.g.,

�

Y # ftv(M

00

) (7). Let us now add the
onjun
t let �

0

; refM in J�

00

: M

00

K

to ea
h side of this entailment assertion. On the left-hand side, by C-InAnd

and by De�nition 1.7.4, we obtain let �

0

; refM in Jt=��

00

: T=MM

00

K (8).

On the right-hand side, by (5), (7), C-ExAnd, and C-InAnd, we obtain

9

�

Y:let �

0

in (let refM

0

in Jt

0

=�

0

: T=M

0

K ^ let refM in J�

00

: M

00

K) (9).

Now, re
all that M

0

extends M (6) and, furthermore, (3) implies fpi (J�

00

:

M

00

K) # dpi (M

0

n M) (10). By (10), C-InAnd*, and C-InAnd, (9) is

equivalent to 9

�

Y:let �

0

; refM

0

in (Jt

0

=�

0

: T=M

0

K ^ J�

00

: M

00

K), that is,

9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

�

00

: T=M

0

M

00

K (11). Thus, we have established

that (8) entails (11). Let us now pla
e this entailment assertion within

the
onstraint
ontext let refM

00

in [℄. On the left-hand side, be
ause

fpi(�

0

;M;M

00

) = ? and dpi(M

00

)\ dpi (�

0

;M) � dom(�

00

)\ (Q[dom(�)) =

?, C-LetLet applies, yielding let �

0

; refMM

00

in Jt=��

00

: T=MM

00

K (12).

On the right-hand side, by (7), C-InEx, and by analogous reasoning, we ob-

tain 9

�

Y:let �

0

; refM

0

M

00

in Jt

0

=�

0

�

00

: T=M

0

M

00

K (13). Thus, (12) entails (13).

Given (5), (7), given ftv(M

0

M

00

) �

�

Y [ftv(MM

00

), and given that M

0

M

00

extends MM

00

, this establishes the goal (4).

Æ Case R-Context. The hypothesis is t=� v t

0

=�

0

. The goal is E [t℄=� v

E [t

0

℄=�

0

. Be
ause �_ relates
losed
on�gurations only, we may assume that

the
on�guration E [t℄=� is
losed, so the memory lo
ations that appear free

within E are members of dom(�). Let us now reason by indu
tion on the

stru
ture of E .

Sub
ase E = [℄. The hypothesis and the goal
oin
ide.

Sub
ase E = E

1

t

1

. The indu
tion hypothesis is E

1

[t℄=� v E

1

[t

0

℄=�

0

(1).

Let us introdu
e a type T and a store type M su
h that dom(M) = dom(�).

Consider the
onstraint let �

0

; refM in JE [t℄=� : T=MK (2). By de�nition of

onstraint generation, C-ExAnd, C-InEx, and C-InAnd, it is equivalent to

9X:(let �

0

; refM in JE

1

[t℄=� : X! T=MK ^ let �

0

; refM in Jt

1

: XK) (3)

where X 62 ftv(T;M) (4). By (1), there exist type variables

�

Y and a store

type M

0

su
h that

�

Y # ftv(X; T;M) (5) and ftv (M

0

) �

�

Y [ftv(M) (6) and

dom(M

0

) = dom(�

0

) and M

0

extends M and (3) entails

9X:(9

�

Y:let �

0

; refM

0

in JE

1

[t

0

℄=�

0

: X! T=M

0

K ^ let �

0

; refM in Jt

1

: XK) (7):

We pointed out earlier that the memory lo
ations that appear free in t

1

are

members of dom(M), whi
h implies let refM in Jt

1

: XK � let refM

0

in Jt

1

:

TOP

2003/5/20

page 70

70 Draft of May 20, 2003 1 ML

XK (8). By (5), C-ExAnd, (8), C-InAnd, and by de�nition of
onstraint

generation, we �nd that (7) is equivalent to

9X

�

Y:let �

0

; refM

0

in (JE

1

[t

0

℄ : X! TK ^ Jt

1

: XK ^ J�

0

:M

0

K) (9):

(4), (5) and (6) imply X 62 ftv(M

0

). Thus, by C-InEx and C-ExAnd, (9) may

be written

9

�

Y:let �

0

; refM

0

in (9X:(JE

1

[t

0

℄ : X! TK ^ Jt

1

: XK) ^ J�

0

:M

0

K);

whi
h, by de�nition of
onstraint generation, is

9

�

Y:let �

0

; refM

0

in JE [t

0

℄=�

0

: T=M

0

K (10):

Thus, we have proved that (2) entails (10). By De�nition 1.7.5, this establishes

E [t℄=� v E [t

0

℄=�

0

.

Sub
ase E = v E

1

. Analogous to the previous sub
ase.

Sub
ase E = let z = E

1

in t

1

. The indu
tion hypothesis is E

1

[t℄=� v

E

1

[t

0

℄=�

0

(1). This sub
ase is parti
ularly interesting, be
ause it is where

let-polymorphism and side e�e
ts intera
t. In the previous two sub
ases, we

relied on the fa
t that the 9

�

Y quanti�er, whi
h hides the types of the memory

ells
reated by the redu
tion step,
ommutes with the
onne
tives 9 and

^ introdu
ed by appli
ation
ontexts. However, it does not in general (left-

)
ommute with the let
onne
tive (Example 1.3.28). Fortunately, under the

value restri
tion, this sub
ase never arises (Lemma 1.7.8). By De�nition 1.7.7,

this sub
ase may arise only if all
onstants have pure semanti
s, whi
h implies

� = �

0

= ?. Then, we have

let �

0

in JE [t℄ : TK

= let �

0

; z : 8X[JE

1

[t℄ : XK℄:X in Jt

1

: TK (2)

� let �

0

; z : 8X[let �

0

in JE

1

[t℄ : XK℄:X in Jt

1

: TK (3)

 let �

0

; z : 8X[let �

0

in JE

1

[t

0

℄ : XK℄:X in Jt

1

: TK (4)

� let �

0

in JE [t

0

℄ : TK (5)

where (2) is by de�nition of
onstraint generation; (3) follows from ftv(�

0

) =

fpi(�

0

) = ? and C-LetDup; (4) follows from (1), spe
ialized to the
ase of a

pure semanti
s; and (5) is obtained by performing these steps in reverse. 2

1.7.10 Exer
ise [Re
ommended, FFF℄: Try to
arry out the last sub
ase of the

above proof in the
ase of an impure semanti
s and in the absen
e of the value

restri
tion. Find out why it fails. Show that it su

eeds if

�

Y is assumed to be

empty. Use this fa
t to prove that generalization is still safe when restri
ted to

nonexpansive expressions, provided (i) evaluating a nonexpansive expression

TOP

2003/5/20

page 71

1.7 Type soundness 71

annot
ause new memory
ells to be allo
ated, (ii) nonexpansive expres-

sions are stable by substitution of values for variables, and (iii) nonexpansive

expressions are preserved by redu
tion. 2

Subje
t redu
tion ensures that well-typedness is preserved by redu
tion.

1.7.11 Lemma: Let t=� �_ t

0

=�

0

. If t=� is well-typed, then so is t

0

=�

0

. 2

Proof: Assume t=� �_ t

0

=�

0

(1) and t=� is well-typed (2). By (2) and

De�nition 1.7.4, there exist a type T and a store type M su
h that dom(�) =

dom(M) and the
onstraint let �

0

; refM in Jt=� : T=MK (3) is satis�able.

By Theorem 1.7.9 and De�nition 1.7.5, (1) implies that there exist a set of

type variables

�

Y and a store type M

0

su
h that dom(M

0

) = dom(�

0

) (4) and

the
onstraint (3) entails 9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K (5). Be
ause (3)

is satis�able, so is (5), whi
h implies that let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K is

satis�able (6). By (4) and (6) and De�nition 1.7.4, t

0

=�

0

is well-typed. 2

Let us now establish the progress property.

1.7.12 Lemma: If t

1

t

2

is well-typed, then t

1

=� and t

2

=� are well-typed. If let z =

t

1

in t

2

=� is well-typed, then t

1

=� is well-typed. 2

1.7.13 Theorem [Progress℄: If t=� is well-typed, then either it is redu
ible, or t

is a value. 2

Proof: The proof is by indu
tion on the stru
ture of t.

Æ Case t = z. Well-typed
on�gurations are
losed: this
ase
annot o

ur.

Æ Case t = m. t is a value.

Æ Case t =
. By requirement (ii) of De�nition 1.7.6.

Æ Case t = �z:t

1

. t is a value.

Æ Case t = t

1

t

2

. By Lemma 1.7.12, t

1

=� is well-typed. By the indu
tion

hypothesis, either it is redu
ible, or t

1

is a value. If the former, byR-Context

and be
ause every
ontext of the form E t

2

is an evaluation
ontext, the

on�guration t=� is redu
ible as well. Thus, let us assume t

1

is a value. By

Lemma 1.7.12, t

2

=� is well-typed. By the indu
tion hypothesis, either it is

redu
ible, or t

2

is a value. If the former, by R-Context and be
ause every

ontext of the form t

1

E�where t

1

is a value�is an evaluation
ontext, the

on�guration t=� is redu
ible as well. Thus, let us assume t

2

is a value. Let

us now reason by
ases on the stru
ture of t

1

.

Sub
ase t

1

= z. Again, this sub
ase
annot o

ur.

Sub
ase t

1

= m. Be
ause t=� is well-typed, a
onstraint of the form

let �

0

; refM in (9X:(m � X ! T ^ Jt

2

: XK) ^ J� : MK) must be satis�-

able. This implies that m is a member of dom(M) and that the
onstraint

TOP

2003/5/20

page 72

72 Draft of May 20, 2003 1 ML

refM(m) � X! T is satis�able. Be
ause the type
onstru
tors ref and ! are

in
ompatible, this is a
ontradi
tion. So, this sub
ase
annot o

ur.

Sub
ase t

1

= �z:t

0

1

. By R-Beta, t=� is redu
ible.

Sub
ase t

1

=
 v

1

: : : v

k

. Then, t is of the form
 v

1

: : : v

k+1

. The result

follows by requirement (ii) of De�nition 1.7.6.

Æ Case t = let z = t

1

in t

2

. By Lemma 1.7.12, t

1

=� is well-typed. By the

indu
tion hypothesis, either t

1

=� is redu
ible, or t

1

is a value. If the former,

by R-Context and be
ause every
ontext of the form let z = E in t

2

is

an evaluation
ontext, the
on�guration t=� is redu
ible as well. If the latter,

then t=� is redu
ible by R-Let. 2

We may now
on
lude:

1.7.14 Theorem [Type Soundness℄: Well-typed sour
e programs do not go

wrong. 2

Proof: We say that a sour
e program t is well-typed if and only if the
on�gu-

ration t=? is well-typed, that is, if and only if 9X:let �

0

in Jt : XK � true holds.

By Lemma 1.7.11, all redu
ts of t=? are well-typed. By Theorem 1.7.13, none

is stu
k. 2

Let us re
all that this result holds only if the requirements of De�nition 1.7.6

are met. In other words, some proof obligations remain to be dis
harged when

on
rete de�nitions of Q,

Æ

�!, and �

0

are given. This is illustrated by several

examples in the next se
tion.

1.8 Constraint solving

We have introdu
ed a parameterized
onstraint language, given equivalen
e

laws that des
ribe the intera
tion between its logi
al
onne
tives, and ex-

ploited them to prove theorems about type inferen
e and type soundness,

whi
h are valid independently of the nature of primitive
onstraints�the so-

alled predi
ate appli
ations. However, there would be little point in proposing

a parameterized
onstraint solver, be
ause mu
h of the di�
ulty of designing

an e�
ient
onstraint solver pre
isely lies in the treatment of primitive
on-

straints and in its intera
tion with let-polymorphism. For this reason, in this

se
tion, we fo
us on
onstraint solving in the setting of an equality-only free

tree model. Thus, the
onstraint solver developed here allows performing type

inferen
e for HM(=) (that is, for Damas and Milner's type system) and for

its extension with re
ursive types. Of
ourse, some of its me
hanisms may

be useful in other settings. Other
onstraint solvers used in program analysis

or type inferen
e are des
ribed e.g. in (Aiken and Wimmers, 1992; Niehren,

TOP

2003/5/20

page 73

1.8 Constraint solving 73

Müller, and Podelski, 1997; Fähndri
h, 1999; Melski and Reps, 2000; Müller,

Niehren, and Treinen, 2001; Pottier, 2001b; Nielson, Nielson, and Seidl, 2002;

M
Allester, 2002, 2003).

We begin with a rule-based presentation of a standard, e�
ient �rst-order

uni�
ation algorithm. This yields a
onstraint solver for a subset of the

onstraint language, deprived of type s
heme introdu
tion and instantiation

forms. On top of it, we build a full
onstraint solver, whi
h
orresponds to the

ode that a

ompanies this
hapter.

Uni�
ation

Uni�
ation is the pro
ess of solving equations between terms. We now present

a uni�
ation algorithm due to Huet (1976) as a (nondeterministi
) system of

onstraint rewriting rules. The spe
i�
ation is almost the same in the
ase

of �nite and regular tree models: only one rule, whi
h implements the o

urs

he
k, must be removed in the latter
ase. In other words, the algorithm works

with possibly
y
li
 terms, and does not rely in an essential way on the o

urs

he
k. In order to a

urately re�e
t the behavior of the a
tual algorithm, whi
h

relies on a union-�nd data stru
ture (Tarjan, 1975), we modify the syntax of

onstraints by repla
ing equations with multi-equations. A multi-equation is

an equation that involves an arbitrary number of types, as opposed to exa
tly

two.

1.8.1 Definition: Let there be, for every kind � and for every n � 1, a predi-

ate =

n

�

, of signature �

n

) �, whose interpretation is (n-ary) equality. The

predi
ate
onstraint =

n

�

T

1

: : : T

n

is written T

1

= : : : = T

n

, and
alled a

multi-equation. We
onsider the
onstraint true as a multi-equation of length

0. In the following, we identify multi-equations up to permutations of their

members, so a multi-equation � of kind � may be viewed as a �nite multi-

set of types of kind �. We write � = �

0

for the multi-equation obtained by

on
atenating � and �

0

. 2

Thus, we are interested in the following subset of the
onstraint language:

U ::= true j false j � j U ^ U j 9

�

X:U

Equations are repla
ed with multi-equations; no other predi
ates are available.

Type s
heme introdu
tion and instantiation forms are absent.

1.8.2 Definition: A multi-equation is standard if and only if its variable members

are distin
t and it has at most one nonvariable member. A
onstraint U is

standard if and only if every multi-equation inside U is standard and every

variable that o

urs (free or bound) in U is a member of at most one multi-

equation inside U . 2

TOP

2003/5/20

page 74

74 Draft of May 20, 2003 1 ML

A union-�nd algorithm maintains equivalen
e
lasses (that is, disjoint sets)

of variables, and asso
iates, with ea
h
lass, a des
riptor, whi
h in our
ase

is either absent or a nonvariable term. Thus, a standard
onstraint represents

a state of the union-�nd algorithm. A
onstraint that is not standard may

be viewed as a superposition of a state of the union-�nd algorithm, on the

one hand, and of
ontrol information, on the other hand. For instan
e, a

multi-equation of the form � = T

1

= T

2

, where T

1

and T

2

are nonvariable

terms, may be viewed, roughly speaking, as the equivalen
e
lass � = T

1

,

together with a pending request to solve T

1

= T

2

and to update the
lass's

des
riptor a

ordingly. Be
ause multi-equations en
ode both state and
ontrol,

our spe
i�
ation of uni�
ation is rather high-level. It would be possible to

give a lower-level des
ription, where state (standard
onjun
tions of multi-

equations) and
ontrol (pending binary equations) are distinguished.

1.8.3 Definition: Let U be a
onjun
tion of multi-equations. Y is dominated by X

with respe
t to U (written: Y �

U

X) if and only if U
ontains a
onjun
t of

the form X = F

~

T = �, where Y 2 ftv(

�

T). U is
y
li
 if and only if the graph of

�

U

exhibits a
y
le. 2

The spe
i�
ation of the uni�
ation algorithm
onsists of a set of
on-

straint rewriting rules, given in Figure 1-11. Rewriting is performed modulo

�-
onversion, modulo permutations of the members of a multi-equation, mod-

ulo
ommutativity and asso
iativity of
onjun
tion, and under an arbitrary

ontext. The spe
i�
ation is nondeterministi
: several rule instan
es may be

simultaneously appli
able.

S-ExAnd is a dire
ted version of C-ExAnd, whose e�e
t is to �oat up all

existential quanti�ers. In the pro
ess, all multi-equations be
ome part of a

single
onjun
tion, possibly
ausing rules whose left-hand side is a
onjun
-

tion of multi-equations, namely S-Fuse and S-Cy
le, to be
ome appli
able.

S-Fuse identi�es two multi-equations that share a
ommon variable X, and

fuses them. The new multi-equation is not ne
essarily standard, even if the

two original multi-equations were. Indeed, it may have repeated variables or

ontain two nonvariable terms. The purpose of the next few rules, whose left-

hand side
onsists of a single multi-equation, is to deal with these situations.

S-Stutter eliminates redundant variables. It only deals with variables, as

opposed to terms of arbitrary size, so as to have
onstant time
ost. The

omparison of nonvariable terms is implemented by S-De
ompose and S-

Clash. S-De
ompose de
omposes an equation between two terms whose

head symbols mat
h. It produ
es a
onjun
tion of equations between their

subterms, namely

~

X =

~

T. Only one of the two terms remains in the original

multi-equation, whi
h may thus be
ome standard. The terms

~

X are
opied�

there are two o

urren
es of

~

X on the right-hand side. For this reason, we

TOP

2003/5/20

page 75

1.8 Constraint solving 75

(9

�

X:U

1

) ^ U

2

! 9

�

X:(U

1

^ U

2

) (S-ExAnd)

if

�

X # ftv(U

2

)

X = � ^ X = �

0

! X = � = �

0

(S-Fuse)

X = X = � ! X = � (S-Stutter)

F

~

X = F

~

T = � !

~

X =

~

T ^ F

~

X = � (S-De
ompose)

F T

1

: : : T

i

: : : T

n

= � ! 9X:(X = T

i

^ F T

1

: : : X : : : T

n

= �) (S-Name-1)

if T

i

62 V ^ X 62 ftv(T

1

; : : : ; T

n

; �)

F

~

T = F

0

~

T

0

= � ! false (S-Clash)

if F 6= F

0

T ! true (S-Single)

if T 62 V

U ^ true ! U (S-True)

U ! false (S-Cy
le)

if the model is synta
ti
 and U is
y
li

U [false℄ ! false (S-Fail)

if U 6= [℄

Figure 1-11: Uni�
ation

require them to be type variables, as opposed to terms of arbitrary size. (We

slightly abuse notation by using

~

X to denote a ve
tor of type variables whose

elements are not ne
essarily distin
t.) By doing so, we allow expli
itly rea-

soning about sharing : sin
e a variable represents a pointer to an equivalen
e

lass, we expli
itly spe
ify that only pointers, not whole terms, are
opied. As

a result of this de
ision, S-De
ompose is not appli
able when both terms at

hand have a nonvariable subterm. S-Name-1 remedies this problem by intro-

du
ing a fresh variable that stands for one su
h subterm. When repeatedly

applied, S-Name-1 yields a uni�
ation problem
omposed of so-
alled small

terms only�that is, where sharing has been made fully expli
it. S-Clash

omplements S-De
ompose by dealing with the
ase where two terms with

di�erent head symbols are equated; in a free tree model, su
h an equation is

false, so failure is signaled. S-Single and S-True suppress multi-equations of

size 1 and 0, respe
tively, whi
h are tautologies. S-Single is restri
ted to non-

variable terms so as not to break the property that every variable is a member

TOP

2003/5/20

page 76

76 Draft of May 20, 2003 1 ML

of exa
tly one multi-equation (De�nition 1.8.2). S-Cy
le is the o

urs
he
k:

that is, it signals failure if the
onstraint is
y
li
. It is appli
able only in the

ase of synta
ti
 uni�
ation, that is, when ground types are �nite trees. It is

a global
he
k: its left-hand side is an entire
onjun
tion of multi-equations.

S-Fail propagates failure; U ranges over uni�
ation
onstraint
ontexts.

The
onstraint rewriting system in Figure 1-11 enjoys the following prop-

erties. First, rewriting is strongly normalizing, so the rules de�ne a (nonde-

terministi
) algorithm. Se
ond, rewriting is meaning-preserving. Third, every

normal form is either false or of the form 9

�

X:U , where U is satis�able. The

latter two properties indi
ate that the algorithm is indeed a
onstraint solver.

1.8.4 Lemma: The rewriting system ! is strongly normalizing. 2

1.8.5 Lemma: U

1

! U

2

implies U

1

� U

2

. 2

1.8.6 Lemma: Every normal form is either false or of the form X [U ℄, where X is an

existential
onstraint
ontext, U is a standard
onjun
tion of multi-equations

and, if the model is synta
ti
, U is a
y
li
. These
onditions imply that U is

satis�able. 2

A
onstraint solver

On top of the uni�
ation algorithm, we now de�ne a
onstraint solver. Its spe
-

i�
ation is independent of the rules and strategy employed by the uni�
ation

algorithm. However, the stru
ture of the uni�
ation algorithm's normal forms,

as well as the logi
al properties of multi-equations, are exploited when per-

forming generalization, that is, when
reating and simplifying type s
hemes.

Like the uni�
ation algorithm, the
onstraint solver is spe
i�ed in terms of a

redu
tion system. However, the obje
ts that are subje
t to rewriting are not

just
onstraints: they have more
omplex stru
ture. Working with su
h ri
her

states allows distinguishing the solver's external language�namely, the full

onstraint language, whi
h is used to express the problem that one wishes

to solve�and an internal language, introdu
ed below, whi
h is used to de-

s
ribe the solver's private data stru
tures. In the following, C and D range

over external
onstraints, that is,
onstraints that were part of the solver's

input. External
onstraints are to be viewed as abstra
t syntax trees, subje
t

to no impli
it laws other than �-
onversion. As a simplifying assumption, we

require external
onstraints not to
ontain any o

urren
e of false�otherwise

the problem at hand is
learly false. Internal data stru
tures in
lude uni�
a-

tion
onstraints U , as previously studied, and sta
ks. Sta
ks form a subset of

onstraint
ontexts, de�ned on page 24. Their syntax is as follows:

S ::= [℄ j S[[℄ ^ C℄ j S[9

�

X:[℄℄ j S[let x : 8

�

X[[℄℄:T in C℄ j S[let x : � in [℄℄

TOP

2003/5/20

page 77

1.8 Constraint solving 77

In the se
ond and fourth produ
tions, C is an external
onstraint. In the last

produ
tion, we require � to be of the form 8

�

X[U ℄:X, and we demand 9� � true.

A sta
k may be viewed as a list of frames. Frames may be added and deleted

at the inner end of a sta
k, that is, near the hole of the
onstraint
ontext that

it represents. We refer to the four kinds of frames as
onjun
tion, existential,

let, and environment frames, respe
tively. A state of the
onstraint solver is

a triple S;U ;C, where S is a sta
k, U is a uni�
ation
onstraint, and C is an

external
onstraint. The state S;U ;C is to be understood as a representation

of the
onstraint S[U ^ C℄. The notion of �-equivalen
e between states is

de�ned a

ordingly. In parti
ular, one may rename type variables in dtv(S),

provided U and C are renamed as well. In short, the three
omponents of

a state play the following roles. C is an external
onstraint that the solver

intends to examine next. U is the internal state of the underlying uni�
ation

algorithm: one might think of it as the knowledge that has been obtained so

far. S tells where the type variables that o

ur free in U and C are bound,

asso
iates type s
hemes with the program variables that o

ur free in C, and

re
ords what should be done after C is solved. The solver's initial state is

usually of the form [℄; true;C, where C is the external
onstraint that one

wishes to solve�that is, whose satis�ability one wishes to determine. For

simpli
ity, we make the (unessential) assumption that states have no free

type variables.

The solver
onsists of a (nondeterministi
) state rewriting system, given

in Figure 1-12. Rewriting is performed modulo �-
onversion. S-Unify makes

the uni�
ation algorithm a
omponent of the
onstraint solver, and allows the

urrent uni�
ation problem U to be solved at any time. Rules S-Ex-1 to S-

Ex-4 �oat existential quanti�ers out of the uni�
ation problem into the sta
k,

and through the sta
k up to the nearest en
losing let frame, if there is any, or to

the outermost level, otherwise. Their side-
onditions prevent
apture of type

variables, and may always be satis�ed by suitable �-
onversion of the left-hand

state. If S;U ;C is a normal form with respe
t to the above �ve rules, then

every type variable in dtv(S) is either universally quanti�ed at a let frame, or

existentially bound at the outermost level. (Re
all that, by assumption, states

have no free type variables.) In other words, provided these rules are applied

in an eager fashion, there is no need for existential frames to appear in the

ma
hine representation of sta
ks. Instead, it su�
es to maintain, at every let

frame and at the outermost level, a list of the type variables that are bound

at this point; and,
onversely, to annotate every type variable in dtv(S) with

an integer rank, whi
h allows telling, in
onstant time, where the variable is

bound: type variables of rank 0 are bound at the outermost level, and type

variables of rank k � 1 are bound at the k

th

let frame down in the sta
k S.

The
ode that a

ompanies this
hapter adopts this
onvention. Ranks were

TOP

2003/5/20

page 78

78 Draft of May 20, 2003 1 ML

S;U ;C ! S;U

0

;C (S-Unify)

if U ! U

0

S; 9

�

X:U ;C ! S[9

�

X:[℄℄;U ;C (S-Ex-1)

if

�

X # ftv(C)

S[(9

�

X:[℄) ^ C℄ ! S[9

�

X:([℄ ^ C)℄ (S-Ex-2)

if

�

X # ftv(C)

S[let x : 8

�

X[9

�

Y:[℄℄:T in C℄ ! S[let x : 8

�

X

�

Y[[℄℄:T in C℄ (S-Ex-3)

if

�

Y # ftv(T)

S[let x : � in 9

�

X:[℄℄ ! S[9

�

X:let x : � in [℄℄ (S-Ex-4)

if

�

X # ftv(�)

S;U ; T

1

= T

2

! S;U ^ T

1

= T

2

; true (S-Solve-Eq)

S;U ; x � T ! S;U ;S(x) � T (S-Solve-Id)

S;U ;C

1

^ C

2

! S[[℄ ^ C

2

℄;U ;C

1

(S-Solve-And)

S;U ; 9

�

X:C ! S[9

�

X:[℄℄;U ;C (S-Solve-Ex)

if

�

X # ftv(U)

S;U ; let x : 8

�

X[D℄:T in C ! S[let x : 8

�

X[[℄℄:T in C℄;U ;D (S-Solve-Let)

if

�

X # ftv(U)

S[[℄ ^ C℄;U ; true ! S;U ;C (S-Pop-And)

S[let x : 8

�

X[[℄℄:T in C℄;U ; true ! S[let x : 8

�

XX[[℄℄:X in C℄;

U ^ X = T; true (S-Name-2)

if X 62 ftv(U; T) ^ T 62 V

S[let x : 8

�

XY[[℄℄:X in C℄; Y = Z = � ^ U ; true ! S[let x : 8

�

XY[[℄℄:�(X) in C℄;

Y ^ Z = �(�) ^ �(U); true (S-Compress)

if Y 6= Z ^ � = [Y 7! Z℄

S[let x : 8

�

XY[[℄℄:X in C℄; Y = � ^ U ; true ! S[let x : 8

�

X[[℄℄:X in C℄; � ^ U ; true (S-UnName)

if Y 62 X [ftv(�; U)

S[let x : 8

�

X

�

Y[[℄℄:X in C℄;U ; true ! S[9

�

Y:let x : 8

�

X[[℄℄:X in C℄;U ; true (S-LetAll)

if

�

Y # ftv(C) ^ 9

�

X:U determines

�

Y

S[let x : 8

�

X[[℄℄:X in C℄;U

1

^ U

2

; true ! S[let x : 8

�

X[U

2

℄:X in [℄℄;U

1

;C (S-Pop-Let)

if

�

X # ftv(U

1

) ^ 9

�

X:U

2

� true

S[let x : � in [℄℄;U ; true ! S;U ; true (S-Pop-Env)

Figure 1-12: A
onstraint solver

TOP

2003/5/20

page 79

1.8 Constraint solving 79

initially des
ribed in (Rémy, 1992a), and also appear in (M
Allester, 2003).

Rules S-Solve-Eq to S-Solve-Let en
ode an analysis of the stru
ture of

the third
omponent of the
urrent state. There is one rule for ea
h possible

ase, ex
ept false, whi
h by assumption
annot arise, and true, whi
h is dealt

with further on. S-Solve-Eq dis
overs an equation and makes it available to

the uni�
ation algorithm. S-Solve-Id dis
overs an instantiation
onstraint

x � T and repla
es it with � � T, where the type s
heme � = S(x) is the type

s
heme
arried by the nearest environment frame that de�nes x in the sta
k

S. It is de�ned as follows:

S[[℄ ^ C℄(x) = S(x)

S[9

�

X:[℄℄(x) = S(x) if

�

X # ftv(S(x))

S[let y : 8

�

X[[℄℄:T in C℄(x) = S(x) if

�

X # ftv(S(x))

S[let y : � in [℄℄(x) = S(x) if x 6= y

S[let x : � in [℄℄(x) = �

If x 2 dpi (S) does not hold, then S(x) is unde�ned and the rule is not appli
a-

ble. If it does hold, then the rule may always be made appli
able by suitable

�-
onversion of the left-hand state. Please re
all that, if � is of the form

8

�

X[U ℄:X, where

�

X # ftv(T), then � � T stands for 9

�

X:(U ^ X = T). The pro
ess

of
onstru
ting this
onstraint is informally referred to as �taking an instan
e

of ��. It involves taking fresh
opies of the type variables

�

X, of the uni�
ation

onstraint U , and of the body X. In the worst
ase, this pro
ess is just as ine�-

ient as textually expanding the
orresponding let
onstru
t in the program's

sour
e
ode, and leads to exponential time
omplexity (Mairson, Kanellakis,

and Mit
hell, 1991). In pra
ti
e, however, the uni�
ation
onstraint U is often

ompa
t, be
ause it was simpli�ed before the environment frame let x : � in [℄

was
reated. whi
h is why the solver usually performs well. (The
reation of

environment frames, performed by S-Pop-Let, is dis
ussed below.) S-Solve-

And dis
overs a
onjun
tion. It arbitrarily
hooses to explore the left bran
h

�rst, and pushes a
onjun
tion frame onto the sta
k, so as to re
ord that the

right bran
h should be explored afterwards. S-Solve-Ex dis
overs an exis-

tential quanti�er and enters it,
reating a new existential frame to re
ord its

existen
e. Similarly, S-Solve-Let dis
overs a let form and enters its left-hand

side,
reating a new let frame to re
ord its existen
e. The
hoi
e of examining

the left-hand side �rst is not arbitrary. Indeed, examining the right-hand side

�rst would require
reating an environment frame�but environment frames

must
ontain simpli�ed type s
hemes of the form 8

�

X[U ℄:X, whereas the type

s
heme 8

�

X[D℄:T is arbitrary. In other words, our strategy is to simplify type

s
hemes prior to allowing them to be
opied by S-Solve-Id, so as to avoid any

dupli
ation of e�ort. The side-
onditions of S-Solve-Ex and S-Solve-Let

may always be satis�ed by suitable �-
onversion of the left-hand state.

TOP

2003/5/20

page 80

80 Draft of May 20, 2003 1 ML

Rules S-Solve-Eq to S-Solve-Let may be referred to as forward rules,

be
ause they �move down into� the external
onstraint,
ausing the sta
k to

grow. This pro
ess stops when the external
onstraint at hand be
omes true.

Then, part of the work has been �nished, and the solver must examine the

sta
k in order to determine what to do next. This task is performed by the last

series of rules, whi
h may be referred to as ba
kward rules, be
ause they �move

ba
k out�,
ausing the sta
k to shrink, and possibly s
heduling new external

onstraints for examination. These rules en
ode an analysis of the stru
ture

of the innermost sta
k frame. There are three
ases,
orresponding to
on-

jun
tion, let, and environment frames. The
ase of existential sta
k frames

need not be
onsidered, be
ause rules S-Ex-2 to S-Ex-4 allow either fusing

them with let frames or �oating them up to the outermost level, where they

shall remain inert. S-Pop-And deals with
onjun
tion frames. The frame is

popped, and the external
onstraint that it
arries is s
heduled for exami-

nation. S-Pop-Env deals with environment frames. Be
ause the right-hand

side of the let
onstru
t at hand has been solved�that is, turned into a uni-

�
ation
onstraint U�it
annot
ontain an o

urren
e of x. Furthermore,

by assumption, 9� is true. Thus, this environment frame is no longer useful:

it is destroyed. The remaining rules deal with let frames. Roughly speak-

ing, their purpose is to
hange the state S[let x : 8

�

X[[℄℄:T in C℄;U ; true into

S[let x : 8

�

X[U ℄:T in [℄℄; true;C, that is, to turn the
urrent uni�
ation
on-

straint U into a type s
heme, turn the let frame into an environment frame,

and s
hedule the right-hand side of the let
onstru
t (that is, the external

onstraint C) for examination. In fa
t, the pro
ess is more
omplex, be
ause

the type s
heme 8

�

X[U ℄:T must be simpli�ed before be
oming part of an envi-

ronment frame. The simpli�
ation pro
ess is des
ribed by rules S-Name-2 to

S-Pop-Let. In the following, we refer to type variables in

�

X as young and to

type variables in dtv (S) n

�

X as old. The former are the universal quanti�ers of

the type s
heme that is being
reated; the latter are its free type variables.

S-Name-2 ensures that the body T of the type s
heme that is being
reated

is a type variable, as opposed to an arbitrary term. If it isn't, then it is

repla
ed with a fresh variable X, and the equation X = T is added so as to

re
all that X stands for T. Thus, the rule moves the term T into the
urrent

uni�
ation problem, where it potentially be
omes subje
t to S-Name-1. This

ensures that sharing is made expli
it everywhere. S-Compress determines

that the (young) type variable Y is an alias for the type variable Z. Then,

every free o

urren
e of Y other than its de�ning o

urren
e is repla
ed with

Z. In an a
tual implementation, this o

urs transparently when the union-�nd

algorithm performs path
ompression (Tarjan, 1975, 1979), provided we are

areful never to
reate a link from a variable to a variable of higher rank. This

requires making the uni�
ation algorithm aware of ranks, but is otherwise

TOP

2003/5/20

page 81

1.8 Constraint solving 81

easily a
hieved. S-UnName determines that the (young) type variable Y has

no o

urren
es other than its de�ning o

urren
e in the
urrent type s
heme.

(This o

urs, in parti
ular, when S-Compress has just been applied.) Then,

Y is suppressed altogether. In the parti
ular
ase where the remaining multi-

equation � has
ardinal 1, it may then be suppressed by S-Single. In other

words, the
ombination of S-UnName and S-Single is able to suppress young

unused type variables as well as the term that they stand for. This may,

in turn,
ause new type variables to be
ome eligible for elimination by S-

UnName. In fa
t, assuming the
urrent uni�
ation
onstraint is a
y
li
, an

indu
tive argument shows that every young type variable may be suppressed

unless it is dominated either by X or by an old type variable. (In the setting

of a regular tree model, it is possible to extend the rule so that young
y
les

that are not dominated either by X or by an old type variable are suppressed

as well.) S-LetAll is a dire
ted version of C-LetAll. It turns the young

type variables

�

Y into old variables. How to tell whether 9

�

X:U determines

�

Y

is dis
ussed later (see Lemma 1.8.7). Why S-LetAll is an interesting and

important rule will be explained shortly. S-Pop-Let is meant to be applied

when the
urrent state has be
ome a normal form with respe
t to S-Unify, S-

Name-2, S-Compress, S-UnName, and S-LetAll, that is, when the type

s
heme that is about to be
reated is fully simpli�ed. It splits the
urrent

uni�
ation
onstraint into two
omponents U

1

and U

2

, where U

1

is made up

entirely of old variables�as expressed by the side-
ondition

�

X # ftv(U

1

)�

and U

2

onstrains young variables only�as expressed by the side-
ondition

9

�

X:U

2

� true. Please note that U

2

may still
ontain free o

urren
es of old type

variables, so the type s
heme 8

�

X[U

2

℄:X that appears on the right-hand side is

not ne
essarily
losed. It is not obvious why su
h a de
omposition must exist;

the proof of Lemma 1.8.11 sheds more light on this issue. Let us say, for now,

that S-LetAll plays a role in guaranteeing its existen
e, when
e part of its

importan
e. On
e the de
omposition U

1

^ U

2

is obtained, the behavior of S-

Pop-Let is simple. The uni�
ation
onstraint U

1

on
erns old variables only,

that is, variables that are not quanti�ed in the
urrent let frame; thus, it need

not be
ome part of the new type s
heme, and may instead remain part of the

urrent uni�
ation
onstraint. This is justi�ed by C-LetAnd and C-InAnd*

(see the proof of Lemma 1.8.10) and
orresponds to the di�eren
e between

hmx-Gen' and hmx-Gen dis
ussed in Se
tion 1.4. The uni�
ation
onstraint

U

2

, on the other hand, be
omes part of the newly built type s
heme 8

�

X[U

2

℄:X.

The property 9

�

X:U

2

� true guarantees that the newly
reated environment

frame meets the requirements imposed on su
h frames. Please note that, the

more type variables are
onsidered old, the larger U

1

may be
ome, and the

smaller U

2

. This is another reason why S-LetAll is interesting: by allowing

more variables to be
onsidered old, it de
reases the size of the type s
heme

TOP

2003/5/20

page 82

82 Draft of May 20, 2003 1 ML

8

�

X[U

2

℄:X, making it
heaper to take instan
es of.

To
omplete our des
ription of the
onstraint solver, there remains to ex-

plain how to de
ide when 9

�

X:U determines

�

Y, sin
e this predi
ate o

urs in

the side-
ondition of S-LetAll. The following lemma des
ribes two impor-

tant situations where, by examining the stru
ture of an equation, it is possible

to dis
over that a
onstraint C determines some of its free type variables

�

Y

(De�nition 1.3.26). In the �rst situation, the type variables

�

Y are equated with

or dominated by a distin
t type variable X that o

urs free in C. In that
ase,

be
ause the model is a free tree model, the values of the type variables

�

Y are

determined by the value of X�they are subtrees of it at spe
i�
 positions.

For instan
e, X = Y

1

! Y

2

determines Y

1

Y

2

, while 9Y

1

:(X = Y

1

! Y

2

) de-

termines Y

2

. In the se
ond situation, the type variables

�

Y are equated with

a term T, all of whose free type variables are free in C. Again, the value of

the type variables

�

Y is then determined by the values of the type variables

ftv(T)�indeed, the term T itself de�nes a fun
tion that maps the latter to

the former. For instan
e, X = Y

1

! Y

2

determines X, while 9Y

1

:(X = Y

1

! Y

2

)

does not. In the se
ond situation, no assumption is in fa
t made about the

model. Please note that X = Y

1

! Y

2

determines Y

1

Y

2

and determines X, but

does not simultaneously determine XY

1

Y

2

.

1.8.7 Lemma: Let

�

X #

�

Y. Assume either � is X = �

0

, where X 62

�

X

�

Y and

�

Y � ftv(�

0

),

or � is

�

Y = T = �

0

, where ftv(T) #

�

X

�

Y. Then, 9

�

X:(C ^ �) determines

�

Y. 2

Proof: Let

�

X #

�

Y (1). Let � ` def � in 9

�

X:(C ^ �) (2) and �

0

`

def � in 9

�

X:(C ^ �) (3), where � and �

0

oin
ide outside of

�

Y. We may assume,

w.l.o.g.,

�

X # ftv(�) (4). By (2), (4), CM-Exists, and CM-And, we obtain

�

1

` def � in � (5), where � and �

1

oin
ide outside

�

X. By CM-Predi
ate,

(5) implies that all members of � have the same image through �

1

. Similarly,

exploiting (3) and (4), we �nd that all members of � have the same image

through �

0

1

, where �

0

and �

0

1

oin
ide outside

�

X. Now, we
laim that �

1

and

�

0

1

oin
ide on

�

Y. On
e the
laim is established, by (1), there follows that �

and �

0

must
oin
ide on

�

Y as well, whi
h is the goal. So, there only remains

to establish the
laim; we distinguish two sub
ases.

Sub
ase � is X = �

0

and X 62

�

X

�

Y (6) and

�

Y � ftv(�

0

) (7). Be
ause �

1

and

�

0

1

oin
ide outside

�

X

�

Y and by (6), we have �

1

(X) = �

0

1

(X). As a result, all

members of �

0

have the same image through �

1

and �

0

1

. In a free tree model,

where de
omposition is valid, a simple indu
tive argument shows that �

1

and

�

0

1

must
oin
ide on ftv(�

0

), hen
e�by (7)�also on

�

Y.

Sub
ase � is

�

Y = T = �

0

and ftv(T) #

�

X

�

Y (8). Be
ause �

1

and �

0

1

oin
ide

outside

�

X

�

Y and by (8), we have �

1

(T) = �

0

1

(T). Thus, for every Y 2

�

Y, we have

�

1

(Y) = �

1

(T) = �

0

1

(T) = �

0

1

(Y). That is, �

1

and �

0

1

oin
ide on

�

Y. 2

Thanks to Lemma 1.8.7, a straightforward implementation of S-LetAll

TOP

2003/5/20

page 83

1.8 Constraint solving 83

omes to mind. The problem is, given a
onstraint 9

�

X:U , where U is a standard

onjun
tion of multi-equations, to determine the greatest subset

�

Y of

�

X su
h

that 9(

�

X n

�

Y):U determines

�

Y. By the �rst part of the lemma, it is safe for

�

Y

to in
lude all members of

�

X that are dire
tly or indire
tly dominated (with

respe
t to U) by some free variable of 9

�

X:U . Those
an be found, in time

linear in the size of U , by a top-down traversal of the graph of �

U

. By the

se
ond part of the lemma, it is safe to
lose

�

Y under the
losure law X 2

�

X ^ (8Y Y �

U

X) Y 2

�

Y)) X 2

�

Y. That is, it is safe to also in
lude all

members of

�

X whose des
endants (with respe
t to U) have already been found

to be members of

�

Y. This
losure
omputation may be performed, again in

linear time, by a bottom-up traversal of the graph of �

U

. When U is a
y
li
,

it is possible to show that this pro
edure is
omplete, that is, does
ompute

the greatest subset

�

Y that meets our requirement. This is the topi
 of the

following exer
ise.

1.8.8 Exer
ise [FFF, 9℄: Assuming U is a
y
li
, prove that the above pro
e-

dure
omputes the greatest subset

�

Y of

�

X su
h that 9(

�

X n

�

Y):U determines

�

Y.

