Advanced Topics in Types and Programming Languages

Advanced Topics in
Types and Programming Lan-
guages

Benjamin C. Pierce, editor

The MIT Press
Cambridge, Massachusetts
London, England

Contents

Preface

1 ML

1

2

By Francgois Pottier and Didier Rémy

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Preliminaries 2

What is ML? 3

Constraints 20

HM(X) 40

A purely constraint-based type system: PCB(X) 52
Constraint generation o8

Type soundness 63

Constraint solving 72

From ML-the-calculus to ML-the-programming-language 86
Universal quantification in constraints 107

Rows 119

Logical Relations and a Case Study in Equivalence Checking

139

By Karl Crary

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

The Equivalence Problem 140
Untyped Equivalence Checking 141
Type-Driven Equivalence 143

An Equivalence Algorithm 144
Completeness: A First Attempt 147
Logical Relations 149

A Monotone Logical Relation 152
The Main Lemma 153

Contents

2.9 The Fundamental Theorem 155
2.10 Notes 160

Typed Operational Reasoning 161
By Andrew Pitts

3.1 Introduction 161

3.2 Motivating Examples 163

3.3 The Language 169

3.4 Contextual Equivalence 175

3.5 An Operationally-Based Logical Relation 180
3.6 Operational Extensionality 187

3.7 Notes 193

Dependent Types 196
By David Aspinall and Martin Hofmann

4.1 Pure first-order dependent types 201

4.2 Properties 205

4.3 Algorithmic typing and equality 207

4.4 Dependent sum types 212

4.5 The Calculus of Constructions 214

4.6 Relating abstractions: Pure Type Systems 222
4.7 Implementation 224

4.8 Further reading 227

Effect Types and Region-based Memory Management

By Fritz Henglein, Henning Makholm, and Henning Niss

5.1 Type-based program analysis 230

5.2 Value flow analysis 231

5.3 Effects 241

5.4 Region-based memory management, 245

5.5 The Tofte-Talpin type system 254

5.6 Region inference 263

5.7 More powerful models for region-based memory
management 266

5.8 Practical region-based memory management systems

Substructural Type Systems 274
By David Walker

6.1 Structural Properties 275
6.2 A Linear Type System 277

Draft of May 20, 2003 Contents

6.3 Extensions and Variations 287
6.4 An Ordered Type System 300
6.5 Further Applications 305

6.6 Notes 310

Proof-Carrying Code 313
By George Necula

7.1 Overview of Proof Carrying Code 314
7.2 Formalizing the Safety Policy 319

7.3 Verification-Condition Generation 323
7.4 Soundness Proof 336

7.5 The Representation and Checking of Proofs
7.6 Proof Generation 351

7.7 PCC Beyond Types 352

7.8 Conclusion 355

Typed Assembly Language
By Greg Morrisett

8.1 TAL-0: Control-Flow-Safety 359

8.2 The TAL-0 Type System 363

8.3 TAL-1: Simple Memory-Safety 372

8.4 TAL-1 Changes to the Type System 378
8.5 Compiling to TAL-1 381

8.6 Some Real World Issues 384

8.7 Scaling to Other Language Features 386
8.8 Conclusions 392

Design Issues in Advanced Module Systems

By Robert Harper and Benjamin C. Pierce

9.1 Basic Modularity 394

9.2 Phase Distinction and Phase Separation 405
9.3 Data Abstraction 407

9.4 Hierarchical Modularity 416

9.5 Families of Interfaces 419

9.6 Families of Modules 423

9.7 Advanced Topics 433

9.8 Relation to Existing Languages 435

9.9 History and Further Reading 437

9.10 Other stuff 439

Contents

10 Type Definitions 440
By Christopher A. Stone

10.1 Definitions in the Typing Context 442
10.2 Definitions in Modules 457

10.3 Singleton Kinds 466

10.4 Notes 481

Notational Conventions 483

Al Metavariable Names 483
A2 Rule Naming Conventions 483

B Solutions to Selected Exercises 487
References 536

Index 565

By Francgois Pottier and Didier Rémy

Preliminaries

Names and renaming

Mathematicians and computer scientists use names to refer to arbitrary or
unknown objects in the statement of a theorem, to refer to the parameters
of a function, etc. Names are convenient because they are understandable
by humans; nevertheless, they can be tricky. An in-depth treatment of the
difficulties associated with names and renaming is beyond the scope of the
present chapter: we encourage the reader to study Gabbay and Pitts’ excellent
series of papers (Gabbay and Pitts, 2002; Pitts, 2002b). Here, we merely recall
a few notions that are used throughout this chapter. Consider, for instance, an
inductive definition of the abstract syntax of a simple programming language,
the pure A-calculus:
tu=z|Azt|tt

Here, the meta-variable z ranges over an infinite set of wvariables—that is,
names—while the meta-variable t ranges over terms. As usual in mathematics,
we write “the variable z” and “the term t” instead of “the variable denoted by
z” and “the term denoted by t”. The above definition states that a term may
be a variable z, a pair of a variable and a term, written Az.t, or a pair of terms,
written t; t,. However, this is not quite what we need. Indeed, according to

The (currently unfinished) code that accompanies this chapter may be found at http:
//pauillac.inria.fr/"remy/mlrow/. For space reasons, some material, including proofs,
exercises, and more, has been left out of this version. In the future, a full version of this
chapter that includes the missing material will be made available at the same address. In
spite of these omissions, this chapter is still oversize with respect to Benjamin’s 100 page
barrier: we currently have roughly 135 pages of text and 15 pages of solutions to exercises.
We would appreciate comments and suggestions from the proofreaders as to how this chapter
could be made shorter, without severely compromising its interest or readability.

1.2 What is ML?

this definition, the terms Az;.z; and Az,.zo are distinct, while we would like
them to be a single mathematical object, because we intend Az.z to mean “the
function that maps z to z’—a meaning that is independent of the name =z.
To achieve this effect, we complete the above definition by stating that the
construction \z.t binds z within t. One may also say that Az is a binder whose
scope is t. Then, Az.t is no longer a pair: rather, it is an abstraction of the
variable z within the term t. Abstractions have the property that the identity
of the bound variable does not matter; that is, Az;.z; and Az,.z5 are the same
term. Informally, we say that terms are considered equal modulo a-conversion.
Once the position and scope of binders are known, several standard notions
follow, such as the set of free variables of a term t, written fv(t), and the
capture-avoiding substitution of a term t; for a variable z within a term to,
written [z — t1]t2. For conciseness, we write fu(ty, t2) for fu(ty) U fo(tz). A
term is said to be closed when it has no free variables.

A renaming is a total bijective mapping from variables to variables that
affects only a finite number of variables. The sole property of a variable is its
identity, that is, the fact that it is distinct from other variables. As a result,
at a global level, all variables are interchangeable: if a theorem holds in the
absence of hypotheses about any particular variable, then any renaming of it
holds as well. We often make use of this fact. When proving a theorem 7', we
say that a hypothesis H may be assumed wihout loss of generality (w.l.0.g.)
if the theorem 7" follows from the theorem H = T via a renaming argument,
which is usually left implicit.

If z; and z are sets of variables, we write z; # Z» as a shorthand for
Z1 N2z = &, and say that z; is fresh for Zo (or vice-versa). We say that z is
fresh for t if and only if z # fv(t) holds.

In this chapter, we work with several distinct varieties of names: program
variables, memory locations, and type variables, the latter of which may be
further divided into kinds. We draw names of different varieties from disjoint
sets, each of which is infinite.

What is ML?

The name “ML” appeared during the late seventies. It then referred to a
general-purpose programming language that was used as a meta-language
(whence its name) within the theorem prover LCF (Gordon, Milner, and
Wadsworth, 1979b). Since then, several new programming languages, each
of which offers several different implementations, have drawn inspiration from
it. So, what does “ML” stand for today?

For a semanticist, “ML” might stand for a programming language featuring
first-class functions, data structures built out of products and sums, mutable

Draft of May 20, 2003

memory cells called references, exception handling, automatic memory man-
agement, and a call-by-value semantics. This view encompasses the Standard
ML (Milner, Tofte, and Harper, 1990) and Caml (Leroy, 2000) families of
programming languages. We refer to it as ML-the-programming-language.

For a type theorist, “ML” might stand for a particular breed of type sys-
tems, based on the simply-typed A-calculus, but extended with a simple form
of polymorphism introduced by let declarations. These type systems have
decidable type inference; their type inference algorithms crucially rely on
first-order unification and can be made efficient in practice. In addition to
Standard ML and Caml, this view encompasses programming languages such
as Haskell (Hudak, Peyton Jones, Wadler, Boutel, Fairbairn, Fasel, Guzman,
Hammond, Hughes, Johnsson, Kieburtz, Nikhil, Partain, and Peterson, 1992)
and Clean (Brus, van Eekelen, van Leer, and Plasmeijer, 1987), whose seman-
tics is rather different—indeed, it is pure and lazy—but whose type system
fits this description. We refer to it as ML-the-type-system. It is also referred
to as Hindley and Milner’s type discipline in the literature.

For us, “ML” might also stand for the particular programming language
whose formal definition is given and studied in this chapter. It is a core calculus
featuring first-class functions, let declarations, and constants. It is equipped
with a call-by-value semantics. By customizing constants and their seman-
tics, one may recover data structures, references, and more. We refer to this
particular calculus as ML-the-calculus.

Why study ML-the-type-system today, such a long time after its initial
discovery? One may think of at least two reasons.

First, its treatment in the literature is often cursory, because it is considered
either as a simple extension of the simply-typed A-calculus (TAPL Chapter
9) or as a subset of Girard and Reynolds’ System F (TAPL Chapter 23).
The former view is supported by the claim that the let construct, which
distinguishes ML-the-type-system from the simply-typed A-calculus, may be
understood as a simple textual expansion facility. However, this view only tells
part of the story, because it fails to give an account of the principal types prop-
erty enjoyed by ML-the-type-system, leads to a naive type inference algorithm
whose time complexity is exponential, and breaks down when the language
is extended with side effects, such as state or exceptions. The latter view is
supported by the fact that every type derivation within ML-the-type-system
is also a valid type derivation within an implicity-typed variant of System F.
Such a view is correct, but again fails to give an account of type inference for
ML-the-type-system, since type inference for System F is undecidable (Wells,
1999).

Second, existing accounts of type inference for ML-the-type-system (Milner,
1978; Damas and Milner, 1982; Tofte, 1988; Leroy, 1992; Lee and Yi, 1998;

1.2 What is ML?

Jones, 1999) usually involve heavy manipulations of type substitutions. Such
an ubiquitous use of type substitutions is often quite obscure. Furthermore,
actual implementations of the type inference algorithm do not explicitly ma-
nipulate substitutions; instead, they extend a standard first-order unification
algorithm, where terms are updated in place as new equations are discov-
ered (Huet, 1976). Thus, it is hard to tell, from these accounts, how to write
an efficient type inference algorithm for ML-the-type-system. Yet, in spite of
the increasing speed of computers, efficiency remains crucial when ML-the-
type-system is extended with expensive features, such as Objective Caml’s
object types (Rémy and Vouillon, 1998) or polymorphic methods (Garrigue
and Rémy, 1999).

For these reasons, we believe it is worth giving an account of ML-the-type-
system that focuses on type inference and strives to be at once elegant and
faithful to an efficient implementation. To achieve these goals, we forego type
substitutions and instead put emphasis on constraints, which offer a number
of advantanges. First, constraints allow a modular presentation of type in-
ference as the combination of a constraint generator and a constraint solver.
Such a decomposition allows reasoning separately about when a program is
correct, on the one hand, and how to check whether it is correct, on the
other hand. It has long been standard in the setting of the simply-typed A-
calculus (TAPL Chapter 22), but, to the best of our knowledge, has never
been proposed for ML-the-type-system. Second, it is often natural to de-
fine and implement the solver as a constraint rewriting system. Then, the
constraint language allows reasoning not only about correctness—is every
rewriting step meaning-preserving?—but also about low-level implementation
details, since constraints are the data structures manipulated throughout the
type inference process. For instance, describing unification in terms of multi-
equations (Jouannaud and Kirchner, 1991) allows reasoning about the sharing
of nodes in memory, which a substitution-based approach cannot account for.
Last, constraints are more general than type substitutions, and allow describ-
ing many extensions of ML-the-type-system, among which extensions with
recursive types, rows, subtyping, first-order unification under a mixed prefix,
and more.