In the setting of a regular tree model, exhibit a satis�able
onstraint U su
h

that the above pro
edure is in
omplete. Can you de�ne a
omplete pro
edure

in that setting? 2

The above dis
ussion has shown that when Y and Z are equated, if Y is

young and Z is old, then S-LetAll allows making Y old as well. If binding

information is en
oded in terms of integer ranks, as suggested earlier, then

this remark may be formulated as follows: when Y and Z are equated, if the

rank of Y ex
eeds that of Z, then it may be de
reased so that both ranks

mat
h. As a result, it is possible to atta
h ranks with multi-equations, rather

than with variables. When two multi-equations are fused, the smaller rank is

kept.

S-Solve-Let and S-Name-2 to S-Pop-Let are unne
essarily
omplex

when x is assigned a monotype T, rather than an arbitrary type s
heme

8

�

X[D℄:T. In that
ase, the
ombined e�e
t of these rules may be obtained

dire
tly via the following two new rules, whi
h may be implemented in a more

e�
ient way:

S;U ; let x : T in C ! S[9X:[℄℄;U ^ X = T; let x : X in C

(S-Name-2-Mono)

if X 62 ftv(U; T; C) ^ T 62 V

S;U ; let x : X in C ! S[let x : X in [℄℄;U ;C (S-Solve-Let-Mono)

If T isn't a variable, it is repla
ed with a fresh variable X, together with the

equation X = T. This
orresponds to the e�e
t of S-Name-2. Then, we dire
tly

TOP

2003/5/20

page 84

84 Draft of May 20, 2003 1 ML

reate an environment frame for x, without bothering to
reate and dis
ard a

let frame, sin
e there is no way the type s
heme X may be further simpli�ed.

Let us now state and establish the properties of the
onstraint solver. First,

the redu
tion system is terminating, so it de�nes an algorithm.

1.8.9 Lemma: The redu
tion system ! is strongly normalizing. 2

Se
ond, every rewriting step preserves the meaning of the
onstraint that

the
urrent state represents. We re
all that the state S;U ;C is meant to

represent the
onstraint S[U ^ C℄.

1.8.10 Lemma: S;U ;C ! S

0

;U

0

;C

0

implies S[U ^ C℄ � S

0

[U

0

^ C

0

℄. 2

Proof: By examination of every rule.

Æ Case S-Unify. By Lemma 1.8.5.

Æ Case S-Ex-1, S-Ex-2, S-Solve-Ex. By C-ExAnd.

Æ Case S-Ex-3. By C-LetEx.

Æ Case S-Ex-4. By C-InEx.

Æ Case S-Solve-Eq, S-Pop-And. By C-Dup.

Æ Case S-Solve-Id. Be
ause � is of the form 8

�

X[U ℄:X, we have fpi (�) = ?.

The result follows by C-InId.

Æ Case S-Solve-And. By C-AndAnd.

Æ Case S-Solve-Let. By C-LetAnd.

Æ Case S-Name-2. By De�nition 1.3.21 and C-NameEq, X 62 ftv(U; T) im-

plies true
 8

�

X[U ℄:T � 8

�

XX[U ^ X = T℄:X. The result follows by Lemma 1.3.22.

Æ Case S-Compress. Let � = [Y 7! Z℄. By De�nition 1.3.21 and C-

NameEq, Y 6= Z implies true
 8

�

XY[Y = Z = � ^ U ℄:X � 8

�

XY[Y ^ Z =

�(�) ^ �(U)℄:�(X). The result follows by Lemma 1.3.22.

Æ Case S-UnName. Using Lemma 1.3.18, it is straightforward to
he
k

that Y 62 ftv (�) implies 9Y:(Y = �) � �. The result follows by C-ExAnd and

C-LetEx.

Æ Case S-LetAll. By C-LetAll.

Æ Case S-Pop-Let. By C-LetAnd and C-InAnd*.

Æ Case S-Pop-Env. By C-In*, re
alling that 9� must be true. 2

Last, we
lassify the normal forms of the redu
tion system:

1.8.11 Lemma: A normal form for the redu
tion system ! is one of (i) S;U ; x � T,

where x 62 dpi(S); (ii) S; false; true; or (iii) X ;U ; true, where X is an existential

onstraint
ontext and U a satis�able
onjun
tion of multi-equations. 2

TOP

2003/5/20

page 85

1.8 Constraint solving 85

Proof: Be
ause, by de�nition, S;U ; false is not a valid state, a normal form

for S-Solve-Eq, S-Solve-Id, S-Solve-And, S-Solve-Ex, and S-Solve-

Let must be either an instan
e of the left-hand side of S-Solve-Id, with

x 62 dpi (S), whi
h
orresponds to
ase (i), or of the form S;U ; true. Let us

onsider the latter
ase. Be
ause S;U ; true is a normal form with respe
t to

S-Unify, by Lemma 1.8.6, U must be either false of the form X [U

0

℄, where

U

0

is a standard
onjun
tion of multi-equations and, if the model is synta
ti
,

U

0

is a
y
li
. The former
ase
orresponds to (ii); thus, let us
onsider the

latter
ase. Be
ause S;X [U

0

℄; true is a normal form with respe
t to S-Ex-

1, the
ontext X must in fa
t be empty, and U

0

is U . If S is an existential

onstraint
ontext, then we are in situation (iii). Otherwise, be
ause S;U ; true

is a normal form with respe
t to S-Ex-2, S-Ex-3, and S-Ex-4, the sta
k S

does not end with an existential frame. Be
ause S;U ; true is a normal form

with respe
t to S-Pop-And and S-Pop-Env, S must then be of the form

S

0

[let x : 8

�

X[[℄℄:T in C℄. Be
ause S;U ; true is a normal form with respe
t to

S-Name-2, T must be a type variable X. Let us write U as U

1

^ U

2

, where

�

X # ftv(U

1

), and where U

1

is maximal for this
riterion. Then,
onsider a

multi-equation � 2 U . By the �rst part of Lemma 1.8.7, if one variable member

of � is free (that is, outside

�

X), then 9

�

X:U determines all other variables in

ftv(�). Be
ause S;U ; true is a normal form with respe
t to S-LetAll, all

variables in ftv(�) must then be free (that is, outside

�

X). By de�nition of

U

1

, this implies � 2 U

1

. By
ontraposition, for every multi-equation � 2 U

2

,

all variable members of � are in

�

X. Furthermore, let us re
all that U

2

is a

standard
onjun
tion of multi-equations and, if the model is synta
ti
, U

2

is

a
y
li
. We let the reader
he
k that this implies 9

�

X:U

2

� true; the proof is a

slight generalization of the last part of that of Lemma 1.8.6. Then, S;U ; true

is redu
ible via S-Pop-Let. This is a
ontradi
tion, so this last
ase
annot

arise. 2

In
ase (i), the
onstraint S[U^C℄ has a free program identi�er x, so it is not

satis�able. In other words, the sour
e program
ontains an unbound program

identi�er. Su
h an error
ould of
ourse be dete
ted prior to
onstraint solving,

if desired. In
ase (ii), the uni�
ation algorithm failed. By Lemma 1.3.30, the

onstraint S[U ^ C℄ is then false. In
ase (iii), the
onstraint S[U ^ C℄ is

equivalent to X [U ℄, where U is satis�able, so it is satis�able as well. Thus,

ea
h of the three
lasses of normal forms may be immediately identi�ed as

denoting su

ess or failure. Thus, Lemmas 1.8.10 and 1.8.11 indeed prove that

the algorithm is a
onstraint solver.

TOP

2003/5/20

page 86

86 Draft of May 20, 2003 1 ML

1.9 From ML-the-
al
ulus to ML-the-programming-language

In this se
tion, we explain how to extend the framework developed so far

to a

ommodate operations on values of base type (su
h as integers), pairs,

sums, referen
es, and re
ursive fun
tion de�nitions. Then, we des
ribe more

omplex extensions, namely algebrai
 data type de�nitions, pattern mat
hing,

and type annotations. Last, the issues asso
iated with re
ursive types are

brie�y dis
ussed. Ex
eptions are not dis
ussed; the reader is referred to (TAPL

Chapter 14).

Simple extensions

Many features of ML-the-programming-language may be introdu
ed into ML-

the-
al
ulus by introdu
ing new
onstants and extending

Æ

�! and �

0

appro-

priately. In ea
h
ase, it is ne
essary to
he
k that the requirements of Def-

inition 1.7.6 are met, that is, the new initial environment faithfully re�e
ts

the nature of the new
onstants as well as the behavior of the new redu
tion

rules. Below, we des
ribe several su
h extensions in isolation.

1.9.1 Exer
ise [Integers, Re
ommended, FF℄: Integer literals and integer

addition have been introdu
ed and given an operational semanti
s in Exam-

ples 1.2.1, 1.2.2 and 1.2.4. Let us now introdu
e an isolated type
onstru
tor

int of signature ? and extend the initial environment �

0

with the bindings

n̂ : int, for every integer n, and

^

+ : int ! int ! int. Che
k that these

de�nitions meet the requirements of De�nition 1.7.6. 2

1.9.2 Exer
ise [Booleans, Re
ommended, FF, 9℄: Booleans and
ondition-

als have been introdu
ed and given an operational semanti
s in Exer
ise 1.2.6.

Introdu
e an isolated type
onstru
tor bool to represent Boolean values and

explain how to extend the initial environment. Che
k that your de�nitions

meet the requirements of De�nition 1.7.6. What is the
onstraint generation

rule for the synta
ti
 sugar if t

0

then t

1

else t

2

? 2

1.9.3 Exer
ise [Pairs, FF, 9℄: Pairs and pair proje
tions have been introdu
ed

and given an operational semanti
s in Examples 1.2.3 and 1.2.5. Let us now

introdu
e an isolated type
onstru
tor � of signature ?
 ?) ?,
ovariant

in both of its parameters, and extend the initial environment �

0

with the

following bindings:

(�; �) : 8XY:X! Y! X� Y

�

1

: 8XY:X� Y! X

�

2

: 8XY:X� Y! Y

Che
k that these de�nitions meet the requirements of De�nition 1.7.6. 2

TOP

2003/5/20

page 87

1.9 From ML-the-
al
ulus to ML-the-programming-language 87

1.9.4 Exer
ise [Sums, FF, 9℄: Sums have been introdu
ed and given an oper-

ational semanti
s in Example 1.2.7. Let us now introdu
e an isolated type

onstru
tor + of signature ?
?) ?,
ovariant in both of its parameters, and

extend the initial environment �

0

with the following bindings:

inj

1

: 8XY:X! X+ Y

inj

2

: 8XY:Y! X+ Y

ase : 8XYZ:(X+ Y)! (X! Z)! (Y! Z)! Z

Che
k that these de�nitions meet the requirements of De�nition 1.7.6. 2

1.9.5 Exer
ise [Referen
es, FFF℄: Referen
es have been introdu
ed and

given an operational semanti
s in Example 1.2.9. The type
onstru
tor ref has

been introdu
ed in De�nition 1.7.4. Let us now extend the initial environment

�

0

with the following bindings:

ref : 8X:X! ref X

! : 8X:ref X! X

:= : 8X:ref X! X! X

Che
k that these de�nitions meet the requirements of De�nition 1.7.6. 2

1.9.6 Exer
ise [Re
ursion, Re
ommended, FFF℄: The �xpoint
ombinator

fix has been introdu
ed and given an operational semanti
s in Exam-

ple 1.2.10. Let us now extend the initial environment �

0

with the following

binding:

fix : 8XY:((X! Y)! (X! Y))! X! Y

Che
k that these de�nitions meet the requirements of De�nition 1.7.6. Re
all

how the letre
 synta
ti
 sugar was de�ned in Example 1.2.10, and
he
k that

this gives rise to the following
onstraint generation rule:

let �

0

in Jletre
 f = �z:t

1

in t

2

: TK

� let �

0

in let f : 8XY[let f : X! Y; z : X in Jt

1

: YK℄:X! Y in Jt

2

: TK

Note the somewhat pe
uliar stru
ture of this
onstraint: the program variable

f is bound twi
e in it, with di�erent type s
hemes. The
onstraint requires

all o

urren
es of f within t

1

to be assigned the monomorphi
 type X! Y.

This type is generalized and turned into a type s
heme before inspe
ting t

2

,

however, so every o

urren
e of f within t

2

may re
eive a di�erent type, as

usual with let-polymorphism. A more powerful way of type
he
king re
ursive

fun
tion de�nitions is dis
ussed in Se
tion 1.10 (page 113). 2

TOP

2003/5/20

page 88

88 Draft of May 20, 2003 1 ML

Algebrai
 data types

Exer
ises 1.9.3 and 1.9.4 have shown how to extend the language with binary,

anonymous produ
ts and sums. These
onstru
ts are quite general, but still

have several short
omings. First, they are only binary, while we would like to

have k-ary produ
ts and sums, for arbitrary k � 0. Su
h a generalization is of

ourse straightforward. Se
ond, more interestingly, their
omponents must be

referred to by numeri
 index (as in �please extra
t the se
ond
omponent of the

pair�), rather than by name (�extra
t the
omponent named y�). In pra
ti
e,

it is
ru
ial to use names, be
ause they make programs more readable and

more robust in the fa
e of
hanges. One
ould introdu
e a me
hanism that

allows de�ning names as synta
ti
 sugar for numeri
 indi
es. That would help

a little, but not mu
h, be
ause these names would not appear in types, whi
h

would still be made of anonymous produ
ts and sums. Third, in the absen
e

of re
ursive types, produ
ts and sums do not have su�
ient expressiveness to

allow de�ning unbounded data stru
tures, su
h as lists. Indeed, it is easy to

see that every value whose type T is
omposed of base types (int, bool, et
.),

produ
ts, and sums must have bounded size, where the bound j T j is a fun
tion

of T. More pre
isely, up to a
onstant fa
tor, we have j int j = j bool j = 1,

j T

1

�T

2

j = 1+ j T

1

j+ j T

2

j, and j T

1

+T

2

j = 1+max(j T

1

j; j T

2

j). The following

example des
ribes another fa
et of the same problem.

1.9.7 Example: A list is either empty, or a pair of an element and another list. So,

it seems natural to try and en
ode the type of lists as a sum of some arbitrary

type (say, unit), on the one hand, and of a produ
t of some element type

and of the type of lists itself, on the other hand. With this en
oding in mind,

we
an go ahead and write
ode�for instan
e, a fun
tion that
omputes the

length of a list:

letre
 length = �l:
ase l (� :

^

0) (�z:

^

1

^

+ length (�

2

z))

We have used integers, pairs, sums, and the letre

onstru
t introdu
ed in

the previous se
tion. The
ode analyzes the list l using a
ase
onstru
t.

If the left bran
h is taken, the list is empty, so 0 is returned. If the right

bran
h is taken, then z be
omes bound to a pair of some element and the

tail of the list. The latter is obtained using the proje
tion operator �

2

. Its

length is
omputed using a re
ursive
all to length and in
remented by 1.

This
ode makes perfe
t sense. However, applying the
onstraint generation

and
onstraint solving algorithms eventually leads to an equation of the form

X = Y + (Z � X), where X stands for the type of l. This equation a

urately

re�e
ts our en
oding of the type of lists. However, in a synta
ti
 model, it has

no solution, so our de�nition of length is ill-typed. It is possible to adopt a free

TOP

2003/5/20

page 89

1.9 From ML-the-
al
ulus to ML-the-programming-language 89

regular tree model,thus introdu
ing equire
ursive types into the system (TAPL

Chapter 20); however, there are good reasons not to do so (page 106). 2

To work around this problem, ML-the-programming-language o�ers alge-

brai
 data type de�nitions, whose elegan
e lies in the fa
t that, while repre-

senting only a modest theoreti
al extension, they do solve the three problems

mentioned above. An algebrai
 data type may be viewed as an abstra
t type

that is de
lared to be isomorphi
 to a (k-ary) produ
t or sum type with named

omponents. The type of ea
h
omponent is de
lared as well, and may refer

to the algebrai
 data type that is being de�ned: thus, algebrai
 data types are

isore
ursive (TAPL Chapter 20). In order to allow su�
ient �exibility when

de
laring the type of ea
h
omponent, algebrai
 data type de�nitions may be

parameterized by a number of type variables. Last, in order to allow the de-

s
ription of
omplex data stru
tures, it is ne
essary to allow several algebrai

data types to be de�ned at on
e; the de�nitions may then be mutually re-

ursive. In fa
t, in order to simplify this formal presentation, we assume that

all algebrai
 data types are de�ned at on
e at the beginning of the program.

This de
ision is of
ourse at odds with modular programming, but will not

otherwise be a problem.

In the following, D ranges over a set of data types. We assume that data types

form a subset of type
onstru
tors. We require ea
h of them to be isolated

and to have a signature of the form ~�) ?. Furthermore, ` ranges over a set L

of labels, whi
h we use indi�erently as data
onstru
tors and as re
ord labels.

An algebrai
 data type de�nition is either a variant type de�nition or a re
ord

type de�nition, whose respe
tive forms are

D

~

X �

k

X

i=1

`

i

: T

i

and D

~

X �

k

Y

i=1

`

i

: T

i

:

In either
ase, k must be nonnegative. If D has signature ~�) ?, then the type

variables

~

X must have kind ~�. Every T

i

must have kind ?. We refer to

�

X as

the parameters and to

~

T (the ve
tor formed by T

1

; : : : ; T

k

) as the
omponents

of the de�nition. The parameters are bound within the
omponents, and the

de�nition must be
losed, that is, ftv (

~

T) �

�

X must hold. Last, for an algebrai

data type de�nition to be valid, the behavior of the type
onstru
tor D with

respe
t to subtyping must mat
h its de�nition. This requirement is
lari�ed

below.

1.9.8 Definition: Consider an algebrai
 data type de�nition whose parameters

and
omponents are respe
tively

~

X and

~

T. Let

~

X

0

and

~

T

0

be their images under

an arbitrary renaming. Then, D

~

X � D

~

X

0

~

T �

~

T

0

must hold. 2

The above requirement bears on the de�nition of subtyping in the model.

The idea is, sin
e D

~

X is de
lared to be isomorphi
 to (a sum or a produ
t of)

TOP

2003/5/20

page 90

90 Draft of May 20, 2003 1 ML

~

T, whenever two types built with D are
omparable, their unfoldings should be

omparable as well. The reverse entailment assertion is not required for type

soundness, and it is sometimes useful to de
lare algebrai
 data types that

do not validate it�so-
alled phantom types (Fluet and Pu
ella, 2002). Note

that the requirement may always be satis�ed by making the type
onstru
tor D

invariant in all of its parameters. Indeed, in that
ase, D

~

X � D

~

X

0

entails

~

X =

~

X

0

,

whi
h must entail

~

T =

~

T

0

sin
e

~

T

0

is pre
isely [

~

X 7!

~

X

0

℄

~

T. In an equality free

tree model, every type
onstru
tor is naturally invariant, so the requirement

is trivially satis�ed. In other settings, however, it is often possible to satisfy

the requirement of De�nition 1.9.8 while assigning D a less restri
tive varian
e.

The following example illustrates su
h a
ase.

1.9.9 Example: Let list be a data type of signature ?) ?. Let Nil and Cons be

data
onstru
tors. Then, the following is a de�nition of list as a variant type:

listX � � (Nil : unit; Cons : X� list X)

Be
ause data types form a subset of type
onstru
tors, it is valid to form the

type listX in the right-hand side of the de�nition, even though we are still in

the pro
ess of de�ning the meaning of list. In other words, data type de�nitions

may be re
ursive. However, be
ause � is not interpreted as equality, the type

listX is not a re
ursive type: it is nothing but an appli
ation of the unary

type
onstru
tor list to the type variable X. To
he
k that the de�nition of list

satis�es the requirement of De�nition 1.9.8, we must ensure that

listX � listX

0

 unit � unit ^ X� list X � X

0

� list X

0

holds. This assertion is equivalent to list X � listX

0

 X � X

0

. To satisfy the

requirement, it is su�
ient to make list a
ovariant type
onstru
tor, that is,

to de�ne subtyping in the model so that listX � listX

0

� X � X

0

holds.

Let tree be a data type of signature ?) ?. Let root and sons be re
ord

labels. Then, the following is a de�nition of tree as a re
ord type:

tree X � �(root : X; sons : list (tree X))

This de�nition is again re
ursive, and relies on the previous de�nition. Be
ause

list is
ovariant, it is straightforward to
he
k that the de�nition of tree is valid

if tree is made a
ovariant type
onstru
tor as well. 2

1.9.10 Exer
ise [FF, 9℄: Consider a nonre
ursive algebrai
 data type de�nition,

where the varian
e of every type
onstru
tor that appears on the right-hand

side is known. Can you systemati
ally determine, for ea
h of the parameters,

the least restri
tive varian
e that makes the de�nition valid? Generalize this

pro
edure to the
ase of re
ursive and mutually re
ursive algebrai
 data type

de�nitions. 2

TOP

2003/5/20

page 91

1.9 From ML-the-
al
ulus to ML-the-programming-language 91

A prologue is a set of algebrai
 data type de�nitions, where ea
h data type is

de�ned at most on
e and where ea
h data
onstru
tor or re
ord label appears

at most on
e. A program is a pair of a prologue and an expression. The e�e
t of

a prologue is to enri
h the programming language with new
onstants. That

is, a variant type de�nition extends the operational semanti
s with several

inje
tions and a
ase
onstru
t, as in Example 1.2.7. A re
ord type de�nition

extends it with a re
ord formation
onstru
t and several proje
tions, as in

Examples 1.2.3 and 1.2.5. In either
ase, the initial typing environment �

0

is

extended with information about these new
onstants. Thus, algebrai
 data

type de�nitions might be viewed as a simple
on�guration language that allows

spe
ifying in whi
h instan
e of ML-the-
al
ulus the expression that follows

the prologue should be type
he
ked and interpreted. Let us now give a pre
ise

a

ount of this phenomenon.

To begin, suppose the prologue
ontains the de�nition D

~

X �

P

k

i=1

`

i

: T

i

.

Then, for ea
h i 2 f1; : : : ; kg, a
onstru
tor of arity 1, named `

i

, is intro-

du
ed. Furthermore, a destru
tor of arity k + 1, named
ase

D

, is introdu
ed.

When k > 0, it is
ommon to write
ase t [`

i

: t

i

℄

k

i=1

for the appli
ation

ase

D

t t

1

: : : t

n

. The operational semanti
s is extended with the following

redu
tion rules, for i 2 f1; : : : ; kg:

ase (`

i

v) [`

j

: v

j

℄

k

j=1

Æ

�! v

i

v

(R-Alg-Case)

For ea
h i 2 f1; : : : ; kg, the initial environment is extended with the binding

`

i

: 8

�

X:T

i

! D

~

X. It is further extended with the binding
ase

D

: 8

�

XZ:D

~

X !

(T

1

! Z)! : : : (T

k

! Z)! Z.

Now, suppose the prologue
ontains the de�nition D

~

X �

Q

k

i=1

`

i

: T

i

. Then,

for ea
h i 2 f1; : : : ; kg, a destru
tor of arity 1, named `

i

, is introdu
ed. Fur-

thermore, a
onstru
tor of arity k, named make

D

, is introdu
ed. It is
ommon

to write t:` for the appli
ation ` t and, when k > 0, to write f`

i

= t

i

g

k

i=1

for

the appli
ation make

D

t

1

: : : t

k

. The operational semanti
s is extended with

the following redu
tion rules, for i 2 f1; : : : ; kg:

(f`

j

= v

j

g

k

j=1

):`

i

Æ

�!
v

i

(R-Alg-Proj)

For ea
h i 2 f1; : : : ; kg, the initial environment is extended with the binding

`

i

: 8

�

X:D

~

X! T

i

. It is further extended with the binding make

D

: 8

�

X:T

1

! : : :!

T

k

! D

~

X.

1.9.11 Example: The e�e
t of de�ning list (Example 1.9.9) is to make Nil and Cons

data
onstru
tors of arity 1 and to introdu
e a binary destru
tor
ase

list

. The

de�nition also extends the initial environment as follows:

Nil : 8X:unit! list X

Cons : 8X:X� listX! listX

ase

list

: 8XZ:list X! (unit! Z)! (X� list X! Z)! Z

TOP

2003/5/20

page 92

92 Draft of May 20, 2003 1 ML

Thus, the value Cons(

^

0; Nil()), an integer list of length 1, has type listint. A

fun
tion that
omputes the length of a list may now be written as follows:

letre
 length = �l:
ase l [Nil : � :

^

0 j Cons : �z:

^

1

^

+ length (�

2

z) ℄

Re
all that this notation is synta
ti
 sugar for

letre
 length = �l:
ase

list

l (� :

^

0) (�z:

^

1

^

+ length (�

2

z))

The di�eren
e with the
ode in Example 1.9.7 appears minimal: the
ase

onstru
t is now annotated with the data type list. As a result, the type

inferen
e algorithm employs the type s
heme assigned to
ase

list

, whi
h is

derived from the de�nition of list, instead of the type s
heme assigned to the

anonymous
ase
onstru
t, given in Exer
ise 1.9.4. This is good for a
ouple

of reasons. First, the former is more informative than the latter, be
ause it

ontains the type T

i

asso
iated with the data
onstru
tor `

i

. Here, for instan
e,

the generated
onstraint requires the type of z to be X� listX for some X, so a

good error message would be given if a mistake was made in the se
ond bran
h,

su
h as omitting the use of �

2

. Se
ond, and more fundamentally, the
ode is

now well-typed, even in the absen
e of re
ursive types. In Example 1.9.7, a

y
li
 equation was produ
ed be
ause
ase required the type of l to be a sum

type and be
ause a sum type
arries the types of its left and right bran
hes as

subterms. Here, instead,
ase

list

requires l to have type listX for some X. This

is an abstra
t type: it does not expli
itly
ontain the types of the bran
hes. As

a result, the generated
onstraint no longer involves a
y
li
 equation. It is, in

fa
t, satis�able; the reader may
he
k that length has type 8X:listX ! int,

as expe
ted. 2

Example 1.9.11 stresses the importan
e of using de
lared, abstra
t types, as

opposed to anonymous,
on
rete sum or produ
t types, in order to obviate the

need for re
ursive types. The essen
e of the tri
k lies in the fa
t that the type

s
hemes asso
iated with operations on algebrai
 data types impli
itly fold and

unfold the data type's de�nition. More pre
isely, let us re
all the type s
heme

assigned to the i

th

inje
tion in the setting of (k-ary) anonymous sums: it is

8X

1

: : : X

k

:X

i

! X

1

+ : : :+ X

k

, or, more
on
isely, 8X

1

: : : X

k

:X

i

!

P

k

i=1

X

i

. By

instantiating ea
h X

i

with T

i

and generalizing again, we �nd that a more spe-

i�
 type s
heme is 8

�

X:T

i

!

P

k

i=1

T

i

. Perhaps this
ould have been the type

s
heme assigned to `

i

? Instead, however, it is 8

�

X:T

i

! D

~

X. We now realize that

this type s
heme not only re�e
ts the operational behavior of the i

th

inje
-

tion, but also folds the de�nition of the algebrai
 data type D by turning the

anonymous sum

P

k

i=1

T

i

�whi
h forms the de�nition's right-hand side�into

the parameterized abstra
t type D

~

X�whi
h is the de�nition's left-hand side.

Conversely, the type s
heme assigned to
ase

D

unfolds the de�nition. The

TOP

2003/5/20

page 93

1.9 From ML-the-
al
ulus to ML-the-programming-language 93

situation is identi
al in the
ase of re
ord types: in either
ase,
onstru
tors

fold, destru
tors unfold. In other words, o

urren
es of data
onstru
tors and

re
ord labels in the
ode may be viewed as expli
it instru
tions for the type-

he
ker to fold or unfold an algebrai
 data type de�nition. This me
hanism is

hara
teristi
 of isore
ursive types.

1.9.12 Exer
ise [F, 9℄: For a �xed k,
he
k that all of the ma
hinery asso
iated

with k-ary anonymous produ
ts�that is,
onstru
tors, destru
tors, redu
tion

rules, and extensions to the initial typing environment�may be viewed as the

result of a single algebrai
 data type de�nition. Condu
t a similar
he
k in

the
ase of k-ary anonymous sums. 2

1.9.13 Exer
ise [FFF, 9℄: Che
k that the above de�nitions meet the require-

ments of De�nition 1.7.6. 2

1.9.14 Exer
ise [FFF, 9℄: For sake of simpli
ity, we have assumed that data

onstru
tors are always of arity one. It is indeed possible to allow data
on-

stru
tors of any arity and de�ne variants as D

~

X �

P

k

i=1

`

i

:

~

T

i

. For instan
e,

the de�nition of list
ould then be listX � � (Nil; Cons : X � listX) and for

instan
e Cons(

^

0; Nil) would be a list value. Make the ne
essary
hanges in

the de�nitions above and
he
k that they still meet the requirements of De�-

nition 1.7.6. 2

In this formal presentation of algebrai
 data types, we have assumed that all

algebrai
 data type de�nitions are known before the program is type
he
ked.

This simplifying assumption is for
ed on us by the fa
t that we interpret

onstraints in a �xed model, that is, we assume a �xed universe of types.

In pra
ti
e, programming languages have module systems, whi
h allow dis-

tin
t modules to have distin
t, partial views of the universe of types. Then,

it be
omes possible for ea
h module to
ome with its own data type de�-

nitions. Interestingly, it is even possible, in prin
iple, to split the de�nition

of a single data type over several modules, yielding extensible algebrai
 data

types. For instan
e, module A might de
lare the existen
e of a parameter-

ized variant type D

~

X, without giving its
omponents. Later on, module B

might de�ne a
omponent ` : T, where ftv (T) �

�

X. Su
h a de�nition makes

` a unary
onstru
tor with type s
heme 8

�

X:T ! D

~

X, as before. It be
omes

impossible, however, to introdu
e a destru
tor
ase

D

, be
ause the de�nition

of an extensible variant type
an never be assumed to be
omplete�other,

unknown modules might extend it further. To
ompensate for its absen
e, one

may supplement every
onstru
tor ` with a destru
tor `

�1

, whose semanti
s

is given by `

�1

(` v) v

1

v

2

Æ

�! v

1

v and `

�1

(`

0

v) v

1

v

2

Æ

�! v

2

(`

0

v) when

` 6= `

0

, and whose type s
heme is 8

�

XZ:D

~

X! (T! Z)! (D

~

X! Z)! Z. When

TOP

2003/5/20

page 94

94 Draft of May 20, 2003 1 ML

pattern mat
hing is available, `

�1

may in fa
t be de�ned in the language. ML-

the-programming-language does not o�er extensible algebrai
 data types as a

language feature, but does have one built-in extensible variant type, namely

the type exn of ex
eptions. Thus, it is possible to de�ne new
onstru
tors for

the type exn within any module. The pri
e of this extra �exibility is that no

exhaustive
ase analysis on values of type exn is possible.

One signi�
ant drawba
k of algebrai
 data type de�nitions resides in the

fa
t that a label `
annot be shared by two distin
t variant or re
ord type

de�nitions. Indeed, every algebrai
 data type de�nition extends the
al
ulus

with new
onstants. Stri
tly speaking, our presentation does not allow a sin-

gle
onstant
 to be asso
iated with two distin
t de�nitions. Even if we did

allow su
h a
ollision, the initial environment would
ontain two bindings for

, one of whi
h would then be
ome ina

essible. This phenomenon arises in

a
tual implementations of ML-the-programming-language, where a new alge-

brai
 data type de�nition may hide some of the data
onstru
tors or re
ord

labels introdu
ed by a previous de�nition. An elegant solution to this la
k of

expressiveness is dis
ussed in Se
tion 1.11.

Pattern mat
hing

Our presentation of produ
ts, sums and algebrai
 data types has remained

within the setting of ML-the-
al
ulus: that is, data stru
tures have been built

out of
onstru
tors, while the
ase analysis and re
ord a

ess operations have

been viewed as destru
tors. Some synta
ti
 sugar has been used to re
over

standard notations. The language is now expressive enough to allow de�n-

ing and manipulating
omplex data stru
tures, su
h as lists and trees. Yet,

experien
e shows that programming in su
h a language is still somewhat
um-

bersome. Indeed,
ase analysis and re
ord a

ess are low-level operations: the

former allows inspe
ting a tag and bran
hing, while the latter allows deref-

eren
ing a pointer. In pra
ti
e, one often needs to
arry out more
omplex

tasks, su
h as determining whether a data stru
ture has a
ertain shape or

whether two data stru
tures have
omparable shapes. Currently, the only

way to
arry out these tasks is to program an expli
it sequen
e of low-level

operations. It would be mu
h preferable to extend the language so that it be-

omes dire
tly possible to des
ribe shapes,
alled patterns, and so that
he
k-

ing whether a patterns mat
hes a value be
omes an elementary operation.

ML-the-programming-language o�ers this feature,
alled pattern mat
hing.

Although pattern mat
hing may be added to ML-the-
al
ulus by introdu
-

ing a family of destru
tors, we rather
hoose to extend the
al
ulus with a

new mat
h
onstru
t, whi
h subsumes the existing let
onstru
t. This ap-

proa
h appears somewhat simpler and more powerful. We now
arry out this

TOP

2003/5/20

page 95

1.9 From ML-the-
al
ulus to ML-the-programming-language 95

p ::= Patterns:

Wild
ard

z Variable

 p

1

: : : p

k

Data

 2 Q

+

^ k = a(
)

p ^ p Conjun
tion

p _ p Disjun
tion

Pattern mat
hing

[7! v℄ = ?

[
 p

1

: : : p

k

7!
 v

1

: : : v

k

℄

= [p

1

7! v

1

℄
 : : :
 [p

k

7! v

k

℄

[p

1

^ p

2

7! v℄ = [p

1

7! v℄
 [p

2

7! v℄

[p

1

_ p

2

7! v℄ = [p

1

7! v℄� [p

2

7! v℄

Figure 1-13: Patterns and pattern mat
hing

extension.

Let us �rst de�ne the syntax of patterns (Figure 1-13) and des
ribe (in-

formally, for now) whi
h values they mat
h. To a pattern p, we asso
iate a

set of de�ned program variables dpi (p), whose de�nition appears in the text

that follows. The pattern p is well-formed if and only if dpi (p) is de�ned.

To begin, the wild
ard is a pattern, whi
h mat
hes every value and binds

no variables. We let dpi () = ?. Although the wild
ard may be viewed as

an anonymous variable, and we have done so thus far, it is now simpler to

view it as a distin
t pattern. A program variable z is also a pattern, whi
h

mat
hes every value and binds z to the mat
hed value. We let dpi (z) = fzg.

Next, if
 is a
onstru
tor of arity k, then
 p

1

: : : p

k

is a pattern, whi
h

mat
hes
 v

1

: : : v

k

when p

i

mat
hes v

i

for every i 2 f1; : : : ; kg. We let

dpi(
 p

1

: : : p

k

) = dpi (p

1

) ℄ : : : ℄ dpi (p

k

). That is, the pattern
 p

1

: : : p

k

is

well-formed when p

1

; : : : ; p

k

de�ne disjoint sets of variables. This
ondition

rules out nonlinear patterns su
h as (z; z). De�ning the semanti
s of su
h a

pattern would require a notion of equality at every type, whi
h introdu
es vari-

ous
ompli
ations, so it is
ommonly
onsidered ill-formed. The pattern p

1

^p

2

mat
hes all values that both p

1

and p

2

mat
h. It is
ommonly used with p

2

a

program variable: then, it allows examining the shape of a value and binding a

name to it at the same time. Again, we de�ne dpi (p

1

^p

2

) = dpi(p

1

)℄dpi (p

2

).

The pattern p

1

_p

2

mat
hes all values that either p

1

or p

2

mat
hes. We de�ne

dpi(p

1

_ p

2

) = dpi (p

1

) = dpi(p

2

). That is, the pattern p

1

_ p

2

is well-formed

when p

1

and p

2

de�ne the same variables. Thus, (inj

1

z)_ (inj

2

z) is a well-

formed pattern, whi
h binds z to the
omponent of a binary sum, without

regard for its tag. However, (inj

1

z

1

) _ (inj

2

z

2

) is ill-formed, be
ause one

annot stati
ally predi
t whether it de�nes z

1

or z

2

.

Let us now formally de�ne whether a pattern p mat
hes a value v and

how the variables in dpi (p) be
ome bound to values in the pro
ess. This is

done by introdu
ing a generalized substitution, written [p 7! v℄, whi
h is either

TOP

2003/5/20

page 96

96 Draft of May 20, 2003 1 ML

t ::= . . . Expressions:

mat
h t with (p

i

: t

i

)

k

i=1

E ::= . . . Evaluation Contexts:

mat
h E with (p

i

: t

i

)

k

i=1

Redu
tion rules

mat
h v with (p

i

: t

i

)

k

i=1

�!

k

L

i=1

[p

i

7! v℄t

i

(R-Mat
h)

Figure 1-14: Extended syntax and semanti
s of ML-the-
al
ulus

unde�ned or a substitution of values for the program variables in dpi (p). If the

former, then p does not mat
h v. If the latter, then p mat
hes v and, for every

z 2 dpi (p), the variable z be
omes bound to the value [p 7! v℄z. Of
ourse,

when p is a variable z, the generalized substitution [z 7! v℄ is de�ned and

oin
ides with the substitution [z 7! v℄, whi
h justi�es our abuse of notation.

To
onstru
t generalized substitutions, we use two simple
ombinators. First,

when dpi (p

1

) and dpi(p

2

) are disjoint, [p

1

7! v

1

℄
 [p

2

7! v

2

℄ stands for

the set-theoreti
 union of [p

1

7! v

1

℄ and [p

2

7! v

2

℄, if both are de�ned, and is

unde�ned otherwise. We use this
ombinator to ensure that p

1

mat
hes v

1

and

p

2

mat
hes v

2

and to
ombine the two
orresponding sets of bindings. Se
ond,

when o

1

and o

2

are two possibly unde�ned mathemati
al obje
ts that belong

to the same spa
e when de�ned, o

1

� o

2

stands for o

1

, if it is de�ned, and

for o

2

otherwise�that is, � is an angeli

hoi
e operator with a left bias. In

parti
ular, when dpi (p

1

) and dpi(p

2

)
oin
ide, [p

1

7! v

1

℄�[p

2

7! v

2

℄ stands for

[p

1

7! v

1

℄, if it is de�ned, and for [p

2

7! v

2

℄ otherwise. We use this
ombinator

to ensure that p

1

mat
hes v

1

or p

2

mat
hes v

2

and to retain the
orresponding

set of bindings. The full de�nition of generalized substitutions, whi
h relies on

these
ombinators, appears in Figure 1-13. It re�e
ts the informal presentation

of the previous paragraph.

On
e patterns and pattern mat
hing are de�ned, it is straightforward to ex-

tend the syntax and operational semanti
s of ML-the-
al
ulus. We enri
h the

syntax of expressions with a new
onstru
t, mat
h t with (p

i

: t

i

)

k

i=1

, where

k � 1. It
onsists of a term t and a nonempty, ordered list of
lauses, ea
h

of whi
h is
omposed of a pattern p

i

and a term t

i

. The syntax of evaluation

ontexts is extended as well, so that the term t that is being examined is �rst

redu
ed to a value v. The operational semanti
s is extended with a new rule,

R-Mat
h, whi
h states that mat
h v with (p

i

: t

i

)

k

i=1

redu
es to [p

i

7! v℄t

i

,

where i is the least element of f1; : : : ; kg su
h that p

i

mat
hes v

i

. Te
hni
ally,

L

k

i=1

[p

i

7! v℄t

i

stands for [p

1

7! v℄t

1

� : : :� [p

k

7! v℄t

k

, so that the redu
t

is the �rst term that is de�ned in this sequen
e.

As far as semanti
s is
on
erned, the mat
h
onstru
t may be viewed as a

TOP

2003/5/20

page 97

1.9 From ML-the-
al
ulus to ML-the-programming-language 97

generalization of the let
onstru
t. Indeed, let z = t

1

in t

2

may now be

viewed as synta
ti
 sugar for mat
h t

1

with z : t

2

, that is, a mat
h
onstru
t

with a single
lause and a variable pattern. Then, R-Let be
omes a spe
ial

ase of R-Mat
h.

It is pleasant to introdu
e some more synta
ti
 sugar. We write �(p

i

:t

i

)

k

i=1

for �z:mat
h z with (p

i

: t

i

)

k

i=1

, where z is fresh for (p

i

:t

i

)

k

i=1

. Thus, it be-

omes possible to de�ne fun
tions by
ases�a
ommon idiom in ML-the-

programming-language.

1.9.15 Example: Using pattern mat
hing, a fun
tion that
omputes the length of a

list (Example 1.9.11) may now be written as follows:

letre
 length = �(Nil :

^

0 j Cons (; z) :

^

1

^

+ length z)

The se
ond pattern mat
hes a nonempty list and binds z to its tail at the

same time, obviating the need for an expli
it appli
ation of �

2

. 2

1.9.16 Exer
ise [FF, Re
ommended, 9℄: Under the above de�nition of length,

onsider an appli
ation of length to the list Cons(

^

0; Nil()). After eliminating

the synta
ti
 sugar, determine by whi
h redu
tion sequen
e this expression

redu
es to a value. 2

Before we
an pro
eed and extend the type system to deal with the new

mat
h
onstru
t, we must make two mild extensions to the syntax and meaning

of
onstraints. First, if � is 8

�

X[C℄:T, where

�

X # ftv (T

0

), then T

0

� � stands

for the
onstraint 9

�

X:(C ^ T

0

� T). This relation is identi
al to the instan
e

relation (De�nition 1.3.3), ex
ept the dire
tion of subtyping is reversed. We

extend the syntax of
onstraints with instantiation
onstraints of the form

T � x and de�ne their meaning by adding a symmetri

ounterpart of CM-

Instan
e. We remark that, when subtyping is interpreted as equality, the

relations � � T and T � �
oin
ide, so this extension is unne
essary in that

parti
ular
ase. Se
ond, we extend the syntax of environments so that several

su

essive bindings may share a set of quanti�ers and a
onstraint. That

is, we allow writing 8

�

X[C℄:(x

1

: T

1

; : : : ; x

k

: T

k

) for x

1

: 8

�

X[C℄:T

1

; : : : ; x

k

:

8

�

X[C℄:T

k

. From a theoreti
al standpoint, this is little more than synta
ti

sugar; however, in pra
ti
e, it is useful to implement this new idiom literally,

sin
e it avoids unne
essary
opying of the
onstraint C.