Before delving into the details of this new presentation of ML-the-type-
system, however, it is worth recalling its standard definition. Thus, in what
follows, we first define the syntax and operational semantics of the program-
ming language ML-the-calculus, and equip it with a type system, known as
Damas and Milner’s type system.

Draft of May 20, 2003

Identifiers:

Variable

Memory location

Constant

Ezxpressions:

Identifier

Az.t Function
tt Application
letz=tint Local definition

Values:
Variable

Memory location
Function

Data

ce Q" ANk <alc)
Partial application
ceQ Ak <a(c)

Evaluation Contexts:
(] Empty context
Et Left side of an application
vE Right side of an application

letz=€int

Local de]’im'tionI

Figure 1-1: Syntax of ML-the-calculus

MUL-the-calculus

The syntax of ML-the-calculus is defined in Figure 1-1. It is made up of several
syntactic categories.

Identifiers group several kinds of names that may be referenced in a pro-
gram: variables, memory locations, and constants. We let x and y range
over identifiers. Variables—sometimes called program wvariables to avoid
ambiguity—are names that may be bound to values using A or let binding
forms; in other words, they are names for function parameters or local defi-
nitions. We let z and f range over program variables. We sometimes write _
for a program variable that does not occur free within its scope: for instance,
A_.t stands for Az.t, provided z is fresh for t. Memory locations are names
that represent memory addresses. By convention, memory locations never ap-
pear in source programs, that is, programs that are submitted to a compiler.
They only appear during execution, when new memory blocks are allocated.
Constants are fixed names for primitive values and operations, such as integer
literals and integer arithmetic operations. Constants are elements of a finite
or infinite set Q. They are never subject to a-conversion. Program variables,
memory locations, and constants belong to distinct syntactic classes and may
never be confused.

The set of constants Q is kept abstract, so most of our development is
independent of its concrete definition. We assume that every constant c has a
nonnegative integer arity a(c). We further assume that Q is partitioned into
subsets of constructors QF and destructors Q. Constructors and destructors
differ in that the former are used to form values, while the latter are used to

1.2 What is ML?

operate on values.

ExaMPLE [INTEGERS|: For every integer n, one may introduce a nullary con-
structor 7. In addition, one may introduce a binary destructor +, whose appli-
cations are written infix, so t; + t, stands for the double application Tty to
of the destructor + to the expressions t; and t,. a

Ezpressions—also known as program terms or programs—are the main syn-
tactic category. Indeed, unlike procedural languages such as C and Java, func-
tional languages, including ML-the-programming-language, suppress the dis-
tinction between expressions and statements. Expressions include identifiers,
A-abstractions, applications, and local definitions. The A-abstraction Az.t rep-
resents the function of one parameter named z whose result is the expression t,
or, in other words, the function that maps z to t. Note that the variable z
is bound within the term t, so (for instance) Az;.z; and Az».zo are the same
object. The application t1 to represents the result of calling the function t;
with actual parameter t», or, in other words, the result of applying t; to t».
Application is left-associative, that is, t1 to t3 stands for (t; ts2) ts. The con-
struct let z = t; in to represents the result of evaluating t, after binding the
variable z to t;. Note that the variable z is bound within ts, but not within
t1, so for instance let z; = z; in z; and let z» = z; in z, are the same
object. The construct let z = t; in to has the same meaning as (Az.ts) t1,
but is dealt with in a more flexible way by ML-the-type-system. To sum up,
the syntax of ML-the-calculus is that of the pure A-calculus, extended with
memory locations, constants, and the let construct.

Values form a subset of expressions. They are expressions whose evaluation
is completed. Values include identifiers, A-abstractions, and applications of
constants, of the form c vy ... vg, where k does not exceed c¢’s arity if c is a
constructor, and k is smaller than c’s arity if c is a destructor. In what follows,
we are often interested in closed values, that is, values that do not contain
any free program variables. We use the meta-variables v and w for values.

ExaMPLE: The integer literals ...,:\1,0, 1,... are nullary constructors, so
they are values. Integer addition + is a binary destructor, so it is a value, and
so is every partial application + v. Thus, both + 1 and + 4 are values. An
application of + to two values, such as 242, is not a value. |

ExaMPLE [PAIRs|: Let (-,-) be a binary constructor. If t; are ty are expres-
sions, then the double application (-,-) t1 t2 may be called the pair of t; and
ty, and may be written (t1,t2). By the definition above, (t1,ts) is a value if
and only if t; and t» are both values. m|

Stores are finite mappings from memory locations to closed values. A store p
represents what is usually called a heap, that is, a collection of data structures,

Draft of May 20, 2003

each of which is allocated at a particular address in memory and may contain
pointers to other elements of the heap. ML-the-programming-language allows
overwriting the contents of an existing memory block—an operation some-
times referred to as a side effect. In the operational semantics, this effect is
achieved by mapping an existing memory location to a new value. We write
& for the empty store. We write pm — v] for the store that maps m to v and
otherwise coincides with . When p and p' have disjoint domains, we write
' for their union. We write dom(u) for the domain of p and range(u) for
the set of memory locations that appear in its codomain.

The operational semantics of a purely functional language, such as the pure
A-calculus, may be defined as a rewriting system on expressions. Because ML-
the-calculus has side effects, however, we define its operational semantics as a
rewriting system on configurations. A configuration t/u is a pair of an expres-
sion t and a store p. The memory locations in the domain of p are considered
bound within t/u, so (for instance) mi/(m; + 0) and my/(my + 0) are
the same object. In what follows, we are often interested in closed configura-
tions, that is, configurations t/p such that t has no free program variables
and every memory location that appears within t or within the range of p
is in the domain of p. If t is a source program, its evaluation begins within
an empty store—that is, with the configuration t/@. Because, by convention,
source programs do not contain memory locations, this is a closed configura-
tion. Furthermore, we shall see that all reducts of a closed configuration are
closed as well. Please note that, instead of separating expressions and stores,
it is possible to make store fragments part of the syntax of expressions; this
idea, proposed in (Crank and Felleisen, 1991), is reminiscent of the encoding of
reference cells in process calculi (Turner, 1995; Fournet and Gonthier, 1996).

A context is an expression where a single subexpression has been replaced
with a hole, written [|. Fvaluation contexts form a strict subset of contexts. In
an evaluation context, the hole is meant to highlight a point in the program
where it is valid to apply a reduction rule. Thus, the definition of evaluation
contexts determines a reduction strategy: it tells where and in what order
reduction steps may occur. For instance, the fact that Az.[] is not an eval-
uation context means that the body of a function is never evaluated—that
is, not until the function is applied, see R-BETA below. The fact that t £ is
an evaluation context only if t is a value means that, to evaluate an appli-
cation t; to, one should fully evaluate t; before attempting to evaluate t,.
More generally, in the case of a multiple application, it means that arguments
should be evaluated from left to right. Of course, other choices could be made:
for instance, defining & == ... |t & | £ v | ... would enforce a right-to-left
evaluation order, while defining £ =:=... |t £ | £ t | ... would leave the eval-
uation order unspecified, effectively allowing reduction to alternate between

1.2 What is ML?

(Azt) v — [z V]t (R-BETA) t/p— t' /!
dom(p") # dom(p')
range(") # dom (' \ 1)

letz=vint — [z V]t (R-LET) I 1) 0
t/pp" — W

(R-EXTEND)

J 1/, I
M (R-DELTA) 5[1:1];,5 : 15:[17'7]/:“’

(R-CONTEXT)

t/p—t'

Figure 1-2: Semantics of ML-the-calculus

both subexpressions, and making evaluation nondeterministic. The fact that
let z = v in € is not an evaluation context means that the body of a local
definition is never evaluated—that is, not until the definition itself is reduced,
see R-LET below. We write £[t] for the expression obtained by replacing the
hole in & with the expression t.

Figure 1-2 defines first a relation — between configurations, then a relation
— between closed configurations. If t/pu — t'/u' or t/p — t'/u holds,
then we say that the configuration t/u reduces to the configuration t'/u'; the
ambiguity involved in this definition is benign. If t/u — t'/p holds for every
store u, then we write t — t’ and say that the reduction is pure.

The key reduction rule is R-BETA, which states that a function applica-
tion (Az.t) v reduces to the function body, namely t, where every occurrence
of the formal argument z has been replaced with the actual argument v.
The A construct, which prevented the function body t from being evaluated,
disappears, so the new term may (in general) be further reduced. Because
ML-the-calculus adopts a call-by-value strategy, rule R-BETA is applicable
only if the actual argument is a value v. In other words, a function cannot
be invoked until its actual argument has been fully evaluated. Rule R-LET
is very similar to R-BETA. Indeed, it specifies that let z = v in t has the
same behavior, with respect to reduction, as (Az.t) v. We remark that sub-
stitution of a value for a program variable throughout a term is expensive, so
R-BETA and R-LET are never implemented literally: they are only a simple
specification. Actual implementations usually employ runtime environments,
which may be understood as a form of ezplicit substitutions (Abadi, Cardelli,
Curien, and Lévy, 1991). Please note that our choice of a call-by-value re-
duction strategy is fairly arbitrary, and has essentially no impact on the type
system; the programming language Haskell (Hudak, Peyton Jones, Wadler,
Boutel, Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, Kieburtz,

Draft of May 20, 2003

Nikhil, Partain, and Peterson, 1992), whose reduction strategy is known as
lazy or call-by-need, also relies on Hindley and Milner’s type discipline.
Rule R-DELTA describes the semantics of constants. It merely states that a

. . 5 . . .
certain relation —» is a subset of —». Of course, since the set of constants is

unspecified, the relation %, must be kept abstract as well. We require that,
if t/p —2 t' /1" holds, then

(i) t is of the form ¢ vy ... v,, where c is a destructor of arity n; and
(ii) dom(u) is a subset of dom(u').

Condition (i) ensures that d-reduction concerns full applications of destruc-
tors only, and that these are evaluated in accordance with the call-by-value
strategy. Condition (ii) ensures that J-reduction may allocate new memory
locations, but not deallocate existing locations. In particular, a “garbage col-
lection” operator, which destroys unreachable memory cells, cannot be made
available as a constant. Doing so would not make much sense anyway in the
presence of R-EXTEND, which states that any valid reduction is also valid in
a larger store. Condition (ii) allows proving that, if t/u reduces to t'/p’, then
dom(p) is a subset of domn(u'); this is left as an exercise to the reader.

ExAMPLE [INTEGERS, CONTINUED]|: The operational semantics of integer ad-
dition may be defined as follows:

]Aﬂl -?—]ACQ i) kmz (R‘_ADD)
The left-hand term is the double application + ki 1%2, while the right-hand
term is the integer literal k, where £ is the sum of k; and k. The distinction

between object level and meta level (that is, between k and k) is needed here
to avoid ambiguity. O

ExaMPLE [PAIRS, CONTINUED]: In addition to the pair constructor defined
in Example 1.2.3, we may introduce two destructors m; and 7 of arity 1. We
may define their operational semantics as follows, for i € {1,2}:

i (v1,v2) LN \Z (R-ProJ)
Thus, our treatment of constants is general enough to account for pair con-

struction and destruction; we need not build these features explicitly into the
language. O

EXERCISE [BOOLEANS, RECOMMENDED, Yk |: Let true and false be
nullary constructors. Let if be a ternary destructor. Extend the operational
semantics with

. §
if true vy vo — vy (R-TRUE)

1.2 What is ML? 11

if false vy vo LN Vs (R-FALSE)
Let us use the syntactic sugar if to then t; else t, for the triple application
of if t¢ t1 t2. Explain why these definitions do not quite provide the expected
behavior. Without modifying the semantics of if, suggest a new definition of
the syntactic sugar if ty then t; else t, that corrects the problem. m|

EXAMPLE [SuMs]: Booleans may in fact be viewed as a special case of the
more general concept of sum. Let inj, and inj, be unary constructors, called
respectively left and right injections. Let case be a ternary destructor, whose
semantics is defined as follows, for i € {1,2}:

case (inj; v) vy vy v (R-CASE)
Here, the value inj; v is being scrutinized, while the values v; and v», which
are typically functions, represent the two arms of a standard case construct.
The rule selects an appropriate arm (here, v;) based on whether the value un-
der scrutiny was formed using a left or right injection. The arm v; is executed
and given access to the data carried by the injection (here, v). |

EXERCISE [%, -]: Explain how to encode true, false and the if construct
in terms of sums. Check that the behavior of R-TRUE and R-FALSE is properly
emulated. O

EXAMPLE [REFERENCES|: Let ref and ! be unary destructors. Let := be a
binary destructor. We write t; := to for the double application := t; t,.
Define the operational semantics of these three destructors as follows:

ref v/& LN m/(m > v) if m is fresh for v (R-REF)
Im/(m — v) -2 v/(m = v) (R-DEREF)

m = v/(m — vp) LN v/(m — v) (R-AssIGN)
According to R-REF, evaluating ref v allocates a fresh memory location
m and binds v to it. Because configurations are considered equal up to a-
conversion of memory locations, the choice of the name m is irrelevant, pro-
vided it is chosen fresh for v, so as to prevent inadvertent capture of the
memory locations that appear free within v. By R-DEREF, evaluating !m re-
turns the value bound to the memory location m within the current store. By
R-ASSIGN, evaluating m := v discards the value vy currently bound to m and
produces a new store where m is bound to v. Here, the value returned by the
assignment m := v is v itself; in ML-the-programming-language, it is usually
a nullary constructor (), pronounced wunit. o

ExaMPLE [RECURSION]: Let fix be a binary destructor, whose operational
semantics is:

Draft of May 20, 2003

£ix vi vo —o> v (fix vq) v (R-F1x)
fix is a fixpoint combinator: it effectively allows recursive definitions of
functions. Indeed, the construct letrec £ = Az.t; in t, provided by ML-
the-programming-language may be viewed as syntactic sugar for let £ =
fix (Af.Az.t1) in ts.]

Rule R-CONTEXT completes the definition of the operational semantics by
defining —, a relation between closed configurations, in terms of —». The
rule states that reduction may take place not only at the term’s root, but also
deep inside it, provided the path from the root to the point where reduction
occurs forms an evaluation context. This is how evaluation contexts determine
an evaluation strategy. As a purely technical point, because —» relates closed
configurations only, we do not need to require that the memory locations in
dom(u'\ 1) be fresh for £: indeed, every memory location that appears within
€ must be a member of dom(u).

EXERCISE [%%, RECOMMENDED, —|: Assuming the availability of Booleans
and conditionals, integer literals, subtraction, multiplication, integer compar-
ison, and a fixpoint combinator, most of which were defined in previous ex-
amples, define a function that computes the factorial of its integer argument,
and apply it to 3. Determine, step by step, how this expression reduces to a

value. O

It is straightforward to check that, if t/u reduces to t'/y, then t is not
a value. In other words, values are irreducible: they represent a completed
computation. The proof is left as an exercise to the reader. The converse,
however, does not hold: if t/px is irreducible with respect to —, then t is not
necessarily a value. In that case, the configuration t/u is said to be stuck. It
represents a runtime error, that is, a situation that does not allow computation
to proceed, yet is not considered a valid outcome. A closed source program
t is said to go wrong if and only if the configuration t/@ reduces to a stuck
configuration.

ExaMPLE: Runtime errors typically arise when destructors are applied to
arguments of an unexpected nature. For instance, the expressions + 1 m and
w1 2 and !3 are stuck, regardless of the current store. The program let z =
+ 4 in z 1 is not stuck, because + 4 is a value. However, its reduct through
R-LET is 4+ + 1, which is stuck, so this program goes wrong. The primary
purpose of type systems is to prevent such situations from arising. a

ExampLE: The configuration !m/u is stuck if m is not in the domain of pu.
In that case, however, !m/u is not closed. Because we consider — as a rela-
tion between closed configurations only, this situation cannot arise. In other

1.2 What is ML? 13

words, the semantics of ML-the-calculus never allows the creation of dan-
gling pointers. As a result, no particular precautions need be taken to guard
against them. Several strongly typed programming languages do neverthe-
less allow dangling pointers in a controlled fashion (Tofte and Talpin, 1997;
Crary, Walker, and Morrisett, 1999b; DeLine and Fahndrich, 2001; Grossman,
Morrisett, Jim, Hicks, Wang, and Cheney, 2002a). O

Damas and Milner’s type system

ML-the-type-system was originally defined by Milner (1978). Here, we repro-
duce the definition given a few years later by Damas and Milner (1982), which
is written in a more standard style: typing judgements are defined inductively
by a collection of typing rules. We refer to this type system as DM.

To begin, we must define types. In DM, like in the simply-typed A-calculus,
types are first-order terms built out of type constructors and type variables.
We begin with several considerations concerning the specification of type con-
structors.

First, we do not wish to fix the set of type constructors. Certainly, since ML-
the-calculus has functions, we need to be able to form an arrow type T — T’
out of arbitrary types T and T’; that is, we need a binary type constructor —.
However, because ML-the-calculus includes an unspecified set of constants,
we cannot say much else in general. If constants include integer literals and
integer operations, as in Example 1.2.1, then a nullary type constructor int is
needed; if they include pair construction and destruction, as in Examples 1.2.3
and 1.2.5, then a binary type constructor x is needed; and so on.

Second, it is common to refer to the parameters of a type constructor by
position, that is, by numeric index. For instance, when one writes T — T/,
it is understood that the type constructor — has arity 2, that T is its first
parameter, known as its domain, and that T’ is its second parameter, known
as its codomain. Here, however, we refer to parameters by names, known as
directions. For instance, we define two directions domain and codomain and let
the type constructor — have arity {domain, codomain}. The extra generality
afforded by directions is exploited in the definition of nonstructural subtyping
(Example 1.3.9) and in the definition of rows (Section 1.11).

Last, we allow types to be classified using kinds. As a result, every type con-
structor must come not only with an arity, but with a richer signature, which
describes the kinds of the types to which it is applicable and the kind of the
type that it produces. A distinguished kind « is associated with “normal” types,
that is, types that are directly ascribed to expressions and values. For instance,
the signature of the type constructor — is { domain — %, codomain — x} = *,
because it is applicable to two “normal” types and produces a “normal” type.

Draft of May 20, 2003

Introducing kinds other than % allows viewing some terms as ill-formed types;
this is illustrated, for instance, in Section 1.11. In the simplest case, however,
* is really the only kind, so the signature of a type constructor is nothing but
its arity (a set of directions), and every term is a well-formed type, provided
every application of a type constructor respects its arity.

DEFINITION: Let d range over a finite or denumerable set of directions. Let k
range over a finite or denumerable set of kinds. Let x be a distinguished kind.
Let K range over partial mappings from directions to kinds. Let F' range over
a finite or denumerable set of type constructors, each of which has a signature
of the form K = k. The domain of K is referred to as the arity of F', while & is
referred to as its image kind. We write k instead of K = k when K is empty.
Let — be a type constructor of signature {domain — x, codomain — %} = *.
O

The type constructors and their signatures collectively form a signature S.
In the following, we assume that a fixed signature S is given and that every
type constructor in it has finite arity, so as to ensure that types are machine
representable. However, in Section 1.11, we shall explicitly work with several
distinct signatures, some of which involve type constructors of denumerable
arity.

A type variable is a name that is used to stand for a type. For simplic-
ity, we assume that every type variable is branded with a kind, or, in other
words, that type variables of distinct kinds are drawn from disjoint sets. Each
of these sets of type variables is individually subject to a-conversion: that
is, renamings must preserve kinds. Attaching kinds to type variables is only
a technical convenience: in practice, every operation performed during type
inference preserves the property that every type is well-kinded, so it is not
necessary to keep track of the kind of every type variable. It is only necessary
to check that all types supplied by the user, within type declarations, type
annotations, or module interfaces, are well-kinded.

DEFINITION: For every kind «, let V,; be a disjoint, denumerable set of type
variables. Let X, Y, and Z range over the set V of all type variables. Let X and
Y range over finite sets of type variables. We write XY for the set X U Y and
often write X for the singleton set {X}. We write ftv(o) for the set of free type
variables of an object o. O

The set of types, ranged over by T, is the free many-kinded term algebra
that arises out of the type constructors and type variables.

DEFINITION: A type of kind & is either a member of V,, or a term of the form
F{d, — Ty,...,d, — T,}, where F has signature {d; — K1,...,d,, = k,} =
k and Tq,..., T, are types of kind k1, ..., Ky, respectively. m|

1.2 What is ML? 15

As a notational convention, we assume that, for every type constructor F,
the directions that form the arity of F' are implicitly ordered, so that we may
say that F" has signature k; ®...® Kk, = & and employ the syntax F'T; ... Ty
for applications of F'. Applications of the type constructor — are written infix
and associate to the right, so T — T' — T" stands for T — (T' — T").

In order to give meaning to the free type variables of a type, or, more
generally, of a typing judgement, traditional presentations of ML-the-type-
system, including Damas and Milner’s, employ type substitutions. Most of
our presentation avoids substitutions and uses constraints instead. However,
we do need substitutions on a few occasions, especially when relating our
presentation to Damas and Milner’s.

DEFINITION: A type substitution 6 is a total, kind-preserving mapping of type
variables to types that is the identity everywhere but on a finite subset of V,
which we call the domain of 6 and write dom(6). The range of 6§, which we
write range(f), is the set ftv(6(dom(0))). A type substitution may naturally be
viewed as a total, kind-preserving mapping of types to types. In the following,
we write X # 6 for X # (dom(8) U range(#)). We write 6 \ X for the restriction
of 6 outside X, that is, the restriction of 6 to V\ X. We sometimes let ¢ denote
a type substitution. O

If X and T are respectively a vector of distinct type variables and a vector

of types of the same (finite) length, such that, for every index i, X; and T;
have the same kind, then [ff > T] denotes the substitution that maps X; to T;
for every index i. The domain of [X — T] is a subset of X, the set underlying
the vector X. Its range is a subset of ftv(T), where T is the set underlying the
vector T. Every substitution # may be written under the form [f(— T‘], where
X = dom(0). Then, 0 is idempotent if and only if X # ftv(T) holds.

As pointed out earlier, types are first-order terms; that is, in the grammar
of types, none of the productions binds a type variable. As a result, every type
variable that appears within a type T appears free within T. This situation is
identical to that of the simply-typed A-calculus. Things become more inter-
esting when we introduce type schemes. As its name implies, a type scheme
may describe an entire family of types; this effect is achieved via universal
quantification over a set of type variables.

DEFINITION: A type scheme § is an object of the form VX.T, where T is a type
of kind x and the type variables X are considered bound within T. O

One may view the type T as the trivial type scheme V@.T, where no type
variables are universally quantified, so types may be viewed as a subset of type
schemes. The type scheme VX.T may be viewed as a finite way of describing
the possibly infinite family of types of the form [ff — T]T, where T is arbitrary.

Draft of May 20, 2003

I'(x)=S§ I't;:8S Iiz:Skts: T
e (DM-VAR) - (DM-LET)
I'kFx:S I'letz=tyinty: T

D;z:THt:T PEt:T X # fto(D)

. - (DM-ABS) —
FEAzt:T—T 't :VXT

(DM-GEN)

Pt :T—T PFty:T I'kt:VXT
IFt:[X—TT

(DM-INST)

(DM-ApP)

F"tthCTI

Figure 1-3: Typing rules for DM

Such types are called instances of the type scheme VX.T. Note that, throughout
most of this chapter, we work with constrained type schemes, a generalization
of DM type schemes (Definition 1.3.2).

Typing environments, or environments for short, are used to collect assump-
tions about an expression’s free identifiers.

DEFINITION: An environment I' is a finite ordered sequence of pairs of a
program identifier and a type scheme. We write @ for the empty environment
and ; for the concatenation of environments. An environment may be viewed as
a finite mapping from program identifiers to type schemes by letting I'(x) = S
if and only if ' is of the form I'y;x : S;['y, where I's contains no assumption
about x. The set of defined program identifiers of an environment [', written
dpi(T), is defined by dpi(&) = @ and dpi(T;x :) = dpi(T') U {x}.]