Let us now extend the type system. For the sake of brevity, we extend

the
onstraint generation rules only. Of
ourse, it would also be possible to

de�ne
orresponding extensions of the rule-based type systems shown earlier,

namely DM, HM(X), and PCB(X). We begin by de�ning a
onstraint JT : pK

that represents a ne
essary and su�
ient
ondition for values of type T to

be a

eptable inputs for the pattern p. Its free type variables are a subset of

TOP

2003/5/20

page 98

98 Draft of May 20, 2003 1 ML

JT : K = true

JT : zK = T � z

JT :
 p

1

: : : p

k

K = 9

�

X:(

~

X! T �
 ^

V

k

i=1

JX

i

: p

i

K)

JT : p

1

^ p

2

K = JT : p

1

K ^ JT : p

2

K

JT : p

1

_ p

2

K = JT : p

1

K ^ JT : p

2

K

Jmat
h t with (p

i

: t

i

)

k

i=1

: TK =

V

k

i=1

let 8X

�

X

i

[Jt : XK ^ let ~z

i

:

~

X

i

in JX : p

i

K℄:(~z

i

:

~

X

i

) in Jt

i

: TK

where ~z

i

= dpi(p

i

)

Figure 1-15: Constraint generation for patterns and pattern mat
hing

ftv(T), while its free program identi�ers are either
onstru
tors or program

variables bound by p. It is de�ned in the upper part of Figure 1-15. The �rst

rule states that a wild
ard mat
hes values of arbitrary type. The se
ond and

third rules govern program variables and
onstru
tor appli
ations in patterns.

They are identi
al to the rules that govern these
onstru
ts in expressions

(page 59), ex
ept that the dire
tion of subtyping is reversed. In the absen
e

of subtyping, they would be entirely identi
al. We write

~

X for X

1

: : : X

k

and

~

X ! T for X

1

! : : : ! X

k

! T. As usual, the type variables X

1

; : : : ; X

k

must

have kind ? and must be distin
t and fresh for the equation's left-hand side.

The last two rules simply distribute the type T to both subpatterns. It is easy

to
he
k that JT : pK is
ontravariant in T:

1.9.17 Lemma: T

0

� T ^ JT : pK entails JT

0

: pK. 2

This property re�e
ts the fa
t that T represents the type of an input for the

pattern p. Compare it with Lemma 1.6.3.

1.9.18 Example: Consider the pattern Cons (; z), whi
h appears in Exam-

ple 1.9.15. We have

JT : Cons (; z)K

� 9Z

1

:(JZ

1

! T : ConsK ^ JZ

1

: (; z)K)

� 9Z

1

:(Z

1

! T � Cons ^ 9Z

2

Z

3

:(JZ

2

! Z

3

! Z

1

: (�; �)K ^ JZ

2

: K ^ JZ

3

: zK))

� 9Z

1

Z

2

Z

3

:(Z

1

! T � Cons ^ Z

2

! Z

3

! Z

1

� (�; �) ^ Z

3

� z)

where Z

1

, Z

2

, Z

3

are fresh for T. Let us now pla
e this
onstraint within the

s
ope of the initial environment, whi
h assigns type s
hemes to the
onstru
-

tors Cons and (�; �), and within the s
ope of a binding of z to some type T

0

.

TOP

2003/5/20

page 99

1.9 From ML-the-
al
ulus to ML-the-programming-language 99

We �nd

let �

0

in let z : T

0

in JT : Cons (; z)K

� 9Z

1

Z

2

Z

3

:(9X:(Z

1

! T � X� listX! listX)^

9Y

1

Y

2

:(Z

2

! Z

3

! Z

1

� Y

1

! Y

2

! Y

1

� Y

2

) ^ Z

3

� T

0

)

� 9X:(T � list X ^ list X � T

0

)

where the �nal simpli�
ation relies mainly on C-Arrow, on the
orrespond-

ing rule for produ
ts, and on C-ExTrans, and is left as an exer
ise to the

reader. Thus, the
onstraint states that the pattern mat
hes values that have

type listX (equivalently, values whose type T is a subtype of listX), for some

undetermined element type X, and binds z to values of type list X (equivalently,

values whose type T

0

is a supertype of listX). 2

The above example seems to indi
ate that the
onstraint generation rules for

patterns make some sense. Still, the
areful reader may be somewhat puzzled

by the third rule, whi
h,
ompared to its analogue for expressions, reverses

the dire
tion of subtyping, but does not reverse the dire
tion of instantiation.

Indeed, in order for this rule to make sense, and to be sound, we must for-

mulate a requirement
on
erning the type s
hemes assigned to
onstru
tors.

1.9.19 Definition: A
onstru
tor
 is invertible if and only if, when

~

X and

~

X

0

have

length a(
), the
onstraint let �

0

in (

~

X

0

! T �
 ^
 �

~

X ! T) entails

~

X �

~

X

0

.

In the following, we assume patterns
ontain invertible
onstru
tors only. 2

Intuitively, when
 is invertible, it is possible to re
over the type of every v

i

from the type of
 v

1

: : : v

k

, a
ru
ial property for pattern mat
hing to be

possible. Please note that, if �

0

(
) is monomorphi
, then
 is invertible. The

following lemma identi�es another important
lass of invertible
onstru
tors.

1.9.20 Lemma: The
onstru
tors of algebrai
 data types are invertible. 2

Proof: Let
 be a
onstru
tor introdu
ed by the de�nition of an algebrai
 data

type D. Let k = a(
). Then, the type s
heme �

0

(
) is of the form 8

�

Y:

~

T! D

~

Y,

where

~

Y are the parameters of the de�nition and

~

T, a ve
tor of length k,

onsists of some of the de�nition's
omponents. (More pre
isely,

~

T
ontains

just one
omponent in the
ase of variant types and
ontains all
omponents

in the
ase of re
ord types.) Let

~

X and

~

X

0

have length k. Let 8

�

Y

1

:

~

T

1

! D

~

Y

1

and 8

�

Y

2

:

~

T

2

! D

~

Y

2

be two �-equivalent forms of the type s
heme �

0

(
), with

�

Y

1

#

�

Y

2

and

�

Y

1

�

Y

2

ftv(

�

X;

�

X

0

; T). The
onstraint let �

0

in (

~

X

0

! T �
 ^
 �

~

X! T) is, by de�nition, equivalent to

~

X

0

! T � �

0

(
)^�

0

(
) �

~

X! T, that is,

9

�

Y

1

:(

~

X

0

! T �

~

T

1

! D

~

Y

1

) ^ 9

�

Y

2

:(

~

T

2

! D

~

Y

2

�

~

X ! T). By C-ExAnd and C-

Arrow, this may be written 9

�

Y

1

�

Y

2

:(D

~

Y

2

� T � D

~

Y

1

^

~

X �

~

T

2

^

~

T

1

�

~

X

0

). Now,

TOP

2003/5/20

page 100

100 Draft of May 20, 2003 1 ML

by De�nition 1.9.8, D

~

Y

2

� D

~

Y

1

entails

~

T

2

�

~

T

1

, so the previous
onstraint

entails 9

�

Y

1

�

Y

2

:(

~

X �

~

X

0

), that is,

~

X �

~

X

0

. 2

An important
lass of noninvertible
onstru
tors are those asso
iated with

existential type de�nitions (page 118), where not all quanti�ers of the type

s
heme �

0

(
) are parameters of the type
onstru
tor D. For instan
e, under

the de�nition D � ` : 9X:X, the type s
heme asso
iated with ` is 8X:X ! D.

Then, it is easy to
he
k that ` is not invertible. This re�e
ts the fa
t that it

is not possible to re
over the type of v from the type of ` v�whi
h must be

D in any
ase�and explains why existential types require spe
ial treatment.

We are now ready to asso
iate a
onstraint generation rule with the mat
h

onstru
t. It is given in the lower part of Figure 1-15. In the rule's right-hand

side, we write ~z

i

for the program variables bound by the pattern p

i

, and we

write

~

X

i

for a ve
tor of type variables of the same length. The type variables X

�

X

i

must have kind ?, must be pairwise distin
t and must not appear free in the

rule's left-hand side. Let us now explain the rule. Its right-hand side is a
on-

jun
tion, where ea
h
onjun
t deals with one
lause of the mat
h
onstru
t,

requiring t

i

to have type T under
ertain assumptions about the program

variables ~z

i

bound by the pattern p

i

. There remains to explain how these as-

sumptions are built. First, as in the
ase of a let
onstru
t, we summon a fresh

type variable X and produ
e Jt : XK, the least spe
i�

onstraint that guar-

antees t has type X. Then, re�e
ting the operational semanti
s, whi
h feeds

(the value produ
ed by) t into the pattern p

i

, we feed the type X into p

i

and

produ
e let ~z

i

:

~

X

i

in JX : p

i

K, a
onstraint that guarantees that

~

X

i

is a
orre
t

ve
tor of type assumptions for the program variables ~z

i

(see Example 1.9.18).

This explains why we may pla
e JT : t

i

K within the s
ope of (~z

i

:

~

X

i

). There re-

mains to point out that, as in the
ase of the let
onstru
t, every assignment

of ground types to X

�

X

i

that satis�es the
onstraint Jt : XK^ let ~z

i

:

~

X

i

in JX : p

i

K

is a

eptable, so it is valid to universally quantify these type variables. This

allows the program variables ~z

i

to re
eive polymorphi
 type s
hemes when t

itself has polymorphi
 type.

1.9.21 Exer
ise [F, Re
ommended℄: We have previously suggested viewing

let z = t

1

in t

2

as synta
ti
 sugar for mat
h t

1

with z : t

2

, and shown

that the operational semanti
s validates this view. Che
k that it is also valid

from a typing perspe
tive. 2

The mat
h
onstraint generation rule, if implemented literally, takes k
opies

of the
onstraint Jt : XK. When k is greater than 1, this
ompromises the linear

time and spa
e
omplexity of
onstraint generation. To remedy this problem,

one may modify the rule as follows: repla
e every
opy of Jt : XK with z � X

and pla
e the
onstraint within the
ontext let z : 8X[Jt : XK℄:X in [℄, where z is

TOP

2003/5/20

page 101

1.9 From ML-the-
al
ulus to ML-the-programming-language 101

a fresh program variable. It is not di�
ult to
he
k that the logi
al meaning of

the
onstraint is not a�e
ted and that a linear behavior is re
overed. In pra
-

ti
e, solving the new
onstraint requires taking instan
es of the type s
heme

8X[Jt : XK℄:X, whi
h essentially requires
opying Jt : XK again�however, an

e�
ient solver may now simplify this sub
onstraint before dupli
ating it.

The following lemma is a key to establishing subje
t redu
tion for R-

Mat
h. It relies on the requirement that
onstru
tors be invertible.

1.9.22 Lemma: Assume [p 7! v℄ is de�ned and maps ~z to ~w, where �z = dpi (p).

Let ~z :

~

T be an arbitrary monomorphi
 environment of domain �z. Then,

let �

0

in (Jv : TK ^ let ~z :

~

T in JT : pK) entails let �

0

in J~w :

~

TK. 2

We now prove that our extension of ML-the-
al
ulus with pattern mat
h-

ing enjoys subje
t redu
tion. We only state that R-Mat
h preserves types,

and leave the new sub
ase of R-Context, where the evaluation
ontext in-

volves a mat
h
onstru
t, to the reader. For this sub
ase to su

eed, the value

restri
tion (De�nition 1.7.7) must be extended to require that either all
on-

stants have pure semanti
s or all mat
h
onstru
ts are in fa
t of the form

mat
h v with (p

i

: t

i

)

k

i=1

.

1.9.23 Theorem [Subje
t redu
tion℄: (R-Mat
h) � (v). 2

1.9.24 Exer
ise [FFF, 9℄: For the sake of simpli
ity, we have omitted the pro-

du
tion ref p from the syntax of patterns. The pattern ref p mat
hes every

memory lo
ation whose
ontent (with respe
t to the
urrent store) is mat
hed

by p. Determine how the previous de�nitions and proofs must be extended in

order to a

ommodate this new produ
tion. 2

The progress property does not hold in general: for instan
e,

mat
h Nil with (Cons z : z) is well-typed (with type 8X:X) but is stu
k.

In a
tual implementations of ML-the-programming-language, su
h errors are

dynami
ally dete
ted. This may be
onsidered a weakness of ML-the-type-

system. Fortunately, however, it is often possible to stati
ally prove that a

parti
ular mat
h
onstru
t is exhaustive and
annot go wrong. Indeed, if

mat
h v with (p

i

: t

i

)

k

i=1

is well-typed, then for every i 2 f1; : : : ; kg, the

onstraint let �

0

in (Jv : XK^9

�

X:let ~z

i

:

~

X in JX : p

i

K), where �z

i

are the program

variables bound by p

i

, must be satis�able; that is, v must have some type

that is an a

eptable input for p

i

. This fa
t yields information about v, from

whi
h it may be possible to derive that v must mat
h one of the patterns p

i

.

1.9.25 Example: Let k = 2, p

1

= Nil , and p

2

= Cons (z

1

; z

2

). Then, the
on-

straints let �

0

in 9

�

X:let ~z

i

:

~

X in JX : p

i

K, for i 2 f1; 2g, are both equivalent

(after simpli�
ation, when i = 2) to 9Z:X � listZ. Be
ause the type
onstru
-

tor list is isolated, every
losed value v whose type X satis�es this
onstraint

TOP

2003/5/20

page 102

102 Draft of May 20, 2003 1 ML

must be an appli
ation of Nil or Cons. If the latter, be
ause Cons has type

8X:X� listX! listX, and be
ause the type
onstru
tor � is isolated, the argu-

ment to Cons must be a pair. We
on
lude that v must mat
h either p

1

or p

2

,

whi
h guarantees that this mat
h
onstru
t is exhaustive and its evaluation

annot go wrong. 2

It is beyond the s
ope of this
hapter to give more details about the
he
k for

exhaustiveness. The reader is referred to (Sekar, Ramesh, and Ramakrishnan,

1995; Le Fessant and Maranget, 2001).

Type annotations

So far, we have been interested in a very pure, and extreme, form of type

inferen
e. Indeed, in ML-the-
al
ulus, expressions
ontain no expli
it type in-

formation whatsoever: it is entirely inferred. In pra
ti
e, however, it is often

useful to insert type annotations within expressions, be
ause they provide a

form of ma
hine-
he
ked do
umentation. Type annotations are also helpful

when attempting to tra
e the
ause of a type error: by supplying the type-

he
ker with (supposedly)
orre
t type information, one runs a better
han
e

of �nding a type in
onsisten
y near an a
tual programming mistake.

When type annotations are allowed to
ontain type variables, one must

be quite
areful about where (at whi
h program point) and how (existen-

tially or universally) these variables are bound. Indeed, the meaning of type

annotations
annot be made pre
ise without settling these issues. In what fol-

lows, we �rst explain how to introdu
e type annotations whose type variables

are bound lo
ally and existentially. We show that extending ML-the-
al
ulus

with su
h limited type annotations is again a simple matter of introdu
ing

new
onstants. Then, we turn to a more general
ase, where type variables

may be expli
itly existentially introdu
ed at any program point. We defer the

dis
ussion of universally bound type variables to Se
tion 1.10.

Let a lo
al existential type annotation 9

�

X:T be a pair of a set of type vari-

ables

�

X and a type T, where T has kind ?,

�

X is
onsidered bound within T,

and

�

X
ontains ftv(T). For every su
h annotation, we introdu
e a new unary

destru
tor (� : 9

�

X:T). Su
h a de�nition is valid only be
ause a type annota-

tion must be
losed, that is, does not have any free type variables. We write

(t : 9

�

X:T) for the appli
ation ((� : 9

�

X:T)) t. Sin
e a type annotation does not

a�e
t the meaning of a program, the new destru
tor has identity semanti
s:

(v : 9

�

X:T)

Æ

�!
v

(R-Annotation)

Its type s
heme, however, is not that of the identity, namely 8X:X! X: instead,

it is less general, so that annotating an expression restri
ts its type. Indeed,

TOP

2003/5/20

page 103

1.9 From ML-the-
al
ulus to ML-the-programming-language 103

we extend the initial environment �

0

with the binding

(� : 9

�

X:T) : 8

�

X:T! T

1.9.26 Exer
ise [F℄: Che
k that 8

�

X:T ! T is an instan
e of 8X:X ! X in Damas

and Milner's sense, that is, the former is obtained from the latter via the

rule dm-Inst' given in Exer
ise 1.2.23. Does this allow arguing that the type

s
heme assigned to (� : 9

�

X:T) is sound? Che
k that the above de�nitions meet

the requirements of De�nition 1.7.6. 2

Although inserting a type annotation does not
hange the semanti
s of the

program, it does a�e
t
onstraint generation, hen
e type inferen
e. We let the

reader
he
k that, assuming

�

X # ftv (t; T

0

), the following derived
onstraint

generation rule holds:

let �

0

in J(t : 9

�

X:T) : T

0

K � let �

0

in 9

�

X:(Jt : TK ^ T � T

0

)

So far, expressions
annot have free type variables, so the hypothesis

�

X #

ftv(t) may seem super�uous. However, we shall soon allow expressions to

ontain type annotations with free type variables, so we prefer to make this

ondition expli
it now. A

ording to this rule, the e�e
t of the type annotation

is to for
e the expression t to have type T, for some
hoi
e of the type variables

�

X. As usual in type systems with subtyping, the expression's �nal type T

0

may then be an arbitrary supertype of this parti
ular instan
e of T. When

subtyping is interpreted as equality, T

0

and T are equated by the
onstraint,

so this
onstraint generation rule may be read: a valid type for (t : 9

�

X:T) must

be of the form T, for some
hoi
e of the type variables

�

X.

1.9.27 Example: In DM extended with integers, the expression (�z:z : int! int)

has most general type int! int, even though the underlying identity fun
-

tion has most general type 8X:X ! X, so the annotation restri
ts its type.

The expression (�z:z

^

+

^

1 : 9X:X ! X) has type int ! int, whi
h is also the

most general type of the underlying fun
tion, so the annotation a
ts merely

as do
umentation in this
ase. Note that the type variable X is instantiated to

int by the
onstraint solver. The expression (�z:(z

^

1) : 9X:X! int) has type

(int! int)! int be
ause the underlying fun
tion has type (int! Y)! Y,

whi
h su

essfully uni�es with X ! int by instantiating X to int ! int

and Y to int. Last, the expression (�z:(z

^

1) : 9X:int ! X) is ill-typed�

even though the underlying expression is well-typed�be
ause the equation

(int! Y)! Y = int! X is unsatis�able. 2

TOP

2003/5/20

page 104

104 Draft of May 20, 2003 1 ML

1.9.28 Example: In DM extended with pairs, the expression �z

1

:�z

2

:((z

1

:

9X:X); (z

2

: 9X:X)) has most general type 8XY:X! Y! X� Y. In other words,

the two o

urren
es of X do not represent the same type. Indeed, one
ould

just as well have written �z

1

:�z

2

:((z

1

: 9X:X); (z

2

: 9Y:Y)). If one wishes z

1

and z

2

to re
eive the same type, one must lift the type annotations and merge

them above the pair
onstru
tor, as follows: �z

1

:�z

2

:((z

1

; z

2

) : 9X:X � X). In

the pro
ess, the type
onstru
tor � has appeared in the annotation,
ausing

its size to in
rease. 2

The above example reveals a limitation of this style of type annotations:

by requiring every type annotation to be
losed, we lose the ability for two

separate annotations to share a type variable. Yet, su
h a feature is sometimes

desirable. If the two annotations where sharing is desired are distant in the

ode, it may be awkward to lift and merge them into a single annotation; so,

more expressive power is sometimes truly needed.

Thus, we are lead to
onsider more general type annotations, of the form

(t : T), where T has kind ?, and where the type variables that appear within

T are
onsidered free, so that distin
t type annotations may refer to shared

type variables. For this idea to make sense, however, it is still ne
essary to

spe
ify where these type variables are bound. We do so using expressions

of the form 9

�

X:t. Su
h an expression binds the type variables

�

X within the

expression t, so that all free o

urren
es of X (where X 2

�

X) in type annotations

inside t stand for the same type. Thus, we break the simple type annotation

onstru
t (� : 9

�

X:T) into two more elementary
onstituents, namely existential

type variable introdu
tion 9

�

X:� and type
onstraint (� : T). Note that both are

new forms of expressions; neither
an be en
oded by adding new
onstants to

the
al
ulus, be
ause it is not possible to assign
losed type s
hemes to them.

Te
hni
ally, allowing expressions to
ontain type variables requires some

are. Several
onstraint generation rules employ auxiliary type variables,

whi
h be
ome bound in the generated
onstraint. These type variables may

be
hosen in an arbitrary way, provided they do not appear free in the rule's

left-hand side�a side-
ondition intended to avoid inadvertent
apture. So far,

this side-
ondition
ould be read: the auxiliary type variables used to form the

onstraint Jt : TK must not appear free within T. Now, sin
e type annotations

may
ontain free type variables, the side-
ondition be
omes: the auxiliary type

variables used to form Jt : TK must not appear free within t or T.

With this extended side-
ondition in mind, our original
onstraint genera-

tion rules remain un
hanged. We add two new rules to des
ribe how the new

expression forms a�e
t
onstraint generation:

J9

�

X:t : TK = 9

�

X:Jt : TK provided

�

X # ftv(T)

J(t : T) : T

0

K = Jt : TK ^ T � T

0

TOP

2003/5/20

page 105

1.9 From ML-the-
al
ulus to ML-the-programming-language 105

The e�e
t of these rules is simple. The
onstru
t 9

�

X:t is an indi
ation to the

onstraint generator that the type variables

�

X, whi
h may o

ur free within

type annotations inside t, should be existentially bound at this point. The

side-
ondition

�

X # ftv(T) ensures that quantifying over

�

X in the generated

onstraint does not
apture type variables in the expe
ted type T. It
an always

be satis�ed by �-
onversion of the expression 9

�

X:t. The
onstru
t (t : T) is

an indi
ation to the
onstraint generator that the expression t should have

type T, and it is treated as su
h by generating the sub
onstraint Jt : TK. The

expression's type may be an arbitrary supertype of T, hen
e the auxiliary

onstraint T � T

0

.

1.9.29 Example: In DM extended with pairs, the expression �z

1

:�z

2

:9X:((z

1

:

X); (z

2

: X)) has most general type 8X:X ! X ! X� X. Indeed, the
onstraint

generated for this expression
ontains the pattern 9X:(Jz

1

: XK^ Jz

2

: XK^ : : :),

whi
h
auses z

1

and z

2

to re
eive the same type. Note that this style is more

�exible than that employed in Example 1.9.28, where we were for
ed to use a

single, monolithi
 type annotation to express this sharing
onstraint. 2

1.9.30 Remark: In pra
ti
e, a type variable is usually represented as a memory
ell

in the type
he
ker's heap. So, one
annot say that the sour
e
ode
ontains

type variables; rather, it
ontains names that are meant to stand for type

variables. Let us write X for su
h a name, and T for a type made of type

onstru
tors and names, rather than of type
onstru
tors and type variables.

Then, our new expression forms are really 9

�

X:t and (t : T). When the
on-

straint generator enters the s
ope of an introdu
tion form 9

�

X:t, it allo
ates a

ve
tor of fresh type variables

�

X, and augments an internal environment with

the bindings

�

X 7!

�

X. Be
ause the type variables are fresh, the side-
ondition

of the �rst
onstraint generation rule above is automati
ally satis�ed. When

the
onstraint generator �nds a type annotation (t : T), it looks up the in-

ternal environment to translate the type annotation T into an internal type

T�whi
h fails if T
ontains a name that is not in s
ope�and applies the

se
ond
onstraint generation rule above. 2

1.9.31 Exer
ise [FF, 9℄: Let

�

X � ftv(T) and

�

X # ftv(t). Che
k that the
on-

straints J(t : 9

�

X:T) : T

0

K and J9

�

X:(t : T) : T

0

K are equivalent. In other words,

the lo
al type annotations introdu
ed earlier may be expressed in terms of the

more
omplex
onstru
ts des
ribed above. 2

1.9.32 Exer
ise [FF, 9℄: One way of giving identity semanti
s to our new type

annotation
onstru
ts is to erase them altogether prior to exe
ution. Give

an indu
tive de�nition of bt
, the expression obtained by removing all type

annotation
onstru
ts from the expression t. Che
k that Jt : TK entails Jbt
 :

TK and explain why this is su�
ient to ensure type soundness. 2

TOP

2003/5/20

page 106

106 Draft of May 20, 2003 1 ML

It is interesting to study how expli
it introdu
tion of existentially quanti�ed

type variables intera
ts with let-polymorphism. The sour
e of their intera
-

tion lies in the di�eren
e between the
onstraints let z : 8

�

X[9X:C

1

℄:T in C

2

and 9X:let z : 8

�

X[C

1

℄:T in C

2

, whi
h was explained in Example 1.3.28. In the

former
onstraint, every free o

urren
e of z inside C

2

auses a
opy of 9X:C

1

to be taken, thus
reating its own fresh
opy of X. In the latter
onstraint,

on the other hand, every free o

urren
e of z inside C

2

produ
es a
opy of

C

1

. All su
h
opies share referen
es to X, be
ause its quanti�er was not dupli-

ated. In the former
ase, one may say that the type s
heme assigned to z is

polymorphi
 with respe
t to X, while in the latter
ase it is monomorphi
. As

a result, the pla
ement of type variable introdu
tion expressions with respe
t

to let bindings in the sour
e
ode is meaningful: introdu
ing a type variable

outside of a let
onstru
t prevents it from being generalized.

1.9.33 Example: In DM extended with integers and Booleans, the program let f =

9X:�z:(z : X) in (f 0; f true) is well-typed. Indeed, the type s
heme assigned

to f is 8X:X! X. However, the program 9X:let f = �z:(z : X) in (f 0; f true)

is ill-typed. Indeed, the type s
heme assigned to f is X ! X; then, no value

of X satis�es the
onstraints asso
iated with the appli
ations f 0 and f true.

The latter behavior is observed in Obje
tive Caml, where type variables are

impli
itly introdu
ed at the outermost level of expressions:

let f z = (z:'a) in (f 0, f true);;

This expression has type bool but is here used with type int

More details about the treatment of type annotations in Standard ML, Ob-

je
tive Caml, and Haskell are given on page 113. 2

1.9.34 Exer
ise [F, 9℄: Determine whi
h
onstraints are generated for the two

programs in Example 1.9.33. Che
k that the former is indeed well-typed, while

the latter is ill-typed. 2

Re
ursive types

We have shown that spe
ializing HM(X) with an equality-only synta
ti

model yields HM(=), a
onstraint-based formulation of Damas and Milner's

type system. Similarly, it is possible to spe
ialize HM(X) with an equality-

only free regular tree model, yielding a
onstraint-based type system that may

be viewed as an extension of Damas and Milner's type dis
ipline with re
ur-

sive types. This �avor of re
ursive types is sometimes known as equire
ursive,

sin
e
y
li
 equations, su
h as X = X ! X, are then satis�able. Our theorems

about type inferen
e and type soundness, whi
h are independent of the model,

remain valid. The
onstraint solver des
ribed in Se
tion 1.8 may be used in

TOP

2003/5/20

page 107

1.10 Universal quanti�
ation in
onstraints 107

the setting of an equality-only free regular tree model: the only di�eren
e with

the synta
ti

ase is that the o

urs
he
k is no longer performed.

Please note that, although ground types are regular, types remain �nite

obje
ts: their syntax is un
hanged. The � notation
ommonly employed to

des
ribe re
ursive types may be emulated using type equations: for instan
e,

the notation �X:X ! X
orresponds, in our
onstraint-based approa
h, to the

type s
heme 8X[X = X! X℄:X.

Although re
ursive types
ome for free, as explained above, they have not

been adopted in mainstream programming languages based on ML-the-type-

system. The reason is pragmati
: experien
e shows that many nonsensi
al

expressions are well-typed in the presen
e of re
ursive types, whereas they

are not in their absen
e. Thus, the gain in expressiveness is o�set by the fa
t

that many programming mistakes are dete
ted later than otherwise possible.

Consider, for instan
e, the following OCaml session:

o
aml -re
types

let re
 map f = fun
tion

| [℄ ! [℄

| x :: l ! (map f x) :: (map f l);;

val map : 'a ! ('b list as 'b) ! ('
 list as '
) = <fun>

This nonsensi
al variant of map is essentially useless, yet well-typed. Its prin-

ipal type s
heme, in our notation, is 8XYZ[Y = listY ^ Z = listZ℄:X ! Y ! Z.

In the absen
e of re
ursive types, it is ill-typed, sin
e the
onstraint Y =

listY ^ Z = listZ is then false.

The need for equire
ursive types is usually suppressed by the presen
e of al-

gebrai
 data types, whi
h o�er isore
ursive types, in the language. Yet, they

are still ne
essary in some situations, su
h as in Obje
tive Caml's obje
t-

oriented extension (Rémy and Vouillon, 1998), where re
ursive obje
t types

are
ommonly inferred. In order to allow re
ursive obje
t types while still

reje
ting the above variant of map, Obje
tive Caml's
onstraint solver imple-

ments a sele
tive o

urs
he
k, whi
h forbids
y
les unless they involve the

type
onstru
tor h�i asso
iated with obje
ts. The
orresponding model is a

tree model where every in�nite path down a tree must en
ounter the type

onstru
tor h�i in�nitely often.

1.10 Universal quanti�
ation in
onstraints

The
onstraint logi
 studied so far allows a set of variables

�

X to be existentially

quanti�ed within a formula C. The resulting formula 9

�

X:C re
eives its stan-

dard meaning: it requires C to hold for some

�

X. However, we
urrently have

no way of requiring a formula C to hold for all

�

X. Is it possible to extend our

TOP

2003/5/20

page 108

108 Draft of May 20, 2003 1 ML

logi
 with universal quanti�
ation? If so, what are the new possibilities o�ered

by this extension, in terms of type inferen
e? The present se
tion proposes

some answers to these questions.

It is worth noting that, although the standard notation for type s
hemes

involves the symbol 8, type s
heme introdu
tion and instantiation
onstraints

do not allow an en
oding of universal quanti�
ation. Indeed, a universal quan-

ti�er in a type s
heme is very mu
h like an existential quanti�er in a
onstraint:

this is suggested, for instan
e, by De�nition 1.3.3 and by C-LetEx.

Constraints

We extend the syntax of
onstraints as follows:

C ::= : : : j 8

�

X:C

Universally quanti�ed variables are often referred to as rigid, while existen-

tially quanti�ed variables are known as �exible. The logi
al interpretation of

onstraints (Figure 1-5) is extended as follows:

8

~

t �[

~

X 7!

~

t℄ ` def � in C

�

X # ftv(�)

� ` def � in 8

�

X:C

(CM-Forall)

We let the reader
he
k that none of the results established in Se
tion 1.3

are a�e
ted by this addition. Furthermore, the extended
onstraint language

enjoys the following properties.

1.10.1 Lemma: 8

�

X:C
 C. Conversely,

�

X # ftv(C) implies C
 8

�

X:C. 2

1.10.2 Lemma:

�

X # ftv(C

2

) implies 8

�

X:(C

1

^ C

2

) � (8

�

X:C

1

) ^ C

2

. 2

1.10.3 Lemma: 8

�

X:8

�

Y:C � 8

�

X

�

Y:C. 2

1.10.4 Lemma: Let

�

X #

�

Y. Then, 9

�

X:8

�

Y:C entails 8

�

Y:9

�

X:C. Conversely, if 9

�

Y:C de-

termines

�

X, then 8

�

Y:9

�

X:C entails 9

�

X:8

�

Y:C. 2

Constraint solving

We brie�y explain how to extend the
onstraint solver des
ribed in Se
tion 1.8

with support for universal quanti�
ation. (Thus, we again assume an equality-

only free tree model.) Constraint solving in the presen
e of equations and of

existential and universal quanti�ers is known as uni�
ation under a mixed

pre�x. It is a parti
ular
ase of the de
ision problem for the �rst-order theory

of equality on trees; see e.g. (Comon and Les
anne, 1989). Extending our

solver is straightforward: in fa
t, the treatment of universal quanti�ers turns

TOP

2003/5/20

page 109

1.10 Universal quanti�
ation in
onstraints 109

S;U ;8

�

X:C ! S[8

�

X:[℄℄;U ;C (S-Solve-All)

if

�

X # ftv(U)

S[8

�

X:9

�

Y

�

Z:[℄℄;U ; true ! S[9

�

Y:8

�

X:9

�

Z:[℄℄;U ; true (S-AllEx)

if

�

X #

�

Y ^ 9

�

X

�

Z:U determines

�

Y

S[8

�

XX:9

�

Y:[℄℄;U ; true ! false (S-All-Fail-1)

if X 62

�

Y ^ X �

?

U

Z ^ Z 62 X

�

Y

S[8

�

XX:9

�

Y:[℄℄; X = T = � ^ U ; true ! false (S-All-Fail-2)

if X 62

�

Y ^ T 62 V

S[8

�

X:9

�

Y:[℄℄;U

1

^ U

2

; true ! S;U

1

; true (S-Pop-All)

if

�

X

�

Y # ftv(U

1

) ^ 9

�

Y:U

2

� true

Figure 1-16: Solving universal
onstraints

out to be surprisingly analogous to that of let
onstraints. To begin, we extend

the syntax of sta
ks with so-
alled universal frames :

S ::= : : : j S[8

�

X:[℄℄

Be
ause existential quanti�ers
annot, in general, be hoisted out of universal

quanti�ers, rules S-Ex-1 to S-Ex-4 now allow �oating them up to the nearest

en
losing let or universal frame, if any, or to the outermost level, otherwise.

Thus, in our ma
hine representation of sta
ks, where rules S-Ex-1 to S-Ex-4

are applied in an eager fashion, every universal frame
arries a list of the type

variables that are existentially bound immediately after it, and integer ranks

ount not only let frames, but also universal frames.

The solver's spe
i�
ation is extended with the rules in Figure 1-16. S-

Solve-All, a forward rule, dis
overs a universal
onstraint and enters it,

reating a new universal frame to re
ord its existen
e. S-AllEx exploits

Lemma 1.10.4 to hoist existential quanti�ers out of the universal frame. It

is analogous to S-LetAll, and its implementation may rely upon the same

pro
edure (Exer
ise 1.8.8). The next two rules dete
t failure
onditions. S-

All-Fail-1 states that the
onstraint 8X:9

�

Y:U is false if the rigid variable

X is dire
tly or indire
tly dominated by a free variable Z. Indeed, the value

of X is then determined by that of Z�but a universally quanti�ed variable

ranges over all values, so this is a
ontradi
tion. In su
h a
ase, X is
om-

monly said to es
ape its s
ope. S-All-Fail-2 states that the same
onstraint

is false if X is equated with a nonvariable term. Indeed, the value of X is then

TOP

2003/5/20

page 110

110 Draft of May 20, 2003 1 ML

partially determined, sin
e its head
onstru
tor is known, whi
h again
on-

tradi
ts its universal status. Last, S-Pop-All splits the
urrent uni�
ation

onstraint into two
omponents U

1

and U

2

, where U

1

is made up entirely of

old variables and U

2

onstrains young variables only. This de
omposition is

analogous to that performed by S-Pop-Let. Then, it is not di�
ult to
he
k

that 8

�

X:9

�

Y:(U

1

^ U

2

) is equivalent to U

1

. So, the universal frame, as well as

U

2

, are dis
arded, and the solver pro
eeds by examining whatever remains on

top of the sta
k S.

It is possible to further extend the treatment of universal frames with two

rules analogous to S-Compress and S-UnName. In pra
ti
e, this improves

the solver's e�
ien
y, and makes it easier to share
ode between the treatment

of let frames and that of universal frames.

It is interesting to remark that, as far as the underlying uni�
ation algo-

rithm is
on
erned, there is no di�eren
e between existentially and universally

quanti�ed type variables. The algorithm solves whatever equations are pre-

sented to it, without inquiring about the status of their variables. Equations

that lead to failure, be
ause a rigid variable es
apes its s
ope or is equated

with a nonvariable term, are dete
ted only when the universal frame is ex-

ited. A perhaps more
ommon approa
h is to mark rigid variables as su
h,

allowing the uni�
ation algorithm to signal failure as soon as one of the two

error
onditions is en
ountered. In this approa
h, a rigid variable may su

ess-

fully unify only with itself or with �exible variables fresher than itself. It is

often
alled a Skolem
onstru
tor in the literature (Läufer and Odersky, 1994;

Shields and Peyton Jones, 2002). An interesting variant of this approa
h ap-

pears in Dowek, Hardin, Kir
hner and Pfenning's treatment of (higher-order)

uni�
ation (1995; 1998), where �exible variables are represented as ordinary

variables, while rigid variables are en
oded using De Bruijn indi
es.

The properties of our
onstraint solver are preserved by this extension: it

is possible to prove that Lemmas 1.8.9, 1.8.10, and 1.8.11 remain valid.

Type annotations,
ontinued

In Se
tion 1.9, we introdu
ed the expression form (t : 9

�

X:T), allowing an ex-

pression t to be annotated with a type T whose free variables

�

X are lo
ally and

existentially bound. It is now natural to introdu
e the symmetri
 expression

form (t : 8

�

X:T), where T has kind ?,

�

X is bound within T, and

�

X
ontains ftv(T),

as before. Its
onstraint generation rule is as follows:

J(t : 8

�

X:T) : T

0

K = 8

�

X:Jt : TK ^ 9

�

X:(T � T

0

) provided

�

X # ftv(t; T

0

)

The �rst
onjun
t requires t to have type T for all values of

�

X. Here, the type

variables

�

X are universally bound, as expe
ted. The se
ond
onjun
t requires

TOP

2003/5/20

page 111

1.10 Universal quanti�
ation in
onstraints 111

T

0

to be some instan
e of the universal annotation 8

�

X:T. Sin
e T

0

is only a

monotype, it seems di�
ult to think of another sensible way of
onstraining

T

0

. For this reason, the type variables

�

X are still existentially bound in the

se
ond
onjun
t. This makes the interpretation of the universal quanti�er in

type annotations a bit more
omplex than that of the existential quanti�er. For

instan
e, when subtyping is interpreted as equality, the
onstraint generation

rule may be read: a valid type for (t : 8

�

X:T) is of the form T, for some
hoi
e

of the type variables

�

X, provided t has type T for all
hoi
es of

�

X.

We remark that (t : 8

�

X:T) must be a new expression form: it
annot be

en
oded by adding new
onstants to the
al
ulus�whereas (t : 9

�

X:T)
ould�

be
ause none of the existing
onstraint generation rules produ
e universally

quanti�ed
onstraints. Like all type annotations, it has identity semanti
s.

What is the use of universal type annotations,
ompared with existential

type annotations?When a type variable is existentially bound, the type
he
ker

is free to assign it whatever value makes the program well-typed. As a result,

the expressions (�z:z

^

+

^

1 : 9X:X ! X) and (�z:z : 9X:X ! X) are both well-

typed: X is assigned int in the former
ase, and remains undetermined in the

latter. However, it is sometimes useful to be able to insist that an expression

should be polymorphi
. This e�e
t is naturally a
hieved by using a universally

bound type variable. Indeed, (�z:z

^

+

^

1 : 8X:X! X) is ill-typed, be
ause 8X:(X =

int) is false, while (�z:z : 8X:X! X) is well-typed.

1.10.5 Exer
ise [F℄: Write down the
onstraints 9Z:J(�z:z

^

+

^

1 : 8X:X! X) : ZK and

9Z:J(�z:z : 8X:X! X) : ZK, whi
h tell whether these expressions are well-typed.

Che
k that the former is false, while the latter is satis�able. 2

A universal type annotation, as de�ned above, is nothing but a (
losed)

Damas-Milner type s
heme. Thus, the new
onstru
t (t : 8

�

X:T) gives us the

ability to ensure that the expression t admits the type s
heme 8

�

X:T. This

feature is exploited at the module level in ML-the-programming-language,

where it is ne
essary to
he
k that the inferred type for a module
omponent t

is more general than the type s
heme S that appears in the module's signature.

In our view, this pro
ess simply
onsists in ensuring that (t : S) is well-typed.

In Se
tion 1.9, we have pointed out that lo
al (that is,
losed) type annota-

tions o�er limited expressiveness, be
ause they
annot share type variables. To

lift this limitation, we have introdu
ed the expression forms 9

�

X:t and (t : T).

The former binds the type variables

�

X within t, making them available for use

in type annotations, and instru
ts the
onstraint generator to existentially

quantify them at this point. The latter requires t to have T. It is natural to

pro
eed in the same manner in the
ase of universal type annotations. We now

introdu
e the expression form 8

�

X:t, whi
h also binds

�

X within t, but
omes

TOP

2003/5/20

page 112

112 Draft of May 20, 2003 1 ML

with a di�erent
onstraint generation rule:

J8

�

X:t : TK = 8

�

X:9Z:Jt : ZK ^ 9

�

X:Jt : TK provided

�

X # ftv(T) ^ Z 62 ftv (t)

This rule is a bit more
omplex than that asso
iated with the expression form

9

�

X:t. Again, this is due to the fa
t that we do not wish to over
onstrain T.

The �rst exer
ise below shows that a more naïve version of the rule does not

yield the desired behavior. The se
ond exer
ise shows that this version does.

The third exer
ise
lari�es an e�
ien
y
on
ern.

1.10.6 Exer
ise [F℄: Assume that J8

�

X:t : TK is de�ned as 8

�

X:Jt : TK, provided

�

X # ftv (T). Write down the
onstraint J8X:(�z:z : X ! X) : ZK. Can you

des
ribe its solutions? Does it have the intended meaning? 2

1.10.7 Exer
ise [FF℄: Let

�

X � ftv(T) and

�

X # ftv(t). Che
k that the
onstraints

J(t : 8

�

X:T) : T

0

K and J8

�

X:(t : T) : T

0

K are equivalent. In other words, lo
al

universal type annotations may also be expressed in terms of the more
omplex

onstru
ts des
ribed above. 2

1.10.8 Exer
ise [FFFF, 9℄: The
onstraint generation rule that appears above

ompromises the linear time and spa
e
omplexity of
onstraint generation,

be
ause it dupli
ates the term t. It is possible to avoid this problem, but

this requires a slight generalization of the
onstraint language. Let us write

let x : 8

�

X

�

Y[C

1

℄:T in C

2

for 8

�

X:9

�

Y:C

1

^ def x : 8

�

X

�

Y[C

1

℄:T in C

2

. In this extended

let form, the underlined variables

�

X are interpreted as rigid, instead of �exible,

while
he
king that C

1

is satis�able. However, the type s
heme asso
iated

with x is not a�e
ted. Che
k that the above
onstraint generation rule may

now be written as follows:

J8

�

X:t : TK = let x : 8

�

XZ[Jt : ZK℄:Z in x � T provided Z 62 ftv (t)

Roughly speaking, the new rule forms a most general type s
heme for t,

ensures that the type variables

�

X are un
onstrained in it, and
he
ks that T

is an instan
e of it. Furthermore, it does not dupli
ate t. To
omplete the

exer
ise, extend the spe
i�
ation of the
onstraint solver (Figures 1-12 and 1-

16), as well as its implementation, to deal with this extension of the
onstraint

language. 2

To
on
lude, let us on
e again stress that, if T has free type variables, the

e�e
t of the type annotation (t : T) depends on how and where they are

bound. The e�e
t of how stems from the fa
t that binding a type variable

universally, rather than existentially, leads to a stri
ter
onstraint. Indeed,

we let the reader
he
k that J8

�

X:t : TK entails J9

�

X:t : TK, while the
onverse

TOP

2003/5/20

page 113

1.10 Universal quanti�
ation in
onstraints 113

does not hold in general. The e�e
t of where has been illustrated, in the
ase

of existentially bound type variables, in Se
tion 1.9. It is due, in that
ase,

to the fa
t that let and 9 do not
ommute. In the
ase of universally bound

type variables, it may be imputed to the fa
t that 8 and 9 do not
ommute.