To complete the definition of Damas and Milner’s type system, there
remains to define typing judgements. A typing judgement takes the form
'kt : S, where t is an expression of interest, I' is an environment, which typ-
ically contains assumptions about t’s free program identifiers, and S is a type
scheme. Such a judgement may be read: under assumptions I, the expression
t has the type scheme S. By abuse of language, it is sometimes said that t has
type S. A typing judgement is valid (or holds) if and only if it may be derived
using the rules that appear in Figure 1-3. An expression t is well-typed within
the environment I' if and only if some judgement of the form I' - t : S holds;
it is #ll-typed within I" otherwise.

Rule DM-VAR allows fetching a type scheme for an identifier x from the
environment. It is equally applicable to program variables, memory locations,
and constants. If no assumption concerning x appears in the environment I,
then the rule isn’t applicable. In that case, the expression x is ill-typed within
[——can you prove it? Assumptions about constants are usually collected in

1.2 What is ML? 17

a so-called initial environment I'g. It is the environment under which closed
programs are typechecked, so every subexpression is typechecked under some
extension I' of I'g. Of course, the type schemes assigned by ['y to constants
must be consistent with their operational semantics; we say more about this
later (Section 1.7). Rule DM-ABS specifies how to typecheck a A-abstraction
Az.t. Its premise requires the body of the function, namely t, to be well-typed
under an extra assumption, which causes all free occurrences of z within t to
receive a common type T. Its conclusion forms the arrow type T — T’ out of
the types of the function’s formal parameter, namely T, and result, namely
T'. It is worth noting that this rule always augments the environment with
a type T—recall that, by convention, types form a subset of type schemes—
but never with a nontrivial type scheme. DM-APP states that the type of a
function application is the codomain of the function’s type, provided that the
domain of the function’s type is a valid type for the actual argument. DM-
LET closely mirrors the operational semantics: whereas the semantics of the
local definition let z = t; in ty is to augment the runtime environment
by binding z to the wvalue of t; prior to evaluating t,, the effect of DM-LET
is to augment the typing environment by binding z to a type scheme for
t; prior to typechecking t;. DM-GEN turns a type into a type scheme by
universally quantifying over a set of type variables that do not appear free in
the environment; this restriction is discussed in Example 1.2.20 below. DM-
INST, on the contrary, turns a type scheme into one of its instances, which may
be chosen arbitrarily. These two operations are referred to as generalization
and instantiation. The notion of type scheme and the rules bM-GEN and DM-
INsT are characteristic of ML-the-type-system: they distinguish it from the
simply-typed A-calculus.

ExampLE: It is unsound to allow generalizing type variables that appear free
in the environment. For instance, consider the typing judgement z : X - z :
X (1), which, according to DM-VAR, is valid. Applying an unrestricted version
of DM-GEN to it, we obtain z : X - z : VX.X (2), whence, by DM-INST, z : X -
z: Y (3). By bM-ABs and DM-GEN, we then have @ F Az.z : VXY.X — Y. In
other words, the identity function has unrelated argument and result types!
Then, the expression (Az.z) 0 0, which reduces to the stuck expression 0 0,
has type scheme VZ.Z. So, well-typed programs may cause runtime errors: the
type system is unsound.

What happened? It is clear that the judgement (1) is correct only because
the type assigned to z is the same in its assumption and in its right-hand
side. For the same reason, the judgements (2) and (3)—the former of which
may be written z : X - z : VY.Y—are incorrect. Indeed, such judgements de-
feat the very purpose of environments, since they disregard their assumption.

Draft of May 20, 2003

By universally quantifying over X in the right-hand side only, we break the
connection between occurrences of X in the assumption, which remain free,
and occurrences in the right-hand side, which become bound. This is correct
only if there are in fact no free occurrences of X in the assumption. O

It is a key feature of ML-the-type-system that DM-ABS may only introduce
a type T, rather than a type scheme, into the environment. Indeed, this allows
the rule’s conclusion to form the arrow type T — T'. If instead the rule were
to introduce the assumption z : S into the environment, then its conclusion
would have to form S — T’, which is not a well-formed type. In other words,
this restriction is necessary to preserve the stratification between types and
type schemes. If we were to remove this stratification, thus allowing universal
quantifiers to appear deep inside types, we would obtain an implicitly-typed
version of System F (TAPL Chapter 23). Type inference for System F is
undecidable (Wells, 1999), while type inference for ML-the-type-system is de-
cidable, as we show later, so this design choice has a rather drastic impact.

EXERCISE [%, RECOMMENDED]|: Build a type derivation for the expression
Azi.let zo = z; in zy within DM. O

EXERCISE [%, RECOMMENDED]: Let int be a nullary type constructor of sig-

nature %. Let I'g consist of the bindings + : int — int — int and & : int, for
every integer k. Can you find derivations of the following valid typing judge-
ments? Which of these judgements are valid in the simply-typed A-calculus,
where let z = t; in t» is syntactic sugar for (Az.ts) t17

I'pF Az.z:int — int
ToFAzz: VXX =X
ok let f =Az.z+1inf 2: int
I'oFlet f =MAz.z inff2:int

Show that the expressions 12 and Af.(f £) are ill-typed within I'g. Could
these expressions be well-typed in a more powerful type system? |

EXERCISE []: In fact, the rules shown in Figure 1-3 are not exactly Damas
and Milner’s original rules. In (Damas and Milner, 1982), the generalization
and instantiation rules are:
F+t:s X ¢& fto(T)
'Ft:VXs$s

(DM-GEN’)

THt:VXT Y # fto(VX.T)
TFt:V[K e TT

(DM-INST?)

1.2 What is ML? 19

where VX.S stands for VXX.T if S stands for VX.T. Show that the combination
of DM-GEN’ and DM-INST’ is equivalent to the combination of DM-GEN and
DM-INST. a

DM enjoys a number of nice theoretical properties, which have practical
implications. First, under suitable hypotheses about the semantics of con-
stants, about the type schemes that they receive in the initial environment,
and—in the presence of side effects—under a slight restriction of the syntax
of let constructs, it is possible to show that the type system is sound: that is,
well-typed (closed) programs do not go wrong. This essential property ensures
that programs that are accepted by the typechecker may be compiled without
runtime checks. Furthermore, it is possible to show that there exists an algo-
rithm that, given a (closed) environment I' and a program t, tells whether t
is well-typed with respect to I', and if so, produces a principal type scheme S.
A principal type scheme is such that (i) it is valid, that is, I' - t : S holds, and
(ii) it is most general, that is, every judgement of the form I' - t : 8’ follows
from I' - t : S by DM-INST and DM-GEN. (For the sake of simplicity, we have
stated the properties of the type inference algorithm only in the case of a
closed environment I'; the specification is slightly heavier in the general case.)
This implies that type inference is decidable: the compiler does not require
expressions to be annotated with types. It also implies that, under a fixed
environment I', all of the type information associated with an expression t
may be summarized in the form of a single (principal) type scheme, which is
very convenient,.

Road map

Before proving the above claims, we first generalize our presentation by mov-
ing to a constraint-based setting. The necessary tools, namely the constraint
language, its interpretation, and a number of constraint equivalence laws, are
introduced in Section 1.3. In Section 1.4, we describe the standard constraint-
based type system HM(X) (Odersky, Sulzmann, and Wehr, 1999a; Sulzmann,
Miiller, and Zenger, 1999; Sulzmann, 2000). We prove that, when constraints
are made up of equations between free, finite terms, HM(X) is a reformula-
tion of DM. In the presence of a more powerful constraint language, HM(X)
is an extension of DM. In Section 1.5, we propose an original reformula-
tion of HM(X), dubbed PCB(X), whose distinctive feature is to exploit type
scheme introduction and instantiation constraints. In Section 1.6, we show
that, thanks to the extra expressive power afforded by these constraint forms,
type inference may be viewed as a combination of constraint generation and
constraint solving, as promised earlier. Indeed, we define a constraint genera-
tor and relate it with PCB(X). Then, in Section 1.7, we give a type soundness

Draft of May 20, 2003

theorem. It is stated purely in terms of constraints, but—thanks to the results
developed in the previous sections—applies equally to PCB(X), HM(X), and
DM.

Throughout this core material, the syntax and interpretation of constraints
are left partly unspecified. Thus, the development is parameterized with re-
spect to them—hence the unknown X in the names HM(X) and PCB(X).
We really describe a family of constraint-based type systems, all of which
share a common constraint generator and a common type soundness proof.
Constraint solving, however, cannot be independent of X: on the contrary,
the design of an efficient solver is heavily dependent on the syntax and inter-
pretation of constraints. In Section 1.8, we consider constraint solving in the
particular case where constraints are made up of equations interpreted in a
free tree model, and define a constraint solver on top of a standard first-order
unification algorithm.

The remainder of this chapter deals with extensions of the framework. In
Section 1.9, we explain how to extend ML-the-calculus with a number of fea-
tures, including data structures, pattern matching, and type annotations. In
Section 1.10, we extend the constraint language with universal quantification
and describe a number of extra features that require this extension, including
a different flavor of type annotations, polymorphic recursion, and first-class
universal and existential types. Last, in Section 1.11, we extend the constraint
language with rows and describe their applications, which include extensible
variants and records.

Constraints

In this section, we define the syntax and logical meaning of constraints. Both
are partly unspecified. Indeed, the set of type constructors (Definition 1.2.14)
must contain at least the binary type constructor —, but might contain more.
Similarly, the syntax of constraints involves a set of so-called predicates on
types, which we require to contain at least a binary subtyping predicate <,
but might contain more. Furthermore, the logical interpretation of type con-
structors and of predicates is left almost entirely unspecified. This freedom
allows reasoning not only about Damas and Milner’s type system, but also
about a family of constraint-based extensions of it.

Type constructors other than — and predicates other than < will never
explicitly appear in the definition of our constraint-based type systems, pre-
cisely because the definition is parametric with respect to them. They can
(and usually do) appear in the type schemes assigned to constructors and
destructors by the initial environment I'y.

The introduction of subtyping has little impact on the complexity of our

1.8 Constraints

type scheme:
VX[C].T

C,D := constraint:
true truth = Syntactic sugar for constraints:

false falsity As before

PT,...T, predicate application oc=XT Definition 1.5.3
CAC conjunction letx:oinC Definition 1.5.3
Ix.C existential quantification do Definition 1.3.3
def x : o in C type scheme introduction defI'in C Definition 1.3.4

x=<T type scheme instantiation let I"in C Definition 1.3.4
ar Definition 1.3.4
1

Jon= Typing environments:

Figure 1-4: Syntax of type schemes and constraints

proofs, yet increases the framework’s expressive power. When subtyping is not
desired, we interpret the predicate < as equality.

Syntax

We now define the syntax of constrained type schemes and of constraints, and
introduce some extra constraint forms as syntactic sugar.

DEFINITION: Let P range over a finite or denumerable set of predicates, each
of which has a signature of the form k; ® ... ® k,, = -, where n > 0. Let <
be a distinguished predicate of signature x @ x = - O

DEFINITION: The syntax of type schemes and constraints is given in Figure 1-
4. It is further restricted by the following requirements. In the type scheme
VX[C].T and in the constraint x < T, the type T must have kind *. In the
constraint P Ty ...T,, the types Ty, ..., T, must have kind k1, ..., k,, respec-
tively, if P has signature k1 ®...® K, = . We write VX.T for VX[true].T, which
allows viewing DM type schemes as a subset of constrained type schemes. O

We write Ty < To for the binary predicate application <Tj To, and call it a
subtyping constraint. By convention, 3 and def bind tighter than A; that is,
IX.CADis (IX.C)AD and def x : o in CAD is (def x : o in C)AD. In VX[C].T,
the type variables X are bound within C' and T. In 3X.C, the type variables
X are bound within C. The sets of free type variables of a type scheme o
and of a constraint C, written ftv(o) and ftv(C), respectively, are defined
accordingly. In def x : ¢ in C, the identifier x is bound within C. The sets

Draft of May 20, 2003

of free program identifiers of a type scheme o and of a constraint C', written
fri(o) and fpi(C), respectively, are defined accordingly. Please note that x
occurs free in the constraint x < T.

We immediately introduce a number of derived constraint forms:

DEFINITION: Let o be VX[C].T. If X # ftv(T') holds, then o < T’ (read: T' is
an instance of o) stands for the constraint IX.(C' AT < T'). We write Jo (read:
o has an instance) for 3X.C and let x : ¢ in C for o Adefx: o in C. O

Constrained type schemes generalize Damas and Milner’s type schemes,
while our definition of instantiation constraints generalizes Damas and Mil-
ner’s instance relation (Definition 1.2.18). Let us draw a comparison. First,
Damas and Milner’s instance relation yields a “yes/no” answer, and is purely
syntactic: for instance, the type Y — Z is not an instance of VX.X — X in
Damas and Milner’s sense, because Y and Z are distinct type variables. In
our presentation, on the other hand, VX.X — X < Y — Z is not an assertion;
rather, it is a constraint, which by definition is 3X.(true AX - X <Y — Z).
We later prove that it is equivalent to IX.(Y < XA X < Z) and to Y < Z, or,
if subtyping is interpreted as equality, to Y = Z. That is, o < T’ represents a
condition on (the types denoted by) the type variables in ftv(o,T') for T to
be an instance of o, in a logical, rather than purely syntactic, sense. Second,
the definition of instantiation constraints involves subtyping, so as to ensure
that any supertype of an instance of ¢ is again an instance of o (see rule
C-EXTRANS in Figure 1-6 and Lemma 1.3.17). This is consistent with the
purpose of subtyping, which is to allow supplying a subtype where a super-
type is expected (TAPL Chapter 15). Third and last, every type scheme now
carries a constraint. The constraint C', whose free type variables may or may
not be members of X, restricts the instances of the type scheme VX[C].T. This
is expressed in the instantiation constraint 3X.(C AT < T'), where the val-
ues that X may assume are restricted by the requirement that C' be satisfied.
This requirement vanishes in the case of DM type schemes, where C' is true.
Our notions of constrained type scheme and of instantiation constraint are
standard: they are exactly those of HM(X) (Odersky, Sulzmann, and Wehr,
1999a).

The constraint true, which is always satisfied, mainly serves to indicate the
absence of a nontrivial constraint, while false, which has no solution, may
be understood as the indication of a type error. Composite constraints in-
clude conjunction and existential quantification, which have their standard
meaning, as well as type scheme introduction and type scheme instantiation
constraints, which are similar to Gustavsson and Svenningsson’s constraint
abstractions (2001b). In short, the construct def x : o in C' binds the name x
to the type scheme ¢ within the constraint C. If C' contains a subconstraint of

1.3 Constraints 23

the form x < T, where this occurrence of x is free in C, then this subconstraint
acquires the meaning o < T. Thus, the constraint x < T is indeed an instantia-
tion constraint, where the type scheme that is being instantiated is referred to
by name. The constraint def x : o in C may be viewed as an explicit substitu-
tion of the type scheme o for the name x within C'. Later (Section 1.5), we use
such explicit substitutions to supplant typing environments. That is, where
Damas and Milner’s type system augments the current typing environment
(DM-ABS, DM-LET), we introduce a new def binding in the current constraint;
where it looks up the current typing environment (DM-VAR), we employ an in-
stantiation constraint. The point is that it is then up to a constraint solver to
choose a strategy for reducing explicit substitutions—for instance, one might
wish to simplify o before substituting it for x within C—whereas the use of
environments in standard type systems such as DM and HM(X) imposes an
eager substitution strategy, which is inefficient and thus never literally imple-
mented. The use of type scheme introduction and instantiation constraints
allows separating constraint generation and constraint solving without com-
promising efficiency, or, in other words, without introducing a gap between
the description of the type inference algorithm and its actual implementation.
Although the algorithm that we plan to describe is not new, its description in
terms of constraints is: to the best of our knowledge, the only close relative of
our def constraints is to be found in (Gustavsson and Svenningsson, 2001b).
Fahndrich, Rehof, and Das’s instantiation constraints (2000) are also related,
but may be recursive and are meant to be solved using a semi-unification
procedure, as opposed to a unification algorithm extended with facilities for
creating and instantiating type schemes, as in our case.

One consequence of introducing constraints inside type schemes is that some
type schemes have no instances at all, or have instances only if a certain
constraint holds. For instance, the type scheme o = VX[bool = int].X, where
the nullary type constructors int and bool have distinct interpretations, has
no instances; that is, no constraint of the form ¢ < T’ has a solution. The
type scheme o = VZ[X = Y — Z].Z has an instance only if X = Y — Z holds
for some Z; in other words, for every T', o < T’ entails 3Z.(X = Y — Z).
(We define entailment on page 29.) We later prove that the constraint Jo
is equivalent to 3Z.0 < Z, where Z ¢ ftv(o) (Exercise 1.3.23). That is, Jo
expresses the requirement that o have an instance. Type schemes that do not
have an instance indicate a type error, so in many situations, one wishes to
avoid them; for this reason, we often use the constraint form let x : o in C,
which requires o to have an instance and at the same time associates it with
the name x. Because the def form is more primitive, it is easier to work with
at a low level, but it is no longer explicitly used after Section 1.3; we always
use let instead.

Draft of May 20, 2003

DEFINITION: Environments ' remain as in Definition 1.2.19, except DM type
schemes S are replaced with constrained type schemes o. We write dfpi(T")
for dpi(T') U fpi(T'). We define def @ in C = C and def I';x : 0 in C =
def I' in def x : ¢ in C. Similarly, we define let @ in C = C and let I';x :
oin C =letTinlet x: 0 in C. We define 3& = true and I(T';x:0) =
A Adef ' in Jo. O

In order to establish or express certain laws of equivalence between con-
straints, we need constraint contexts. A context is a constraint with zero, one,
or several holes, written []. The syntax of contexts is as follows:

C:=[|C|CAC|TXL|defx:0inC |defx:VX[C].TinC

The application of a constraint context C to a constraint C', written C[C], is
defined in the usual way. Because a context may have any number of holes,
C may disappear or be duplicated in the process. Because a hole may appear
in the scope of a binder, some of C’s free type variables and free program
identifiers may become bound in C[C]. We write dtv(C) and dpi(C) for the
sets of type variables and program identifiers, respectively, that C may thus
capture. We write let x : VX[C].T in C' for 3X.C A def x : VX[C].T in C. Being
able to state such a definition is why we require multi-hole contexts. We let
range over existential constraint contexts, defined by X' =[] | IX.X.

Meaning

We have defined the syntax of constraints and given an informal description
of their meaning. We now give a formal definition of the interpretation of
constraints. We begin with the definition of a model:

DEFINITION: For every kind &, let M, be a nonempty set, whose elements
are the ground types of kind k. In the following, ¢ ranges over M, for some
k that may be determined from the context. For every type constructor F' of
signature K = k, let F' denote a total function from Mg into M,, where
the indexed product M is the set of all mappings of domain dom(K) that
map every d € dom(K) to an element of M 4. For every predicate P of
signature K1 ® ... ® kK, = -, let P denote a predicate on M,, x ... x M, .
We require the predicate < on M, x M, to be a partial order. O

For the sake of convenience, we abuse notation and write F' for both the
type constructor and its interpretation; similarly for predicates. We freely
assume that a binary equality predicate, whose interpretation is equality on
M, is available at every kind «, so Ty = T, where T; and Ty have kind &, is
a well-formed constraint.

1.3 Constraints 25

By varying the set of type constructors, the set of predicates, the set of
ground types, and the interpretation of type constructors and predicates, one
may define an entire family of related type systems. We informally refer to the
collection of these choices as X. Thus, the type systems HM(X) and PCB(X),
described in Sections 1.4 and 1.5, are parameterized by X.

The following examples give standard ways of defining the set of ground
types and the interpretation of type constructors.

EXAMPLE [SYNTACTIC MODELS]: For every kind &, let M, consist of the
closed types of kind k. Then, ground types are types that do not have any
free type variables, and form the so-called Herbrand universe. Let every type
constructor F' be interpreted as itself. Models that define ground types and
interpret type constructors in this manner are referred to as syntactic. O

ExaMPLE [TREE MODELS|: Let a path m be a finite sequence of directions.
The empty path is written € and the concatenation of the paths 7 and 7' is
written 7-7'. Let a tree be a partial function ¢ from paths to type constructors
whose domain is nonempty and prefix-closed and such that, for every path
7 in the domain of ¢, if the type constructor ¢(m) has signature K = &,
then 7 - d € dom(t) is equivalent to d € dom(K) and, furthermore, for every
d € dom(K), the type constructor t(m - d) has image kind K(d). If = is in
the domain of ¢, then the subtree of ¢t rooted at 7, written ¢/, is the partial
function 7’ — (7 - 7'). A tree is finite if and only if it has finite domain. A
tree is regular if and only if it has a finite number of distinct subtrees. Every
finite tree is thus regular. Let M, consist of the finite (resp. regular) trees
t such that t(e) has image kind «: then, we have a finite (resp. regular) tree
model.

If F" has signature K = k, one may interpret F' as the function that maps
T € Mgk to the ground type t € M, defined by t(¢) = F and t/d = T'(d)
for d € dom(T), that is, the unique ground type whose head symbol is F' and
whose subtree rooted at d is T'(d). Then, we have a free tree model. Please
note that free finite tree models coincide with syntactic models, as defined in
the previous example. |

Rows (Section 1.11) are interpreted in a tree model, albeit not a free one.
The following examples suggest different ways of interpreting the subtyping
predicate.

ExaMPLE [EQUALITY MODELS|: The simplest way of interpreting the sub-
typing predicate is to let < denote equality on every M. Models that do so
are referred to as equality models. When no predicate other than equality is
available, we say that the model is equality-only. |

Draft of May 20, 2003

EXAMPLE [STRUCTURAL, NONSTRUCTURAL SUBTYPING]|: Let a variance v
be a nonempty subset of {—,+}, written — (contravariant), + (covariant),
or + (invariant) for short. Define the composition of two variances as an
associative commutative operation with + as neutral element and such that
—— =+ and £— = ++ = +. Now, consider a free (finite or regular) tree
model, where every direction d comes with a fixed variance v(d). Define the
variance v(w) of a path 7 as the composition of the variances of its elements.
Let < be a partial order on type constructors such that (i) if F; < F5 holds
and F} and F5 have signature K1 = k1 and Ky = k», respectively, then K3
and K, agree on the intersection of their domains and k; and ko coincide;
and (ii) Fy < F1 < Fy implies dom(Fy) N dom(Fy) C dom(Fy). Let <*, <7,
and < stand for <, >, and =, respectively. Then, define the interpretation
of subtyping as follows: if #1,t2 € M, let t; < t; hold if and only if, for every
path 7 € dom(t;) N dom(tz), t1(m) <“™) ty(m) holds. It is not difficult to
check that < is a partial order on every M,,. The reader is referred to (Kozen,
Palsberg, and Schwartzbach., 1995) for more details about this construction.
Models that define subtyping in this manner are referred to as nonstructural
subtyping models.

A simple nonstructural subtyping model is obtained by letting the directions
domain and codomain be contra- and covariant, respectively, and introducing,
in addition to the type constructor —, two type constructors L and T of

signature . This gives rise to a model where L is the least ground type,
T is the greatest ground type, and the arrow type constructor is, as usual,
contravariant in its domain and covariant in its codomain.

A typical use of nonstructural subtyping is in type systems for records. One
may, for instance, introduce a covariant direction content of kind x, a kind
©, a type constructor abs of signature ¢, a type constructor pre of signature
{content — x} = ¢, and let pre < abs. This gives rise to a model where pre
t < abs holds for every t € M,. This form of subtyping is called nonstructural
because comparable ground types may have different shapes, such as L and
1 — T, or pre T and abs. Nonstructural subtyping has been studied, for
example, in (Kozen, Palsberg, and Schwartzbach., 1995; Palsberg, Wand, and
O’Keefe, 1997; Pottier, 2001b; Niehren and Priesnitz, 2003). Section 1.11 says
more about typechecking operations on records.