For instan
e, �z:8X:(z : X) is ill-typed, be
ause inside the �-abstra
tion, the

program variable z
annot be said to have every type. However, 8X:�z:(z : X)

is well-typed, be
ause the identity fun
tion does have type X! X for every X.

1.10.9 Exer
ise [F℄: Write down the
onstraints 9Z:J�z:8X:(z : X) : ZK and

9Z:J8X:�z:(z : X) : ZK, whi
h tell whether these expressions are well-typed.

Is the former satis�able? Is the latter? 2

In Standard ML and Obje
tive Caml, the type variables that appear in

type annotations are impli
itly bound. That is, there is no syntax in the

language for the
onstru
ts 9

�

X:t and 8

�

X:t. When a type annotation (t : T)

ontains a free type variable X, a �xed
onvention tells how and where X is

bound. In Standard ML, X is universally bound at the nearest val binding

that en
loses all related o

urren
es of X (Milner, Tofte, and Harper, 1990).

The 1997 revision of Standard ML (Milner, Tofte, Harper, and Ma
Queen,

1997b) slightly improves on this situation by allowing type variables to be

expli
itly introdu
ed at val bindings. However, they still must be universally

bound. In Obje
tive Caml, X is existentially bound at the nearest en
losing

toplevel let binding; this behavior seems to be presently undo
umented. We

argue that (i) allowing type variables to be impli
itly introdu
ed is
onfusing;

and (ii) for expressiveness, both universal and existential quanti�ers should

be made available to programmers. Surprisingly, these language design and

type inferen
e issues seem to have re
eived little attention in the literature,

although they have most likely been �folklore� for a long time. Peyton Jones

and Shields (2003) study these issues in the
ontext of Haskell, and
on
ur

with (i). Con
erning (ii), they seem to think that the language designer must

hoose between existential and universal type variable introdu
tion forms�

whi
h they refer to as �type-sharing� and �type-lambda��whereas we point

out that they may and should
oexist.

Polymorphi
 re
ursion

Example 1.2.10 explains how the letre

onstru
t found in ML-the-

programming-language may be viewed as an appli
ation of the
onstant fix,

wrapped inside a normal let
onstru
t. Exer
ise 1.9.6 shows that this gives

rise to a somewhat restri
tive
onstraint generation rule: generalization o
-

urs only after the appli
ation of fix is type
he
ked. In other words, in

letre
 f = �z:t

1

in t

2

, all o

urren
es of f within t

1

must have the same

TOP

2003/5/20

page 114

114 Draft of May 20, 2003 1 ML

(monomorphi
) type. This restri
tion is sometimes a nuisan
e, and seems un-

warranted: if the fun
tion that is being de�ned is polymorphi
, it should be

possible to use it at di�erent types even inside its own de�nition. Indeed, My-

roft (1984) extended Damas and Milner's type system with a more liberal

treatment of re
ursion,
ommonly known as polymorphi
 re
ursion. The idea

is to only request o

urren
es of f within t

1

to have the same type s
heme.

Hen
e, they may have di�erent types, all of whi
h are instan
es of a
ommon

type s
heme. It was later shown that well-typedness in My
roft's extended

type system is unde
idable (Henglein, 1993; Kfoury, Tiuryn, and Urzy
zyn,

1993). To work around this stumbling blo
k, one solution is to use a semi-

algorithm, falling ba
k to monomorphi
 re
ursion if it does not su

eed or

fail in reasonable time. Although su
h a solution might be appealing in the

setting of an automated program analysis, it is less so in the setting of a

programmer-visible type system, be
ause it may be
ome di�
ult to under-

stand why a program is ill-typed. Thus, we des
ribe a simpler solution, whi
h

onsists in requiring the programmer to expli
itly supply a type s
heme for

f. This is an instan
e of a mandatory type annotation.

To begin, we must
hange the status of fix, be
ause if fix remains a

onstant, then f must remain �-bound and
annot re
eive a polymorphi

type s
heme. We turn fix into a language
onstru
t, whi
h binds a program

variable f, and annotates it with a DM type s
heme. The syntax of values

and expressions is thus extended as follows:

v ::= : : : j fix f : S:�z:t t ::= : : : j fix f : S:�z:t

Please note that f is bound within �z:t. The operational semanti
s is extended

as follows.

(fix f : S:�z:t) v �! (let f = fix f : S:�z:t in �z:t) v (R-Fix')

The type annotation S plays no essential role in the redu
tion; it is merely

preserved. It is now possible to de�ne letre
 f : S = �z:t

1

in t

2

as synta
ti

sugar for let f = fix f : S:�z:t

1

in t

2

.

We now give a
onstraint generation rule for fix:

Jfix f : S:�z:t : TK = let f : S in J�z:t : SK ^ S � T

The left-hand
onjun
t requires the fun
tion �z:t to have type s
heme S, under

the assumption that f has type S. Thus, it is now possible for di�erent o

ur-

ren
es of f within t to re
eive di�erent types. If S is 8

�

X:T, where

�

X # ftv(t),

then we write Jt : SK for 8

�

X:Jt : TK. Indeed,
he
king the validity of a poly-

morphi
 type annotation�be it mandatory, as is the
ase here, or optional,

as was previously the
ase�requires a universally quanti�ed
onstraint. The

right-hand
onjun
t merely
onstrains T to be an instan
e of S.

TOP

2003/5/20

page 115

1.10 Universal quanti�
ation in
onstraints 115

Given the de�nition of letre
 f : S = �z:t

1

in t

2

as synta
ti
 sugar, the

above rule leads to the following derived
onstraint generation rule for letre
:

Jletre
 f : S = �z:t

1

in t

2

: TK = let f : S in (J�z:t

1

: SK ^ Jt

2

: TK)

This rule is arguably quite natural. The program variable f is assigned the

type s
heme S throughout its s
ope, that is, both inside and outside of the

fun
tion's de�nition. The fun
tion �z:t

1

must itself have type s
heme S. Last,

t

2

must have type T, as in every let
onstru
t.

1.10.10 Exer
ise [FF℄: Prove that the derived
onstraint generation rule above is

indeed valid. 2

It is straightforward to prove that the extended language still enjoys subje
t

redu
tion. The proof relies on the following lemma: if t has type s
heme S,

then every instan
e of S is also a valid type for t.

1.10.11 Lemma: Jt : SK ^ S � T
 Jt : TK. 2

1.10.12 Theorem [Subje
t redu
tion℄: (R-Fix') � (v). 2

The programming language Haskell (Hudak, Peyton Jones, Wadler, Boutel,

Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, Kieburtz, Nikhil,

Partain, and Peterson, 1992) o�ers polymorphi
 re
ursion. Interesting details

about its typing rules may be found in (Jones, 1999).

It is worth pointing out that some restri
ted instan
es of type inferen
e

in the presen
e of polymorphi
 re
ursion are de
idable. This is typi
ally the

ase in
ertain program analyses, where a type derivation for the program is

already available, and the goal is only to infer extra atomi
 annotations, su
h

as binding time or stri
tness properties. Several papers that exploit this idea

are (Dussart, Henglein, and Mossin, 1995a; Jensen, 1998; Rehof and Fähn-

dri
h, 2001).

Universal types

ML-the-type-system enfor
es a stri
t strati�
ation between types and type

s
hemes, or, in other words, allows only prenex universal quanti�ers inside

types. We have pointed out earlier that there is good reason to do so: type

inferen
e for ML-the-type-system is de
idable, while type inferen
e for Sys-

tem F, whi
h has no su
h restri
tion, is unde
idable. Yet, this restri
tion
omes

at a
ost in expressiveness: it prevents higher-order fun
tions from a

epting

polymorphi
 fun
tion arguments, and forbids storing polymorphi
 fun
tions

inside data stru
tures. Fortunately, it is in fa
t possible to
ir
umvent the

problem by requiring the programmer to supply additional type information.

TOP

2003/5/20

page 116

116 Draft of May 20, 2003 1 ML

The approa
h that we are about to des
ribe is reminis
ent of the way alge-

brai
 data type de�nitions allow
ir
umventing the problems asso
iated with

equire
ursive types (Se
tion 1.9). Be
ause we do not wish to extend the syn-

tax of types with universal types of the form 8

�

Y:T, we instead allow universal

type de�nitions, of the form

D

~

X � 8

�

Y:T

where D still ranges over data types. If D has signature ~�) ?, then the type

variables

~

X must have kind ~�. The type T must have kind ?. The type variables

�

X and

�

Y are
onsidered bound within T, and the de�nition must be
losed, that

is, ftv(T) �

�

X

�

Y must hold. Last, the varian
e of the type
onstru
tor D must

mat
h its de�nition�a requirement stated as follows:

1.10.13 Definition: Let D

~

X � 8

�

Y:T and D

~

X

0

� 8

�

Y

0

:T

0

be two �-equivalent instan
es

of a single universal type de�nition, su
h that

�

Y # ftv(T

0

) and

�

Y

0

ftv(T).

Then, D

~

X � D

~

X

0

 8

�

Y

0

:9

�

Y:T � T

0

must hold. 2

This requirement is analogous to that found in De�nition 1.9.8. The idea

is, if D

~

X and D

~

X

0

are
omparable, then their unfoldings 8

�

Y:T and 8

�

Y

0

:T

0

should

be
omparable as well. The
omparison between them is expressed by the

onstraint 8

�

Y

0

:9

�

Y:T � T

0

, whi
h may be read: every instan
e of 8

�

Y

0

:T

0

is (a

supertype of) an instan
e of 8

�

Y:T. Again, when subtyping is interpreted as

equality, the requirement of De�nition 1.10.13 is always satis�ed; it be
omes

nontrivial only in the presen
e of true subtyping.

The e�e
t of the universal type de�nition D

~

X � 8

�

Y:T is to enri
h the pro-

gramming language with a new
onstru
t:

v ::= : : : j pa
k

D

v t ::= : : : j pa
k

D

t E ::= : : : j pa
k

D

E

and with a new unary destru
tor open

D

. Their operational semanti
s is as

follows:

open

D

(pa
k

D

v)

Æ

�!
v

(R-Open-All)

Intuitively, pa
k

D

and open

D

are the two
oer
ions that witness the isomor-

phism between D

~

X and 8

�

Y:T. The value pa
k

D

v behaves exa
tly like v, ex
ept

it is marked, as a hint to the type
he
ker. As a result, the mark must be

removed using open

D

before the value
an be used.

What are the typing rules for pa
k

D

and open

D

? In System F, they would

re
eive types 8

�

X:(8

�

Y:T) ! D

~

X and 8

�

X:D

~

X ! 8

�

Y:T, respe
tively. However, nei-

ther of these is a valid type s
heme: both exhibit a universal quanti�er under

an arrow.

In the
ase of pa
k

D

, whi
h has been made a language
onstru
t rather

than a
onstant, we work around the problem by embedding this universal

TOP

2003/5/20

page 117

1.10 Universal quanti�
ation in
onstraints 117

quanti�er in the
onstraint generation rule:

Jpa
k

D

t : T

0

K = 9

�

X:(Jt : 8

�

Y:TK ^ D

~

X � T

0

)

The rule impli
itly requires that

�

X be fresh for the left-hand side and that

D

~

X � 8

�

Y:T be (an �-variant of) the de�nition of D. The left-hand
onjun
t

requires t to have type s
heme 8

�

Y:T. The notation Jt : SK was de�ned on

page 114. The right-hand
onjun
t states that a valid type for pa
k

D

t is (a

supertype of) D

~

X.

We deal with open

D

as follows. Provided

�

X #

�

Y, we extend the initial envi-

ronment �

0

with the binding open

D

: 8

�

X

�

Y:D

~

X! T. We have simply hoisted the

universal quanti�er outside of the arrow�a valid isomorphism in System F.

The proof of the subje
t redu
tion theorem must be extended with the

following new
ase:

1.10.14 Theorem [Subje
t redu
tion℄: (R-Open-All) � (v). 2

Proof: We have

let �

0

in Jopen

D

(pa
k

D

v) : T

0

K

� let �

0

in 9Z:(open

D

� Z! T

0

^ Jpa
k

D

v : ZK) (1)

� let �

0

in 9Z:(9

�

X

0

�

Y

0

:(D

~

X

0

! T

0

� Z! T

0

) ^ 9

�

X:(Jv : 8

�

Y:TK ^ D

~

X � Z)) (2)

� let �

0

in 9

�

X

�

X

0

�

Y

0

:(Jv : 8

�

Y:TK ^ D

~

X � D

~

X

0

^ T

0

� T

0

) (3)

 let �

0

in 9

�

X

�

Y

�

X

0

�

Y

0

:(Jv : 8

�

Y:TK ^ T � T

0

^ T

0

� T

0

) (4)

 let �

0

in 9

�

X

�

Y

�

X

0

�

Y

0

:Jv : T

0

K (5)

� let �

0

in Jv : T

0

K (6)

where (1) is by de�nition of
onstraint generation for appli
ations and for

onstants; Z is fresh; (2) is by de�nition of
onstraint generation for pa
k

D

and open

D

, where D

~

X � 8

�

Y:T and D

~

X

0

� 8

�

Y

0

:T

0

are two �-equivalent instan
es

of the de�nition of D;

�

X,

�

Y,

�

X

0

, and

�

Y

0

are fresh and satisfy

�

Y # ftv(T

0

) and

�

Y

0

ftv(T); (3) is by C-ExAnd, C-Arrow, and C-ExTrans, whi
h allows

eliminating Z; (4) is by De�nition 1.10.13, Lemma 1.10.1, and C-ExAnd; (5)

is by Lemmas 1.10.11 and 1.6.3; (6) is by C-Ex*. 2

The proof of (R-Context) � (v) must also be extended with a new sub-

ase,
orresponding the new produ
tion E ::= : : : j pa
k

D

E . If the language

is pure, this is straightforward. In the presen
e of side e�e
ts, however, this

sub
ase fails, be
ause universal and existential quanti�ers in
onstraints do

not
ommute. The problem is then avoided by restri
ting pa
k

D

to values, as

in De�nition 1.7.7.

This approa
h to extending ML-the-type-system with universal (or

existential�see below) types has been studied in (Läufer and Odersky, 1994;

TOP

2003/5/20

page 118

118 Draft of May 20, 2003 1 ML

Rémy, 1994; Odersky and Läufer, 1996; Shields and Peyton Jones, 2002).

Laüfer and Odersky have suggested
ombining universal or existential type

de
larations with algebrai
 data type de�nitions. This allows suppressing the

umbersome pa
k

D

and open

D

onstru
ts; instead, one simply uses the stan-

dard syntax for
onstru
ting and de
onstru
ting variants and re
ords.

Existential types

Existential types (TAPL Chapter 24) are
lose
ousins of universal types, and

may be introdu
ed into ML-the-type-system in the same manner. A
tually,

existential types have been introdu
ed in ML-the-type-system before universal

types. We give a brief des
ription of this extension, insisting mainly on the

di�eren
es with the
ase of universal types.

We now allow existential type de�nitions, of the form D

~

X � 9

�

Y:T. The
ondi-

tions required of a well-formed de�nition are un
hanged, ex
ept the varian
e

requirement, whi
h is dual:

1.10.15 Definition: Let D

~

X � 9

�

Y:T and D

~

X

0

� 9

�

Y

0

:T

0

be two �-equivalent instan
es

of a single existential type de�nition, su
h that

�

Y # ftv(T

0

) and

�

Y

0

ftv(T).

Then, D

~

X � D

~

X

0

 8

�

Y:9

�

Y

0

:T � T

0

must hold. 2

The e�e
t of this existential type de�nition is to enri
h the programming

language with a new unary
onstru
tor pa
k

D

and with a new
onstru
t:

t ::= : : : j open

D

t t and E ::= : : : j open

D

E t j open

D

v E . Their operational

semanti
s is as follows:

open

D

(pa
k

D

v

1

) v

2

�! v

2

v

1

(R-Open-Ex)

In the literature, the se
ond argument of open

D

is often required to be a

�-abstra
tion �z:t, so the
onstru
t be
omes open

D

t (�z:t), often written

open

D

t as z in t.

Provided

�

X #

�

Y, we extend the initial environment �

0

with the binding

pa
k

D

: 8

�

X

�

Y:T! D

~

X. The
onstraint generation rule for open

D

is as follows:

Jopen

D

t

1

t

2

: T

0

K = 9

�

X:(Jt

1

: D

~

XK ^ Jt

2

: 8

�

Y:T! T

0

K)

The rule impli
itly requires that

�

X be fresh for the left-hand side, that

�

Y be

fresh for T

0

, and that D

~

X � 8

�

Y:T be (an �-variant of) the de�nition of D.

The left-hand
onjun
t simply requires t

1

to have type D

~

X. The right-hand

onjun
t states that the fun
tion t

2

must be prepared to a

ept an argument

of type T, for any

�

Y, and produ
e a result of the expe
ted type T

0

. In other

words, t

2

must be a polymorphi
 fun
tion.

The type s
heme of existential pa
k

D

resembles that of universal open

D

,

while the
onstraint generation rule for existential open

D

is a
lose
ousin

TOP

2003/5/20

page 119

1.11 Rows 119

of that for universal pa
k

D

. Thus, the duality between universal and exis-

tential types is rather strong. The main di�eren
e lies in the fa
t that the

existential open

D

onstru
t is binary, rather than unary, so as to limit the

s
ope of the newly introdu
ed type variables

�

Y. The duality may be better

understood by studying the en
oding of existential types in terms of universal

types (Reynolds, 1983b).

As expe
ted, R-Open-Ex preserves types.

1.10.16 Theorem [Subje
t redu
tion℄: (R-Open-Ex) � (v). 2

1.10.17 Exer
ise [FF, 9℄: Prove Theorem 1.10.16. The proof is analogous, al-

though not identi
al, to that of Theorem 1.10.14. 2

In the presen
e of side e�e
ts, the new produ
tion E ::= : : : j open

D

v E is

problemati
. The standard workaround is to restri
t the se
ond argument to

open

D

to be a value.

1.11 Rows

In Se
tion 1.9, we have shown how to extend ML-the-programming-language

with algebrai
 data types, that is, variant and re
ord type de�nitions, whi
h

we now refer to as simple. This me
hanism has a severe limitation: two distin
t

de�nitions must de�ne in
ompatible types. As a result, one
annot hope to

write
ode that uniformly operates over variants or re
ords of di�erent shapes,

be
ause the type of su
h
ode is not even expressible.

For instan
e, it is impossible to express the type of the polymorphi
 re
ord

a

ess operation, whi
h retrieves the value stored at a parti
ular �eld ` inside

a re
ord, regardless of whi
h other �elds are present. Indeed, if the label `

appears with type T in the de�nition of the simple re
ord type D

~

X, then the

asso
iated re
ord a

ess operation has type 8

�

X:D

~

X ! T. If ` appears with

type T

0

in the de�nition of another simple re
ord type, say D

0

~

X

0

, then the

asso
iated re
ord a

ess operation has type 8

�

X

0

:D

0

~

X

0

! T

0

; and so on. The most

pre
ise type s
heme that subsumes all of these in
omparable type s
hemes

is 8XY:X ! Y. It is, however, not a sound type s
heme for the re
ord a

ess

operation. Another powerful operation whose type is
urrently not expressible

is polymorphi
 re
ord extension, whi
h
opies a re
ord and stores a value at

�eld ` in the
opy, possibly
reating the �eld if it did not previously exist, again

regardless of whi
h other �elds are present. (If ` was known to previously exist,

the operation is known as polymorphi
 re
ord update.)

In order to assign types to polymorphi
 re
ord operations, we must do away

with re
ord type de�nitions: we must repla
e named re
ord types, su
h as D

~

X,

with stru
tural re
ord types that provide a dire
t des
ription of the re
ord's

TOP

2003/5/20

page 120

120 Draft of May 20, 2003 1 ML

domain and
ontents. (Following the analogy between a re
ord and a partial

fun
tion from labels to values, we use the word domain to refer to the set of

�elds that are de�ned in a re
ord.) For instan
e, a produ
t type is stru
tural:

the type T

1

� T

2

is the (unde
lared) type of pairs whose �rst
omponent has

type T

1

and whose se
ond
omponent has type T

2

. Thus, we wish to design

re
ord types that behave very mu
h like produ
t types. In doing so, we fa
e two

orthogonal di�
ulties. First, as opposed to pairs, re
ords may have di�erent

domains. Be
ause the type system must stati
ally ensure that no unde�ned

�eld is a

essed, information about a re
ord's domain must be made part of

its type. Se
ond, be
ause we suppress re
ord type de�nitions, labels must now

be prede�ned. However, for e�
ien
y and modularity reasons, it is impossible

to expli
itly list every label in existen
e in every re
ord type.

In what follows, we explain how to address the �rst di�
ulty in the sim-

ple setting of a �nite set of labels. Then, we introdu
e rows, whi
h allow

dealing with an in�nite set of labels, and address the se
ond di�
ulty. We

de�ne the syntax and logi
al interpretation of rows, study the new
onstraint

equivalen
e laws that arise in their presen
e, and extend the �rst-order uni�-

ation algorithm with support for rows. Then, we review several appli
ations

of rows, in
luding polymorphi
 operations on re
ords, variants, and obje
ts,

and dis
uss alternatives to rows.

Re
ords with �nite
arrier

Let us temporarily assume that L is �nite. In fa
t, for the sake of de�niteness,

let us assume that L is f`

a

; `

b

; `

g.

To begin, let us
onsider only full re
ords, whose domain is exa
tly L�in

other words, tuples indexed by L. To des
ribe them, it is natural to introdu
e

a type
onstru
tor re
ord of signature ?
 ?
 ?) ?. The type re
ord T

a

T

b

T

represents all re
ords where the �eld `

a

(resp. `

b

, `

)
ontains a value of

type T

a

(resp. T

b

, T

). Please note that re
ord is nothing but a produ
t type

onstru
tor of arity 3. The basi
 operations on re
ords, namely
reation of

a re
ord out of a default value, whi
h is stored into every �eld, update of a

parti
ular �eld (say, `

b

), and a

ess to a parti
ular �eld (say, `

b

), may be

assigned the following type s
hemes:

f�g : 8X:X! re
ord X X X

f� with `

b

= �g : 8X

a

X

b

X

0

b

X

:re
ord X

a

X

b

X

! X

0

b

! re
ord X

a

X

0

b

X

�:f`

b

g : 8X

a

X

b

X

:re
ord X

a

X

b

X

! X

b

Here, polymorphism allows updating or a

essing a �eld without knowledge of

the types of the other �elds. This �exibility is made possible by the property

that all re
ord types are formed using a single re
ord type
onstru
tor.

TOP

2003/5/20

page 121

1.11 Rows 121

This is �ne, but in general, the domain of a re
ord is not ne
essarily L: it

may be a subset of L. How may we deal with this fa
t, while maintaining the

above key property? A naïve approa
h
onsists in en
oding arbitrary re
ords

in terms of full re
ords, using the standard algebrai
 data type option, whose

de�nition is optionX � pre X+ abs: We use pre for present and abs for absent :

indeed, a �eld that is de�ned with value v is en
oded as a �eld with value pre v,

while an unde�ned �eld is en
oded as a �eld with value abs. Thus, an arbitrary

re
ord whose �elds, if present, have types T

a

, T

b

, and T

, respe
tively, may be

en
oded as a full re
ord of type re
ord (option T

a

) (option T

b

) (option T

). This

naive approa
h su�ers from a serious drawba
k: re
ord types still
ontain no

domain information. As a result, �eld a

ess must involve a dynami

he
k,

so as to determine whether the desired �eld is present: in our en
oding, this

orresponds to the use of
ase

option

.

To avoid this overhead and in
rease programming safety, we must move

this
he
k from runtime to
ompile time. In other words, we must make the

type system aware of the di�eren
e between pre and abs. To do so, we re-

pla
e the de�nition of option by two separate algebrai
 data type de�nitions,

namely pre X � pre X and abs � abs. In other words, we introdu
e a unary

type
onstru
tor pre, whose only asso
iated data
onstru
tor is pre, and a

nullary type
onstru
tor abs, whose only asso
iated data
onstru
tor is abs.

Re
ord types now
ontain domain information: for instan
e, a re
ord of type

re
ord abs (pre T

b

) (pre T

) must have domain f`

b

; `

g. Thus, the type of a �eld

tells whether it is de�ned. Sin
e the type pre has no data
onstru
tors other

than pre, the a

essor pre

�1

, whose type is 8X:pre X ! X, and whi
h allows

retrieving the value stored in a �eld,
annot fail. Thus, the dynami

he
k has

been eliminated.

To
omplete the de�nition of our en
oding, we now de�ne operations

on arbitrary re
ords in terms of operations on full re
ords. To distinguish

between the two, we write the former with angle bra
es, instead of
urly

bra
es. The empty re
ord hi, where all �elds are unde�ned, may be de�ned

as fabsg. Extension at a parti
ular �eld (say, `

b

) h� with `

b

= �i is de�ned as

�r:�z:fr with `

b

= pre zg. A

ess at a parti
ular �eld (say, `

b

) �:h`

b

i is de�ned

as �z:pre

�1

z:f`

b

g. It is straightforward to
he
k that these operations have

the following prin
ipal type s
hemes:

hi : re
ord abs abs abs

h� with `

b

= �i : 8X

a

X

b

X

0

b

X

:re
ord X

a

X

b

X

! X

0

b

! re
ord X

a

(pre X

0

b

) X

�:h`

b

i : 8X

a

X

b

X

:re
ord X

a

(pre X

b

) X

! X

b

It is important to noti
e that the type s
hemes asso
iated with extension

and a

ess at `

b

are polymorphi
 in X

a

and X

, whi
h now means that these

operations are insensitive not only to the type, but also to the presen
e or

TOP

2003/5/20

page 122

122 Draft of May 20, 2003 1 ML

absen
e of the �elds `

a

and `

. Furthermore, extension is polymorphi
 in X

b

,

whi
h means that it is insensitive to the presen
e or absen
e of the �eld `

b

in its argument. The subterm pre X

0

b

in its result type re�e
ts the fa
t that

`

b

is de�ned in the extended re
ord. Conversely, the subterm pre X

b

in the

type of the a

ess operation re�e
ts the requirement that `

b

be de�ned in its

argument.

Our en
oding of arbitrary re
ords in terms of full re
ords was
arried out

for pedagogi
al purposes. In pra
ti
e, no su
h en
oding is ne
essary: the data

onstru
tors pre and abs have no ma
hine representation, and the
ompiler

is free to lay out re
ords in memory in an e�
ient manner. The en
oding is

interesting, however, be
ause it provides a natural way of introdu
ing the type

onstru
tors pre and abs, whi
h play an important role in our treatment of

polymorphi
 re
ord operations.

We remark that, in our en
oding, the arguments of the type
onstru
tor

re
ord are expe
ted to be either type variables or formed with pre or abs,

while,
onversely, the type
onstru
tors pre and abs are not intended to appear

anywhere else. It is possible to enfor
e this invariant using kinds. In addition

to ?, let us introdu
e the kind � of �eld types. Then, let us adopt the following

signatures: pre: ?) �, abs : �, and re
ord : �
 �
 �) ?.

1.11.1 Exer
ise [F, Re
ommended, 9℄: Che
k that the three type s
hemes

given above are well-kinded. What is the kind of ea
h type variable? 2

1.11.2 Exer
ise [FF, Re
ommended, 9℄: Our re
ord types
ontain information

about every �eld, regardless of whether it is de�ned: we en
ode de�nedness

information within the type of ea
h �eld, using the type
onstru
tors pre and

abs. A perhaps more natural approa
h would be to introdu
e a family of re
ord

type
onstru
tors, indexed by the subsets of L, so that the types of re
ords

with di�erent domains are formed with di�erent
onstru
tors. For instan
e,

the empty re
ord would have type fg; a re
ord that de�nes the �eld `

a

only

would have a type of the form f`

a

: T

a

g; a re
ord that de�nes the �elds `

b

and

`

only would have a type of the form f`

b

: T

b

; `

: T

g; and so on. Assuming

that the type dis
ipline is Damas and Milner's (that is, assuming an equality-

only synta
ti
 model), would it be possible to assign satisfa
tory type s
hemes

to polymorphi
 re
ord a

ess and extension? Would it help to equip re
ord

types with a nontrivial subtyping relation? 2

Re
ords with in�nite
arrier

Finite re
ords are insu�
ient both from pra
ti
al and theoreti
al points of

view. In pra
ti
e, the set of labels
ould be
ome very large, making the type

of every re
ord as large as the set of labels itself, even if only a few labels are

TOP

2003/5/20

page 123

1.11 Rows 123

a
tually de�ned. In prin
iple, the set of labels
ould even be in�nite. A
tually,

in modular programs the whole set of labels may not be known in advan
e,

whi
h amounts in some way to working with an in�nite set of labels. Thus,

re
ords must be drawn from an in�nite set of labels�whether their domains

are �nite or in�nite. Still, we
an restri
t our attention to re
ords that are

almost
onstant, that is, re
ords where only a �nite number of �elds di�er.

With this restri
tion, full re
ords (de�ned everywhere)
an always be built by

giving expli
it de�nitions for a �nite number of �elds and a default value for

all other �elds, as in the �nite
ase. For instan
e, the re
ord ffffalseg with

` = 1g with `

0

= trueg is the re
ord equal to true on �eld `

0

, to 1 on �eld `,

and to false on any other �eld.

Types of re
ords are fun
tions from labels to types,
alled rows. However,

for sake of generality, we use a unary type
onstru
tor, say �, as an indire
tion

between rows and re
ord types. Moreover, we further restri
t our attention

to the
ase where rows are also almost
onstant. (The fa
t that the property

holds for re
ord values does not imply that it also holds for re
ord types, for

the default value of some re
ord
ould have a polymorphi
 type, and one
ould

wish to see ea
h �eld with a di�erent instan
e of this polymorphi
 type. So this

is a true restri
tion, but a reasonable one.) Thus, rows
an also be represented

by giving expli
it types for a �nite number of �elds and a default type for all

other �elds. We write �T the row whose type is T on every �eld, and (` :T ; T

0

)

the row whose type is T on �eld ` and T

0

on other �elds. Formally, � is a unary

type
onstru
tor and ` is a family of binary type
onstru
tors, written with

synta
ti
 sugar (` : � ; �). For example, �(` : bool ; (`

0

: int ; �bool)) is a

re
ord type that des
ribes re
ords whose �eld `
arries a value of type bool,

�eld `

0

arries a value of type int, and all other �elds
arry values of type

bool. In fa
t, this is a sound type for the re
ord de�ned above. In fa
t, the

type �(`

0

:int ; (` :bool ; �bool)) should also be a sound type for this re
ord,

sin
e the order in whi
h �elds are spe
i�ed should not matter. We a
tually

treat both types as equivalent. Furthermore, the row (` :bool ; �bool), whi
h

stands for bool on �eld ` and �bool everywhere else, must also be equivalent

to �bool, whi
h stands for bool everywhere.

A re
ord type may also
ontain type variables. For instan
e, the re
ord

�z:fzg that maps any value v to a re
ord with the default value v has type

X ! �(�X). Proje
tions of this re
ord on any �eld will return a value of the

same type X. By
omparison, the fun
tion that reads some �eld ` of its (re
ord)

argument has type �(` : X ; Y) ! X: this says that the argument must be a

re
ord where �eld ` has type X and other �elds may have any type. Variable Y

is
alled a row variable, sin
e it
an be instantiated to any row. For instan
e, Y

an be instantiated to (`

0

:int ; Y

0

) and as a result this fun
tion
an be applied

to the re
ord above. Conversely, the row �X, whi
h is equal to (`

0

: X ; X),
an

TOP

2003/5/20

page 124

124 Draft of May 20, 2003 1 ML

only be instantiated to rows of the form �T, whi
h are equal to (`

0

: T ; T),

that is, to
onstant rows.

Syntax of row types

Let L be a denumerable
olle
tion of labels. We write `:L for f`g ℄ L, whi
h

implies ` =2 L. We �rst introdu
e kinds, so as to distinguish rows su
h as

(` : int ; �bool) from basi
 types, su
h as int or int! int.

1.11.3 Definition [Row kinds℄: Let row kinds be
omposed of a parti
ular kind

Type and the
olle
tion of kinds Row(L) where L ranges over �nite subsets

of L. We use letter s to range over row kinds. 2

Intuitively, a row of kind Row(L) is a fun
tion of domain LnL to types. That

is, L spe
i�es the set of labels that the row must not de�ne. For instan
e, the

(basi
) type �(` :int ; X) has kind Type , the row (` :int ; X) has kind Row(;)

provided X has kind Row(f`g).

To remain abstra
t the de�nition of rows is parameterized by a signature S

0

for building basi
 types and a signature S

1

for building rows. From those two

signatures, we then de�ne a new signature S that
ompletely spe
i�es the set

of types. However, the signature S must superimposed row kinds on top of the

(basi
) kinds of the two input signatures S

0

and S

1

. We use produ
t signatures

to enlighten this pro
ess. More pre
isely, we build a produ
t signature from

two signaturesK) � andK

0

) �

0

with the following notations: we write �:�

0

for the pair (�; �

0

); K:� for the mapping (d 7! K(d):�)

d2dom(K)

; (K) �):�

0

for the kind signature K:�) �:�

0

; and symmetri
ally, we write �:K

0

and

�:(K

0

) �

0

). The signature S reuses the same input type
onstru
tors as S

0

and S

1

, but at di�erent row kinds. We use supers
ripts to provide
opies of

type
onstru
tors at di�erent kinds, and thus avoid overloading of kinds.

1.11.4 Definition [Row extension of a signature℄: Let S

0

and S

1

be signa-

tures where all symbols of S

1

are unary. The row extension of S

0

with S

1

is

the signature S de�ned as follows where � ranges over basi
 kinds (those used

in S

0

and S

1

) and s ranges over row kinds:

F 2 dom(S) Signature Conditions

G

s

(K) �):s (G : K) �) 2 S

0

H K:Row(;)) �:Type (H : K) �) 2 S

1

�

�;L

�:(Type) Row(L))

`

�;L

�:(Type
Row(`:L)) Row(L)) ` =2 L

2

We usually write `

�;L

: t

1

; t

2

instead of `

�;L

t

1

t

2

and let this symbol be

right-asso
iative. We often drop the supers
ripts of type
onstru
tors sin
e,

TOP

2003/5/20

page 125

1.11 Rows 125

for any type expression T, supers
ripts
an be unambiguously re
overed from

the kind of T.

1.11.5 Example: Let us assume there is a single basi
 kind ? and that S

1

ontain a

unique type
onstru
tor � (hen
e of kind ?) ?). An example of row type is

X

0

! �(`

1

:G ; (Y! �X

0

)). With all supers
ripts annotations, this type is

X

0

!

?;Type

�(`

1

?;Row(;)

:G

Type

; (Y!

?;Row(f`

1

g)

�

?;Row(f`

1

g)

X

0

)):

Intuitively, this is the type of a fun
tion that takes a value of type X

0

and

returns a re
ord where �eld `

1

has type G and all other �elds are fun
tions

that given a value of an arbitrary type would returns a value of (the same) type

X

0

. An instan
e of this type is X

0

! �(`

1

:G ; ((`

2

:Y

2

; Y

0

)! (`

2

:X

0

; �X

0

))),

obtained by instantiating row variable Y and by expanding the
onstant row

�X

0

. As shown below, this type is a
tually equivalent to X

0

! �(`

1

: G ;

`

2

: Y

2

! X

0

; (Y

0

! �X

0

)), by distributivity of type
onstru
tor ! other type

onstru
tor `

2

. Please, note again the di�eren
e between Y, whi
h is a row

variable that
an expand to di�erent type variables on di�erent labels, and

�X, whi
h is a
onstant row that expands to the same type variable X on all

labels. 2

1.11.6 Example [Ill-kinded expression ℄: Under the assumptions of the previ-

ous example, the expression X ! �(X) is not a row type, sin
e variable X

annot simultaneously be of row kind Type and Row(;) as required by its two

o

urren
es, from left to right respe
tively. The expression (` :X ; ` :X

0

; X

00

) is

also ill-kinded, for the inner expression (` : X

0

; X

00

) of row kind Row(L) with

` =2 L
annot also have row kind Row(f`g), as required by its o

urren
e in

the whole expression. Indeed, row kinds prohibit multiple de�nitions of the

same label, as well as using rows in pla
e of basi
 types and
onversely. Noti
e

that �(�(X)) is also ill-formed, sin
e type
onstru
tors of S

1

are not lifted to

row kinds and thus
annot appear in rows, ex
ept under the type
onstru
tor

�, hen
e as basi
 types. 2

1.11.7 Exer
ise [FFF,9℄: Design an algorithm that infers supers
ripts of type

onstru
tors of a type expression from its kind. Can the kind of the expression

be inferred as well? Can you give an algorithm to
he
k that type expressions

are well-kinded when both the supers
ripts of type
onstru
tors and the kinds

of the whole type expressions are omitted? 2

Meaning of rows

As mentioned above, a row of kind Row(L) stands for a fun
tion from L n L

to types. A
tually, it is simpler to represent this fun
tion expli
itly as an

TOP

2003/5/20

page 126

126 Draft of May 20, 2003 1 ML

in�nitely bran
hing tree in the model. For this purpose, we use a
olle
tion of

onstru
tors L of (in�nite but denumerable) arity L n L.

1.11.8 Definition [Row model℄: Let S be the row extension of a signature S

0

with a signature S

1

. Let S

M

be the following signature, where � ranges over

basi
 kinds and L ranges over �nite subsets of L:

F 2 dom(S

M

) Signature Conditions

G (K) �):Type (G : K) �) 2 S

0

H K:Row(;)) �:Type (H : K) �) 2 S

1

L

�

�:(Type

LnL

) Row(L))

Let M

�

onsist of the regular trees t built over the signature S

M

su
h that

t(�) has image kind �. We interpret a type
onstru
tor F of signatureK) �:s

as a fun
tion that maps T 2 M

K

to t 2 M

�:s

de�ned by
ases on F and on

the basi
 kind �.

F 2 S t(�) For d 2 dom(K) and ` 2 L n L; ` 6= `

0

:

G

Type

G t=d = T (d)

H H t=1 = T (1)

G

Row(L)

L

�

t(`) = G ^ t=(` � d) = T (d)=`

�

�;L

L

�

t=` = T (1)

`

�;L

0

L

�

t=`

0

= T (1) ^ t=` = T (2)=`

In the presen
e of subtyping, we let type
onstru
tors G and H behave in S

M

as in S

0

and S

1

and type
onstru
tors L

�

be isolated and
ovariant in every

position. Models that de�ne ground types and interpret type
onstru
tors in

this manner are referred to as row models. 2

Reasoning with row types

In this se
tion, we assume a subtyping model. All reasoning prin
iples also

apply to the equality-only model, whi
h is a sub
ase of the subtyping model.

The meaning of rows has been
arefully de�ned so as to be independent

of some synta
ti
al
hoi
es. In parti
ular, the order in whi
h the types of

signi�
ant �elds have been de
lared leaves the meaning of rows un
hanged.

This is formally stated by the following Lemma.

1.11.9 Lemma: The equations of Figure 1-17 are equivalent to true. 2

Proof: Ea
h equation
an be
onsidered independently. It su�
es to see that

any ground assignment � sends both sides of the equation to the same element

TOP

2003/5/20

page 127

1.11 Rows 127

(`

1

: T

1

; `

2

: T

2

; T

3

) = (`

2

: T

2

; `

1

: T

1

; T

3

) (C-Row-LL)

�T = (` : T ; �T) (C-Row-DL)

�(G T

1

: : : T

n

) = G �T

1

: : : �T

n

(C-Row-DG)

G (` : T

1

; T

0

1

) : : : (` : T

n

; T

0

n

) = (` :G T

1

: : : T

n

; G T

0

1

: : : T

0

n

) (C-Row-GL)

Figure 1-17: Equational reasoning for row types.

(`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

) � 9X:(T

0

1

= (`

2

: T

2

; X) ^ T

0

2

= (`

1

: T

1

; X)) (C-Mute-LL)

if X # ftv(T

1

; T

0

1

; T

2

; T

0

2

) ^ `

1

6= `

2

(` : T ; T

0

) = G T

I

i

� 9(X

i

; X

0

i

)

I

:(T = G X

I

i

^ T

0

= G X

0

I

i

^ T

i

= (` : X

i

; X

0

i

))

if (X

i

; X

i

)

I

ftv(T; T

0

; T

I

i

) (C-Mute-LG)

�T = G T

I

i

� 9X

I

i

:(T = G X

I

i

^ (T

i

= �X

i

)

I

) (C-Mute-DG)

if X

I

i

ftv(T; T

I

i

)

�T = (` : T

0

; T

00

) � T = T

0

^ �T = T

00

(C-Mute-DL)

Figure 1-18: Constraint equivalen
e laws for rows.

in the model, whi
h follows dire
tly from the meaning of row types. Noti
e

that this fa
t only depends on the semanti
s of types and not on the semanti
s

of the subtyping predi
ate. 2

It follows from those equations that type
onstru
tors `, �, and G are never

isolated, ea
h equation exhibiting a pair of
ompatible top symbols. Varian
es

and in
ompatible pairs of type
onstru
tors depend on the signature S

0

℄ S

1

.

However, it is not di�
ult to see that type
onstru
tors � and ` are logi
ally

ovariant in all dire
tions and that the logi
al varian
e of types
onstru
tors

G of dom(S

0

℄ S

1

)
orrespond to their synta
ti
 varian
e, whi
h, in most

ases, will allow the de
omposition of equations with the same top symbols.

Moreover, an equation between two terms whose top symbols form one of

the four
ompatible pairs derived from the equations of Figure 1-17 holds

only if immediate subexpressions
an be �
on
iliated� in some way. There is a

transformation quite similar to de
omposition,
alled mutation, that mimi
s

the equations for rows (Figure 1-17) and des
ribed by the rules of Figure 1-18.

For sake of readability and
on
iseness, we write T

I

i

instead of T

i2I

i

.