An important particular case arises when any two type constructors related
by < have the same arity. In that case, it is not difficult to show that any two
ground types related by subtyping must have the same shape, that is, if t; <ty
holds, then dom(t;) and dom(ts) coincide. For this reason, such an interpre-
tation of subtyping is usually referred to as atomic or structural subtyping. It
has been studied in the finite (Mitchell, 1984, 1991b; Frey, 1997; Rehof, 1997;
Kuncak and Rinard, 2003; Simonet, 2003) and regular (Tiuryn and Wand,

1.3 Constraints 27

1993) cases. Structural subtyping is often used in automated program analy-
ses that enrich standard types with atomic annotations without altering their
shape. O

Our last example suggests a predicate other than equality and subtyping.

ExAMPLE [CONDITIONAL CONSTRAINTS]: Consider a nonstructural subtyp-
ing model. For every type constructor F' of image kind x and for every kind
k', let (F < -= - <) be a predicate of signature k ® k' ® k' = -. Thus, if Ty
has kind x and Ty, Ty have the same kind, then F' < Tg = T; < T is a well-
formed constraint, called a conditional subtyping constraint. Its interpretation
is defined as follows: if tg € M, and t,to € M, then F < tg = t; < ty
holds if and only if F' < #(e) implies ¢; < t». In other words, if to’s head
symbol exceeds F' according to the ordering on type constructors, then the
subtyping constraint ¢; < t, must hold; otherwise, the conditional constraint
holds vacuously. Conditional constraints have been studied e.g. in (Reynolds,
1969a; Heintze, 1993; Aiken, Wimmers, and Lakshman, 1994; Pottier, 2000;
Su and Aiken, 2001). |

Many other kinds of constraints exist; see e.g. (Comon, 1993).

Throughout this chapter, we assume (unless stated otherwise) that the set
of type constructors, the set of predicates, and the model—which, together,
form the parameter X—are arbitrary and fixed.

As usual, the meaning of a constraint is a function of the meaning of its
free type variables, which is given by a ground assignment. The meaning of
free program identifiers may be defined as part of the constraint, if desired,
using a def prefix, so it need not be given by a separate assignment.

DEFINITION: A ground assignment ¢ is a total, kind-preserving mapping from
V into M. Ground assignments are extended to types by ¢(F'Ty ... T,) =
F(¢(Ty),...,6(T,)). Then, for every type T of kind &, ¢(T) is a ground type
of kind k. Whether a constraint C' holds under a ground assignment ¢, written
¢+ C (read: ¢ satisfies C), is defined by the rules in Figure 1-5. A constraint
C' is satisfiable if and only if ¢ - C holds for some ¢. It is false if and only if
¢ F def I'in C holds for no ground assignment ¢ and environment I". O

Let us now explain the rules that define constraint satisfaction (Figure 1-
5). They are syntax-directed: that is, to a given constraint, at most one rule
applies. It is determined by the nature of the first construct that appears
under a maximal def prefix. CM-TRUE states that a constraint of the form
def I in true is a tautology, that is, holds under every ground assignment. No
rule matches constraints of the form def I in false, which means that such
constraints do not have a solution. CM-PREDICATE states that the meaning

Draft of May 20, 2003

¢+ def T in true (CM-TRUE) ¢ = i]FdefTin C

X # ftv(D)
P((T1),-. ., 8(Tn)) (CM-PREDICATE) ST def Tin TKC (CM-EXISTS)

¢oFdef'in PTy ... T,

FdefT'inC F def I'in C. pFdefT'yinoc < T
¢ defI'in 1. ¢ defin Z(CM—AND) g dpi(D)
¢ Fdef ['in (C1 A C) :
ot defy;x:0; inx < T

(CM-INSTANCE)

Figure 1-5: Meaning of constraints

of a predicate application is given by the predicate’s interpretation within the
model. More specifically, if P’s signature is k1 ® ... ® K, = -, then, by well-
formedness of the constraint, every T; is of kind x;, so ¢(T;) is a ground type
in M,,. By Definition 1.3.5, P denotes a predicate on M,, X ... x M, , so
the rule’s premise is mathematically well-formed. It is independent of I", which
is natural, since a predicate application has no free program identifiers. CM-
AND requires each of the conjuncts to be valid in isolation. The information
in ' is made available to each branch. CM-EXISTS allows the type variables
X to denote arbitrary ground types ¢ within C, independently of their image
through ¢. We implicitly require X and i to have matching kinds, so that
X — t_] remains a kind-preserving ground assignment. The side condition
X # ftv(D)—which may always be satisfied by suitable a-conversion of the
constraint 3X.C—prevents free occurrences of the type variables X within T
from being unduly affected. CM-INSTANCE concerns constraints of the form
def I'in x < T'. The constraint x < T’ is turned into ¢ < T/, where, according
to the second premise, o is I'(x). Please recall that constraints of such a form
were introduced in Definition 1.3.3. The environment I' is replaced with a
suitable prefix of itself, namely I'y, so that the free program identifiers of o
retain their meaning.

It is intuitively clear that the constraints def x : ¢ in C and [x — 0]C have
the same meaning, where the latter denotes the capture-avoiding substitution
of o for x throughout C'. As a matter of fact, it would have been possible to
use this equivalence as a definition of the meaning of def constraints, but the
present style is pleasant as well. This confirms our (informal) claim that the
def form is an explicit substitution form.

It is possible for a constraint to be neither satisfiable nor false. Consider,
for instance, the constraint 3Z.x < Z. Because the identifier x is free, CM-
INSTANCE is not applicable, so the constraint is not satisfiable. Furthermore,

1.3 Constraints 29

placing it within the context let x : VX.X in [] makes it satisfied by every ground
assignment, so it is not false. Here, the assertions “C' is satisfiable” and “C' is
false” are opposite when fpi(C) = & holds, whereas in a standard first-order
logic, they always are.

In a judgement of the form ¢ - C, the ground assignment ¢ applies to the
free type variables of C. This is made precise by the following statements. In
the second one, o is composition and §(C') is the capture-avoiding application
of the type substitution 6 to C'.

LEMMA: If X # ftv(C) holds, then ¢ - C and ¢[X —] F C are equivalent. O

LEMMA: ¢of C and ¢ - 0(C) are equivalent. O

Reasoning with constraints

Because constraints lie at the heart of our treatment of ML-the-type-system,
most of our proofs involve establishing logical properties of constraints, that
is, entailment or equivalence assertions. Let us first define these notions.

DEFINITION: We write Cy I Cy, and say that Cy entails Cy, if and only if|
for every ground assignment ¢ and for every environment I', ¢ F def I in C}
implies ¢ + def T" in Cy. We write C; = (s, and say that C; and Cs are
equivalent, if and only if C; IF Cy and Cs IF C; hold. a

This definition measures the strength of a constraint by the set of pairs
(¢,T') that satisfy it, and considers a constraint stronger if fewer such pairs
satisfy it. In other words, C' entails C'y when C} imposes stricter requirements
on its free type variables and program identifiers than C> does. We remark
that C is false if and only if C' = false holds. It is straightforward to check
that entailment is reflexive and transitive and that = is indeed an equivalence
relation.

We immediately exploit the notion of constraint equivalence to define what
it means for a type constructor to be covariant, contravariant, or invariant with
respect to one of its parameters. Let F' be a type constructor of signature x; ®
...®ky = k. Leti € {1,...,n}. Fis covariant (resp. contravariant, invariant)
with respect to its i*® parameter if and only if, for all types Ti,...,T, and
T, of appropriate kinds, the constraint F'T; ...T; ... T, < FT; ... T, ... T,
is equivalent to T; < T} (resp. T; < T;, T; = T;). We let the reader check the
following facts: (i) in an equality model, these three notions coincide; (ii) in
an equality free tree model, every type constructor is invariant with respect
to each of its parameters; and (iii) in a nonstructural subtyping model, if the
direction d has been declared covariant (resp. contravariant, invariant), then
every type constructor whose arity includes d is covariant (resp. contravariant,

Draft of May 20, 2003

invariant) with respect to d. In the following, we require the type constructor
— to be contravariant with respect to its domain and covariant with respect to
its codomain—a standard requirement in type systems with subtyping (TAPL
Chapter 15). These properties are summed up by the following equivalence
law:
Tg T <T) > TL=T <T AT <T) (C-ARROW)

Please note that this is a high-level requirement about the interpretation of
types and of the subtyping predicate. In an equality free tree model, for in-
stance, it is always satisfied. In a nonstructural subtyping model, it boils
down to requiring that the directions domain and codomain be declared con-
travariant and covariant, respectively. In the general case, we do not have any
knowledge of the model, and cannot formulate a more precise requirement.
Thus, it is up to the designer of the model to ensure that C-ARROW holds.

We also exploit the notion of constraint equivalence to define what it means
for two type constructors to be incompatible. Two type constructors F; and F5
with the same image kind are incompatible if and only if all constraints of the
form Fi Ty < F» Ty and F» To < Fy Ty are false; then, we write F} b1 Fy. Please
note that in an equality free tree model, any two distinct type constructors are
incompatible. In the following, we often indicate that a newly introduced type
constructor must be isolated. We implicitly require that, whenever each of F}
and F5 is isolated, F| and F, be incompatible. Thus, the notion of “isolation”
provides a concise and modular way of stating a collection of incompatibility
requirements. We consider the type constructor — isolated.

Entailment is preserved by arbitrary constraint contexts, as stated by
the following theorem. As a result, constraint equivalence is a congruence.
Throughout this chapter, these facts are often used implicitly.

THEOREM [CONGRUENCE]: C; IF Cy implies C[C4] IF C[C%].

We now give a series of lemmas that provide useful entailment laws.
The following is a standard property of existential quantification.

LemMma: C IF 3X.C. O

The following lemma states that any supertype of an instance of o is also
an instance of o.

LEMMA: 0 XTAT<T IFo <T.
The next lemma gives another interesting simplification law.
LEMMA: X ¢ ftv(T) implies 3X.(X = T) = true. |

The following lemma states that, provided D is satisfied, the type T is an
instance of the constrained type scheme VX[D].T.

1.8 Constraints

LEMMA: D IFVX[D].T <X T.

This technical lemma helps justify Definition 1.3.21 below.

LeEmMA: Let Z & ftv(C,0,T). Then, C I 0 < T holds if and only if C AT <
Z IF 0 < Z holds. a

It is useful to define what it means for a type scheme o; to be more general
than a type scheme o,. Our informal intent is for o1 < o2 to mean: every
instance of oo is an instance of o1. In Definition 1.3.3, we have introduced
the constraint form o < T as syntactic sugar. Similarly, one might wish to
make o1 < 09 a derived constraint form; however, this is impossible, because
neither universal quantification nor implication are available in the constraint
language. We can, however, exploit the fact that these logical connectives
are implicit in entailment assertions by defining a judgement of the form
C IF 01 < 09, whose meaning is: under the constraint C', o1 is more general
than os.

DEerINITION: We write C' IF 01 < 09 if and ouly if Z ¢ ftv(C,01,02) implies
CNANoy RZIFop <Z. We write C IF 01 = 02 when both C' IF 01 < 02 and
C Ik 05 < o7 hold. m|

This notation is not ambiguous because the assertion C' IF o < T, whose
meaning was initially given by Definitions 1.3.3 and 1.3.14, retains the same
meaning under the new definition—this is shown by Lemma 1.3.20 above.

The next lemma provides a way of exploiting the ordering between type
schemes introduced by Definition 1.3.21. It states that a type scheme occurs
in contravariant position when it is within a def prefix. In other words, the
more general the type scheme, the weaker the entire constraint.

LEMMA: CIF oy <05 implies C Adef x: 02 in D IFdefx: 0y inD.
The following exercise generalizes this result to let forms.

EXERCISE [%%, -|: Prove that Z ¢ ftv(o) implies Jo = 3Z.0 < Z. Explain
why, as a result, C' IF o1 < oy implies C' A oy IF doy. Use this fact to prove
that C'IF oy < oy implies C Aletx: o9 in D lFletx: oy in D. a

The next lemma states that, modulo equivalence, the only constraint that
constrains x without explicitly referring to it is false.

LEmMA: C'IFx < Tand x ¢ fpi(C) imply C = false. O

The following lemma states that the more universal quantifiers are present,
the more general the type scheme.

Draft of May 20, 2003

LEMMA: let x : VX[C1].T in Cs IF let x : VXY[C}].T in Cs.]

Conversely, and perhaps surprisingly, it is sometimes possible to remove
some type variables from the universal quantifier prefix of a type scheme
without compromising its generality. This is the case when the value of these
type variables is determined in a unique way. In short, C' determines Y if and
only if, given the values of ftv(C') \ Y and given that C holds, it is possible to
reconstruct, in a unique way, the values of Y.

DEFINITION: C determines Y if and only if, for every environment I, two
ground assignments that satisfy def I in C' and that coincide outside Y must
coincide on Y as well. i

Two concrete instances of determinacy, one of which is valid only in free
tree models, are given by Lemma 1.8.7 on page 82. Determinacy is exploited
by the equivalence law C-LETALL in Figure 1-6.

We now give a toolbox of constraint equivalence laws. It is worth noting
that they do not form a complete axiomatization of constraint equivalence—
in fact, they cannot, since the syntax and meaning of constraints is partly
unspecified.

TuEOREM: All equivalence laws in Figure 1-6 hold. O

Let us explain. C-AND and C-ANDAND state that conjunction is commu-
tative and associative. C-DUP states that redundant conjuncts may be freely
added or removed, where a conjunct is redundant if and only if it is entailed
by another conjunct. Throughout this chapter, these three laws are often used
implicitly. C-EXEx and C-Ex* allow grouping consecutive existential quan-
tifiers and suppressing redundant ones, where a quantifier is redundant if and
only if it does not occur free within its scope. C-EXAND allows conjunction
and existential quantification to commute, provided no capture occurs; it is
known as a scope extrusion law. When the rule is oriented from left to right, its
side-condition may always be satisfied by suitable a-conversion. C-EXTRANS
states that it is equivalent for a type T’ to be an instance of o or to be a super-
type of some instance of 0. We remark that the instances of a monotype are
its supertypes, that is, by Definition 1.3.3, T < T' and T < T’ are equivalent.
As a result, specializing C-EXTRANS to the case where o is a monotype, we
find that T < T’ is equivalent to 3Z.(T < ZA Z < T'), for fresh Z, a standard
equivalence law. When oriented from left to right, it becomes an interesting
simplification law: in a chain of subtyping constraints, an intermediate vari-
able such as Z may be suppressed, provided it is local, as witnessed by the
existential quantifier 3Z. C-INID states that, within the scope of the binding
X : 0, every free occurrence of x may be safely replaced with o. The restric-
tion to free occurrences stems from the side-condition x ¢ dpi(C). When the

1.8 Constraints

C1 NCy Cy NCh
(CLANCoy)NCs = CLA(C2NACh)
CinNCy = if C1 IF Ca
IX3Iv.C
IX.C if X # fto(C)
(IX.C1) A Cy X. : if X # fto(Cy)
Z.(c KZAZ<LT) < it Z ¢ ftu(o, T')

letx:oinC[x X T'] letx:oinClo < T']
it x dpi(C) and dtv(C) # ftv(o) and {x} U dpi(C) # fpi(o)
let Tin C arncC if dpi(L) # fpi(C)

letTin (C; ANC2) = (letTin Cy) A (let T'in Cy)
letTin (C; AC2) = (letDin Cy) ACy if dpi(L) # fpi(Ca)
let T in 3X.C IX.letTin C if X # fto(T)

let ' in C let I'y; ' in C (C—LETLET
if dpi(l'1) # dpi(L'2) and dpi(L'2) # fpi(Ll'1) and dpi(I'y) # fpi(L'2)
let x : VX[C1 A C2].Tin C3 C1 Alet x : VX[C5].T in C3 if X # ftv(C1) (C-LETAND)

let T';x : VX[C1].T in C let T;x : VX[let T in C1].T in Cs (C-LerDupr)
if X # fto(I') and dpi() # fpi(I)
let x : VX[IY.C1].T in Co let x : VXY[C4].T in Cy if Y # fto(T) (C-LETEX)

let x : VXY[Cl]T in 02 IY.let x : \V’X[Cl]T in 02 (C—LETALL)
if Y # ftv(C2) and 3X.C determines ¥
I(T<XAletx:XinC) letx:TinC if X ¢ fto(T,C)

X=TAX~T|C X=

true 3IX.(if X # fto(T)

X — T|C FKX=TAQ) if X # fro(T)

Figure 1-6: Constraint equivalence laws

Draft of May 20, 2003

rule is oriented from left to right, its other side-conditions, which require the
context let x : o in C not to capture o’s free type variables or free program
identifiers, may always be satisfied by suitable a-conversion. C-IN* comple-
ments the previous rule by allowing redundant let bindings to be simplified.
We remark that C-INID and C-IN* provide a simple procedure for eliminating
let forms. C-INAND states that the let form commutes with conjunction; C-
INAND* gpells out a common particular case. C-INEX states that it commutes
with existential quantification. When the rule is oriented from left to right, its
side-condition may always be satisfied by suitable a-conversion. C-LETLET
states that let forms may commute, provided they bind distinct program iden-
tifiers and provided no free program identifiers are captured in the process.
C-LETAND allows the conjunct C; to be moved outside of the constrained
type scheme VX[C} A C3].T, provided it does not involve any of the universally
quantified type variables X. When oriented from left to right, the rule yields
an important simplification law: indeed, taking an instance of VX[C,].T is less
expensive than taking an instance of VX[Cy A C:].T, since the latter involves
creating a copy of C7, while the former does not. C-LETDUP allows pushing
a series of let bindings into a constrained type scheme, provided no capture
occurs in the process. It is not used as a simplification law but as a tool in
some proofs. C-LETEX states that it does not make any difference for a set
of type variables Y to be existentially quantified inside a constrained type
scheme or part of the type scheme’s universal quantifiers. Indeed, in either
case, taking an instance of the type scheme means producing a constraint
where Y is existentially quantified. C-LETALL provides a restricted converse
of Lemma 1.3.25. Together, C-LETEX and C-LETALL allow—in some situ-
ations only—to hoist existential quantifiers out of the left-hand side of a let
form.

ExaMpPLE: C-LETALL would be invalid without the condition that 3X.C;
determines Y. Consider, for instance, the constraint let x : VY.Y — Y in (x <
int — int A x < bool — bool) (1), where int and bool are incompatible
nullary type constructors. By C-INID and C-IN*, it is equivalent to 3Y.(Y —
Y < int — int)A3JY.(Y = Y < bool — bool), that is, true. Now, if C-LETALL
was valid without its side-condition, then (1) would also be equivalent to
dYletx:Y — Yin (x < int — int Ax < bool — bool), which by C-INID and
C-IN*isJY.(Y = Y < int = intAY = Y < bool — bool). By C-ARROW and
C-EXTRANS, this is int = bool, that is, false. Thus, the law is invalid in this
case. It is easy to see why: when the type scheme o contains a VY quantifier,
every instance of ¢ receives its own 3Y quantifier, making Y a distinct (local)
type variable; when Y is not universally quantified, however, all instances of o
share references to a single (global) type variable Y. This corresponds to the

1.3 Constraints 35

intuition that, in the former case, o is polymorphic in Y, while in the latter case,
it is monomorphic in Y. Lemma 1.3.25 states that, when deprived of its side-
condition, C-LETALL is only an entailment law, as opposed to an equivalence
law. Similarly, it is in general invalid to hoist an existential quantifier out of
the left-hand side of a let form. To see this, one may study the (equivalent)
constraint let x : VX[3Y.X =Y — Y].Xin (x < int — int A x < bool — bool).
Naturally, in the above examples, the side-condition “true determines Y”
does not hold: by Definition 1.3.26, it is equivalent to “two ground assignments
that coincide outside Y must coincide on Y as well”, which is false as soon as M
contains two distinct elements, such as int and bool here. There are cases,
however, where the side-condition does hold. For instance, we later prove that
IX.Y = int determines Y; see Lemma 1.8.7. As a result, C-LETALL states that
let x : VXY[Y = int].Y — X in C' (1) is equivalent to JY.let x : VX[Y = int].Y —
Xin C (2), provided Y ¢ ftv(C). The intuition is simple: because Y is forced
to assume the value int by the equation Y = int, it makes no difference
whether Y is or isn’t universally quantified. We remark that, by C-LETAND,
(2) is equivalent to IY.(Y = int Alet x : VX.Y — X in C) (3). In an efficient
constraint solver, simplifying (1) into (3) before using C-INID to eliminate the
let form is worthwhile, since doing so obviates the need for copying the type
variable Y and the equation Y = int at every free occurrence of x inside C'. O

C-LETSUB is the analogue of an environment strengthening lemma: roughly
speaking, it states that, if a constraint holds under the assumption that x has
type X, where X is some supertype of T, then it also holds under the assumption
that x has type T. The last three rules deal with the equality predicate. C-EQ
states that it is valid to replace equals with equals; note the absence of a
side-condition. When oriented from left to right, C-NAME allows introducing
fresh names X for the types T. As always, X stands for a vector of distinct type
variables. Of course, this makes sense only if the definition is not circular, that
is, if the type variables X do not occur free within the terms T. When oriented
from right to left, C-NAME may be viewed as a simplification law: it allows
eliminating type variables whose value has been determined. C-NAMEEQ is
a combination of C-EQ and C-NAME. It shows that applying an idempotent
substitution to a constraint C' amounts to placing C' within a certain context.
This immediately yields a proof of the following fact:

LemMMA: C IF D implies 8(C) IF 6(D). O

It is important to stress that, because the effect of a type substitution may
be emulated using equations, conjunction, and existential quantification, there
is no need ever to employ type substitutions in the definition of a constraint-
based type system—it is possible, instead, to express every concept in terms

Draft of May 20, 2003

of constraints. In this chapter, we follow this route, and use type substitutions
only when dealing with the type system DM, whose historical formulation is
substitution-based.

So far, we have considered def a primitive constraint form and defined the
let form in terms of def, conjunction, and existential quantification. The moti-
vation for this approach was to simplify the proof of several constraint equiv-
alence laws. However, in the remainder of this chapter, we work with let forms
exclusively and never employ the def construct. As a result, it is possible, from
here on, to discard def and pretend that let is primitive. This change in per-
spective offers us a few extra properties, stated in the next two lemmas. First,
every constraint that contains a false subconstraint must be false. Second, no
satisfiable constraint has a free program identifier.

LeMMA: C[false] = false. o

LeEmMA: If C is satisfiable, then fpi(C) = @. O

Reasoning with constraints in an equality-only syntactic model

We have given a number of equivalence laws that are valid with respect to any
interpretation of constraints, that is, within any model. However, an important
special case is that of equality-only syntactic models. Indeed, in that specific
setting, our constraint-based type systems are in close correspondence with
DM. In short, we aim to prove that every satisfiable constraint admits a
canonical solved form, to show that this notion corresponds to the standard
concept of a most general unifier, and to establish a few technical properties
of most general unifiers.

Thus, let us now assume that constraints are interpreted in an equality-only
syntactic model. Let us further assume that, for every kind &, (i) there are at
least two type constructors of image kind x and (ii) for every type constructor
F of image kind &, there exists t € M, such that t(e) = F. We refer to models
that violate (i) or (ii) as degenerate; one may argue that such models are of
little interest. The assumption that the model is nondegenerate is used in the
proof of Lemmas 1.3.32 and 1.3.39.

Under these new assumptions, the interpretation of equality coincides with
its syntax: every equation that holds in the model is in fact a syntactic truism.
The converse, of course, holds in every model.

LEMMA: If true IF T = T holds, then T and T’ coincide. O

In a syntactic model, ground types are finite trees. As a result, cyclic equa-
tions, such as X = int — X, are false.

LEMMA: X € ftv(T) and T € V imply (X = T) = false.

1.3 Constraints 37

A solved form is a conjunction of equations, where the left-hand sides are
distinct type variables that do not appear in the right-hand sides, possibly
surrounded by a number of existential quantifiers. Our definition is identi-
cal to Lassez, Maher and Marriott’s solved forms (1988) and to Jouannaud
and Kirchner’s tree solved forms (1991), except we allow for prenex existen-
tial quantifiers, which are made necessary by our richer constraint language.
Jouannaud and Kirchner also define dag solved forms, which may be expo-
nentially smaller. Because we define solved forms only for proof purposes, we
need not take performance into account at this point. The efficient constraint
solver presented in Section 1.8 does manipulate graphs, rather than trees.
Type scheme introduction and instantiation constructs cannot appear within
solved forms; indeed, provided the constraint at hand has no free program
identifiers, they can be expanded away. For this reason, their presence in the
constraint language has no impact on the results contained in this section.