1.11.10 Lemma [Mutation℄: All equivalen
e laws in Figure 1-18 hold. 2

Proof:

TOP

2003/5/20

page 128

128 Draft of May 20, 2003 1 ML

Æ Case C-Mute-LL: Let X # ftv (T

1

; T

0

1

; T

2

; T

0

2

) (1) and `

1

6= `

2

. Let Row(L)

be the row kind of this equation. Let � be a ground assignment that validates

the
onstraint (`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

). That is, � sends all terms of

the multi-equation to the same ground type t of row kind Row(L). Moreover,

the row-term semanti
s implies that t satis�es t(�) = L, t=`

1

= �(T

1

) =

�(T

0

2

)=`

1

, t=`

2

= �(T

0

1

)=`

2

= �(T

2

), and t=` = �(T

0

2

)=` = �(T

0

1

)=` for all

` 2 L n `

1

:`

2

:L (2). Let t

0

be the tree de�ned by t

0

(�) = `

1

:`

2

:L and t

0

=` = t=`

for all ` 2 L n `

1

:`

2

:L. By
onstru
tion and (2), �[X 7! t

0

℄ satis�es both

equations T

0

1

= (`

2

: T

2

; X) and T

0

2

= (`

1

: T

1

; X). Thus by CM-Exists and

(1), � satis�es 9X:T

0

1

= (`

2

: T

2

; X)^ T

0

2

= (`

1

: T

1

; X). Conversely, we have the

entailment:

9X:(T

0

1

= (`

2

: T

2

; X) ^ T

0

2

= (`

1

: T

1

; X))

� 9X:((`

1

: T

1

; T

0

1

) = (`

1

: T

1

; `

2

: T

2

; X) ^

(`

2

: T

2

; T

0

2

) = (`

2

: T

2

; `

1

: T

1

; X)) (3)

 9X:(`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

) (4)

� (`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

) (5)

(3) follows by
ovarian
e of `

1

and `

2

; (4) by C-Row-LL and transitivity of

equivalen
e; (5) by C-Ex* and (1).

Æ Cases C-Mute-LG, C-Mute-DG, and C-Mute-DL: The reasoning is

similar to the
ase C-Mute-LL. 2

Solving row
onstraints in an equality model

In this se
tion, we extend the
onstraint solver for the equality-only free tree

model (Figure 1-11), so as to handle rows. We thus assume an equality-only

model.

Mutation is a
ommon te
hnique to solve equations in a large
lass of non-

free algebras that are des
ribed by synta
ti
 theories (Kir
hner and Klay,

1990). The equations of Figure 1-17 happen to be a synta
ti
 presentation

of an equational theory, from whi
h a uni�
ation algorithm
ould be auto-

mati
ally derived (Rémy, 1993). We re
over the same transformation rules

dire
tly, without using results on synta
ti
 theories.

The following lemma shows that all pairs of distin
t type
onstru
tors for

whi
h there is no mutation rule are in fa
t in
ompatible.

1.11.11 Lemma: All symbols H 2 S

1

are isolated. Furthermore for every pair of

distin
t type
onstru
tors G

1

; G

2

2 dom(S

0

℄ S

1

), and every row kind s, we

have G

s

1

./ G

s

2

. 2

Proof: Terms of the form H

~

T are interpreted by ground types with H at

o

urren
e �, and
onversely the only interpretations of types with H at o
-

urren
e � are terms of the form H

~

T. Hen
e, no ground assignment
an ever

TOP

2003/5/20

page 129

1.11 Rows 129

(`

1

: X

1

; X

0

1

) = (`

2

: T

2

; T

0

2

) = � ! 9Y:(X

0

1

= (`

2

: T

2

; Y) ^ T

0

2

= (`

1

: X

1

; Y))

^ (`

1

: X

1

; X

0

1

) = � (S-Mute-LL)

if Y # ftv(X

1

; X

0

1

; T

2

; T

0

2

) ^ `

1

6= `

2

(` : X ; X

0

) = G T

i2I

i

= � ! 9(Y

i

; Y

0

i

)

i2I

:(X = G Y

i2I

i

^ X

0

= G Y

0

i2I

i

^ T

i

= (` : Y

i

; Y

0

i

))

^ (` : X ; X

0

) = � (S-Mute-LG)

if (Y

i

; Y

0

i

)

i2I

ftv(X; X

0

; T

i2I

i

)

�X = G T

i2I

i

= � ! 9Y

i2I

i

:(X = G Y

i2I

i

^ (T

i

= �Y

i

)

i2I

)

^ �X = � (S-Mute-DG)

if Y

i2I

i

ftv(X; T

i2I

i

)

�X = (` : T ; T

0

) = � ! X = T ^ �X = T

0

^ �X = � (S-Mute-DL)

G

~

T = G

0

~

T

0

= � ! false (S-Clash-I)

if F ./ F

0

Figure 1-19: Uni�
ation addendum for row types

send H

~

T and F

~

T

0

to the same ground term when F 6= H and, as a result, H

is isolated.

Let G

1

and G

2

be two type
onstru
tors of S

0

. For s = Type , the interpre-

tations of terms of the form G

s

1

~

T and G

s

2

~

T

0

are ground types with symbols G

1

and G

2

at o

urren
e �, respe
tively. Hen
e they
annot be made equal under

any ground assignment. For s = Row(L), the interpretations of terms of the

form G

s

1

~

T and G

s

2

~

T

0

are ground types with
onstru
tor L at o

urren
e � and

onstru
tors G

1

and G

2

at o

urren
e 1, respe
tively. Hen
e they
annot be

made equal under any ground assignment. 2

Any other
ombination of type
onstru
tors forms a
ompatible pair, as illus-

trated by equations of Figure 1-17 and
an be transformed by mutation rules

of Figure 1-18. The
onstraint solver for row-terms is the relation!

y

de�ned

by the rewriting rules of Figure 1-11, ex
ept Rule S-Clash, whi
h is repla
ed

by the set of rules of Figure 1-19.

1.11.12 Lemma: The rewriting system !

y

is strongly normalizing. 2

Please, note that the termination of !

y

relies on types being well-kinded.

In parti
ular, !

y

would not terminate on the ill-kinded system of equations

X = ` : T ; X

0

^ X

0

= `

0

: T ; X.

1.11.13 Lemma: If U !

y

U

0

, then U � U

0

. 2

TOP

2003/5/20

page 130

130 Draft of May 20, 2003 1 ML

Proof: It su�
es to
he
k the property independently for ea
h rule de�ning

!

y

. The proof for rules of Figure 1-11 but S-Clash remain valid for row terms.

For S-De
ompose, it follows by the invarian
e of all type
onstru
tors, whi
h

is preserved for row terms. For rule S-Class-I it follows by Lemma 1.11.11

and for mutation rules, it follows by Lemma 1.11.10. 2

Although redu
tions ! are not sound for row types, hen
e !
annot be

used for
omputation over row types, it has some interest. In parti
ular, the

following property shows that normal forms for row types are identi
al to

normal forms for regular types.

1.11.14 Lemma: A system U in normal form for !

y

is also in normal form for !. 2

Proof: The only rule of ! that is not in !

y

is S-Clash. Thus, it su�
es to

observe that if Rule S-Clash would be appli
able, then either Rule S-Class-I

or a mutation rule would be appli
able as well. 2

As a
orollary, Lemma 1.8.6 extends to row types.

Operations on re
ords

We now illustrate the use of rows for type
he
king operations on re
ords. The

simplest appli
ation of rows are full re
ords with in�nite
arrier. Re
ords types

are expressed with rows instead of a simple produ
t type. The basi
 operations

are the same as in the �nite
ase, that is,
reation, polymorphi
 update, and

polymorphi
 a

ess, but labels are now taken from an in�nite set. However,

reation and polymorphi
 update, whi
h where destru
tors are now taken as

onstru
tors and used to represent re
ords as asso
iation lists. The a

ess of a

re
ord v at a �eld ` is obtained by linearly sear
hing v for a de�nition of �eld

` and returning this de�nition, or returning the default value if no de�nition

has been found for `.

1.11.15 Example [Full re
ords℄: We assume a unique basi
 kind ? and a unique

ovariant isolated type
onstru
tor � in S

1

. Let f�g be a unary
onstru
-

tor, (f� with � = `g)

`2L

a
olle
tion of binary
onstru
tors, and (`:f�g)

`2L

a

olle
tion of unary destru
tors with the following redu
tion rules:

fvg:f`g

Æ

�! v (rd-Default)

fw with ` = vg:f`g

Æ

�! v (rd-Found)

fw with `

0

= vg:f`g

Æ

�! w:f`g if ` 6= `

0

(rd-Follow)

Let the initial environment �

0

ontain the following bindings

f�g : 8X: X! �(�X)

f� with ` = �g : 8XX

0

Y: �(` : X ; Y)! X

0

! �(` : X

0

; Y)

�:f`g : 8XY: �(` : X ; Y)! X

TOP

2003/5/20

page 131

1.11 Rows 131

2

1.11.16 Exer
ise [Full re
ords, FFF, 9℄: Che
k that these de�nitions meet

the requirements of De�nition 1.7.6. 2

1.11.17 Exer
ise [Field Ex
hange, FF℄: Add an operation to permute two �elds

of a re
ord: give the redu
tion rules and the typing assumptions and
he
k

that the requirements of De�nition 1.7.6 are preserved. 2

1.11.18 Exer
ise [Normal forms for re
ords, FFF℄: Re
ord values may
on-

tain repetitions. For instan
e, ffw with ` = vg with ` = v

0

g is a value that is

in fa
t observationally equivalent to fw with ` = v

0

g. So are the two re
ord

values ffw with ` = vg with `

0

= v

0

g and ffw with `

0

= v

0

g with ` = vg when

`

0

6= `. Modify the semanti
s, so that two re
ord values of the same type have

similar stru
ture and re
ords do not
ontain ina

essible values. 2

1.11.19 Exer
ise [Map Apply, FF℄: Add a binary operation map su
h that the

expressions (map v w):f`g and v:f`g w:f`g redu
e to the same value for every

label `. 2

1.11.20 Exer
ise [F, 9℄: So far, full re
ords are almost
onstants. This
ondition

is not ne
essary for values, but only for types. As an example, introdu
e a

primitive re
ord, that is a nullary re
ord
onstru
tor, that maps every label

to a distin
t integer. Give its typing assumption and review the semanti
s of

re
ords. 2

As opposed to full re
ords, standard re
ords are partial and their domains

are �nite (but with in�nite
arrier) and stati
ally determined from their types.

Standard re
ords
an be built by extending the empty re
ord on a �nite num-

ber of �elds. We refer to su
h re
ords as re
ords with polymorphi
 extension.

Re
ord with polymorphi
 extension
an be obtained by means of en
oding

into full re
ords, mu
h as in the �nite
ase.

1.11.21 Example [En
oding of polymorphi
 extension℄: Reusing the two type

de�nitions abs and pre that have introdu
ed for the �nite
ase, we let abs

en
odes an unde�ned �eld and prev en
ode a �eld with value v. We use the

following synta
ti
 sugar with their meaning and prin
ipal types:

hi

def

= fabsg

: �(�abs)

h� with ` = �i

def

= �v:�w:fw with ` = pre vg

: 8XX

0

Y: �(` : X ; Y)! X

0

! �(` : pre X

0

; Y)

�:h`i

def

= �v:pre

�1

(v:f`g)

: 8XY: �(` : pre X ; Y)! X

TOP

2003/5/20

page 132

132 Draft of May 20, 2003 1 ML

2

1.11.22 Exer
ise [Re
ommended, F℄: Extension may a
tually override an exist-

ing �eld. Can you de�ne a version polymorphi
 extension that prevents this

situation from happening? Add an operation that hide some parti
ular �eld

of a re
ord. 2

Extensible re
ords
an also be implemented dire
tly, without en
oding into

full re
ords. In fa
t, this requires only a tiny variation on full re
ords.

1.11.23 Example [Re
ords with polymorphi
 extension℄: Let ? and � be two

basi
 kinds. Let the basi
 signature S

0

ontain (in addition to !) the
ovari-

ant isolated type
onstru
tors pre of kind ?) � and abs of kind �. In the

presen
e of subtyping, we may assume pre 6 abs. Let S

1

ontain the unique

ovariant isolated type
onstru
tor � of kind �) ?. Let hi be a unary
on-

stru
tor, (f� with � = `g)

`2L

be a binary
onstru
tor, and (`:f�g)

`2L

be a unary

destru
tor with the following redu
tion rules:

hw with ` = vi:h`i

Æ

�! v (er-Found)

hw with `

0

= vi:h`i

Æ

�! w:f`g if ` 6= `

0

(er-Follow)

Let �

0

ontain the following typing assumptions:

hi : �(�abs)

h� with ` = �i : 8XX

0

Y: �(` : X ; Y)! X

0

! �(` : pre X

0

; Y)

�:h`i : 8XY: �(` : pre X ; Y)! X

2

Noti
e that the typing assumptions obtained from the dire
t approa
h are

identi
al to those obtained via the en
oding into full re
ords in Exam-

ple 1.11.21.

1.11.24 Exer
ise [FFFF, 9℄: Prove the equivalen
e between the dire
t semanti
s

and the semanti
s via the en
oding into re
ords with a default. 2

1.11.25 Exer
ise [Re
ommended, FF, 9℄: Prove that type soundness for exten-

sible re
ords hold in both the subtyping model and equality-only models.

2

1.11.26 Exer
ise [Re
ommended, F, 9℄: Che
k that in the subtyping a re
ord

with more �elds
an be used in pla
e of re
ords with fewer �elds. Che
k that

this is not the
ase in the equality-only model. 2

TOP

2003/5/20

page 133

1.11 Rows 133

1.11.27 Example [Refinement of re
ord types℄: In an equality-only model,

re
ords with more �elds
annot be used in pla
e of re
ords with fewer �elds.

However, this may be partially re
overed by a small re�nement of the stru
-

ture of types. The presen
e of �elds
an a
tually be split form their types, thus

enabling some polymorphism over the presen
e of �elds while type of �elds

themselves remains �xed. Let Æ be a new basi
 kind. Let type
onstru
tors

abs and pre be both of kind Æ and let � be a new type
onstru
tor of kind

Æ
 ?) �. Let �

0

ontain the following typing assumptions:

hi : 8X:�(�(abs � X))

h� with ` = �i : 8ZXX

0

Y: �(` : X ; Y)! X

0

! �(` : Z � X

0

; Y)

�:h`i : 8XY: �(` : pre � X ; Y)! X

The semanti
s of re
ords remain un
hanged. The new signature stri
tly gener-

alizes the previous one (stri
tly more programs
an be typed) while preserving

type soundness. Here is a program that
an now be typed and that
ould not

be typed before:

(if a then hhhi with `

0

= truei with ` = 1i else hhi with ` = 2i):h`i

Noti
e however, that when a present �eld is forgotten, the type of the �eld

is not. Therefore two re
ords de�ning the same �eld but with in
ompatible

types
an still not be mixed, whi
h is possible in the subtyping model. 2

1.11.28 Example [Refined subtyping℄: The previous re�nement for an equality-

only model is not mu
h interesting in the
ase of a subtyping model.

The subtyping assumption pre 6 abs makes abs play the role of > for �elds.

That is, abs en
odes the absen
e of information and not the information of

absen
e. In other words, a value whose �eld ` has type abs may either be

unde�ned or de�ned on �eld `; in the latter
ase, the fa
t that �eld ` is

a
tually de�ned has just been forgotten. Thus, types only provides a lower

approximation of the a
tual domain of re
ords. This is a lost of a

ura
y by

omparison with the equality-only model, where a re
ord domain is known

from its type. As a result, some optimizations in the representation of re
ords

that are only possible when the exa
t domain of a re
ord is stati
ally known

are lost.

Fortunately, there is a way to re
over su
h a

ura
y. A
onservative solution

ould of
ourse to drop the inequality pre 6 abs. Noti
e that this would still

be more expressive than using an equality model sin
e, for instan
e �(` :

pre (T

1

! T

2

) ; T) � �(` : pre > ; T) would still hold, as long as ! � > does

hold. This solution is known as depth-only subtyping for re
ords, while the

previous one provided both depth and width re
ord subtyping. Conversely, one

ould also keep width subtyping and disallow depth subtyping, by preserving

TOP

2003/5/20

page 134

134 Draft of May 20, 2003 1 ML

the relation pre 6 abs while requiring pre to be invariant; in this
ase, presen
e

of �elds
an be forgotten as a whole, but the types of �elds
annot be weakened

as long as �elds remain visible.

Another more interesting solution
onsists in introdu
ing another type
on-

stru
tor either of signature � and assuming that pre 6 either and abs 6 either

(but pre 66 abs). Here, either plays the role of > for �elds and means either

present (and forgotten) or absent. while abs really means absent. The a

ura
y

of type
he
king
an be formally stated as the fa
t that a re
ord value of type

�(` : abs ; T)
annot de�ne �eld `. 2

1.11.29 Example [mixed subtyping℄: It is tempting to mix all variations of Ex-

ample 1.11.28 together. As a �rst attempt, we may assume that the basi

signature S

0

ontains
ovariant type
onstru
tors pre and maybe and invari-

ant type
onstru
tors pre

=

and maybe

=

, all of kind ?) � and two type

onstru
tors abs and either of kind �, and that the subtype ordering 6 is

de�ned by the following diagram:

either

maybe

pre maybe

=

pre

=

abs

Intuitively, we wish that pre

=

andmaybe

=

be logi
ally invariant, pre andmaybe

be logi
ally
ovariant, and the equivalen
es pre

=

T � maybe

=

T

0

� T = T

0

and

pre

=

T � pre T

0

� pre T � maybe T

0

� maybe

=

T � maybe T

0

� T � T

0

(1)

simultaneously hold. However, (1) requires, for instan
e, type
onstru
tors

pre

=

and pre to have the same dire
tion, whi
h is not
urrently possible sin
e

they do not have the same varian
e. Interestingly, this restri
tion may be

relaxed by assigning varian
es of dire
tions on a per type
onstru
tor basis and

de�ne stru
tural subtyping a

ordingly (See Exer
ise 1.11.30). Then, repla
ing

all o

urren
es of pre by pre

=

in �

0

preserves type soundness and allows for

both a

urate re
ord types and �exible subtyping in the same setting. 2

1.11.30 Exer
ise [Relaxed varian
es, FFF, 9℄: Let ; be allowed as a new

varian
e, let extend the
omposition of varian
es de�ned in Example 1.3.9

with �; = ;, and let 6

;

stands for the full relation on type
onstru
tors.

Let ea
h type
onstru
tor F of signature K) � now
ome with a map-

ping #(F) from dom(K) to varian
es. Let #(t; t

0

; �) be the varian
e of two

TOP

2003/5/20

page 135

1.11 Rows 135

ground types t and t

0

at a path � re
ursively de�ned by #(t; t

0

; d � �) =

�

#(t(�))(d) \ #(t

0

(�))(d)

�

#(t=d; t

0

=d; �) and #(t; t

0

; �) = +. Then de�ne the

interpretation of subtyping as follows: if t; t

0

2M

�

, let t � t

0

hold if and only

if for all path � 2 dom(t) \ dom(t

0

), t(�) 6

#(t;t

0

;�)

t

0

(�) holds.

Che
k that the relation � remains a partial ordering. Che
k that a type

onstru
tor whose dire
tion d has been synta
ti
ally de
lared
ovariant (re-

spe
tively
ontravariant, invariant) is still logi
ally
ovariant (respe
tively
on-

travariant, invariant) in d. 2

Re
ord
on
atenation

Re
ord
on
atenation takes two re
ords and
ombines them into a new re
ord

whose �elds are taken from whatever argument de�nes them. Of
ourse, there

is an ambiguity when the two re
ords do not have disjoint domains and a

hoi
e should be made to disambiguate su
h
ases. Symmetri

on
atenation

let
on
atenation be unde�ned in this
ase (Harper and Pier
e, 1991), while

asymmetri

on
atenation let one-side (usually the right side) always take pri-

ority. Despite a rather simple semanti
s, re
ord
on
atenation remains hard to

type (with either a stri
t or a priority semanti
s). Solutions to type inferen
e

for re
ord
on
atenation may be found, for instan
e, in (Wand, 1989; Rémy,

1992; Pottier, 2000).

Polymorphi
 variants

Variants
an be de�ned via algebrai
 data-type de�nitions. However, as �elds

for re
ords, variant tags are taken from a relatively small, �nite
olle
tion

of labels and two variant de�nitions will have in
ompatible types. Thus, to

remain
ompatible, two variants must
hose their tag among a larger
olle
tion

that is a superset of all the possible tags of either variant. In general, this

redu
es the a

ura
y of types and for
es useless dynami

he
ks for tags that

ould otherwise be known not to o

ur. Extensible variants (page 93) allow to

work with an arbitrary large
olle
tion of tags, but do not improve a

ura
y.

Polymorphi
 variants refers to a more pre
ise type
he
king me
hanism for

variants, where types more a

urately des
ribes the tags that may a
tually

o

ur. They allow to build values of sum types out of a large, potentially

in�nite prede�ned set of tags and
all polymorphi
 fun
tions to explore them.

As for re
ord, this problem
ould be ta
kled by �rst
onsidering polymorphi

operations over variants built from a �nite set of tags and total variants with

an in�nite set of tag independently and then by
ombining both approa
hes

together. We propose a dire
t solution by a simple analogy with re
ords.

Indeed, type
onstru
tor pre
an be used to distinguish a (�nite) set of tags

TOP

2003/5/20

page 136

136 Draft of May 20, 2003 1 ML

that the variant may a
tually
arry, from other tags that are
ertain not to

o

ur and typed with abs. For example, a variant `:v, built from a value v with

a
onstru
tor tag ` of arity one. may be assigned the prin
ipal type s
heme

8X:�(` : pre T; X) where T is the type of v. The unary type
onstru
tor � is

used to
oer
e rows to variant types�thus, variant types and re
ord types

may share the same inner row stru
ture and be simply distinguished by their

top symbol. An instan
e of this polymorphi
 type is 8X:�(` :pre T ; abs), whi
h

tells that the variant must have been built with tag ` and no other tag, thus

retaining exa
t information about the shape of the value. Another instan
e

of the variant polymorphi
 type is �(` : pre T ; `

0

: pre T

0

; abs). Indeed, it is

sound to assume that the value might also have been built with some other

tag `

0

, even if we know that this is not a
tually the
ase. Interestingly, both

values `:v and `

0

:v have this type and
an be mixed at this type.

We use �lters to explore variants. A �lter [` : v j v

0

℄ is a fun
tion that

expe
ts a variant argument, thus of the form `

0

:w. It then pro
eeds with either

v w, if `

0

= `, or v

0

w otherwise. The type of this �lter is �(` : pre T ; T

0

)! T

00

where T is the type of values a

epted by v, �(` : T

000

; T

0

) is the type of values

a

epted by v

0

, and T

00

is the type of values returned by both v and v

0

. Any

type T

000

would do, in
luding, in parti
ular, abs. Indeed, when w is passed to v

0

,

it is known not to have tag `, so the behavior of v

0

on ` does not matter. The

null �lter [℄
an be used for v

0

. This �lter should a
tually never be applied,

whi
h we ensure by assigning [℄ the type 8X:�(�abs)! X, for no variant value

has type �(�abs). For instan
e, the �lter [` : v

`

j [`

0

: v

`

0

j [℄ ℄ ℄, whi
h may

be abbreviated as [` : v

`

j `

0

: v

`

0

℄
an be applied to either `:v or `

0

:v

0

. The

following example formalizes polymorphi
 variants.

1.11.31 Example [Polymorphi
 variants℄: Let ? and � be two basi
 kinds. Let S

ontain in addition to the arrow type
onstru
tor the two type
onstru
tors pre

of kind ?) � and abs of kind �. In the presen
e of subtyping we may assume

abs 6 pre. Let S

1

ontain the unique
ovariant isolated type
onstru
tor � of

kind �) ?. Let �

0

be
omposed of unary
onstru
tors (`:�)

`2L

and primitives

[℄ of arity 0 and ([` : � j � ℄�)

`2L

of arity 3, given with the following redu
tion

rules:

[` : v j v

0

℄ `:w

Æ

�! v w (ev-Found)

[` : v j v

0

℄ `

0

:w

Æ

�! v

0

w if ` 6= `

0

(ev-Follow)

and
ontain the following typing assumptions:

`:� : 8XY: X! �(` : pre X ; Y)

[℄ : 8X:�(�abs)! X

[` : � j � ℄ : 8XX

0

YY

0

: (X! Y)! (�(` : X

0

; Y

0

)! Y)! �(` : pre X ; Y

0

)! Y

2

TOP

2003/5/20

page 137

1.11 Rows 137

1.11.32 Exer
ise [Soundness for Extensible Variants, FFF,9℄: Prove type

soundness for extensible variants in both equality-only and subtyping models.

2

Other appli
ations of rows

Polymorphi
 re
ords and variants are the most well-known appli
ations of

rows. Besides the many variations on their presentations�we have only il-

lustrated some of them�there are several other interesting appli
ations of

rows.

Sin
e obje
ts
an be viewed as re
ord-of-fun
tions, at least from a typing

point of view, rows
an also be used to type stru
tural obje
ts (Wand, 1994;

Rémy, 1994; Rémy and Vouillon, 1998) and provide, in parti
ular, polymor-

phi
 method invo
ation. This is the key to type
he
king obje
ts in Obje
-

tive Caml (Rémy and Vouillon, 1998). First-
lass messages (Nishimura, 1998;

Müller and Nishimura, 1998; Pottier, 2000)
ombine re
ords and variants in

an interesting way: while �lters over variant types enfor
e all bran
hes to have

the same return type, �rst-
lass messages treat �lters as re
ords of fun
tions

(also
alled obje
ts) rather than fun
tions from a variant type to a shared

return type. A message is an element of a variant type. The appli
ation of an

obje
t to a message, that is of a re
ord of fun
tions to a variant type, sele
ts

from the re
ord the bran
h labeled with the same tag as the message and

applies it to the
ontent of the message, mu
h as pattern mat
hing. However,

these appli
ations are type
he
ked more a

urately by �rst restri
ting the do-

main of the re
ord to the set of tags that the message may possibly
arry, and

thus other bran
hes and in parti
ular their return type are left un
onstrained.

Row types may also represent set of properties within types or type re�ne-

ments and be used in type systems for program analysis. Two examples worth

mentioning are their appli
ation to soft-typing (Cartwright and Fagan, 1991;

Wright and Cartwright, 1994) and type
he
king of un
aught ex
eptions (Leroy

and Pessaux, 2000).

The key to rows is to de
ompose the set of row labels into a
lass of �-

nite partitions that is
losed by some operations. Here, those partitions are

omposed of singleton labels and
o-�nite sets of labels; the operations are

merging (or
onversely splitting) a singleton label and a
o-�nite set of la-

bels. Other de
ompositions are possible, for instan
e, one
ould imagine to

onsider labels in a two-dimensional spa
e. More generally, labels might also

be given internal stru
ture, for instan
e, one might
onsider automatons as

labels. Noti
e also that re
ord types are strati�ed, sin
e rows, that is, expres-

sions of kind Row(L), may not themselves
ontain re
ords �
onstru
tors of

S

1

are only given the image row kind Type . This restri
tion
an be partially

TOP

2003/5/20

page 138

138 Draft of May 20, 2003 1 ML

relaxed leading to rows of in
reasing degrees (Rémy, 1992b) . . . and
omplex-

ity! Yet more intriguing are typed-indexed rows where labels are themselves

types (Shields and Meijer, 2001).

Alternatives to rows

The original idea of using rows to des
ribe types of extensible re
ords is due

to Wand (Wand, 1987, 1988). A key simpli�
ation to row types is to make

them total fun
tions from labels to types and en
ode de�niteness expli
itly

in the stru
ture of �elds, for instan
e with pre and abs type
onstru
tors,

as presented here. This de
omposition redu
es the resolution of uni�
ation

onstraints to a simple equational reasoning (Rémy, 1993, 1992a). Other ap-

proa
hes that do not treat rows as total fun
tions seem more ad ho
 and

have often hard-wired restri
tions (Jategaonkar and Mit
hell, 1988; Ohori

and Buneman, 1989; Berthomieu, 1993; Ohori, 1999). Among these partial

solutions, (Ohori, 1999) is quite interesting for its overall simpli
ity in the

ase where polymorphi
 a

ess alone is required. Rows and �elds may also

be represented within ad-ho
 type
onstraints rather than terms and equality

(or subtyping)
onstraints. For example, quali�ed types use the predi
ates

(T has ` : T

0

) and (T la
ks `) to mean that �eld ` of row T is de�ned with

type T

0

or unde�ned, respe
tively (Jones, 1994b; Odersky, Sulzmann, and

Wehr, 1999b). These
onstraints are in fa
t equivalent in our equality-model

to 9X:T = (` :pre T

0

; X) and 9X:T = (` :abs ; X), respe
tively. Re
ord type
he
k-

ing has also been widely studied in the presen
e of subtyping. Usually, re
ord

subtyping is given meaning dire
tly and not via rows. While these solutions

are quite expressive, thanks to subtyping, they still su�er from their nonstru
-

tural treatment of re
ord types and
annot type row extension. Thus, even

in subtyping models the use of rows in
reases expressiveness, and is usually a

simpli�
ation as well. The subtyping model
an then also take advantage of

the possibility of enri
hing type
onstru
tors pre and abs with more stru
ture

and relate them via subtyping (Pottier, 2000). Noti
e, that even though rows

have been introdu
ed for type inferen
e, they seem to be bene�
ial to expli
-

itly typed languages as well sin
e even other advan
ed solutions (Cardelli and

Mit
hell, 1991; Cardelli, 1992) are limited.

Rules of Figure 1-19 are one way of solving row type
onstraints. In a

model with subtyping
onstraints, a more dire
t
losure-based resolution may

be more appropriate (Pottier, 2003).

TOP

2003/5/20

page 486

TOP

2003/5/20

page 487

B Solutions to Sele
ted Exer
ises

TOP

2003/5/20

page 488

488 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

1.2.6 Solution: The de�nition does not behave as expe
ted, be
ause if is a de-

stru
tor, whose arguments�a

ording to the
all-by-value semanti
s of ML-

the-
al
ulus�are evaluated before R-True or R-False is allowed to �re. As

a result, the semanti
s of the expression if t

0

then t

1

else t

2

is to evaluate

both t

1

and t

2

before
hoosing one of them. Sin
e these expressions may have

side e�e
ts (for instan
e, they may fail to terminate, or update a referen
e),

this semanti
s is undesirable. The desired evaluation order
an be obtained by

pla
ing t

1

and t

2

within
losures, whi
h delays their evaluation, then invok-

ing the
losure returned by the
onditional, for
ing its body to be evaluated.

In other words, the expression if t

0

then t

1

else t

2

should now be viewed

as synta
ti
 sugar for if t

0

(�z:t

1

) (�z:t

2

)

^

0. The
hoi
e of the
onstant

^

0 is

arbitrary, sin
e it is dis
arded; any value would do.

1.2.21 Solution: Within Damas and Milner's type system, we have:

z

1

: X ` z

1

: X

dm-Var

z

1

: X; z

2

: X ` z

2

: X

dm-Var

z

1

: X ` let z

2

= z

1

in z

2

: X

dm-Let

? ` �z

1

:let z

2

= z

1

in z

2

: X! X

dm-Abs

Please note that, be
ause X o

urs free within the environment z

1

: X, it is

impossible to apply dm-Gen to the judgement z

1

: X ` z

1

: X in a nontrivial

way. For this reason, z

2

annot re
eive the type s
heme 8X:X, and the whole

expression
annot re
eive type X! Y, where X and Y are distin
t.

1.2.22 Solution: It is straightforward to prove that the identity fun
tion has type

int! int:

�

0

; z : int ` z : int

dm-Var

�

0

` �z:z : int! int

dm-Abs

In fa
t, nothing in this type derivation depends on the
hoi
e of int as the type

of z. Thus, we may just as well use a type variable X instead. Furthermore,

after forming the arrow type X ! X, we may employ dm-Gen to quantify

universally over X, sin
e it no longer appears in the environment.

�

0

; z : X ` z : X

dm-Var

�

0

` �z:z : X! X

dm-Abs

X 62 ftv(�

0

)

�

0

` �z:z : 8X:X! X

dm-Gen

It is worth noting that, although the type derivation employs an arbitrary

type variable X, the �nal typing judgement has no free type variables. It is

TOP

2003/5/20

page 489

B Solutions to Sele
ted Exer
ises 489

thus independent of the
hoi
e of X. In the following, we refer to the above

type derivation as �

0

.

Next, we prove that the su

essor fun
tion has type int! int under the

initial environment �

0

. We write �

1

for �

0

; z : int, and make uses of dm-Var

impli
it.

�

1

`

^

+ : int! int! int

�

1

` z : int

�

1

`

^

+ z : int! int

dm-App

�

1

`

^

1 : int

�

1

` z

^

+

^

1 : int

dm-App

�

0

` �z:z

^

+

^

1 : int! int

dm-Abs

In the following, we refer to the above type derivation as �

1

. We may now

build a derivation for the third typing judgement. We write �

2

for �

0

; f :

int! int.

�

1

�

2

` f : int! int �

2

`

^

2 : int

�

2

` f

^

2 : int

dm-App

�

0

` let f = �z:z

^

+

^

1 in f

^

2 : int

dm-Let

To derive the fourth typing judgement, we re-use �

0

, whi
h proves that the

identity fun
tion has polymorphi
 type. We write �

3

for �

0

; f : 8X:X! X. By

dm-Var and dm-Inst, we have �

3

` f : (int ! int) ! (int ! int) and

�

3

` f : int! int. Thus, we may build the following derivation:

�

0

�

3

` f : (int! int)! (int! int)

�

3

` f : int! int

�

3

` f f : int! int

dm-App

�

3

`

^

2 : int

�

3

` f f

^

2 : int

dm-App

�

0

` let f = �z:z in f f

^

2 : int

dm-Let

The �rst and third judgements are valid in the simply-typed �-
al
ulus, be-

ause they use neither dm-Gen nor dm-Inst, and use dm-Let only to in-

trodu
e the monomorphi
 binding f : int ! int into the environment.

The se
ond judgement, of
ourse, is not: be
ause it involves a nontrivial

type s
heme, it is not even a well-formed judgement in the simply-typed

�-
al
ulus. The fourth judgement is well-formed, but not derivable, in the

simply-typed �-
al
ulus. This is be
ause f is used at two in
ompatible types,

namely (int ! int) ! (int ! int) and int ! int, inside the expression

f f

^

2. Both of these types are instan
es of 8X:X! X, the type s
heme assigned

to f in the environment �

3

.

TOP

2003/5/20

page 490

490 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

By inspe
tion of dm-Var, dm-Gen, and dm-Inst, it is straightforward to

see that, if �

0

`

^

1 : T is derivable, then T must be int. Sin
e int is not an

arrow type, the appli
ation

^

1

^

2
annot be well-typed under �

0

. In fa
t, be
ause

this expression is stu
k, it
annot be well-typed in a sound type system.

The expression �f:(f f) is ill-typed in the simply-typed �-
al
ulus, be
ause

no type T may
oin
ide with a type of the form T ! T

0

. Indeed, T would

then be a subterm of itself. For the same reason, this expression is ill-typed in

DM as well. Indeed, it is not di�
ult to
he
k that the presen
e of dm-Gen

and dm-Inst makes no di�eren
e: dm-Gen
annot generalize T as long as the

binding f : T appears in the environment, and dm-Inst
an only instantiate

T to T itself. Thus, the self-appli
ation f f is well-typed in DM only if f

is let-bound, as opposed to �-bound. The argument
ru
ially relies on the

fa
t that f must be assigned a monotype. Indeed, the expression �f:(f f)

is well-typed in an impli
itly-typed variant of System F: one of its types is

(8X:X ! X) ! (8X:X ! X). It also relies on the fa
t that types are �nite:

indeed, this expression is well-typed in an extension of the simply-typed �-

al
ulus with re
ursive types, where the equation T = T! T

0

has a solution.

1.2.23 Solution: It is
lear that the e�e
t of dm-Gen may be obtained by a series

of su

essive appli
ations of dm-Gen'. Conversely,
onsider an instan
e of

dm-Gen', whose premises are � ` t : S (1) and X 62 ftv(�) (2). Let us write

S = 8

�

X:T, where

�

X # ftv(�) (3). Applying dm-Inst to (1) and to the identity

substitution yields � ` t : T (4). Applying dm-Gen to (4), (2) and (3) yields

� ` t : 8X

�

X:T, that is, � ` t : 8X:S. Thus, the e�e
t of dm-Gen' may be

obtained by dm-Inst and dm-Gen.

It is
lear that dm-Inst is a parti
ular
ase of dm-Inst' where

�

Y is empty.

Conversely,
onsider an instan
e of dm-Inst', whose premises are � ` t :

8

�

X:T (1) and

�

Y # ftv(8

�

X:T) (2). Let � be a renaming that ex
hanges

�

Y with

�

Z, where

�

Z # ftv (8

�

Y:[

~

X 7!

~

T℄T) (3) and

�

Z # ftv(�) (4). Applying dm-Inst to

(1) yields � ` t : [

~

X 7! �

~

T℄T (5). Applying dm-Gen to (5) and (4) yields � `

t : 8

�

Z:[

~

X 7! �

~

T℄T, that is, � ` t : 8�

�

Y:[

~

X 7! �

~

T℄T (6). Now, by (2) and (3), we

have [

~

X 7! �

~

T℄T = �([

~

X 7!

~

T℄T), so (6) may be written � ` t : 8�

�

Y:�([

~

X 7!

~

T℄T),

that is, � ` t : �(8

�

Y:[

~

X 7!

~

T℄T) (7). By (3), this is exa
tly � ` t : 8

�

Y:[

~

X 7!

~

T℄T.

Thus, the e�e
t of dm-Inst' may be obtained by dm-Inst and dm-Gen.

1.4.4 Solution: Let us re
all that a program t is well-typed if and only if a judge-

ment of the form C;� ` t : �, where C is satis�able, holds. Let us show that

it is in fa
t possible, without loss of generality, to require � to be a monotype.

Assume C;� ` t : � (1) is derivable within HM(X). Let us write � =

8

�

X[D℄:T, where

�

X # ftv(C) (2). Applying Lemma 1.4.1 to (1) yields C

9

�

X:D (3). By hm-Inst, (1) implies C ^ D;� ` t : T (4). By (3), we have

C � C ^9

�

X:D � 9

�

X:(C ^D). Be
ause C is satis�able, this implies that C ^D

TOP

2003/5/20

page 491

B Solutions to Sele
ted Exer
ises 491

is satis�able as well. Thus, the judgement (4), whi
h involves the monotype

T, witnesses that t is well-typed.

We have shown that a program t is well-typed if and only if a judgement

of the form C;� ` t : T, where C is satis�able, holds. Thus, by Theorems ??

and ??, well-typedness is the same for both rule sets.

1.4.5 Solution: By Theorem ??, every rule in Figure 1-8 is admissible in HM(X).

Of
ourse, so is hm-Gen. So, every judgement that is derivable via the rules

of Figure 1-8 and hm-Gen is a valid HM(X) judgement.

Conversely, assume C;� ` t : � (1) holds in HM(X). We must show that

it is derivable via the rules of Figure 1-8 and hm-Gen. Let us write � =

8

�

X[D℄:T, where

�

X # ftv(C;�) (2). By hm-Inst and (1), the judgement C ^

D;� ` t : T (3) holds in HM(X). This judgement involves a monotype, so, by

Theorem ??, it is derivable via the rules of Figure 1-8. Furthermore, from (3)

and (2), hm-Gen allows deriving C^9�;� ` t : � (4). Applying Lemma 1.4.1

to (1) yields C
 9�, so the judgement (4) may be written C;� ` t : �. We

have shown that (1) is derivable via the rules of Figure 1-8 and hm-Gen. In

fa
t, it is possible to apply hm-Gen only on
e, at the end of the derivation.

1.5.1 Solution: Within the type system PCB(X), we have

z

1

� Z ` z

1

: Z

Var

z

2

� Y ` z

2

: Y

Var

let z

2

: 8Z[z

1

� Z℄:Z in z

2

� Y ` let z

2

= z

1

in z

2

: Y

Let

let z

1

: X; z

2

: 8Z[z

1

� Z℄:Z in z

2

� Y ` �z

1

:let z

2

= z

1

in z

2

: X! Y

Abs

The type variable Z, whi
h o

urs free in the left-hand instan
e of Var, is

generalized. However, z

2

does not re
eive the type s
heme 8Z:Z, whi
h, as

suggested earlier, is unsound; instead, it re
eives the
onstrained type s
heme

8Z[z

1

� Z℄:Z. The latter is more restri
tive than the former: indeed, the former

laims that z

2

has every type, while the latter only
laims that every valid

type for z

1

is also a valid type for z

2

. Let us now examine the
onstraint let z

1

:

X; z

2

: 8Z[z

1

� Z℄:Z in z

2

� Y, whi
h appears at the root of the derivation.

By C-InId and C-In*, it is equivalent to let z

1

: X in 9Z:(z

1

� Z ^ Z � Y)

and to 9Z:(X � Z ^ Z � Y), whi
h by C-ExTrans is equivalent to X � Y.

Thus, the judgement at the root of the above derivation may be written X �

Y ` �z

1

:let z

2

= z

1

in z

2

: X ! Y. In other words, the expression let z

2

=

z

1

in z

2

has type X! Y only under the assumption that X is a subtype of Y,

whi
h is sound. Even though Let allows unrestri
ted generalization of type

variables, it remains sound, be
ause the type s
heme that it produ
es typi
ally

has free program identi�ers, su
h as 8Z[z

1

� Z℄:Z above.

TOP

2003/5/20

page 492

492 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

1.7.10 Solution: Let E = let z = E

1

in t

1

and E

1

[t℄=� v E

1

[t

0

℄=�

0

(1). Then,

let �

0

; refM in JE [t℄=� : T=MK

= let �

0

; refM in ((let z : 8X[JE

1

[t℄ : XK℄:X in Jt

1

: TK) ^ J� :MK) (2)

� let �

0

; refM ; z : 8X[JE

1

[t℄=� : X=MK℄:X in Jt

1

: TK (3)

� let �

0

; refM ; z : 8X[let �

0

; refM in JE

1

[t℄=� : X=MK℄:X in Jt

1

: TK (4)

 let �

0

; refM ; z : 8X

�

Y[let �

0

; refM

0

in JE

1

[t

0

℄=�

0

: X=M

0

K℄:X in Jt

1

: TK (5)

where (2) is by de�nition of
onstraint generation, where X 62 ftv(T;M) (6); (3)

is by (6), C-LetAnd, and by de�nition of
onstraint generation; (4) is by (6)

and C-LetDup; (5) follows from (1) and C-LetEx, for some

�

Y and M

0

su
h

that

�

Y # ftv(X;M) (7) and ftv(M

0

) �

�

Y[ftv (M) (8) and dom(M

0

) = dom(�

0

)

and M

0

extends M . Note that (6), (7) and (8) imply X 62 ftv(M

0

) (9).

At this point, the type variables

�

Y, whi
h determine the types of the newly

allo
ated store
ells, are universally quanti�ed in the type s
heme assigned

to z, whi
h is undesirable. We are stu
k, be
ause we
annot in general apply

C-LetAll to hoist 9

�

Y out of the let
onstraint. Let us now assume that, by

some external means, we are guaranteed

�

Y = ? (10). Then, we may pro
eed

as follows:

� let �

0

; refM

0

; z : 8X[let �

0

; refM

0

in JE

1

[t

0

℄=�

0

: X=M

0

K℄:X in Jt

1

: TK (11)

� let �

0

; refM

0

in JE [t

0

℄=�

0

: T=M

0

K (12)

where (11) follows from the fa
t the the memory lo
ations that appear free in

Jt

1

: TK are members of dom(�), thus are not members of dom(M

0

)ndom(M);

(12) is obtained by performing the steps that lead to (4) in reverse.

The requirement that

�

Y be empty, that is, ftv(M) = ftv(M

0

), is
las-

si
 (Tofte, 1988). How is it enfor
ed? Assume that the left-hand side of every

let
onstru
t is required to be a non-expansive expression. By assumptions

(ii) and (iii), this invariant is preserved by redu
tion. So, E

1

[t℄ must be non-

expansive, whi
h, by assumption (i), guarantees that the redu
tion step does

not allo
ate new memory
ells. Then, �

0

is �, so M

0

is M .

1.9.1 Solution: We must �rst ensure that R-Add respe
ts v (De�nition 1.7.5).

Sin
e the rule is pure, it is su�
ient to establish that let �

0

in J

^

k

1

^

+

^

k

2

: TK

entails let �

0

in J

\

k

1

+ k

2

: TK. In fa
t, we have

let �

0

in J

^

k

1

^

+

^

k

2

: TK

� let �

0

in 9XY:(

^

+ � X! Y! T ^

^

k

1

� X ^

^

k

2

� Y) (1)

� 9XY:(int! int! int � X! Y! T ^ int � X ^ int � Y) (2)

� 9XY:(X = int ^ Y = int ^ int � T) (3)

� int � T (4)

� let �

0

in J

\

k

1

+ k

2

: TK (5)

TOP

2003/5/20

page 493

B Solutions to Sele
ted Exer
ises 493

where (1) is by de�nition of
onstraint generation; (2) is by de�nition of �

0

, by

C-InId and C-In*; (3) is by C-Arrow and by antisymmetry of subtyping;

(4) is by C-ExAnd and C-Name; (5) is again by de�nition of �

0

, by C-InId

and C-In*, and by de�nition of
onstraint generation.

Se
ond, we must
he
k that if the
on�guration
 v

1

: : : v

k

=� (where k � 0)

is well-typed, then either it is redu
ible, or
 v

1

: : : v

k

is a value.

We begin by
he
king that every value that is well-typed with type int is

of the form

^

k. Indeed, suppose that let �

0

; refM in Jv : intK is satis�able.

Then, v
annot be a program variable, for a well-typed value must be
losed.

v
annot be a memory lo
ation m, for otherwise refM(m) � int would be

satis�able�but the type
onstru
tors ref and int are in
ompatible. v
annot

be

^

+ or

^

+ v

0

, for otherwise int ! int ! int � int or int ! int � int

would be satis�able�but the type
onstru
tors! and int are in
ompatible.

Similarly, v
annot be a �-abstra
tion. Thus, v must be of the form

^

k, for it

is the only
ase left.

Next, we note that, a

ording to the
onstraint generation rules, if the

on�guration
 v

1

: : : v

k

=� is well-typed, then a
onstraint of the form

let �

0

; refM in (
 � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by
ases on
.

Æ Case
 is

^

k. Then, �

0

(
) is int. Be
ause the type
onstru
tors int and!

are in
ompatible with ea
h other, this implies k = 0. Sin
e

^

k is a
onstru
tor,

the expression is a value.

Æ Case
 is

^

+. We may assume k � 2, be
ause otherwise the expression

is a value. Then, �

0

(
) is int ! int ! int, so, by C-Arrow, the above

onstraint entails let �

0

; refM in (X

1

� int^ X

2

� int^ Jv

1

: X

1

K ^ Jv

2

: X

2

K),

whi
h, by Lemma 1.6.3, entails let �

0

; refM in (Jv

1

: intK ^ Jv

2

: intK). Thus,

v

1

and v

2

are well-typed with type int. By the remark above, they must

be integer literals

^

k

1

and

^

k

2

. As a result, the
on�guration is redu
ible by

R-Add.

1.9.5 Solution: We must �rst ensure that R-Ref, R-Deref and R-Assign re-

spe
t v (De�nition 1.7.5).

Æ Case R-Ref. The redu
tion is ref v=? �! m=(m 7! v), where m 62

fpi(v) (1). Let T be an arbitrary type. A

ording to De�nition 1.7.5, the goal

is to show that there exist a set of type variables

�

Y and a store type M

0

su
h

that

�

Y # ftv(T) and ftv(M

0

) �

�

Y and dom(M

0

) = fmg and let �

0

in Jref v : TK

TOP

2003/5/20

page 494

494 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

entails 9

�

Y:let �

0

; refM

0

in Jm=(m 7! v) : T=M

0

K. Now, we have

let �

0

in Jref v : TK

� let �

0

in 9XY:(Y! ref Y � X! T ^ Jv : XK) (2)

� 9Y:let �

0

in (ref Y � T ^ Jv : YK) (3)

� 9Y:let �

0

; refM

0

in (m � T ^ Jv :M

0

(m)K) (4)

� 9Y:let �

0

; refM

0

in Jm=(m 7! v) : T=M

0

K (5)

where (2) is by de�nition of
onstraint generation and by de�nition of �

0

(ref);

(3) is by C-Arrow, Lemma 1.6.4, and C-InEx; (4) assumesM

0

is de�ned as

m 7! Y, and follows from (1), C-InId and C-In*; and (5) is by de�nition of

onstraint generation.

Sub
ase R-Deref. The redu
tion is !m=(m 7! v) �! v=(m 7! v). Let T be

an arbitrary type and let M be a store type of domain fmg. We have

let �

0

; refM in J!m=(m 7! v) : T=MK

� let �

0

; refM in 9XY:(ref Y! Y � X! T ^m � X ^ Jv :M(m)K) (1)

� let �

0

; refM in 9XY:(refM(m) � X � ref Y ^ Y � T ^ Jv :M(m)K) (2)

� let �

0

; refM in 9Y:(M(m) = Y ^ Y � T ^ Jv :M(m)K) (3)

� let �

0

; refM in (M(m) � T ^ Jv : M(m)K) (4)

 let �

0

; refM in (Jv : TK ^ Jv :M(m)K) (5)

� let �

0

; refM in Jv=(m 7! v) : T=MK (6)

where (1) is by de�nition of
onstraint generation and by de�nition of �

0

(!);

(2) is by C-Arrow and C-InId; (3) follows from C-ExTrans and from

the fa
t that ref is an invariant type
onstru
tor; (4) is by C-NameEq; (5)

is by Lemma 1.6.3 and C-Dup; and (6) is again by de�nition of
onstraint

generation.

Æ Case R-Assign. The redu
tion is m := v=(m 7! v

0

) �! v=(m 7! v). Let

T be an arbitrary type and let M be a store type of domain fmg. We have

let �

0

; refM in Jm := v=(m 7! v

0

) : T=MK

 let �

0

; refM in Jm := v : TK (1)

� let �

0

; refM in 9XYZ:(ref Z! Z! Z � X! Y! T ^m � X ^ Jv : YK) (2)

� let �

0

; refM in 9XYZ:(refM(m) � X � ref Z ^ Z � T ^ Jv : YK ^ Y � Z) (3)

� let �

0

; refM in 9Z:(M(m) = Z ^ Z � T ^ Jv : ZK) (4)

� let �

0

; refM in (M(m) � T ^ Jv :M(m)K) (5)

 let �

0

; refM in Jv=(m 7! v) : T=MK (6)

where (1) and (2) are by de�nition of
onstraint generation; (3) is by C-

Arrow and C-InId; (4) is by C-ExTrans, Lemma 1.6.4, and from the fa
t

that ref is an invariant type
onstru
tor; (5) is by C-NameEq; and (6) is

obtained as in the previous
ase.

TOP

2003/5/20

page 495

B Solutions to Sele
ted Exer
ises 495

Se
ond, we must
he
k that if the
on�guration
 v

1

: : : v

k

=� (where k � 0)

is well-typed, then either it is redu
ible, or
 v

1

: : : v

k

is a value. We only give

a sket
h of this proof; see the solution to Exer
ise 1.9.1 for details of a similar

proof.

We begin by
he
king that every value that is well-typed with a type of the

form ref T is a memory lo
ation. This assertion relies on the fa
t that the type

onstru
tor ref is isolated.

Next, we note that, a

ording to the
onstraint generation rules, if the

on�guration
 v

1

: : : v

k

=� is well-typed, then a
onstraint of the form

let �

0

; refM in (
 � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by
ases on
.

Æ Case
 is ref. If k = 0, then the expression is a value; otherwise, it is

redu
ible by R-Ref.

Æ Case
 is !. We may assume k � 1, be
ause otherwise the expres-

sion is a value. Then, by de�nition of �

0

(!), the above
onstraint entails

let �

0

; refM in 9Y:(ref Y ! Y � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K), whi
h, by

C-Arrow, Lemma 1.6.3, and C-InEx, entails 9Y:let �

0

; refM in Jv

1

: ref YK.

Thus, v

1

is well-typed with a type of the form ref Y. By the remark above, v

1

must be a memory lo
ationm. Furthermore, be
ause every well-typed
on�gu-

ration is
losed,m must be a member of dom(�). As a result, the
on�guration

ref v

1

: : : v

k

=� is redu
ible by R-Deref.

Æ Case
 is :=. We may assume k � 2, be
ause otherwise the expression is a

value. As above, we
he
k that v

1

must be a memory lo
ation and a member

of dom(�). Thus, the
on�guration is redu
ible by R-Assign.

1.9.6 Solution: We must �rst ensure that R-Fix respe
ts v (De�nition 1.7.5).

Sin
e the rule is pure, it is su�
ient to establish that let �

0

in Jfix v

1

v

2

: TK

entails let �

0

in Jv

1

(fix v

1

) v

2

: TK. Let C stand for the
onstraint fix �

((X! Y) ! (X! Y)) ! X! Y ^ Y � T ^ Jv

1

: (X! Y) ! (X! Y)K ^ Jv

2

: XK.

We have

let �

0

in Jfix v

1

v

2

: TK

� let �

0

in 9X

1

X

2

:(fix � X

1

! X

2

! T ^ Jv

1

: X

1

K ^ Jv

2

: X

2

K) (1)

� let �

0

in 9X

1

X

2

XY:(((X! Y)! (X! Y))! X! Y � X

1

! X

2

! T

^Jv

1

: X

1

K ^ Jv

2

: X

2

K) (2)

� let �

0

in 9XY:(Y � T ^ Jv

1

: (X! Y)! (X! Y)K ^ Jv

2

: XK) (3)

� let �

0

in 9XY:C (4)

where (1) is by de�nition of
onstraint generation; (2) is by de�nition of

�

0

(fix); (3) is by C-Arrow and Lemma 1.6.4; (4) is by de�nition of �

0

(fix).

By Theorem 1.6.2 and Weaken, the judgements C ` v

1

: (X! Y) !

TOP

2003/5/20

page 496

496 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

(X! Y) and C ` v

2

: X hold. By Var, Weaken, App, and Sub, it fol-

lows that C ` v

1

(fix v

1

) v

2

: T holds. By Theorem 1.6.6, this implies

C
 Jv

1

(fix v

1

) v

2

: TK. By
ongruen
e of entailment and by C-Ex*, (4)

entails let �

0

in Jv

1

(fix v

1

) v

2

: TK.

Se
ond, we must
he
k that if the
on�guration fix v

1

: : : v

k

=� (where

k � 0) is well-typed, then either it is redu
ible, or fix v

1

: : : v

k

is a value.

This is immediate, for it is a value when k < 2, and it is redu
ible by R-Fix

when k � 2.

We now re
all that the
onstru
t letre
 f = �z:t

1

in t

2

provided by

ML-the-programming-language may be viewed as synta
ti
 sugar for let f =

fix (�f:�z:t

1

) in t

2

, and set forth to dis
over the
onstraint generation rule

that arises out of su
h a de�nition. We have

let �

0

in Jfix (�f:�z:t

1

) : TK

� let �

0

in 9Z:(fix � Z! T ^ J�f:�z:t

1

: ZK) (1)

� let �

0

in 9XY:(X! Y � T ^ J�f:�z:t

1

: (X! Y)! (X! Y)K) (2)

� let �

0

in 9XY:(X! Y � T ^ let f : X! Y; z : X in Jt

1

: YK) (3)

where (1) is by de�nition of
onstraint generation; (2) is by de�nition

of �

0

(fix), by C-Arrow, and by Lemma 1.6.4; and (3) follows from

Lemma 1.6.5. This allows us to write

let �

0

in Jlet f = fix (�f:�z:t

1

) in t

2

: TK

� let �

0

; f : 8Z[Jfix (�f:�z:t

1

) : ZK℄:Z in Jt

2

: TK (4)

� let �

0

; f : 8Z[9XY:(X! Y � Z ^ let f : X! Y; z : X in Jt

1

: YK)℄:Z in Jt

2

: TK (5)

� let �

0

; f : 8XY[let f : X! Y; z : X in Jt

1

: YK℄:X! Y in Jt

2

: TK (6)

where (4) is by de�nition of
onstraint generation; (5) follows fromC-LetDup

and from the previous series of equivalen
es; (6) is by C-LetEx, C-ExTrans

and Lemma 1.3.22.

1.9.21 Solution: We have

Jmat
h t

1

with z : t

2

: TK

� let 8XX

0

[Jt

1

: XK ^ let z : X

0

in JX : zK℄:(z : X

0

) in Jt

2

: TK (1)

� let z : 8X

0

[9X:(Jt

1

: XK ^ X � X

0

)℄:X

0

in Jt

2

: TK (2)

� let z : 8X

0

[Jt

1

: X

0

K℄:X

0

in Jt

2

: TK (3)

� Jlet z = t

1

in t

2

: TK (4)

where (1) is by de�nition of
onstraint generation for mat
h; (2) is by de�nition

of
onstraint generation for patterns, by C-InId, C-In*, and C-LetEx; (3)

is by Lemma 1.6.4; (4) is by de�nition of
onstraint generation for let.

1.9.26 Solution: The type s
heme 8

�

X:T ! T may be written 8

�

X:[X 7! T℄(X! X).

Furthermore,

�

X # 8X:X! X holds. Thus, 8

�

X:T! T is an instan
e of 8X:X! X

TOP

2003/5/20

page 497

B Solutions to Sele
ted Exer
ises 497

in the sense of dm-Inst'. Sin
e dm-Inst' is an admissible rule for the type

system DM, and sin
e it is
lear that the identity fun
tion �z:z has type

8X:X ! X, it must also have type 8

�

X:T ! T. (A more dire
t proof of this

fa
t would not be di�
ult.) So, the destru
tor (� : 9

�

X:T) has not only identity

semanti
s, but also an identity type. This shows that our de�nitions are sound.

Let us now
he
k requirement (i) of De�nition 1.7.6. Sin
e R-Annotation

is pure, it su�
es to show that let �

0

in J(v : 9

�

X:T) : T

0

K entails let �

0

in Jv : T

0

K.

Now, we have

let �

0

in J(v : 9

�

X:T) : T

0

K

� let �

0

in 9X

�

X:(T! T � X! T

0

^ Jv : XK) (1)

� let �

0

in 9X

�

X:(X � T � T

0

^ Jv : XK) (2)

 let �

0

in Jv : T

0

K (3)

where (1) is by de�nition of
onstraint generation and by de�nition of �

0

((� :

9

�

X:T)); (2) is by C-Arrow; and (3) follows from Lemma 1.6.3 and C-Ex*.

1.10.5 Solution: We have

let �

0

in 9Z:J(�z:z

^

+

^

1 : 8X:X! X) : ZK

� let �

0

in 9Z:(8X:J�z:z

^

+

^

1 : X! XK ^ 9X:(X! X � Z)) (1)

� let �

0

in 8X:let z : X in Jz

^

+

^

1 : XK (2)

� 8X:(int! int! int � X! int! X) (3)

� 8X:(X = int) (4)

� false (5)

where (1) is by de�nition of
onstraint generation for universal type annota-

tions; (2) is obtained by restri
ting the s
ope of 9Z to the se
ond
onjun
t,

then dropping the latter altogether, sin
e it is equivalent to true, and by

Lemma 1.6.5; (3) is obtained by de�nition of
onstraint generation, by de�ni-

tion of �

0

(

^

+) and of �

0

(

^

1), and by a few simple equivalen
e laws; (4) follows

from C-Arrow and antisymmetry of subtyping; (5) follows from the fa
t

that int and (say) int ! int have distin
t interpretations, sin
e the type

onstru
tors int and ! are in
ompatible. On the other hand, we have

let �

0

in 9Z:J(�z:z : 8X:X! X) : ZK

� let �

0

in 8X:let z : X in Jz : XK (1)

� 8X:(X � X) (2)

� true (3)

where (1) is obtained as above; (2) by de�nition of
onstraint generation,

C-InId and C-In*; (3) is by re�exivity of subtyping.

TOP

2003/5/20

page 498

498 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

1.10.6 Solution: Under the naïve
onstraint generation rule for universal type vari-

able introdu
tion, the
onstraint J8X:(�z:z : X ! X) : ZK is equivalent to

8X:(J�z:z : X ! XK ^ X ! X � Z). Sin
e the �rst
onjun
t is a tautology, this

is in turn equivalent to 8X:(X ! X � Z). In a nondegenerate free term model

where subtyping is interpreted as equality, this
onstraint is unsatis�able. In

a non-stru
tural subtyping model equipped with a least type ? and a greatest

type >, it is equivalent to ? ! > � Z. This is a pretty restri
tive
onstraint:

sin
e no value has type ?, a fun
tion whose type is (a supertype of) ? ! >

annot ever be invoked at runtime. This situation is
learly unsatisfa
tory.

Che
king that 8X:J�z:z : X ! XK holds was indeed part of our intent, but

onstraining Z to be a supertype of X! X for every X was not.

1.10.7 Solution: Let

�

X � ftv(T) (1) and

�

X # ftv(t) (2). We may assume, w.l.o.g.,

�

X # ftv(T

0

) (3). By (1), (2), (3), and by de�nition of
onstraint generation

for lo
al universal type annotations, J(t : 8

�

X:T) : T

0

K is well-de�ned and is

8

�

X:Jt : TK ^ 9

�

X:(T � T

0

) (4). By (3) and by de�nition of
onstraint generation

for introdu
tion of universal type variables and for general type annotations,

J8

�

X:(t : T) : T

0

K is 8

�

X:9Z:(Jt : TK^T � Z)^9

�

X:(Jt : TK^T � T

0

), where Z is fresh,

whi
h we may immediately simplify to 8

�

X:Jt : TK ^ 9

�

X:(Jt : TK ^ T � T

0

) (5).

Using C-ExAnd and Lemma 1.10.1, it is straightforward to
he
k that (4)

and (5) are equivalent.

1.10.9 Solution: We have

9Z:J�z:8X:(z : X) : ZK

 9Z

1

Z

2

:let z : Z

1

in J8X:(z : X) : Z

2

K (1)

 9Z

1

:8X:(Z

1

� X) (2)

where (1) is by de�nition of
onstraint generation for �-abstra
tions, drop-

ping the
onstraint that relates Z, Z

1

, and Z

2

; (2) is by de�nition of
onstraint

generation for universal type variable introdu
tion, this time dropping infor-

mation about Z

2

. Now, in a nondegenerate equality model, the
onstraint (2)

is equivalent to false. In fa
t, for (2) to be satis�able, the interpretation of

subtyping must admit a least element ?. We now see that J�z:8X:(z : X) : ZK

is a very restri
tive
onstraint. Indeed, it requires z to have every type at

on
e. Be
ause z is �-bound�hen
e monomorphi
�it must in fa
t have type

?. On the other hand, we have

9Z:J8X:�z:(z : X) : ZK

� 8X:9Z:J�z:(z : X) : ZK (1)

� 8X:9ZZ

1

Z

2

:(Z

1

� X ^ X � Z

2

^ Z

1

! Z

2

� Z) (2)

� true (3)

TOP

2003/5/20

page 499

B Solutions to Sele
ted Exer
ises 499

where (1) is by de�nition of
onstraint generation for universal type variable

introdu
tion, dropping the se
ond
onjun
t, whi
h is entailed by the �rst; (2)

is by Lemma 1.6.5, by de�nition of
onstraint generation for general type an-

notations, and by a few simple equivalen
e laws; (3) follows from C-NameEq

and the witness substitution [Z

1

7! X; Z

2

7! X; Z 7! (X! X)℄.

1.10.10 Solution: We have

Jletre
 f : S = �z:t

1

in t

2

: TK

� let f : 8X[Jfix f : S:�z:t

1

: XK℄:X in Jt

2

: TK (1)

� let f : 8X[let f : S in J�z:t

1

: SK ^ S � X℄:X in Jt

2

: TK (2)

� let f : S in J�z:t

1

: SK ^ let f : 8X[S � X℄:X in Jt

2

: TK (3)

� let f : S in (J�z:t

1

: SK ^ Jt

2

: TK) (4)

where (1) is by de�nition of the letre
 synta
ti
 sugar and by the de�nition

of
onstraint generation for let
onstru
ts; we have X 62 ftv(S; t

1

); (2) is by

de�nition of
onstraint generation for fix; (3) is by C-LetAnd; (4) follows

from the equivalen
e between the type s
hemes 8X[S � X℄:X and S�whi
h

itself is a dire
t
onsequen
e of C-ExTrans�and from C-InAnd.

1.11.16 Solution: We reason simultaneously in both the subtyping model or the

equal-only model, that is, we only rely on properties that are valid in both

models.

We must �rst ensure that rules rd-Default, rd-Found, and rd-Follow

respe
t (De�nition 1.7.5).

Æ Case rd-Default. The redu
tion is fvg:f`g

Æ

�! v, whi
h is pure.

Therefore, it is su�
ient to establish that let �

0

in Jfvg:f`g : TK entails

let �

0

in Jv : TK. In fa
t, we have:

let �

0

in Jfvg:f`g : TK

� let �

0

in 9XY:(�:f`g � X! T ^ f�g � Y! X ^ Jv : YK) (1)

� let �

0

in 9XY:(9X

1

X

2

:(�(` : X

1

; X

2

)! X

1

� X! T)

^9Y

1

:(Y

1

! �(�Y

1

) � Y! X) ^ Jv : YK)

(2)

 let �

0

in 9X

2

Y:(�Y � (` : X

1

; X

2

) ^ X

1

� T ^ Jv : YK) (3)

 let �

0

in 9Y:(Y � X

1

^ X

1

� T ^ Jv : YK) (4)

 let �

0

in Jv : TK (5)

where (1) is by de�nition of
onstraint generation; (2) is by de�nition of �

0

,

C-InId; (3) by varian
es of �, `, and !, C-And, C-Ex*, C-ExAnd; (4) by

C-Row-DL and
ovarian
e of `; (5) by Lemma 1.6.3.

Æ Case rd-Found: The redu
tion is fw with ` = vg:f`g

Æ

�! v. It su�
es to

establish let �

0

in Jfw with ` = vg:f`g : TK entails let �

0

in Jv : TK. In fa
t, we

TOP

2003/5/20

page 500

500 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

have:

let �

0

in Jfw with ` = vg:f`g : TK

� let �

0

in 9XYY

0

:(�:f`g � X! T ^ f� with ` = �g � Y! Y

0

! X ^

^ Jw : YK ^ Jv : Y

0

K) (1)

� let �

0

in 9XYY

0

:(9X

1

X

2

:(�(` : X

1

; X

2

)! X

1

� X! T)

^ 9Y

1

Y

2

Y

3

:(�(` : Y

1

; Y

3

)! Y

2

! �(` : Y

2

; Y

3

) � Y! Y

0

! X)

^ Jw : YK ^ Jv : Y

0

K) (2)

 let �

0

in 9Y

0

X

1

Y

2

:(Y

0

� Y

2

^ Y

2

� X

1

^ X

1

� T ^ Jv : Y

0

K) (3)

 let �

0

in Jv : TK (4)

where (1) is by de�nition of
onstraint generation; (2) is by de�nition of �

0

,

C-InId; (3) by varian
es of �, `, and !, C-And, C-Ex*, C-ExAnd; (4) by

Lemma 1.6.3.

Æ Case rd-Follow The proof is similar to the previous
ase.

We must now
he
k that if the
on�guration F v

1

: : : v

k

=� is is well-typed,

then either it is redu
ible, or it is a value.

We begin by
he
king that every value that is well-typed with type � T is

a re
ord value, that is, either of the form fv

0

g or fv

00

with `

0

= v

0

g. Indeed,

suppose that let �

0

in Jv : � TK is satis�able. Then, v
annot be a program

variable, for a well-typed value must be
losed; v
annot be a memory lo
a-

tion m, for otherwise refM(m) � � T would be satis�able�but the top type

onstru
tors ref and � are in
ompatible (sin
e � is isolated); v
annot be a

partial appli
ation of a
onstru
tor or a primitive, nor a �-abstra
tion, sin
e

otherwise T

0

! T

00

� � T would be satis�able but the top type
onstru
tors

! and � are in
ompatible (sin
e they are both isolated); thus v must either

be of the form fvg or fw with ` = vg, for these are the only left
ases.

Next, we note that, a

ording to the
onstraint generation rules, if the

on�guration
 v

1

: : : v

k

=� is well-typed, then a
onstraint of the form

let �

0

; refM in (
 � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by
ases on
.

Æ Case
 is f�g. We may asume k � 2, sin
e otherwise, the expression is a

value. Then �

0

(
) is 8XY:X! �(�X), so by C-InId and C-arrow the above

onstraint entails 9X:(�(�X) � X

2

! : : : ! T), whi
h by C-Class-I entails

false sin
e ! and � are im
ompatible. Thus, this
ase
annot o

ur.

Æ Case
 is f� with ` = �g. Similar to the previous
ase.

Æ Case
 is �:f`g. We may asume k � 1, sin
e otherwise, the expression is

a value. Then �

0

(
) is 8XY:�(` : X ; Y)! X, so by C-InId and C-arrow the

above
onstraint entails let �

0

; refM in (9XY:(X

1

� �(` : X ; Y)) ^ Jv

1

: X

1

K),

whi
h by lemma 1.6.3 entails let �

0

; refM in 9XY:Jv

1

: �(` :X ; Y)K. Thus v

1

is a

re
ord value, that is, either of the form fv

0

g and the
on�guration is redu
ible

TOP

2003/5/20

page 501

B Solutions to Sele
ted Exer
ises 501

to v

0

or of the form fv

00

with `

0

= v

0

g and the
on�guration is redu
ible to

either v

0

or v

00

:f`g.

1.11.17 Solution: We add a
olle
tion of destru
tors �[`

1

$`

2

℄ of arity 1 for all pairs

of distin
t labels, with the following semanti
s:

fvg[`

1

$`

2

℄

Æ

�! v

fw with ` = vg[`

1

$`

2

℄

Æ

�! fw[`

1

$`

2

℄ with ` = vg if ` =2 f`

1

; `

2

g

fw with ` = vg[`

1

$`

2

℄

Æ

�! fw[`

1

$`

2

℄ with

�

` = vg if f`;

�

`g = f`

1

; `

2

g

The initial environment �

0

must be extended with the following typing asump-

tion:

�[`

1

$`

2

℄ : 8X

1

X

2

Y: �(`

1

: X

1

; `

2

: X

2

; Y)! �(`

1

: X

2

; `

2

: X

1

; Y)

We must then
he
k subje
tion redu
tion for the new primitive. Sin
e we only

added a
onstru
tor, it su�
ies to
he
k progress for the new primitive, that is,

that well-typed expressions of the form [`

1

$`

2

℄v

1

: : : v

n

are either value or

an be further redu
ed. Both parts are easy and similar to the
orresponding

parts in Exer
i
e 1.11.16.

1.11.18 Solution: There are several solutions. One of them is to asume a �xed total

ordering on row-labels, and to retain as
onstru
tors only `

�;L

su
h that ` < L,

that is ` < `

0

for all `

0

2 L; other
onstants `

�;L

su
h that ` 6< L are moved

from
onstru
tors to the status of destru
tors with the following
olle
tion of

redu
tion rules:

ffw with `

0

= v

0

g with ` = vg

Æ

�!
ffw with ` = vg with `

0

= v

0

g

(rd-Transpose)

for all labels ` and `

0

su
h that `

0

< ` and

ffw with ` = v

0

g with ` = vg

Æ

�!
fw with ` = vg

(rd-Dis
ard)

for all labels `. It is now obvious that values are in normal forms, in the sense

that expli
it �elds are never repeated and are always listed in order. Typing

rules need not be
hanged, so requirement (i) of De�nition 1.7.6 still holds.

Requirement (ii) need to be
he
k, in parti
ular, for the new primitives `

L

,

whi
h we leave to the reader (the proof for �:f`g should hold un
hanged).

1.11.19 Solution: Let map have type �(X! Y)! �(X) ! �(Y), and the following

redu
tion rules in the semanti
s with normal forms:

map fv

0

with ` = vg w

Æ

�! fmap v

0

w with ` = v (w:f`g)g

map v fw

0

with ` = wg

Æ

�! fmap v w

0

with ` = (v:f`g) wg

map fvg fwg

Æ

�! fv wg

TOP

2003/5/20

page 502

502 Draft of May 20, 2003 B Solutions to Sele
ted Exer
ises

1.11.22 Solution:To ensure that the �eld is not present in the argument of extension,

it su�
ies to restri
t its the typing asumptions as follows:

h� with ` = �i : 8XX

0

Y: �(` : abs ; Y)! X

0

! �(` : pre X

0

; Y):

To remove an existing �eld, we
an use the following synta
ti
 sugar:

� n `

def

= �v:fv with ` = absg

: 8XY: �(` : X ; Y)! �(` : abs ; Y)

The following weaker typing asumption
ould also be used to ensure that the

�eld is always present before removal:

8XY: �(` : pre X ; Y)! �(` : abs ; Y)

1.11.25 Solution: The proof is similar to 1.11.16 but slightly more
omplex be
ause

we must also
he
k that labels are de�ned when a

essed, and with subtyping.

We reason simultaneously in both the subtyping model or the equal-only

model, that is, we only rely on properties that are valid in both models.

We must �rst ensure that rules re-Found and re-Follow respe
t (De�-

nition 1.7.5).

Æ Case re-Found: See Exer
i
e ??. In line ??, �eld ` is pre X

1

instead of

X

1

and pre Y

2

instead of Y

2

and step ?? also uses
ovarian
e of pre.

Æ Case re-Follow The proof is similar.

We must then
he
k that if the
on�guration F v

1

: : : v

k

=� is is well-typed,

then either it is redu
ible, or it is a value.

We begin by
he
king that every value that is well-typed with type � T

is a re
ord value, that is, either of the form hi or hv

00

with `

0

= v

0

i. See

Exer
i
e 1.11.16.

Next, we note that, a

ording to the
onstraint generation rules, if the

on�guration
 v

1

: : : v

k

=� is well-typed, then a
onstraint of the form

let �

0

; refM in (
 � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by
ases on
.

Æ Case
 is hi or h� with ` = �i. See Exer
i
e 1.11.16.

Æ Case
 is �:h`i. We may asume k � 1, sin
e otherwise, the expression is a

value. Then �

0

(
) is 8XY:�(` :pre X ; Y)! X, so by C-InId and C-arrow the

above
onstraint entails let �

0

; refM in (9XY:(X

1

� �(` :pre X ; Y))^Jv

1

: X

1

K),

whi
h by lemma 1.6.3 entails let �

0

; refM in 9XY:Jv

1

: �(` : pre X ; Y)K. Thus

v

1

is a re
ord value, that is, either of the form hi or hv

00

with ` = v

0

i. In fa
t,

the former
ase
annot o

ur, sin
e let �

0

; refM in 9XY:Jhi : �(` : pre X ; Y)K

entails 9XY�(�abs) � �(` : pre X ; Y) by C-InId and C-In*, whi
h in turns

TOP

2003/5/20

page 503

B Solutions to Sele
ted Exer
ises 503

entails 9X:abs � pre X by C-Row-DL and
ovarian
e of � and `. However,

this
onstraint is equivalent to false, be
ause �(abs) � �(pre X) does not hold

in any ground assignment �. Thus v

1

is hv

00

with `

0

= v

0

i and the
on�guration

is redu
ible to v

0

if `

0

is ` or v

00

otherwise.

TOP

2003/5/20

page 536

Referen
es

Martín Abadi, Lu
a Cardelli, Pierre-Louis Curien, and Jean-Ja
ques Lévy. Expli
it

substitutions. Journal of Fun
tional Programming, 1(4):375�416, 1991. Summary

in ACM Symposium on Prin
iples of Programming Languages (POPL), San Fran-

is
o, California, 1990.

Amal Ahmed and David Walker. The logi
al approa
h to sta
k typing. In ACM

Workshop on Types in Compilation, New Orleans, Lousiana, January 2003.

Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Prin
iples, Te
h-

niques, and Tools. Addison Wesley, 1986.

Alexander Aiken, Manuel Fähndri
h, and Raph Levien. Better stati
 memory man-

agement: Improving region-based analysis of higher-order languages. In Program-

ming Language Design and Implementation, volume 30(6), pages 174�185, 18�21

June 1995. URL http://www.
s.berkeley.edu/~aiken/publi
ations/papers/

pldi95.ps.

Alexander Aiken and Edward L. Wimmers. Solving systems of set
onstraints (ex-

tended abstra
t). In IEEE Symposium on Logi
 in Computer S
ien
e (LICS),

pages 329�340, Santa Cruz, California, 22�25 June 1992. IEEE Computer So
iety

Press.

Alexander Aiken and Edward L. Wimmers. Type in
lusion
onstraints and type

inferen
e. In ACM Symposium on Fun
tional Programming Languages and Com-

puter Ar
hite
ture (FPCA), pages 31�41, 1993.

Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with

onditional types. In ACM Symposium on Prin
iples of Programming Languages

(POPL), Portland, Oregon, pages 163�173, January 1994.

Thorsten Altenkir
h. Constru
tions, Indu
tive Types and Strong Normalization.

PhD thesis, LFCS, University of Edinburgh, 1993. URL http://www.lf
s.

informati
s.ed.a
.uk/reports/93/ECS-LFCS-93-279/index.html.

Roberto M. Amadio and Lu
a Cardelli. Subtyping re
ursive types. In POPL POPL

(a), pages 104�118.

TOP

2003/5/20

page 537

Referen
es 537

Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and E�e
t Sys-

tems: Behaviours for Con
urren
y. IC Press, 1999.

Andrew W. Appel and Amy P. Felty. A semanti
 model of types and ma
hine

instru
tions for proof-
arrying
ode. In ACM Symposium on Prin
iples of Pro-

gramming Languages (POPL), Boston, Massa
husetts, pages 243�253, January

2000.

David Aspinall. Subtyping with Singleton Types. In Pro
. Computer S
ien
e Logi

(CSL '94), 1995. In LNCS 933.

Lennart Augustsson. Cayenne � a language with dependent types. In Inter-

national Conferen
e on Fun
tional Programming (ICFP), Baltimore, Maryland,

USA, pages 239�250, 1998.

Henk P. Barendregt. The Lambda Cal
ulus. North Holland, revised edition, 1984.

Henk P. Barendregt. Introdu
tion to generalized type systems. Journal of Fun
tional

Programming, 1(2):125�154, 1991.

Henk P. Barendregt. Lambda
al
uli with types. In Abramsky, Gabbay, and

Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, volume II. Oxford

University Press, 1992.

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph

rewrite systems. In Shyamasundar, editor, Foundations of Software Te
hnology

and Theoreti
al Computer S
ien
e, number 761 in LNCS, pages 41�51, Bombay,

India, 1993. Springer-Verlag.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judi
ael Courant, Jean-Christophe

Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan

Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saibi, and Ben-

jamin Werner. The Coq proof assistant referen
e manual : Version 6.1. Te
hni
al

Report RT-0203, Inria (Institut National de Re
her
he en Informatique et en

Automatique), Fran
e, 1997.

Lujo Bauer, Andrew W. Appel, and Edward W. Felten. Me
hanisms for se-

ure modular programming in java. Te
hni
al Report TR-603-99, 1999. URL

iteseer.nj.ne
.
om/bauer99me
hanisms.html.

Stephan Bellantoni and Stephan Cook. A new re
ursion-theoreti

hara
terization

of polytime fun
tions. Computational Complexity, 2(2):97�110, 1992.

Stephan Bellantoni, K.-H. Niggl, and H. S
hwi
htenberg. Higher type re
ursion,

rami�
ation and polynomial time. Annals of Pure and Applied Logi
, 104:17�30,

2000.

Stefano Berardi. Towards a mathemati
al analysis of the Coquand-Huet
al
ulus of

onstru
tions and the other systems in Barendregt's
ube. Te
hni
al report, De-

partment of Computer S
ien
e, CMU, and Dipartimento Matemati
a, Universita

di Torino, 1988.

Bernard Berthomieu. Tagged types, a theory of order sorted types for tagged ex-

pressions. Resear
h Report 93083, LAAS, 7, Avenue du Colonnel Ro
he, 31077

Toulouse, Fran
e, Mar
h 1993.

TOP

2003/5/20

page 538

538 Draft of May 20, 2003 Referen
es

G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a

polymorphi
 linear lambda
al
ulus with re
ursion. In Fourth International Work-

shop on Higher Order Operational Te
hniques in Semanti
s, Montréal, volume 41

of Ele
troni
 Notes in Theoreti
al Computer S
ien
e. Elsevier, September 2000.

URL http://www.elsevier.nl/lo
ate/ent
s/volume41.html.

L. Birkedal and R. W. Harper. Constru
ting interpretations of re
ursive types in an

operational setting. Information and Computation, 155:3�63, 1999.

Lars Birkedal and Mads Tofte. A
onstraint-based region inferen
e algorithm. Theo-

reti
al Computer S
ien
e, 258:299�392, 2001. URL http://www.it-
.dk/people/

birkedal/papers/
onria.ps.gz.

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inferen
e to von

Neumann ma
hines via region representation inferen
e. In Prin
iples of Pro-

gramming Languages, pages 171�183, New York, NY, USA, 21�24 January 1996.

ACM Press. ISBN 0-89791-769-3. URL http://www.it-
.dk/people/birkedal/

papers/reginm.ps.gz.

Matthias Blume. The SML/NJ Compilation and Library Manager, May 2002. URL

http://www.smlnj.org/do
/CM/index.html.

Matthias Blume and AndrewW. Appel. Hierar
hi
al modularity. ACM Transa
tions

on Programming Languages and Systems, 21(4):813�847, 1999. URL
iteseer.

nj.ne
.
om/blume98hierar
hi
al.html.

Kim B. Bru
e. Typing in obje
t-oriented languages: A
hieving expressibility and

safety, 1995. Available through http://www.
s.williams.edu/simkim.

Kim B. Bru
e, Lu
a Cardelli, and Benjamin C. Pier
e. Comparing obje
t en
odings.

In Theoreti
al Aspe
ts of Computer Software (TACS), Sendai, Japan, September

1997. An earlier version was presented as an invited le
ture at the Third Interna-

tional Workshop on Foundations of Obje
t Oriented Languages (FOOL 3), July

1996.

T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer, and M. J. Plasmeijer. Clean:

A language for fun
tional graph rewriting. In G. Kahn, editor, Fun
tional Pro-

gramming Languages and Computer Ar
hite
ture, pages 364�384. Springer-Verlag,

Berlin, DE, 1987. ISBN 3-540-18317-5. Le
ture Notes in Computer S
ien
e 274;

Pro
eedings of Conferen
e held at Portland, OR.

Rod Burstall and Butler Lampson. A kernel language for abstra
t data types and

modules. In G. Kahn, D. Ma
Queen, and G. Plotkin, editors, Semanti
s of Data

Types, volume 173 of Le
ture Notes in Computer S
ien
e, pages 1�50. Springer-

Verlag, 1984.

Rod Burstall, David Ma
Queen, and Donald Sannella. HOPE: An experimental

appli
ative language. In Pro
eedings of the 1980 LISP Conferen
e, pages 136�143,

Stanford, California, 1980. Stanford University.

Cristiano Cal
agno. Strati�ed operational semanti
s for safety and
orre
tness of

region
al
ulus. In POPL POPL (b), pages 155�165. ISBN 1-58113-336-7. URL

ftp://ftp.disi.unige.it/person/Cal
agnoC/regions.ps.

TOP

2003/5/20

page 539

Referen
es 539

Cristiano Cal
agno, Simon Helsen, and Peter Thiemann. Synta
ti
 type sound-

ness results for the region
al
ulus. Information & Computation, 173

(2):199�221, 2002. URL http://www.informatik.uni-freiburg.de/~helsen/

al
agno-helsen-thiemann-iand
-2001.ps.gz.

Lu
a Cardelli. A polymorphi
 �-
al
ulus with Type:Type. Resear
h report 10,

DEC/Compaq Systems Resear
h Center, May 1986.

Lu
a Cardelli. Phase distin
tions in type theory. unpublished manus
ript, 1988a.

Lu
a Cardelli. Type
he
king dependent types and subtypes. In M. Bos
arol, L. Car-

lu

i Aiello, and G. Levi, editors, Foundations of Logi
 and Fun
tional Program-

ming, Workshop Pro
eedings, Trento, Italy, (De
. 1986), volume 306 of Le
ture

Notes in Computer S
ien
e, pages 45�57. Springer-Verlag, 1988b.

Lu
a Cardelli. Extensible re
ords in a pure
al
ulus of subtyping. Resear
h re-

port 81, DEC/Compaq Systems Resear
h Center, January 1992. Also in Carl

A. Gunter and John C. Mit
hell, editors, Theoreti
al Aspe
ts of Obje
t-Oriented

Programming: Types, Semanti
s, and Language Design, MIT Press, 1994.

Lu
a Cardelli. Program fragments, linking, and modularization. In Conferen
e

Re
ord of POPL'97: The 24th ACM SIGPLAN-SIGACT Symposium on Prin-

iples of Programming Languages, pages 266�277, Paris, Fran
e, January 1997.

ACM Press.

Lu
a Cardelli, Jim Donahue, Mi
k Jordan, Bill Kalso, and Greg Nelson. The modula-

3 type system. In SixteenthACM Symposium on Prin
iples of Programming Lan-

guages (POPL), pages 202�212, Austin, TX, January 1989.

Lu
a Cardelli and Xavier Leroy. Abstra
t types and the dot notation. Te
hni
al

Report 56, Digital Equipment Corporation Systems Resear
h Center, Palo Alto,

CA, Mar
h 1990.

Lu
a Cardelli and Giuseppe Longo. A semanti
 basis for Quest. Journal of Fun
-

tional Programming, 1(4):417�458, O
tober 1991. Summary in ACM Conferen
e

on Lisp and Fun
tional Programming, June 1990. Also available as DEC/Compaq

SRC Resear
h Report 55, Feb. 1990.

Lu
a Cardelli and John Mit
hell. Operations on re
ords. Mathemati
al Stru
tures

in Computer S
ien
e, 1:3�48, 1991. Also in Carl A. Gunter and John C. Mit
hell,

editors, Theoreti
al Aspe
ts of Obje
t-Oriented Programming: Types, Semanti
s,

and Language Design, MIT Press, 1994; available as DEC/Compaq Systems Re-

sear
h Center Resear
h Report #48, August, 1989, and in the pro
eedings of

MFPS '89, Springer LNCS volume 442.

J. Cartmell. Generalised algebrai
 theories and
ontextual
ategories. Annals of

Pure and Applied Logi
, 32:209�243, 1986.

R. Cartwright and M. Fagan. Soft typing. In Pro
eedings of the SIGPLAN '91

Conferen
e on Programming Language Design and Implementation, pages 278�

292, June 1991. Also available as SIGPLAN Noti
es 26(6) June 1991.

TOP

2003/5/20

page 540

540 Draft of May 20, 2003 Referen
es

Iliano Cervesato and Frank Pfenning. A linear logi
al framework. In Information

and Computation, July 2000. To appear.

Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: Model

he
king message-passing programs. In Prin
iples of Programming Languages,

pages 45�57, New York, NY, USA, 16�18 January 2002. ACM Press. ISBN 1-

58113-450-9.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Rie
ke. Referen
e
ounting as a

omputational interpretation of linear logi
. Journal of Fun
tional Programming,

6(2):195�244, Mar
h 1996.

Alonzo Chur
h. The
al
uli of lambda-
onversion. The Annals of Mathemati
al

Studies, 6, 1941.

Alonzo Chur
h. The weak theory of impli
ation. Kontroliertes Denken: Unter-

su
hungen zum Logikkalk ul und zur Logik der Einzelwissens
haften, pages 22�37,

1951.

Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A

simple appli
ative language: Mini-ML. In ACM Symposium on Lisp and Fun
-

tional Programming (LFP), pages 13�27, August 1986.

Christopher Colby, Peter Lee, George C. Ne
ula, Fred Blau, Mark Plesko, and Ken-

neth Cline. A
ertifying
ompiler for Java. ACM SIGPLAN Noti
es, 35(5):95�107,

May 2000. ISSN 0362-1340.

Hubert Comon. Constraints in term algebras (short survey). In Conferen
e on Alge-

brai
 Methodology and Software Te
hnology (AMAST), Workshops in Computing.

Springer-Verlag, 1993.

Hubert Comon and Pierre Les
anne. Equational problems and disuni�
ation. Jour-

nal of Symboli
 Computation, 7:371�425, 1989.

R. L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.

Harper, D.J. Howe, T.B. Knoblo
k, N.P. Mendler, P. Panangaden, J.T. Sasaki,

and S.F. Smith. Implementing Mathemati
s with the Nuprl Development System.

Prenti
e-Hall, NJ, 1986. URL http://www.nuprl.org/book/do
.html.

Catarina Coquand. The AGDA proof system homepage, 1998. At http://www.
s.

halmers.se/~
atarina/agda/.

Thierry Coquand. An analysis of Girard's paradox. In Pro
eedings, Symposium on

Logi
 in Computer S
ien
e IEE (1986), pages 227�236.

Thierry Coquand. An algorithm for testing
onversion in type theory. In Gérard

Huet and Gordon Plotkin, editors, Logi
al Frameworks, pages 255�279. Cambridge

University Press, 1991a.

Thierry Coquand. An Algorithm for Testing Conversion in Type Theory. In Gérard

Huet and G. Plotkin, editors, Logi
al frameworks, pages 255�277. Cambridge Uni-

versity Press, 1991b.

TOP

2003/5/20

page 541

Referen
es 541

Thierry Coquand. Pattern mat
hing with dependent types. In Pro
eedings of

the Workshop on Types for Proofs and Programs, Baastad. Informal pro
eedings

available by ftp from ftp://ftp.
s.
halmers.se/pub/
s-reports/baastad.92/

pro
.ps.Z, 1992.

Thierry Coquand and Gérard Huet. The Cal
ulus of Constru
tions. Information

and Computation, 76(2/3):95�120, February/Mar
h 1988.

Erik Crank and Matthias Felleisen. Parameter-passing and the lambda
al
ulus.

In ACM Symposium on Prin
iples of Programming Languages (POPL), pages

233�244, January 1991.

Karl Crary. Toward a foundational typed assembly language. In ACM Symposium

on Prin
iples of Programming Languages (POPL), New Orleans, Louisiana, pages

198�212, January 2003.

Karl Crary, Robert Harper, and Sidd Puri. What is a re
ursive module? In SIG-

PLAN '99 Conferen
e on Programming Language Design and Implementation

(PLDI), pages 50�63, Atlanta, GA, 1999a. ACM SIGPLAN.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in

a
al
ulus of
apabilities. In ACM Symposium on Prin
iples of Programming

Languages (POPL), pages 262�275, January 1999b.

Karl Crary, Stephanie Weiri
h, and J. Gregory Morrisett. Intensional polymorphism

in type-erasure semanti
s. In International Conferen
e on Fun
tional Program-

ming (ICFP), Baltimore, Maryland, USA, pages 301�312, 1998.

Pavel Curtis. Constrained Quanti�
ation in Polymorphi
 Type Analysis. PhD thesis,

Cornell University, February 1990.

Luis Damas and Robin Milner. Prin
ipal type-s
hemes for fun
tional programs. In

ACM Symposium on Prin
iples of Programming Languages (POPL), Albuquerque,

New Mexi
o, pages 207�212, 1982.

Ni
olas G. de Bruijn. A survey of the proje
t AUTOMATH. In J. P. Seldin and

J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logi
, Lambda

Cal
ulus, and Formalism, pages 589�606. A
ademi
 Press, 1980.

Robert DeLine and Manuel Fähndri
h. Enfor
ing high-level proto
ols in low-level

software. In ACM SIGPLAN Conferen
e on Programming Language Design and

Implementation (PLDI), Snowbird, Utah, pages 56�69, June 2001.

Robert DeLine and Manuel Fähndri
h. Enfor
ing high-level proto
ols in low-level

software. In ACM SIGPLAN Conferen
e on Programming Language Design and

Implementation (PLDI), pages 59�69, June 2001.

James Donahue and Alan Demers. Data types are values. ACM Transa
tions on

Programming Languages and Systems, 7(3):426�445, July 1985.

Kosta Do�sen and Peter S
hroeder-Heister, editors. Substru
tural Logi
s,
hapter

A histori
al introdu
tion to substru
tural logi
s, pages 1�30. Oxford University

Press, 1993.

TOP

2003/5/20

page 542

542 Draft of May 20, 2003 Referen
es

Gilles Dowek, Thérèse Hardin, and Claude Kir
hner. Higher order uni�
ation via

expli
it substitutions. Resear
h Report 2709, INRIA, November 1995.

Gilles Dowek, Thérèse Hardin, Claude Kir
hner, and Frank Pfenning. Uni�
ation via

expli
it substitutions: the
ase of higher-order patterns. Resear
h Report 3591,

INRIA, De
ember 1998.

Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order

modules. In POPL 2003: Pro
eedings of the 30th ACM SIGPLAN-SIGACT

Sumposium on Prin
iples of Programming Languages, pages 236�249, New Or-

leans, January 2003.

Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphi
 re
ursion and

subtype quali�
ations: Polymorphi
 binding-time analysis in polynomial time. In

Alan My
roft, editor, Stati
 Analysis Symposium (SAS), volume 983 of Le
ture

Notes in Computer S
ien
e, pages 118�135. Springer-Verlag, September 1995a.

Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphi
 re
ursion and

subtype quali�
ations: Polymorphi
 binding-time analysis in polynomial time. In

Alan My
roft, editor, Stati
 Analysis Symposium, volume 983 of Le
ture Notes in

Computer S
ien
e, pages 118�135, Heidelberg, Germany, 25�27 September 1995b.

Springer-Verlag. ISBN 3-540-60360-3.

Thomas Erhard. A
ategori
al semanti
s of
onstru
tions. In Symposium on Logi

in Computer S
ien
e, pages 264�273, July 1988.

Manuel Fähndri
h, Jakob Rehof, and Manuvir Das. S
alable
ontext-sensitive �ow

analysis using instantiation
onstraints. In Programming Language Design and

Implementation, volume 35(5) of SIGPLAN Noti
es, pages 253�263, New York,

NY, USA, 18�21 June 2000. ACM Press. ISBN 1-58113-199-2.

M. Felleisen and R. Hieb. The revised report on the synta
ti
 theories of sequential

ontrol and state. Theoreti
al Computer S
ien
e, 103:235�271, 1992.

Manuel Fähndri
h. Bane: A Library for S
alable Constraint-Based Program Anal-

ysis. PhD thesis, University of California at Berkeley, 1999.

Manuel Fähndri
h, Jakob Rehof, and Manuvir Das. S
alable
ontext-sensitive

�ow analysis using instantiation
onstraints. In ACM SIGPLAN Conferen
e on

Programming Language Design and Implementation (PLDI), Van
ouver, British

Columbia, Canada, June 2000.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages.

In Pro
eedings of the ACM SIGPLAN '98 Conferen
e on Programming Language

Design and Implementation, pages 236�248, 1998. URL
iteseer.nj.ne
.
om/

flatt98unit.html.

Matthew Fluet and Ri

ardo Pu
ella. Phantom types and subtyping. pages 448�460,

August 2002.

Cédri
 Fournet and Georges Gonthier. The re�exive
hemi
al abstra
t ma
hine and

the join-
al
ulus. In Prin
iples of Programming Languages, January 1996.

TOP

2003/5/20

page 543

Referen
es 543

Alexandre Frey. Satisfying subtype inequalities in polynomial spa
e. In Pas
al Van

Hentenry
k, editor, International Symposium on Stati
 Analysis (SAS), num-

ber 1302 in Le
ture Notes in Computer S
ien
e, pages 265�277. Springer-Verlag,

September 1997.

You-Chin Fuh and Prateek Mishra. Type inferen
e with subtypes. In H. Ganzinger,

editor, European Symp. on Programming (ESOP), volume 300 of Le
ture Notes

in Computer S
ien
e, pages 94�114. Springer-Verlag, 1988.

Murdo
h J. Gabbay and Andrew M. Pitts. A new approa
h to abstra
t syntax with

variable binding. Formal Aspe
ts of Computing, 13(3�5):341�363, July 2002.

Ja
ques Garrigue. Relaxing the value restri
tion. Draft., November 2002.

Ja
ques Garrigue and Didier Rémy. Extending ML with semi-expli
it higher-order

polymorphism. Information and Computation, 155(1):134�169, 1999.

David Gay and Alexander Aiken. Language support for regions. In Programming

Language Design and Implementation, volume 36(5) of SIGPLAN Noti
es, pages

70�80, New York, NY, USA, 20�22 June 2001. ACM Press. ISBN 1-58113-414-2.

URL http://www.
s.berkeley.edu/~dgay/papers/pldi01.ps.

Giorgio Ghelli and Benjamin Pier
e. Bounded existentials and minimal typing.

Theoreti
al Computer S
ien
e, 193:75�96, 1998. TR version originally announ
ed

on Types list in Summer 1992.

David K. Gi�ord and John M. Lu
assen. Integrating fun
tional and imperative

programming. In LISP and Fun
tional Programming, pages 28�38, New York,

NY, USA, 4�6 August 1986. ACM Press.

J.-Y. Girard. Interprétation fon
tionelle et élimination des
oupures dans

l'arithmetique d'ordre supérieur. PhD thesis, Université Paris VII, 1972a. Thèse

de do
torat d'état.

Jean-Yves Girard. Interprétation Fon
tionnelle et Élimination des Coupures dans

l'Arithmétique d'Ordre Supérieure. PhD thesis, Université Paris VII, 1972b.

Jean-Yves Girard. Linear logi
. Theoreti
al Computer S
ien
e, 50:1�102, 1987.

Jean-Yves Girard. Light linear logi
. Information and Computation, 143, 1998.

Neal Glew. Type dispat
h for named hierar
hi
al types. In International Conferen
e

on Fun
tional Programming (ICFP), Paris, Fran
e, pages 172�182, 1999.

GNU. GNU C library, version 2.2.5, 2001. URL http://www.gnu.org/manual/

glib
-2.2.5/html_mono/lib
.html.

Healfdene Goguen. A Typed Operational Semanti
s for Type Theory. PhD thesis,

LFCS, University of Edinburgh, 1994. URL http://www.lf
s.informati
s.ed.

a
.uk/reports/94/ECS-LFCS-94-304/index.html. Report ESC-LFCS-94-304.

A. D. Gordon. Fun
tional Programming and Input/Output. Distinguished Disserta-

tions in Computer S
ien
e. Cambridge University Press, 1994.

TOP

2003/5/20

page 544

544 Draft of May 20, 2003 Referen
es

A. D. Gordon. Bisimilarity as a theory of fun
tional programming. In Eleventh

Conferen
e on the Mathemati
al Foundations of Programming Semanti
s, New

Orleans, 1995, volume 1 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e.

Elsevier, 1995.

A. D. Gordon. Operational equivalen
es for untyped and polymorphi
 obje
t
al
uli.

In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Te
hniques

in Semanti
s, Publi
ations of the Newton Institute, pages 9�54. Cambridge Uni-

versity Press, 1998.

Andrew D. Gordon and Alan Je�rey. Authenti
ity by typing for se
urity proto
ols.

In Pro
. 14th IEEE Computer Se
urity Foundations Workshop (CSFW 2001),

Cape Breton, pages 145�159, 2001a.

Andrew D. Gordon and Alan Je�rey. Typing
orresponden
e assertions for
ommu-

niation proto
ols. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 45:22 pages,

2001b. http://www.elsevier.nl/lo
ate/ent
s/volume45.html.

Andrew D. Gordon and Alan Je�rey. Types and e�e
ts for asymmetri

ryptographi

proto
ols. In Pro
. 15th IEEE Computer Se
urity Foundations Workshop (CSFW

2002), Cape Breton, pages 77�91, 2002.

Mi
hael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: A

Me
hanized Logi
 of Computation, volume 78 of Le
ture Notes in Computer S
i-

en
e. Springer-Verlag, 1979a.

Mi
hael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF.

Springer-Verlag LNCS 78, 1979b.

Dan Grossman, Greg Morrisett, Trevor Jim, Mi
hael Hi
ks, Yanling Wang, and

James Cheney. Region-based memory management in
y
lone. InACM SIGPLAN

Conferen
e on Programming Language Design and Implementation (PLDI), pages

282�293, June 2002a.

Dan Grossman, Greg Morrisett, Trevor Jim, Mi
hael Hi
ks, Yanling Wang, and

James Cheney. Region-based memory management in Cy
lone. In Pro
eedings

of the ACM SIGPLAN 2002 Conferen
e on Programming language design and

implementation (PLDI'02), pages 282�293. ACM Press, 2002b.

Jörgen Gustavsson and Josef Svenningsson. Constraint abstra
tions. In Olivier

Danvy and Andrzej Filinski, editors, Programs as Data Obje
ts, volume 2053 of

LNCS, pages 63�83, Heidelberg, Germany, 21�23 May 2001a. Springer-Verlag.

ISBN 3-540-42068-1.

Jörgen Gustavsson and Josef Svenningsson. Constraint abstra
tions. In Symposium

on Programs as Data Obje
ts, volume 2053 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, May 2001b.

Jr. Guy L. Steele. Common Lisp the Language. Digital Press, 1990.

Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inferen
e and

garbage
olle
tion. In ACM SIGPLAN Conferen
e on Programming Language

Design and Implementation (PLDI'02). ACM Press, June 2002. Berlin, Germany.

TOP

2003/5/20

page 545

Referen
es 545

Thomas Hallgren and Aarne Ranta. An extensible proof text editor (abstra
t).

In Logi
 for Programming and Automated Reasoning (LPAR'2000), pages 70�84.

Springer-Verlag LNCS/LNAI. 1955, 2000.

Nadeem Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni.

A synta
ti
 approa
h to foundational proof-
arrying
ode. In IEEE Symposium

on Logi
 in Computer S
ien
e (LICS), pages 89�100, July 2002.

David R. Hanson. Fast allo
ation and deallo
ation of memory based on obje
t

lifetimes. Software�Pra
ti
e and Experien
e, 20(1):5�12, 1990.

R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logi
s. JACM, 40(1):

143�184, 1993a. URL http://www.
s.
mu.edu/~fp/elf-papers/ja
m93.dvi.gz.

Robert Harper. On equivalen
e and
anoni
al forms in the LF type theory. (Sub-

mitted for publi
ation.), August 2002.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logi
s.

Journal of the ACM, 40(1):143�184, 1993b. Summary in LICS'87.

Robert Harper and Mark Lillibridge. A type-theoreti
 approa
h to higher-order

modules with sharing. In ACM Symposium on Prin
iples of Programming Lan-

guages (POPL), Portland, Oregon, pages 123�137, January 1994.

Robert Harper and John C. Mit
hell. On the type stru
ture of Standard ML. ACM

Transa
tions on Programming Languages and Systems, 15(2):211�252, April 1993.

Robert Harper, John C. Mit
hell, and Eugenio Moggi. Higher-order modules and the

phase distin
tion. In SeventeenthACM Symposium on Prin
iples of Programming

Languages (POPL), San Fran
is
o, CA, January 1990a.

Robert Harper, John C. Mit
hell, and Eugenio Moggi. Higher-order modules and the

phase distin
tion. In ACM Symposium on Prin
iples of Programming Languages

(POPL), San Fran
is
o, California, pages 341�354, January 1990b.

Robert Harper and Benjamin Pier
e. A re
ord
al
ulus based on symmetri

on
ate-

nation. In ACM Symposium on Prin
iples of Programming Languages (POPL),

Orlando, Florida, pages 131�142, January 1991. Extended version available as

Carnegie Mellon Te
hni
al Report CMU-CS-90-157.

Robert Harper and Robert Polla
k. Type
he
king with universes. Theoreti
al

Computer S
ien
e, 89:107�136, 1991.

Robert Harper and Chris Stone. A type-theoreti
 interpretation of Standard ML.

In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and

Intera
tion: Essays in Honor of Robin Milner. MIT Press, 2000a.

Robert Harper and Christopher Stone. A type-theoreti
 interpretation of Standard

ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language

and Intera
tion: Essays in Honour of Robin Milner. MIT Press, 2000b.

Nevin Heintze. Set based analysis of ML programs. Te
hni
al Report CMU-CS-93-

193, Carnegie Mellon University, S
hool of Computer S
ien
e, July 1993.

TOP

2003/5/20

page 546

546 Draft of May 20, 2003 Referen
es

Simon Helsen and Peter Thiemann. Synta
ti
 type soundness for the region
al
ulus.

In Alan Je�rey, editor, ACM Workshop on Higher Order Operational Te
hniques

in Semanti
s, volume 41(3) of Ele
troni
 Notes in Theoreti
al Computer S
ien
e,

pages 1�20. Elsevier, September 2000. URL http://www.elsevier.nl/lo
ate/

ent
s/volume41.html.

Fritz Henglein. Type inferen
e with polymorphi
 re
ursion. ACM Transa
tions on

Programming Languages and Systems, 15(2):253�289, 1993.

Fritz Henglein, Henning Makholm, and Henning Niss. A dire
t approa
h to
ontrol-

�ow sensitive region-based memory management. In Pro
eedings of the 3rd In-

ternational ACM SIGPLAN Conferen
e on Prin
iples and Pra
ti
e of De
lara-

tive Programming (PPDP), pages 175�186, Firenze, Italy, September 2001. ACM

Press. URL http://www.diku.dk/~hniss/publi
ations/ppdp2001-abstra
t.

html.

Fritz Henglein and Christian Mossin. Polymorphi
 binding-time analysis. In Donald

Sannella, editor, 5th European Symposium on Programming, volume 788 of Le
ture

Notes in Computer S
ien
e, pages 287�301, Heidelberg, Germany, 11�13 April

1994. Springer-Verlag. ISBN 3-540-57880-3.

Tom Hirs
howitz and Xavier Leroy. Mixin modules in a
all-by-value setting. In

European Symposium on Programming, pages 6�20, 2002. URL
iteseer.nj.

ne
.
om/arti
le/hirs
howitz02mixin.html.

C. A. R. Hoare. Proof of
orre
tness of data representation. A
ta Informati
a, 1:

271�281, 1972.

Martin Hofmann. Syntax and semanti
s of dependent types. In P. Dybjer and

A. Pitts, editors, Semanti
s of Logi
s of Computation,
hapter 3. Cambridge

University Press, 1997. URL http://www.mathematik.th-darmstadt.de/~mh/

upart.dvi.gz.

Martin Hofmann. Linear types and non-size-in
reasing polynomial time
ompu-

tation. In Logi
 in
omputer s
ien
e, pages 464�473, Los Alamitos, CA, June

1999.

Martin Hofmann. Safe re
ursion with higher types and BCK-algebra. Annals of

Pure and Applied Logi
, 2000.

F. Honsell, I. A. Mason, S. F. Smith, and C. L. Tal
ott. A variable typed logi
 of

e�e
ts. Information and Computation, 119(1):55�90, 1995.

William A. Howard. Hereditarily majorizable fun
tionals of �nite type. In

Anne Sjerp Troelstra, editor, Metamathemati
al Investigation of Intuitionisti

Arithmeti
 and Analysis, volume 344 of Le
ture Notes in Mathemati
s, pages

454�461. Springer-Verlag, Berlin, 1973. Appendix.

William A. Howard. The formulas-as-types notion of
onstru
tion. In J. P. Seldin and

J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logi
, Lambda Cal-

ulus, and Formalism, pages 479�490. A
ademi
 Press, New York, 1980. Reprint

of 1969 arti
le.

TOP

2003/5/20

page 547

Referen
es 547

D. J. Howe. Proving
ongruen
e of bisimulation in fun
tional programming lan-

guages. Information and Computation, 124(2):103�112, 1996.

Paul Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.

Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-

tain, and J. Peterson. Report on the programming language Haskell, version 1.2.

SIGPLAN Noti
es, 27(5), May 1992.

Gérard Huet. Résolution d'equations dans les langages d'ordre 1,2, ...,!. Thèse de

Do
torat d'Etat, Université de Paris 7 (Fran
e), 1976.

Pro
eedings, Symposium on Logi
 in Computer S
ien
e, Cambridge, Massa
husetts,

16�18 June 1986. IEEE Computer So
iety.

Atsushi Igarashi and Naoki Kobayashi. A generi
 type system for the pi-
al
ulus.

In POPL POPL (b), pages 128�141. ISBN 1-58113-336-7.

Atsushi Igarashi and Benjamin C. Pier
e. Foundations for virtual types. In Eu-

ropean Conferen
e on Obje
t-Oriented Programming (ECOOP), 1999. Also in

informal pro
eedings of the Sixth International Workshop on Foundations of

Obje
t-Oriented Languages (FOOL). Full version to appear in Information and

Computation.

Bart Ja
obs. Categori
al Logi
 and Type Theory. Studies in Logi
 and the Founda-

tions of Mathemati
s 141. North Holland, Elsevier, 1999.

Lalita A. Jategaonkar and John C. Mit
hell. ML with extended pattern mat
hing

and subtypes (preliminary version). In Pro
eedings of the ACM Conferen
e on

Lisp and Fun
tional Programming, pages 198�211, Snowbird, Utah, July 1988.

Kathleen Jensen and Niklaus Wirth. Pas
al User Manual and Report. Springer-

Verlag, se
ond edition, 1975.

Thomas Jensen. Inferen
e of polymorphi
 and
onditional stri
tness properties. In

ACM Symposium on Prin
iples of Programming Languages (POPL), pages 209�

221. ACM Press, January 1998. http://www.irisa.fr/lande/jensen/papers/

popl98.ps.

Trevor Jim. What are prin
ipal typings and what are they good for? Te
hni
al

Report MIT/LCS TM-532, Massa
husetts Institute of Te
hnology, August 1995.

Trevor Jim, J. Greg Morrisett, Dan Grossman, Mi
hael W. Hi
ks, James Cheney,

and Yanling Wang. Cy
lone: A safe diale
t of C. In Pro
eedings of the Gen-

eral Tra
k: 2002 USENIX Annual Te
hni
al Conferen
e, pages 275�288. USENIX

Asso
iation, 2002.

P. Johann. A generalization of short-
ut fusion and its
orre
tness proof. Higher-

Order and Symboli
 Computation, 15(4):273�300, 2002.

Mark P. Jones. Quali�ed Types: Theory and Pra
ti
e. Cambridge University Press,

November 1994a.

Mark P. Jones. Quali�ed Types: Theory and Pra
ti
e. Cambridge University Press,

Cambridge, England, 1994b.

TOP

2003/5/20

page 548

548 Draft of May 20, 2003 Referen
es

Mark P. Jones. Using parameterized signatures to express modular stru
ture. In

Conferen
e Re
ord of the 23rd ACM SIGPLAN-SIGACT Symposium on Prin
i-

ples of Programming Languages (POPL'96), St. Petersburg, Florida, 21�24, 1996.

ACM Press. URL
iteseer.nj.ne
.
om/jones96using.html.

Mark P. Jones. Typing haskell in haskell. In Haskell Workshop, O
tober 1999.

Jean-Pierre Jouannaud and Claude Kir
hner. Solving equations in abstra
t algebras:

a rule-based survey of uni�
ation. In Jean-Louis Lassez and Gordon Plotkin,

editors, Computational Logi
. Essays in honor of Alan Robinson,
hapter 8, pages

257�321. MIT Press, 1991.

Pierre Jouvelot and David K. Gi�ord. Reasoning about
ontinuations with
ontrol

e�e
ts. In Programming Language Design and Implementation, volume 24(7),

pages 218�226, 21�23 June 1989.

Pierre Jouvelot and David K. Gi�ord. Algebrai
 re
onstru
tion of types and e�e
ts.

In POPL POPL (a), pages 303�310.

A. Jung and A. Stoughton. Studying the fully abstra
t model of PCF within its

ontinuous fun
tion model. In M. Bezem and J.M. Groote, editors, Pro
. Typed

Lambda Cal
uli and Appli
ations (TLCA), volume 664 of Le
ture Notes in Com-

puter S
ien
e, pages 230�244. Springer-Verlag, 1993.

L.S. van Benthem Jutting, James M
Kinna, and Robert Polla
k. Che
king algo-

rithms for Pure Type Systems. In Henk Barendregt and Tobias Nipkow, editors,

Pro
eedings of the International Workshop on Types for Proofs and Programs,

pages 19�61, Nijmegen, The Netherlands, May 1994. Springer-Verlag LNCS 806.

Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzy
zyn. Type re
onstru
tion in the pres-

en
e of polymorphi
 re
ursion. ACM Transa
tions on Programming Languages

and Systems, 15(2):290�311, April 1993.

Claude Kir
hner and F. Klay. Synta
ti
 theories and uni�
ation. In Pro
eedings 5th

IEEE Symposium on Logi
 in Computer S
ien
e, Philadelphia (Pa., USA), pages

270�277, June 1990.

Dexter Kozen, Jens Palsberg, and Mi
hael I. S
hwartzba
h. E�
ient re
ursive sub-

typing. Mathemati
al Stru
tures in Computer S
ien
e, 5(1):113�125, 1995.

Viktor Kun
ak and Martin Rinard. Stru
tural subtyping of non-re
ursive types is

de
idable. In IEEE Symposium on Logi
 in Computer S
ien
e (LICS), June 2003.

Yves Lafont. The linear abstra
t ma
hine. Theoreti
al Computer S
ien
e, 59:157�

180, 1988.

Joa
him Lambek. The mathemati
s of senten
e stru
ture. Ameri
an Mathemati
al

Monthly, 65:154�170, 1958.

B. Lampson and R. Burstall. Pebble, a kernel language for modules and abstra
t

data types. Information and Computation, 76:278�346, February/Mar
h 1988.

S. B. Lassen. Relational Reasoning about Fun
tions and Nondeterminism. PhD

thesis, Department of Computer S
ien
e, University of Aarhus, 1998.

TOP

2003/5/20

page 549

Referen
es 549

Jean-Louis Lassez, Mi
hael J. Maher, and Kim G. Marriott. Uni�
ation revisited. In

Ja
k Minker, editor, Foundations of Dedu
tive Databases and Logi
 Programming,

hapter 15, pages 587�625. Morgan Kaufmann, 1988.

Konstantin Läufer and Martin Odersky. Polymorphi
 type inferen
e and ab-

stra
t data types. ACM Transa
tions on Programming Languages and Systems

(TOPLAS), 16(5):1411�1430, September 1994. Summary in Phoenix Seminar and

Workshop on De
larative Programming, Nov. 1991.

Fabri
e Le Fessant and Lu
 Maranget. Optimizing pattern mat
hing. In Inter-

national Conferen
e on Fun
tional Programming (ICFP), Firenze, Italy. ACM

Press, 2001.

Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphi
 type infer-

en
e algorithm. ACM Transa
tions on Programming Languages and Systems, 20

(4):707�723, 1998.

Daniel Leivant. Strati�ed fun
tional programs and
omputational
omplexity. In

ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming languages,

pages 325�333, jan 1993.

Xavier Leroy. Polymorphi
 typing of an algorithmi
 language. Resear
h Report

1778, INRIA, O
tober 1992.

Xavier Leroy. Manifest types, modules, and separate
ompilation. In Pro
eedings

of the Twenty-�rst Annual ACM Symposium on Prin
iples of Programming Lan-

guages, Portland. ACM, January 1994a.

Xavier Leroy. Manifest types, modules and separate
ompilation. In ACM Sympo-

sium on Prin
iples of Programming Languages (POPL), Portland, Oregon, pages

109�122, January 1994b.

Xavier Leroy. Appli
ative fun
tors and fully transparent higher-order modules. In

Conferen
e Re
ord of POPL '95: ACM SIGPLAN-SIGACT Symposium on Prin-

iples of Programming Languages, pages 142�153, San Fran
is
o, CA, January

1995a.

Xavier Leroy. Appli
ative fun
tors and fully transparent higher-order modules. In

Pro
eedings of the Twenty-Se
ond ACM Symposium on Prin
iples of Programming

Languages (POPL), Portland, Oregon, pages 142�153, San Fran
is
o, California,

January 1995b.

Xavier Leroy. The Obje
tive Caml system: Do
umentation and user's guide. Avail-

able at http://pauilla
.inria.fr/o
aml/htmlman/., 1996a.

Xavier Leroy. A synta
ti
 theory of type generativity and sharing. Journal of

Fun
tional Programming, 6(5):667�698, 1996b.

Xavier Leroy. A synta
ti
 theory of type generativity and sharing. Journal of

Fun
tional Programming, 6(5):667�698, September 1996
.

Xavier Leroy. The Obje
tive Caml system: Do
umentation and user's manual, 2000.

With Damien Doligez, Ja
ques Garrigue, Didier Rémy, and Jér�me Vouillon.

Available from http://
aml.inria.fr.

TOP

2003/5/20

page 550

550 Draft of May 20, 2003 Referen
es

Xavier Leroy and François Pessaux. Type-based analysis of un
aught ex
ep-

tions. ACM Transa
tions on Programming Languages and Systems, 22(2):340�

377, Mar
h 2000. Summary in ACM Symposium on Prin
iples of Programming

Languages (POPL), San Antonio, Texas, 1999.

Mark Lillibridge. Translu
ent Sums: A Foundation for Higher-Order Module Sys-

tems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, De
ember 1996.

Mark Lillibridge. Translu
ent Sums: A Foundation for Higher-Order Module Sys-

tems. PhD thesis, S
hool of Computer S
ien
e, Carnegie Mellon University, Pitts-

burgh, PA, May 1997.

Tim Lindholm and Frank Yellin. The Java Virtual Ma
hine Spe
i�
ation. The Java

Series. Addison-Wesley, Reading, MA, USA, January 1997. ISBN 0-201-63452-X.

URL http://www.aw.
om/
p/javaseries.html.

Barbara Liskov. A history of CLU. ACM SIGPLAN Noti
es, 28(3):133�147, 1993.

Ralph Loader. Finitary PCF is not de
idable. Theoreti
al Computer S
ien
e, 266

(1-2):341�364, September 2001.

John M. Lu
assen and David K. Gi�ord. Polymorphi
 e�e
t systems. In Prin
iples

of Programming Languages, pages 47�57, New York, NY, USA, January 1988.

ACM Press.

Z. Luo. Computation and Reasoning: A Type Theory for Computer S
ien
e. Num-

ber 11 in International Series of Monographs on Computer S
ien
e. Oxford Uni-

versity Press, 1994.

Zhaohui Luo and Robert Polla
k. The LEGO proof development system: A user's

manual. Te
hni
al Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

David Ma
Queen. Modules for Standard ML. In 1984ACM Conferen
e on LISP

and Fun
tional Programming, pages 198�207, 1984.

David Ma
Queen. Using dependent types to express modular stru
ture. In Thir-

teenthACM Symposium on Prin
iples of Programming Languages (POPL), 1986.

David B. Ma
Queen. Using dependent types to express modular stru
ture. In

ACM Symposium on Prin
iples of Programming Languages (POPL), St. Peters-

burg Bea
h, Florida, 1986.

Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine.

In Types for Proofs and Programs, volume 806, pages 213�237. Springer-Verlag

LNCS 806, 1994.

Harry G. Mairson, Paris C. Kanellakis, and John C. Mit
hell. Computational Logi
:

Essays in Honor of Alan Robinson,
hapter Uni�
ation and ML type re
onstru
-

tion, pages 444�478. MIT Press, 1991.

Henning Makholm. Region-based memory management in Prolog. Master's the-

sis, Department of Computer S
ien
e, University of Copenhagen (DIKU), Mar
h

2000. URL ftp://ftp.diku.dk/diku/semanti
s/papers/D-421.ps.gz. DIKU

Te
hni
al Report 00/09.

TOP

2003/5/20

page 551

Referen
es 551

Henning Makholm and Kostis Sagonas. On enabling the WAM with region support.

In Peter J. Stu
key, editor, Logi
 Programming, volume 2401 of Le
ture Notes in

Computer S
ien
e, pages 163�178, Heidelberg, Germany, 29 July�1 August 2002.

Springer-Verlag. ISBN 3-540-43930-7.

Per Martin-Löf. Intuitionisti
 Type Theory. Bibliopolis, 1984.

I. A. Mason, S. F. Smith, and C. L. Tal
ott. From operational semanti
s to domain

theory. Information and Computation, 128(1):26�47, 1996.

I. A. Mason and C. L. Tal
ott. Equivalen
e in fun
tional languages with e�e
ts.

Journal of Fun
tional Programming, 1:287�327, 1991.

David M
Allester. On the
omplexity analysis of stati
 analyses. Journal of the

ACM, 49(4):512�537, July 2002.

David M
Allester. A logi
al algorithm for ML type inferen
e. Manus
ript, Mar
h

2003.

Conor M
Bride. Dependently Typed Fun
tional Programs and their Proofs. PhD the-

sis, LFCS, University of Edinburgh, 2000. URL http://www.lf
s.informati
s.

ed.a
.uk/reports/00/ECS-LFCS-00-419/index.html.

Conor M
Bride and James M
Kinna. The view from the left. Submitted, 2002.

James M
Kinna and Robert Polla
k. Pure Type Sytems formalized. In M. Bezem

and J. F. Groote, editors, Pro
eedings of the International Conferen
e on Typed

Lambda Cal
uli and Appli
ations, pages 289�305. Springer-Verlag LNCS 664,

Mar
h 1993.

David Melski and Thomas Reps. Inter
onvertibility of a
lass of set
onstraints

and
ontext-free language rea
hability. Theoreti
al Computer S
ien
e, 248(1�2),

November 2000.

R. Milner, M. Tofte, R. Harper, and D. Ma
Queen. The De�nition of Standard ML

(Revised). MIT Press, 1997a.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer

and System S
ien
es, 17(3):348�375, De
ember 1978.

Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML.

MIT Press, 1990.

Robin Milner, Mads Tofte, Robert Harper, and David Ma
Queen. The De�nition

of Standard ML (Revised). MIT Press, 1997b.

Robin Milner, Mads Tofte, Robert Harper, and David Ma
Queen. The De�nition

of Standard ML (Revised). MIT Press, 1997
.

Yasuhiko Minamide. A fun
tional representation of data stru
tures with a hole. In

ACM Symposium on Prin
iples of Programming Languages (POPL), San Diego,

California, pages 75�84, January 1998.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed
losure
onver-

sion. In ACM Symposium on Prin
iples of Programming Languages (POPL),

St. Petersburg Bea
h, Florida, pages 271�283, January 1996.

TOP

2003/5/20

page 552

552 Draft of May 20, 2003 Referen
es

J. C. Mit
hell. On the equivalen
e of data representations. In V. Lifs
hitz, editor,

Arti�
ial Intelligen
e and Mathemati
al Theory of Computation: Papers in Honor

of John M
Carthy, pages 305�330. A
ademi
 Press, 1991a.

J. C. Mit
hell and G. D. Plotkin. Abstra
t types have existential types. ACM

Transa
tions on Programming Languages and Systems, 10:470�502, 1988a.

John C. Mit
hell. Coer
ion and type inferen
e (summary). In ACM Symposium

on Prin
iples of Programming Languages (POPL), Salt Lake City, Utah, pages

175�185, January 1984.

John C. Mit
hell. Type inferen
e with simple subtypes. Journal of Fun
tional

Programming, 1(3):245�286, July 1991b.

John C. Mit
hell. Foundations for Programming Languages. MIT Press, 1996.

John C. Mit
hell and Gordon Plotkin. Abstra
t types have existential type. ACM

Transa
tions on Programming Languages and Systems, 10(3):470�502, 1988b.

Eugenio Moggi. Notions of
omputation and monads. Information and Computation,

93(1):55�92, July 1991. Presented at LICS '89.

Shaw-Kwei Moh. The dedu
tion theorems and two new logi
al systems. Methodos,

2:56�75, 1950.

Christine Mohring. Algorithm development in the
al
ulus of
onstru
tions. In

Pro
eedings, Symposium on Logi
 in Computer S
ien
e IEE (1986), pages 84�91.

Stefan Monnier, Bratin Saha, and Zhong Shao. Prin
ipled s
avenging. In ACM

SIGPLAN Conferen
e on Programming Language Design and Implementation

(PLDI), Snowbird, Utah, pages 81�91, June 2001.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Sta
k-based typed as-

sembly language. Journal of Fun
tional Programming, 12(1):43�88, January 2002.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System-F to typed

assembly language. ACM Transa
tions on Programming Languages and Systems,

21(3):527�568, May 1999.

Christian Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis,

DIKU, University of Copenhagen, Copenhagen, Denmark, 1997. URL http:

//www.diku.dk/resear
h/published/97-1.ps.gz. Te
hni
al Report DIKU-TR-

97/1.

Martin Müller, Joa
him Niehren, and Ralf Treinen. The �rst-order theory of ordering

onstraints over feature trees. Dis
rete Mathemati
s and Theoreti
al Computer

S
ien
e, 4(2):193�234, 2001.

Martin Müller and Susumu Nishimura. Type inferen
e for �rst-
lass messages with

feature
onstraints. In Jieh Hsiang and Atsushi Ohori, editors, Asian Computer

S
ien
e Conferen
e (ASIAN 98), volume 1538 of LNCS, pages 169�187, Manila,

The Philippines, De
ember 1998. Springer-Verlag.

Alan My
roft. Polymorphi
 type s
hemes and re
ursive de�nitions. In M. Paul and

B. Robinet, editors, Pro
eedings of the International Symposium on Programming,

volume 167 of LNCS, pages 217�228, Toulouse, Fran
e, April 1984. Springer.

TOP

2003/5/20

page 553

Referen
es 553

George C. Ne
ula. Proof-
arrying
ode. In ACM Symposium on Prin
iples of Pro-

gramming Languages (POPL), Paris, Fran
e, pages 106�119, 15�17 January 1997.

George C. Ne
ula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,

September 1998. Also available as CMU-CS-98-154.

George C. Ne
ula. Translation validation for an optimizing
ompiler. In ACM

SIGPLAN '00 Conferen
e on Programming Language Design and Implementation

(PDLI), pages 83�94, Van
ouver, BC, Canada, 18�21 June 2000. ACM SIGPLAN.

George C. Ne
ula and Peter Lee. Safe kernel extensions without run-time
he
king.

In 2nd Symposium on Operating Systems Design and Implementation (OSDI '96),

O
tober 28�31, 1996, Seattle, WA, pages 229�243, Berkeley, CA, USA, O
tober

1996. USENIX press.

George C. Ne
ula and Peter Lee. E�
ient representation and validation of logi
al

proofs. pages 93�104. IEEE Computer So
iety Press, 1998.

Joa
him Niehren, Martin Müller, and Andreas Podelski. In
lusion
onstraints over

non-empty sets of trees. volume 1214 of Le
ture Notes in Computer S
ien
e, pages

217�231. Springer-Verlag, April 1997.

Joa
him Niehren and Tim Priesnitz. Non-stru
tural subtype entailment in automata

theory. Information and Computation, 2003. To appear.

Flemming Nielson and Hanne Riis Nielson. From CML to its pro
ess algebra. The-

oreti
al Computer S
ien
e, 155:179�219, 1996.

Flemming Nielson, Hanne Riis Nielson, and C. L. Hankin. Prin
iples of Program

Analysis. Springer, 1999.

Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. A su

in
t solver for

ALFP. 9(4):335�372, 2002. http://www.informatik.uni-trier.de/~seidl/

papers/su

in
t.pdf.

Hanne Riis Nielson and Flemming Nielson. Higher-order
on
urrent programs with

�nite
ommuni
ation topology. In Prin
iples of Programming Languages, pages

84�97, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-636-0.

Susumu Nishimura. Stati
 typing for dynami
 messages. In Pro
eedings of the 25

th

ACM Symposium on Prin
iples of Programming Languages, pages 266�278, New

York, 1998. ACM Press.

Henning Niss. Regions are Imperative: Uns
oped Regions and Control-Flow Sensitive

Memory Management. PhD thesis, Department of Computer S
ien
e, University

of Copenhagen (DIKU), 2002.

E.G.J.M.H. N o
ker and J.E.W. Smetsers. Partially stri
t non-re
ursive data types.

Journal of Fun
tional Programming, 3(2):191�215, 1993.

E.G.J.M.H. N o
ker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer.

Con
urrent CLEAN. In Leeuwen and Rem, editors, Parallel Ar
hite
tures and

Languages Europe, number 505 in LNCS, pages 202�219. Springer-Verlag, 1991.

TOP

2003/5/20

page 554

554 Draft of May 20, 2003 Referen
es

Martin Odersky, Vin
ent Cremet, Christine Ro
kl, and Matthias Zenger. A nominal

theory of obje
ts with dependent types. In Workshop on Foundations of Obje
t-

Oriented Languages (FOOL), informal pro
eedings, 2003.

Martin Odersky and Konstantin Läufer. Putting type annotations to work. In

ACM Symposium on Prin
iples of Programming Languages (POPL), St. Peters-

burg Bea
h, Florida, pages 54�67, St. Petersburg, Florida, January 21�24, 1996.

ACM Press.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferen
e with
on-

strained types. Theory and Pra
ti
e of Obje
t Systems, 5(1):35�55, 1999a.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferen
e with
on-

strained types. Theory and Pra
ti
e of Obje
t Systems, 5(1):35�55, 1999b. Sum-

mary in Workshop on Foundations of Obje
t-Oriented Languages (FOOL), infor-

mal pro
eedings, 1997.

Peter O'Hearn and David Pym. The logi
 of bun
hed impli
ations. Bulletin of

Symboli
 Logi
, 5(2):215�244, 1999.

Atsushi Ohori. A polymorphi
 re
ord
al
ulus and its
ompilation. ACM Transa
-

tions on Programming Languages and Systems, 17(6):844�895, 1999.

Atsushi Ohori and Peter Buneman. Stati
 type inferen
e for parametri

lasses. In

ACM Symposium on Obje
t Oriented Programming: Systems, Languages, and Ap-

pli
ations (OOPSLA), pages 445�456, O
tober 1989. Also in Carl A. Gunter and

John C. Mit
hell, editors, Theoreti
al Aspe
ts of Obje
t-Oriented Programming:

Types, Semanti
s, and Language Design, MIT Press, 1994.

I. E. Orlov. The
al
ulus of
ompatibility of propositions (in russian). Matemati
h-

eskii Sbornik, 35:263�286, 1928.

Jens Palsberg. E�
ient inferen
e of obje
t types. Information and Computation,

123(2):198�209, 1995.

Jens Palsberg and Patri
k O'Keefe. A type system equivalent to �ow analysis. In

Prin
iples of Programming Languages, pages 367�378, New York, NY, USA, 1995.

ACM Press. ISBN 0-89791-692-1.

Jens Palsberg and Mi
hael S
hwartzba
h. Type substitution for obje
t-oriented pro-

gramming. In N. Meyrowitz, editor, Pro
. Conf. Obje
t-Oriented Programming:

Systems, Languages, and Appli
ations and European Conf. on Obje
t-Oriented

Programming, pages 151�160, Ottawa, Canada, O
tober 1990. ACM Press.

Jens Palsberg and Mi
hael S
hwartzba
h. Obje
t-oriented Type Systems. John Wiley

& Sons, 1994.

Jens Palsberg, Mit
hell Wand, and Patri
k M. O'Keefe. Type inferen
e with non-

stru
tural subtyping. Formal Aspe
ts of Computing, 9:49�67, 1997.

Christine Paulin-Mohring. Extra
ting F

!

's programs from proofs in the
al
ulus

of
onstru
tions. In ACM Symposium on Prin
iples of Programming Languages

(POPL), Austin, Texas, pages 89�104, January 1989.

TOP

2003/5/20

page 555

Referen
es 555

Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for

memory allo
ation and data layout. In ACM Symposium on Prin
iples of Pro-

gramming Languages (POPL), New Orleans, Louisiana, pages 172�184, January

2003.

Simon Peyton Jones. Spe
ial issue: Haskell 98 language and libraries. Journal of

Fun
tional Programming, 13, January 2003.

Simon Peyton Jones and Mark Shields. Lexi
ally-s
oped type variables. Submitted

to ICFP'03., Mar
h 2003.

Frank Pfenning and Carsten S
hürmann. Algorithms for equality and uni�
ation in

the presen
e of notational de�nitions. In T. Altenkir
h, W. Naras
hewski, and

B. Reus, editors, Types for Proofs and Programs, number LNCS 1657. Springer-

Verlag, 1998.

Benjamin C. Pier
e and David N. Turner. Obje
t-oriented programming without

re
ursive types. In ACM Symposium on Prin
iples of Programming Languages

(POPL), Charleston, South Carolina, January 1993.

A. M. Pitts. Relational properties of domains. Information and Computation, 127:

66�90, 1996.

A. M. Pitts. Existential types: Logi
al relations and operational equivalen
e. In K. G.

Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and Program-

ming, 25th International Colloquium, ICALP'98, Aalborg, Denmark, July 1998,

Pro
eedings, volume 1443 of Le
ture Notes in Computer S
ien
e, pages 309�326.

Springer-Verlag, Berlin, 1998.

A. M. Pitts. Parametri
 polymorphism and operational equivalen
e. Mathemati
al

Stru
tures in Computer S
ien
e, 10:321�359, 2000.

A. M. Pitts. Operational semanti
s and program equivalen
e. In G. Barthe,

P. Dybjer, and J. Saraiva, editors, Applied Semanti
s, Advan
ed Le
tures, volume

2395 of Le
ture Notes in Computer S
ien
e, Tutorial, pages 378�412. Springer-

Verlag, 2002a. International Summer S
hool, APPSEM 2000, Caminha, Portugal,

September 9�15, 2000.

A. M. Pitts and I. D. B. Stark. Operational reasoning for fun
tions with lo
al state.

In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Te
hniques

in Semanti
s. 1996. To appear.

Andrew M. Pitts. Nominal logi
, a �rst order theory of names and binding. Infor-

mation and Computation, 2002b. To appear.

Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher order fun
-

tions that dynami
ally
reate lo
al names, or: What's new? In Mathemati
al

Foundations of Computer S
ien
e, Pro
. 18th Int. Symp., Gda«sk, 1993, volume

711 of Le
ture Notes in Computer S
ien
e, pages 122�141. Springer-Verlag, Berlin,

1993.

G. D. Plotkin. Lambda-de�nability and logi
al relations. Memorandum SAI-RM-4,

S
hool of Arti�
ial Intelligen
e, University of Edinburgh, 1973.

TOP

2003/5/20

page 556

556 Draft of May 20, 2003 Referen
es

G. D. Plotkin. LCF
onsidered as a programming language. Theoreti
al Computer

S
ien
e, 5:223�255, 1977.

G. D. Plotkin and M. Abadi. A logi
 for parametri
 polymorphism. In M. Bezem

and J. F. Groote, editors, Typed Lambda Cal
ulus and Appli
ations, volume 664

of Le
ture Notes in Computer S
ien
e, pages 361�375. Springer-Verlag, Berlin,

1993.

Gordon D. Plotkin. Lambda-de�nability in the full type hierar
hy. In Jonathan P.

Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on Combinatory

Logi
, Lambda Cal
ulus and Formalism, pages 363�373. A
ademi
 Press, London,

1980.

Je� Polakow and Frank Pfenning. Natural dedu
tion for intuitionisti
 non-

ommutative linear logi
. In International Conferen
e on Typed Lambda Cal
uli,

number 1581 in LNCS, pages 295�309. Springer-Verlag, April 1999.

Je� Polakow and Frank Pfenning. Properties of terms in
ontinuation-passing style

in an ordered logi
al framework. In Workshop on Logi
al Frameworks and Meta-

Languages, Santa Barbara, June 2000.

Erik Poll. Expansion Postponement for Normalising Pure Type Systems. Journal

of Fun
tional Programming, 8(1):89�96, 1998.

Robert Polla
k. The Theory of LEGO: A Proof Che
ker for the Extended Cal
ulus

of Constru
tions. PhD thesis, University of Edinburgh, 1994.

POPL. Prin
iples of Programming Languages, New York, NY, USA, January 1991a.

ACM Press.

POPL. Prin
iples of Programming Languages, New York, NY, USA, 17�19 January

2001b. ACM Press. ISBN 1-58113-336-7.

François Pottier. A versatile
onstraint-based type inferen
e system. Nordi
 Journal

of Computing, 7(4):312�347, November 2000.

François Pottier. A semi-synta
ti
 soundness proof for HM(X). Resear
h Report

4150, INRIA, Mar
h 2001a.

François Pottier. Simplifying subtyping
onstraints: a theory. Information and

Computation, 170(2):153�183, November 2001b.

François Pottier. A
onstraint-based presentation and generalization of rows. In

Eighteenth Annual IEEE Symposium on Logi
 In Computer S
ien
e (LICS'03),

Ottawa, Canada, June 2003. URL http://pauilla
.inria.fr/~fpottier/

publis/fpottier-li
s03.ps.gz.

Sriram K. Rajamani and Jakob Rehof. A behavioral module system for the pi-

al
ulus. In SAS 01: Stati
 Analysis, LNCS 2126, pages 375�394. Springer-Verlag,

2001.

Sriram K. Rajamani and Jakob Rehof. Conforman
e
he
king for models of asyn-

hronous message passing software. In Ed Brinksma and Kim Guldstrand Larsen,

editors, Computer Aided Veri�
ation, volume 2404 of Le
ture Notes in Computer

TOP

2003/5/20

page 557

Referen
es 557

S
ien
e, pages 166�179, Heidelberg, Germany, July 27�31 2002. Springer-Verlag.

ISBN 3-540-43997-8.

Jakob Rehof. Minimal typings in atomi
 subtyping. In ACM Symposium on Prin
i-

ples of Programming Languages (POPL), Paris, Fran
e, pages 278�291, January

1997.

Jakob Rehof and Manuel Fähndri
h. Type-based �ow analysis: From polymorphi

subtyping to CFL rea
hability. In POPL POPL (b), pages 54�66. ISBN 1-58113-

336-7.

Jakob Rehof and Manuel Fähndri
h. Type-based �ow analysis: From polymorphi

subtyping to CFL-rea
hability. InACM Symposium on Prin
iples of Programming

Languages (POPL), pages 54�66, January 2001.

Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eri
 Eide. Knit:

Component
omposition for systems software. In Pro
. of the 4th Operat-

ing Systems Design and Implementation (OSDI), pages 347�360, 2000. URL

iteseer.nj.ne
.
om/reid00knit.html.

Didier Rémy. Extending ML type system with a sorted equational theory. Resear
h

Report 1766, Institut National de Re
her
he en Informatique et Automatisme,

Ro
quen
ourt, BP 105, 78 153 Le Chesnay Cedex, Fran
e, 1992a.

Didier Rémy. Proje
tive ML. In ACM Symposium on Lisp and Fun
tional Program-

ming (LFP), pages 66�75, 1992b.

Didier Rémy. Typing re
ord
on
atenation for free. In ACM Symposium on Prin-

iples of Programming Languages (POPL), Albuquerque, New Mexi
o, January

1992. Also in Carl A. Gunter and John C. Mit
hell, editors, Theoreti
al Aspe
ts

of Obje
t-Oriented Programming: Types, Semanti
s, and Language Design, MIT

Press, 1994.

Didier Rémy. Synta
ti
 theories and the algebra of re
ord terms. Resear
h Report

1869, Institut National de Re
her
he en Informatique et Automatisme, Ro
quen-

ourt, BP 105, 78 153 Le Chesnay Cedex, Fran
e, 1993.

Didier Rémy. Programming obje
ts with ML-ART: An extension to ML with ab-

stra
t and re
ord types. In Masami Hagiya and John C. Mit
hell, editors, Inter-

national Symposium on Theoreti
al Aspe
ts of Computer Software (TACS), pages

321�346, Sendai, Japan, April 1994. Springer-Verlag.

Didier Rémy and Jér�me Vouillon. Obje
tive ML: An e�e
tive obje
t-oriented exten-

sion to ML. Theory And Pra
ti
e of Obje
t Systems, 4(1):27�50, 1998. Summary

in ACM Symposium on Prin
iples of Programming Languages (POPL), Paris,

Fran
e, 1997.

Greg Restall. An introdu
tion to substru
tural logi
s. Routledge, January 2000.

Greg Restall. Handbook of the history and philosophy of logi
. To appear., 2001.

J. C. Reynolds. Towards a theory of type stru
ture. In Paris Colloquium on

Programming, volume 19 of Le
ture Notes in Computer S
ien
e, pages 408�425.

Springer-Verlag, Berlin, 1974a.

TOP

2003/5/20

page 558

558 Draft of May 20, 2003 Referen
es

J. C. Reynolds. Types, abstra
tion and parametri
 polymorphism. In R. E. A.

Mason, editor, Information Pro
essing 83, pages 513�523. North-Holland, Ams-

terdam, 1983a.

John C. Reynolds. Automati

omputation of data set de�nitions. In A. J. H. Mor-

rell, editor, Information Pro
essing 68, volume 1, pages 456�461. North Holland,

1969a.

John C. Reynolds. Automati

omputation of data set de�nitions. In A. J. H.

Morrell, editor, Information Pro
essing 68, volume 1, pages 456�461, Edinburgh,

S
otland, 1969b. North Holland.

John C. Reynolds. Towards a theory of type stru
ture. In Colloq. sur la Pro-

grammation, volume 19 of Le
ture Notes in Computer S
ien
e, pages 408�423.

Springer-Verlag, 1974b.

John C. Reynolds. Synta
ti

ontrol of interferen
e. In ACM SIGPLAN-SIGACT

Symposium on Prin
iples of Programming Languages, pages 39�46, Tu
son, 1978.

John C. Reynolds. Types, abstra
tion, and parametri
 polymorphism. In R. E. A.

Mason, editor, Information Pro
essing 83, pages 513�523, Amsterdam, 1983b.

Elsevier S
ien
e Publishers B. V. (North-Holland).

John C. Reynolds. Synta
ti

ontrol of interferen
e, part 2. In International Collo-

quium on Automata, Languages and Programming, July 1989.

J. Alan Robinson. Computational logi
: The uni�
ation
omputation. Ma
hine

Intelligen
e, 6:63�72, 1971.

Douglas T. Ross. The AED free storage pa
kage. Communi
ations of the ACM, 10

(8):481�492, 1967.

Claudio V. Russo. Types for Modules. PhD thesis, Edinburgh University, Edinburgh,

S
otland, 1998. LFCS Thesis ECS�LFCS�98�389.

Claudio V. Russo. Re
ursive stru
tures for standard ml. In Pro
. Sixth ACM SIG-

PLAN International Conferen
e on Fun
tional Programming (ICFP '01), pages

50�61, Floren
e, Italy, September 2001.

Fred B. S
hneider. Enfor
eable se
urity poli
ies. ACM Transa
tions on Information

and System Se
urity, 3(1):30�50, February 2000.

Ja
ob T. S
hwartz. Optimization of very high level languages (parts I and II).

Computer Languages, 1(2 & 3):161�194, 197�218, 1975.

R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern mat
hing.

SIAM Journal on Computing, 24(6):1207�1234, De
ember 1995.

Miley Semmelroth and Amr Sabry. Monadi
 en
apsulation in ML. In International

Conferen
e on Fun
tional Programming, pages 8�17, 1999. URL
iteseer.nj.

ne
.
om/semmelroth99monadi
.html.

Peter Sestoft. Mos
ow ml. URL http://www.dina.dk/~sestoft/mosml.html.

Peter Sestoft. Repla
ing fun
tion parameters by global variables. Te
hni
al Report

88-7-2, DIKU, University of Copenhagen, O
tober 1988. SE88.

TOP

2003/5/20

page 559

Referen
es 559

Peter Sestoft. Repla
ing fun
tion parameters by global variables. In Pro
. Fun
tional

Programming Languages and Computer Ar
hite
ture (FPCA), London, England,

pages 39�53. ACM Press, September 1989.

Paula Severi and Erik Poll. Pure type systems with de�nitions. In Pro
eedings

of Logi
al Foundations of Computer S
ien
e (LFCS), pages 316�328. Springer-

Verlag, 1994. LNCS volume 813.

Zhong Shao. An overview of the FLINT/ML
ompiler. In Pro
. 1997 ACM SIG-

PLAN Workshop on Types in Compilation (TIC'97), Amsterdam, The Nether-

lands, June 1997.

Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed inter-

mediate languages. In Pro
eedings of the 1998 ACM SIGPLAN International

Conferen
e on Fun
tional Programming, pages 313�323, Baltimore, MD, Septem-

ber 1998. ACM SIGPLAN.

Mark Shields and Erik Meijer. Type-indexed rows. In ACM Symposium on Prin
i-

ples of Programming Languages (POPL), London, England, pages 261�275, Jan-

uary 2001.

Mark B. Shields and Simon Peyton Jones. First
lass modules for Haskell. InWork-

shop on Foundations of Obje
t-Oriented Languages (FOOL), informal pro
eedings,

pages 28�40, January 2002.

Olin Shivers. Control �ow analysis in S
heme. In Programming Language Design

and Implementation, volume 23(7), pages 164�174, 22�24 June 1988.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda.

PhD thesis, Carnegie Mellon University, May 1991.

Vin
ent Simonet. Type inferen
e with stru
tural subtyping: A faithful formalization

of an e�
ient
onstraint solver. Submitted for publi
ation, Mar
h 2003.

Christian Skalka and François Pottier. Synta
ti
 type soundness for HM(X). In

Workshop on Types in Programming (TIP'02), volume 75 of Ele
troni
 Notes in

Theoreti
al Computer S
ien
e, July 2002.

Frederi
k Smith, David Walker, and Greg Morrisett. Alias types. In Gert Smolka, ed-

itor, Ninth European Symposium on Programming, volume 1782 of Le
ture Notes

in Computer S
ien
e, pages 366�381. Springer-Verlag, April 2000.

Geo�rey S. Smith. Prin
ipal type s
hemes for fun
tional programs with overloading

and subtyping. S
ien
e of Computer Programming, 23(2�3):197�226, De
ember

1994.

Jan Smith, Bengt Nordström, and Kent Petersson. Programming in Martin-Löf's

Type Theory. An Introdu
tion. Oxford University Press, 1990.

R. Statman. Logi
al relations and the typed lambda
al
ulus. Information and

Control, 65:85�97, 1985a.

Ri
hard Statman. Logi
al relations and the typed �-
al
ulus. Information and

Control, 65(2�3):85�97, May�June 1985b.

TOP

2003/5/20

page 560

560 Draft of May 20, 2003 Referen
es

Christopher A. Stone. Singleton Kinds and Singleton Types. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, August 2000.

Christopher A. Stone and Robert Harper. De
iding type equivalen
e in a language

with singleton kinds. In ACM Symposium on Prin
iples of Programming Lan-

guages (POPL), Boston, Massa
husetts, Boston, January 2000a.

Christopher A. Stone and Robert Harper. De
iding type equivalen
e in a language

with singleton kinds. In Twenty SeventhACM Symposium on Prin
iples of Pro-

gramming Languages (POPL), pages 214�227, Boston, January 2000b.

Thomas Strei
her. Semanti
s of Type Theory. Springer-Verlag, 1991.

Zhendong Su and Alexander Aiken. Entailment with
onditional equality
on-

straints. In European Symp. on Programming (ESOP), volume 2028 of Le
ture

Notes in Computer S
ien
e, pages 170�189, April 2001.

Martin Sulzmann. A general framework for Hindley/Milner type systems with
on-

straints. PhD thesis, Yale University, Department of Computer S
ien
e, May

2000.

Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style type

systems in
onstraint form. Resear
h Report ACRC�99�009, University of South

Australia, S
hool of Computer and Information S
ien
e, July 1999.

William W. Tait. Intensional interpretations of fun
tionals of �nite type I. Journal

of Symboli
 Logi
, 32(2):198�212, June 1967.

C. Tal
ott. Reasoning about fun
tions with e�e
ts. In A. D. Gordon and A. M.

Pitts, editors, Higher Order Operational Te
hniques in Semanti
s, Publi
ations

of the Newton Institute, pages 347�390. Cambridge University Press, 1998.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphi
 type, region and e�e
t infer-

en
e. Journal of Fun
tional Programming (JFP), 2(2), 1992.

Jean-Pierre Talpin and Pierre Jouvelot. The type and e�e
t dis
ipline. Information

and Computation, 111:245�296, 1994.

David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper,

and Peter Lee. TIL : A type-dire
ted optimizing
ompiler for ML. In ACM

SIGPLAN Conferen
e on Programming Language Design and Implementation

(PLDI), Philadephia, Pennsylvania, pages 181�192, May 21�24 1996.

Robert Endre Tarjan. E�
ien
y of a good but not linear set union algorithm.

Journal of the ACM, 22(2):215�225, April 1975.

Robert Endre Tarjan. Appli
ations of path
ompression on balan
ed trees. Journal

of the ACM, 26(4):690�715, O
tober 1979.

J. Terlouw. Een nadere bewijstheoretis
he analyse van GSTTs. Manus
ript, Uni-

versity of Nijmegen, Netherlands, 1989.

Kresten Krab Thorup. Generi
ity in Java with virtual types. In European Confer-

en
e on Obje
t-Oriented Programming (ECOOP), volume 1241 of Le
ture Notes

in Computer S
ien
e, pages 444�471, Jyväskylä, Finland, June 1997. Springer-

Verlag.

TOP

2003/5/20

page 561

Referen
es 561

Jerzy Tiuryn and Mit
hell Wand. Type re
onstru
tion with re
ursive types and

atomi
 subtyping. In Pro
eedings of TAPSOFT '93, volume 668 of Le
ture Notes

in Computer S
ien
e, pages 686�701. Springer-Verlag, April 1993.

Mads Tofte. Operational Semanti
s and Polymorphi
 Type Inferen
e. PhD thesis,

University of Edinburgh, 1988.

Mads Tofte and Lars Birkedal. A region inferen
e algorithm. ACM Transa
tions on

Programming Languages and Systems, 20(4):724�767, 1998. URL http://www.

itu.dk/resear
h/mlkit/kit_general/toplas98.ps.gz.

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. Region-based

memory management in perspe
tive. To appear, 2003.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, TommyHøjfeld Olesen,

and Peter Sestoft. Programming with regions in the ML Kit (for version 4).

Te
hni
al report, IT University of Copenhagen, O
tober 2001.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, TommyHøjfeld Olesen,

Peter Sestoft, and Peter Bertelsen. Programming with regions in the ML Kit (for

version 3). Te
hni
al Report DIKU-TR-98/25, Department of Computer S
ien
e,

University of Copenhagen (DIKU), 1998. URL http://www.it-
.dk/resear
h/

mlkit/kit3/manual.ps.gz.

Mads Tofte and Jean-Pierre Talpin. Implementing the
all-by-value lambda-
al
ulus

using a sta
k of regions. In ACM Symposium on Prin
iples of Programming

Languages (POPL), Portland, Oregon, January 1994.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Informa-

tion and Computation, 132(2):109�176, 1 February 1997.

Mads Torgersen. Virtual types are stati
ally safe. In Pro
eedings of the 5th Workshop

on Foundations of Obje
t-Oriented Languages (FOOL), San Diego, CA, January

1998.

Valery Trifonov and S
ott Smith. Subtyping
onstrained types. In Stati
 Analysis

Symposium (SAS), volume 1145 of Le
ture Notes in Computer S
ien
e, pages

349�365. Springer-Verlag, September 1996.

David N. Turner. The Polymorphi
 Pi-
alulus: Theory and Implementation. PhD

thesis, University of Edinburgh, 1995.

David N. Turner and Philip Wadler. Operational interpretations of linear logi
.

Theoreti
al Computer S
ien
e, 227:231�248, 1999. Spe
ial issue on linear logi
.

David N. Turner, Philip Wadler, and Christian Mossin. On
e upon a type. In ACM

International Conferen
e on Fun
tional Programming and Computer Ar
hite
ture,

San Diego, CA, June 1995.

Diederik T. van Daalen. The Language Theory of Automath. PhD thesis, Te
hnis
he

Hoges
hool Eindhoven, 1980.

Per Vels
how and Morten Voetmann Christensen. Region-based memory manage-

ment in Java. Master's thesis, Department of Computer S
ien
e, University of

TOP

2003/5/20

page 562

562 Draft of May 20, 2003 Referen
es

Copenhagen (DIKU), 1998. URL http://www.worldonline.dk/~voet/thesis.

ps.gz.

Philip Wadler. Linear types
an
hange the world! In M. Broy and C. Jones,

editors, Progarmming Con
epts and Methods, Sea of Galilee, Israel, April 1990.

North Holland. IFIP TC 2 Working Conferen
e.

Philip Wadler. The marriage of e�e
ts and monads. In Pro
eedings of the

ACM SIGPLAN International Conferen
e on Fun
tional Programming (ICFP

'98), volume 34(1), pages 63�74, 1999. URL
iteseer.nj.ne
.
om/arti
le/

wadler98marriage.html. Journal version submitted to ACM Transa
tions on

Computational Logi
 (2003).

R. Wahbe, S. Lu

o, T. E. Anderson, and S. L. Graham. E�
ient software-based

fault isolation. In 14th ACM Symposium on Operating Systems Prin
iples, pages

203�216. ACM, De
ember 1993.

David Walker, Karl Crary, and Greg Morrisett. Typed memory management in

a
al
ulus of
apabilities. ACM Transa
tions on Programming Languages and

Systems, 22(4):701�771, July 2000a.

David Walker, Karl Crary, and Greg Morrisett. Typed memory management via

stati

apabilities. ACM Transa
tions on Programming Languages and Sys-

tems, 22(4):701�771, July 2000b. URL http://www.
s.prin
eton.edu/~dpw/

apabilities-toplas.pdf.

David Walker and Greg Morrisett. Alias types for re
ursive data stru
tures. Le
ture

Notes in Computer S
ien
e, 2071:177+, 2001.

David Walker and Kevin Watkins. On linear types and regions. In International

Conferen
e on Fun
tional Programming, Floren
e, September 2001a. ACM Press.

David Walker and Kevin Watkins. On regions and linear types. In 6th International

Conferen
e on Fun
tional Programming, pages 181�192, New York, NY, USA,

3�5 September 2001b. ACM Press. ISBN 1-58113-415-0. URL http://www.
s.

prin
eton.edu/~dpw/papers/lr.pdf.

Mit
hell Wand. Complete type inferen
e for simple obje
ts. In Pro
eedings of the

IEEE Symposium on Logi
 in Computer S
ien
e, Itha
a, NY, June 1987.

Mit
hell Wand. Corrigendum: Complete type inferen
e for simple obje
ts. In Pro-

eedings of the IEEE Symposium on Logi
 in Computer S
ien
e, 1988.

Mit
hell Wand. Type inferen
e for re
ord
on
atenation and multiple inheritan
e.

In Fourth Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages 92�97,

Pa
i�
 Grove, CA, June 1989.

Mit
hell Wand. Type inferen
e for obje
ts with instan
e variables and inheritan
e.

In Carl A. Gunter and John C. Mit
hell, editors, Theoreti
al Aspe
ts of Obje
t-

Oriented Programming: Types, Semanti
s, and Language Design, pages 97�120.

MIT Press, 1994.

Daniel C. Wang and AndrewW. Appel. Type-preserving garbage
olle
tors. InACM

Symposium on Prin
iples of Programming Languages (POPL), London, England,

pages 166�178, January 2001.

TOP

2003/5/20

page 563

Referen
es 563

Keith Wansbrough and Simon Peyton Jones. On
e upon a polymorphi
 type. In

Twenty-sixth ACM SIGPLAN-SIGACT Symposium on Prin
iples of Program-

ming Languages, pages 15�28, San Antonio, January 1999.

J. B. Wells. Typability and type
he
king in system F are equivalent and unde
id-

able. Annals of Pure and Applied Logi
, 98(1�3):111�156, 1999.

Benjamin Werner. Une Th'eorie des Constru
tiones Indu
tives. PhD thesis,

L'Universite Paris, 1994.

Niklaus Wirth. Systemati
 Programming: An Introdu
tion. Prenti
e Hall, 1973.

Niklaus Wirth. Programming in Modula-2. Texts and Monographs in Computer

S
ien
e. Springer-Verlag, 1983.

A. K. Wright and R. Cartwright. A pra
ti
al soft type system for s
heme. In

Pro
eedings of the 1994 ACM Conferen
e on Lisp and Fun
tional Programming.

ACM, June 1994. Also available as LISP Pointers VII(3) July-September 1994.

A. K. Wright and M. Felleisen. A synta
ti
 approa
h to type soundness. Information

and Computation, 115:38�94, 1994a.

Andrew K. Wright. Simple imperative polymorphism. Lisp and Symboli
 Compu-

tation, 8(4):343�356, De
ember 1995.

Andrew K. Wright and Matthias Felleisen. A synta
ti
 approa
h to type soundness.

Information and Computation, 115(1):38�94, November 1994b.

Hongwei Xi and Robert Harper. A dependently typed assembly language. In Inter-

national Conferen
e on Fun
tional Programming (ICFP), Firenze, Italy, 2001.

Jan Zwanenburg. Pure type systems with subtyping. In J.-Y. Girard, editor, Typed

Lambda Cal
ulus and Appli
ations (TLCA), pages 381�396. Springer-Verlag,

1999. Le
ture Notes in Computer S
ien
e, volume 1581.

TOP

2003/5/20

page 564

TOP

2003/5/20

page 565

Index

9� � has an instan
e, 22

dfpi(�) de�ned and free program

variable identi�ers, 24

dpi(�) de�ned program identi�ers,

16

? empty environment, 16

 entailment, 29

� environment, 16

fpi(�) free program identi�ers, 22

ftv(�) free type variables, 14, 21

� ground assignment, 27

./ in
ompatible, 30

� � � instan
e of, 21, 22, 31

let � in � let
onstraints, 22

� subtyping predi
ate, 20

T type, 14

� type environments, 24

S type s
heme, 15

ontravariant, 26, 29

ovariant, 26, 29

entailment, 29

environment, 16

ground assignment, 27

in
ompatible, 30

instan
e of

type s
heme, 16, 21, 22, 31

invariant, 26, 29

isolated, 30

metavariables

naming
onventions, 483

naming
onventions for metavariables

and rules, 483

rule

naming
onventions, 483

rules

A-Abs, 282

A-App, 282

A-Bool, 282

A-If, 282

A-LVar, 282

A-Pair, 282

A-Split, 282

A-UVar, 282

ADD, 362

Abs, 53

App, 53

BEQ-EQ, 362

BEQ-NEQ, 362

Beta-Abs, 206

Beta-All, 217

Beta-App1, 206

Beta-App2, 206

Beta-AppAbs, 206

Beta-Pair1, 213

Beta-Pair2, 213

Beta-Proj, 213

Beta-ProjPair, 213

C-Arrow, 30

TOP

2003/5/20

page 566

566 Draft of May 20, 2003 Index

C-Def, 461

CM-And, 28

CM-Exists, 28

CM-Forall, 108

CM-Instan
e, 28

CM-Predi
ate, 28

CM-True, 28

COMMIT, 376

CTX-Def, 444

CTX-Empty, 443

CTX-Kind, 443

CTX-Type, 443

E-App', 301

E-App, 285

E-AppRC, 301

E-Array, 297

E-Bool, 285

E-Ctxt, 285

E-De
1, 301

E-De
2, 301

E-Free, 297

E-Fun', 301

E-Fun, 285

E-FunRC, 301

E-If1, 285

E-If2, 285

E-In
, 301

E-Length, 297

E-MApp1, 462

E-MAppAbs, 462

E-MLet, 462

E-MLetV, 462

E-MPair1, 462

E-MPair2, 462

E-MPairBeta1, 462

E-MPairBeta2, 462

E-MProj, 462

E-MProjV, 462

E-MSeal, 462

E-Mapp2, 462

E-PApp, 295

E-PFun, 295

E-Pair', 301

E-Pair, 285

E-PairRC, 301

E-QApp, 295

E-QFun, 295

E-Split', 301

E-Split, 285

E-SplitRC, 301

E-Swap, 297

E-TLet, 444

E-Term, 462

Exists, 53

I-Fun
tor, 460

I-Opaque, 460

I-Pair, 460

I-Term, 460

I-Transp, 460

JMP, 362

K-Abs, 443

K-All, 443, 469

K-App, 202, 443, 469

K-Arrow, 443

K-Conv, 202

K-Fn-Eta, 469

K-Fn, 469

K-Fst, 469

K-Int, 443, 469

K-MProj, 461

K-Pair-Eta, 469

K-Pair, 469

K-Pi, 202

K-Sigma, 212

K-Sintro, 469

K-Snd, 469

K-Sub, 469

K-TVarDef, 444

K-Var, 202, 443, 469

K-prf, 215

K-prop, 215

KA-App, 208

KA-Pi, 208

KA-Prf, 217

KA-Prop, 217

KA-Sigma, 214

KA-Var, 208

LD-S, 376

TOP

2003/5/20

page 567

Index 567

LD-U, 376

Let, 53

M-Abs1, 294

M-Abs2, 294

M-Abs, 461

M-Apply, 461

M-ApplyV, 463

M-Empty, 278, 302

M-Fst, 461

M-Lin1, 278, 302

M-Lin2, 278, 302

M-LtoR, 302

M-OrdL, 302

M-OrdR, 302

M-Pair, 461

M-Seal, 461

M-Self-Pair1, 461

M-Self-Pair2, 461

M-Self, 461

M-Snd, 461

M-SndV, 463

M-Sub, 461

M-Term, 461

M-Top, 302

M-Type, 461

M-Un, 278, 302

M-Var, 461

MALLOC, 376

MOV-1, 376

MOV, 362

Q-Abs, 140, 203, 443, 469

Q-All, 469

Q-App, 140, 149, 203, 443, 469

Q-AppAbs, 472

Q-Arrow, 443

Q-Beta-Fst, 472

Q-Beta-Prod1, 159

Q-Beta-Prod2, 159

Q-Beta-Snd, 472

Q-Beta, 140, 155, 203, 443

Q-Def, 444

Q-Elim, 469

Q-Eta-Fn, 472

Q-Eta-Pair, 472

Q-Eta, 203

Q-Ext-Prod, 159

Q-Ext, 140

Q-Fn-Ext, 469

Q-Forall, 443

Q-Fst, 469

Q-MProj, 461

Q-Pair-Ext, 469

Q-Pair, 159, 469

Q-Proj1, 159, 212

Q-Proj2, 159, 212

Q-Refl, 140, 203, 443, 469

Q-Snd, 469

Q-Sub, 469

Q-SurjPair, 212

Q-Sym, 203, 443, 469

Q-Symm, 140

Q-Trans, 140, 203, 443, 469

Q-Unit-Weak, 144

Q-Unit, 143

QA-Abs, 209

QA-All-E, 217

QA-App, 209

QA-NE-Pair, 214

QA-Nabs1, 209

QA-Nabs2, 209

QA-Pair-NE, 214

QA-Pair, 214

QA-Var, 209

QA-WH, 209

QAN-Normal, 147

QAN-Redu
e, 147

QAP-App, 147

QAP-Const, 147

QAP-Proj1, 159

QAP-Proj2, 159

QAP-Var, 147

QAR-App, 147

QAR-Beta-Prod1, 159

QAR-Beta-Prod2, 159

QAR-Beta, 147

QAR-Proj1, 159

QAR-Proj2, 159

QAT-Arrow, 147

TOP

2003/5/20

page 568

568 Draft of May 20, 2003 Index

QAT-Base, 147

QAT-One, 147

QAT-Prod, 159

QK-*, 468

QK-Pi, 203, 468

QK-Refl, 203

QK-Sigma, 468

QK-Sing, 468

QK-Sym, 203

QK-Trans, 203

QKA-Pi-Prf, 217

QKA-Pi, 209

QKA-Prf-Pi, 217

QKA-Prf, 217

QKA-Star, 209

QR-Abs, 143, 447

QR-All, 447

QR-App, 143, 447

QR-Arrow, 447

QR-Beta, 143, 447

QR-Def, 447

QR-Eta, 143

QR-Refl, 143, 447

QT-All-E, 217

QT-All, 215

QT-App, 203

QT-Pi, 203

QT-Refl, 203

QT-Sym, 203

QT-Trans, 203

QTA-App, 209

QTA-Pi, 209

QTA-Sigma, 214

QTA-Var, 209

R-Add, 10

R-Alg-Case, 91

R-Alg-Proj, 91

R-Annotation, 102

R-AppAbs, 172

R-Assign, 11

R-Beta, 9

R-Case, 11

R-CondFalse, 172

R-CondTrue, 172

R-Context, 9

R-Delta, 9

R-Deref, 11

R-Extend, 9

R-False, 11

R-Fix', 114

R-Fix, 11

R-Let, 9

R-Mat
h, 96

R-Op, 172

R-Open-All, 116

R-Open-Ex, 118

R-Proj, 10

R-ProjR
d, 172

R-Ref, 11

R-TappTabs, 172

R-True, 10

R-Unpa
kPa
k, 172

S-Cons, 172

S-ConsVal, 172

S-Nil, 172

S-NilVal, 172

S-Red, 172

S-Seq, 172

SALLOC, 376

SFREE, 376

SI-Forget, 460

SI-Opaque, 460

SI-Pi, 460

SI-Sigma, 460

SI-Term, 460

SI-Transp, 460

SK-*, 468

SK-Forget, 468

SK-Pi, 468

SK-Sigma, 468

SK-Sing, 468

ST-S, 376

ST-U, 376

Sub, 53

T-Abs, 140, 202, 223, 276, 280, 294

T-All, 215

T-App, 140, 170, 202, 223, 276,

280, 294

TOP

2003/5/20

page 569

Index 569

T-Array, 297

T-Bool, 280

T-BrokenVar, 279

T-Case, 289

T-Const, 140, 170

T-Conv, 202, 223

T-De
, 300

T-EmptyS, 286

T-Free, 297

T-Fun, 170

T-If, 170, 280

T-In
, 300

T-Inl, 289

T-Inr, 289

T-Length, 297

T-Mod-Let, 461

T-Mod-Proj, 461

T-NextRCS, 300

T-NextlinS, 286

T-NextunS, 286

T-Op, 170

T-PAbs, 294

T-PApp, 294

T-Pa
k, 170

T-Pair, 159, 212, 280

T-Pi, 223

T-Prog, 286

T-Proj1, 159, 212

T-Proj2, 159, 212

T-Proj, 170

T-QAbs, 294

T-QApp, 294

T-R
d, 170

T-Roll, 289

T-Seq, 170

T-Split, 280

T-Star, 223

T-Swap, 297

T-TFun, 289

T-TLet, 444

T-Tabs, 170

T-Tapp, 170

T-Unit, 143

T-Unpa
k, 170

T-Unroll, 289

T-Var, 140, 170, 202, 223, 276, 280

TA-Abs, 208

TA-App, 208

TA-Pair, 214

TA-Proj1, 214

TA-Proj2, 214

TA-Var, 208

Term, 172

Var, 53

WFA-Empty, 209

WFA-Pi, 208

WFA-Star, 208

WFA-Tm, 209

WFA-Ty, 209

WH-App1, 208

WH-AppAbs, 208

WH-Proj, 213

WH-ProjPair, 213

WK-*, 468

WK-Pi, 468

WK-Sigma, 468

WK-Sing, 468

Wf-Pi, 202

Wf-Star, 202

andel, 322

ander, 322

andi, 322

ons, 323

dm-Abs, 16

dm-App, 16

dm-Gen', 18

dm-Gen, 16

dm-Inst', 18

dm-Inst, 16

dm-Let, 16

dm-Var, 16

e-App1, 232

e-App2, 232

e-Beta, 232

e-Case, 262

e-CaseCons, 262

e-CaseNil, 262

e-Cons1, 262

TOP

2003/5/20

page 570

570 Draft of May 20, 2003 Index

e-Cons2, 262

e-ConsAllo
, 262

e-FixBeta, 232

e-If, 232

e-IfFalse, 232

e-IfTrue, 232

e-New, 239

e-NewBeta, 239

e-Tag, 234

e-TagBeta, 234

e-Untag, 234

e-UntagBeta, 234

hmd-Abs, 46

hmd-App, 46

hmd-Exists, 46

hmd-LetGen, 46

hmd-Sub, 46

hmd-VarInst, 46

hmx-Abs, 42

hmx-App, 42

hmx-Exists, 42

hmx-Gen', 42

hmx-Gen, 42

hmx-Inst, 42

hmx-Let, 42

hmx-Sub, 42

hmx-Var, 42

impe, 322

impi, 322

init, 354

mem0, 322

mem1, 322

next, 323

nil, 323

ptraddr, 323

rd-Dis
ard, 501

rd-Transpose, 501

re-App1, 246

re-App2, 246

re-Beta, 246

re-Clos, 246

re-Deallo
, 246

re-Fix, 246

re-FixBeta, 246

re-If, 246

re-IfFalse, 246

re-IfTrue, 246

re-LetReg, 246

re-RApp, 246

re-RBeta, 246

re-RClos, 246

read, 354

s-add, 364

s-beq, 364

s-
ommit, 380

s-gen, 364

s-heap, 364

s-inst, 364

s-int, 364

s-jmp, 364

s-lab, 364

s-lds, 380

s-ldu, 380

s-ma
h, 364

s-mallo
, 380

s-mov-1, 380

s-mov, 364

s-pa
k, 387

s-reg, 364

s-regfile, 364

s-sallo
, 380

s-seq, 364

s-sfree, 380

s-sts, 380

s-stu, 380

s-tuple, 379

s-unpa
k, 387

s-uptr, 379

s-val, 364

sel, 323

send, 354

set, 323

t-Abs, 232, 238

t-App, 232, 238

t-Bool, 232, 238

t-BoolSub, 234, 238

t-Fix, 232, 238

t-FunSub, 234, 238

TOP

2003/5/20

page 571

Index 571

t-If, 232, 238

t-LabelSub, 234, 238

t-NewUnsound, 239

t-Subtype, 234

t-Tag, 234, 238

t-TagValSub, 234, 238

t-TagValue, 234, 238

t-Untag, 234, 238

t-Var, 232, 238

te-Abs, 243

te-App, 243

te-At, 243

te-Bool, 243

te-BoolSub, 243

te-Cell, 243

te-Effe
tSub, 243

te-Fix, 243

te-From, 243

te-FunSub, 243

te-If, 243

te-LabelSub, 243

te-New, 243

te-Sub, 243

te-TagValSub, 243

te-Var, 243

this, 323

tt-Abs, 255

tt-App, 255

tt-Assign, 262

tt-Bool, 255

tt-Case, 262

tt-Clos, 255

tt-Cons, 262

tt-ConsCell, 262

tt-Deref, 261

tt-EGen, 255

tt-EInst, 255

tt-Fix, 255

tt-If, 255

tt-LetReg, 255

tt-Nil, 262

tt-RAbs, 255

tt-RApp, 255

tt-RClos, 255

tt-Ref, 261

tt-TGen, 255

tt-TInst, 255

tt-Var, 255

upd, 323

satis�able, 27

standard multi-equation, 73

substitution

type, 15

type, 14

equire
ursive, 106

isore
ursive, 89

re
ursive, 106�107

type s
heme, 15