DEFINITION: A solved form is of the form 3Y.(X = T), where X # ftv(T). O

Solved forms offer a convenient way of reasoning about constraints because
every satisfiable constraint is equivalent to one. In other words, every con-
straint is equivalent to either a solved form or false. This property is estab-
lished by the following lemma, whose proof provides a simple but effective
procedure to rewrite a constraint to either a solved form or false.

LeMMA: Let fpi(C) = @. Then, C is equivalent to either a solved form or
false.]

Proof: We first establish that every conjunction of equations is equivalent
to either a solved form or false. To do so, we present Robinson’s unification
algorithm (1971) as a rewriting system. The system’s invariant is to operate on
constraints of the form either X = T; C', where X # ftv(T, C') and the semicolon
is interpreted as a distinguished conjunction, or false. We identify equations
in C' up to commutativity. The system is defined as follows:

- —

=T X=XAC =
. FT,=FTo,nC —
; FlflegszC —

; X=TAC —
T, X=TAC —

ifXe fto(T) and TEV

It is straightforward to check that the above invariant is indeed preserved
by the rewriting system. Let us check that constraint equivalence is also pre-
served. For the first rule, this is immediate. For the second and third rules, it

Draft of May 20, 2003

follows from the fact that we have assumed a free tree model; for the fourth
rule, a consequence of C-EQ; for the last rule, a consequence of Lemma 1.3.33.
Furthermore, the system is terminating; this is witnessed by an ordering where
false is the least element and where constraints of the form X = T; C' are ordered
lexicographically, first by the number of type variables that appear free within
C, second by the size of C'. Last, a normal form for this rewriting system must
be of the form either X = T;true, where (by the invariant) X # ftv(T)—that
is, a solved form, or false.

Next, we show that the present lemma holds when C' is built out of equa-
tions, conjunction, and existential quantification. Orienting C-EXAND from
left to right yields a terminating rewriting system that preserves constraint
equivalence. The normal form of C' must be 3Y.C’, where C' is a conjunction
of equations. By the previous result, C’ is equivalent to either a solved form
or false. Because solved forms are preserved by existential quantification and
because 3Y.false is false, the same holds of C.

Last, we establish the result in the general case. We assume fpi(C) = @ (1).
Orienting C-INID and C-IN* from left to right yields a terminating rewriting
system that preserves constraint equivalence. The normal form C’ of C' cannot
contain any type scheme introduction forms; given (1), it cannot contain any
instantiation forms either. Thus, C’ is built out of equations, conjunction, and
existential quantification only. By the previous result, it is equivalent to either
a solved form or false, which implies that the same holds of C'. O

It is possible to impose further restrictions on solved forms. A solved form
3Y.(X = T) is canonical if and only if its free type variables are exactly X. This
is stated, in an equivalent way, by the following definition.

DEFINITION: A canonical solved form is a constraint of the form 3Y.(X = T),
where ftv(T) C Y and X # Y. O

LemMMA: Every solved form is equivalent to a canonical solved form. O

It is easy to describe the solutions of a canonical solved form: they are the
ground refinements of the substitution [X — T).

T)
if and only if there exists a ground assignment ¢’ such that ¢(X) = ¢'(T). As
a result, every canonical solved form is satisfiable. |

LEMMA: A ground assignment ¢ satisfies a canonical solved form 3Y.(X

—.

Proof: Let 3Y.(X = T) be a canonical solved form. By CM-EX1sTs and CM-
PREDICATE, ¢ satisfies 3Y.(X = T) if and only if there exists # such that ¢[¥ —
#](X) = ¢[Y — #](T). Thanks to the hypotheses X # Y and ftv(T) C Y, this is
equivalent to the existence of a ground assignment ¢’ such that ¢(X) = ¢'(T).

1.3 Constraints 39

Thus, for every ground assignment ¢, ¢'[X — ¢'(T)] satisfies 3Y.(X = T), which
proves that this constraint is satisfiable. |

Together, Lemmas 1.3.37 and 1.3.38 imply that every solved form is sat-
isfiable. Our interest in canonical solved forms stems from the following
fundamental property, which provides a syntactic characterization of entail-
ment between canonical solved forms: if 3Y,.(X = T,) is more specific than
EIYg.(i = fg), in a logical sense, then T, refines T», in a syntactic sense. The
converse also holds (can you prove it?), but is not needed here.

LemMA: If3Y,.(X = T)) IF 3¥,.(X = T3), where both sides are canonical solved
forms, then there exists a type substitution ¢ such that T; = o(T5). O

As a corollary, we find that canonical solved forms are unique up to a-
conversion and up to C-EX*, provided the set X of their free type variables is
fixed.

—

LEMMA: If the canonical solved forms 3Y;.(X = T,) and 3Y,.(X = T,) are
equivalent, then there exists a renaming p such that T, = p(fg). O

Please note that the fact that the canonical solved forms 3?1.(i1 = 'fl)
and 3?2.(i2 = 'fz) are equivalent does not imply that X; and X, coincide.
Consider, for example, the canonical solved forms true and 3Y.(X = Y), which
by C-NAMEEQ are equivalent. One might wish to further restrict canonical
solved forms by requiring X to be the set of essential type variables of the
constraint EIY.()E = 'f), that is, the set of the type variables that appear free
in all equivalent constraints. However, as far our technical development is
concerned, it seems more convenient not to do so. Instead, we show that it is
possible to explicitly restrict or extend X when needed (Lemma 1.3.43).

The following definition allows entertaining a dual view of canonical solved
forms, either as constraints or as idempotent type substitutions. The latter
view is commonly found in standard treatments of unification (Lassez, Maher,
and Marriott, 1988; Jouannaud and Kirchner, 1991) and in classic presenta-
tions of ML-the-type-systern.

DerFINITION: If [— T| is an idempotent substitution of domain X, let
3X — T] denote the canonical solved form 3Y.(X = T), where Y = fto(T).
An idempotent substitution 6 is a most general unifier of the constraint C' if

and only if 3¢ and C' are equivalent. O

By definition, equivalent constraints admit the same most general unifiers.
Many properties of canonical solved forms may be reformulated in terms of
most general unifiers. By Lemmas 1.3.31, 1.3.35, and 1.3.37, every satisfiable
constraint admits a most general unifier. By Lemma 1.3.40, if [X = T,] and

Draft of May 20, 2003 1 ML

[)_f — 'fg] are most general unifiers of C, then T, and T, coincide up to a
renaming. Conversely, if [X — T] is a most general unifier of C' and if X # p
holds, then [X + pT] is also a most general unifier of C; indeed, these two
substitutions correspond to a-equivalent canonical solved forms.

The following result relates the substitution # to the canonical solved form
36, stating that every ground refinement of the former satisfies the latter.

LEMMA: 6(36) = true. o

The following lemma offers two technical results: the domain of a most
general unifier of C' may be restricted so as to become a subset of fiv(C); it
may also be extended to include arbitrary fresh variables. The next lemma is
a simple corollary.

LEMMA: Let € be a most general unifier of C. If Z # ftv(C), then 8\ Z is also
a most general unifier of C. If Z # 6, then there exists a most general unifier
of C that extends 6 and whose domain is dom(6) U Z. |

LeEMMA: Let 6 and 6> be most general unifiers of C. Let X = dom(61) N
dom(6s). Then, 6;(X) and 6,(X) coincide up to a renaming.]

Our last technical result relates the most general unifiers of C' with the most
general unifiers of IX.C'. It states that the former are extensions of the latter.
Furthermore, under a few freshness conditions, every most general unifier of
JX.C' may be extended to yield a most general unifier of C.

LeEMMA: If 6 is a most general unifier of C', then 6\ X is a most general unifier
of IX.C. Conversely, if 6 is a most general unifier of IX.C' and X # 6 and
ftu(IX.C) C dom(h), then there exists a type substitution 6’ such that 6’
extends 6, 0" is a most general unifier of C, and dom(6') = dom(f) UX. O

HM(X)

Constraint-based type systems appeared during the 1980s (Mitchell, 1984; Fuh
and Mishra, 1988) and were widely studied during the following decade (Cur-
tis, 1990; Aiken and Wimmers, 1993; Jones, 1994a; Smith, 1994; Palsberg,
1995; Trifonov and Smith, 1996; Fahndrich, 1999; Pottier, 2001b). We now
present one such system, baptized HM(X) because it is a parameterized ex-
tension of Hindley and Milner’s type discipline; the meaning of the parameter
X was explained on page 24. Its original description is due to Odersky, Sulz-
mann, and Wehr (1999a). Since then, it has been completed in a number of
works (Sulzmann, Miiller, and Zenger, 1999; Sulzmann, 2000; Pottier, 2001a;

1.4 HM(X) 41

Skalka and Pottier, 2002). Each of these presentations introduces minor vari-
ations. Here, we follow (Pottier, 2001a), which is itself inspired by (Sulzmann,
Miiller, and Zenger, 1999).

Definition

Our presentation of HM(X) relies on the constraint language introduced in
section 1.3. Technically, our approach of constraints is more direct than that
of (Odersky, Sulzmann, and Wehr, 1999a). We interpret constraints within a
model, give conjunction and existential quantification their standard mean-
ing, and derive a number of equivalence laws (Section 1.3). Odersky et al., on
the other hand, do not explicitly rely on a logical interpretation; instead, they
axiomatize constraint equivalence, that is, they consider a number of equiva-
lence laws as axioms. Thus, they ensure that their high-level proofs, such as
type soundness and correctness and completeness of type inference, are in-
dependent of the low-level details of the logical interpretation of constraints.
Their approach is also more general, since it allows dealing with other log-
ical interpretations—such as “open-world” interpretations, where constraints
are interpreted not within a fixed model, but within a family of extensions
of a “current” model. In this chapter, we have avoided this extra layer of ab-
straction, for the sake of definiteness; however, the changes required to adopt
Odersky et al.’s approach would not be extensive, since the forthcoming proofs
do indeed rely mostly on constraint equivalence laws, rather than on low-level
details of the logical interpretation of constraints.

Another slight departure from Odersky et al.’s work lies in the fact that
we have enriched the constraint language with type scheme introduction and
instantiation forms, which were absent in the original presentation of HM(X).
To prevent this addition from affecting HM(X), we require the constraints
that appear in HM(X) typing judgements to have no free program identifiers.
Please note that this does not prevent them from containing let forms; we shall
in fact exploit this feature when establishing an equivalence between HM(X)
and the type system presented in section 1.5, where the new constraint forms
are effectively used.

The type system HM(X) consists of a four-place judgement whose parame-
ters are a constraint C', an environment I', an expression t, and a type scheme
o. A judgement is written C,I' F t : ¢ and is read: under the assumptions
C and T, the expression t has type o. One may view C' as an assumption
about the judgement’s free type variables and I' as an assumption about t’s
free program identifiers. Please recall that I' now contains constrained type
schemes, and that o is a constrained type scheme.

We would like the validity of a typing judgement to depend not on the

Draft of May 20, 2003

I'x)=o0 Clk 3o CAD,TFt:T X# fto(C,T)
(HMX-VAR) = —
C,Tkx:0o CAXD,TFt:VX[D]T

C,(T;z:T)Ft: T N C,I'+t:VX[D].T
CIFizt: T T (x-ABS) CADTFt:T

CTFt:T=T COTlkty:T CTFt:T CIT<T
(HMX-APP) p (HMX-SUB)
C,TFtyty: T C,THt:T

(HMX-GEN)

(HMX-INST)

C'Fti:0 C,(Tz:0)Fte:T C'kt:o X # fto(T, o)
(HMX-LET) =
CTl'kletz=t;inty:T IX.CI'Ft:o

(HMX-EXISTS)

Figure 1-7: Typing rules for HM(X)

syntax, but only on the meaning of its constraint assumption. We enforce this
point of view by considering judgements equal modulo equivalence of their
constraint assumptions. In other words, the typing judgements C,I' - t : o
and D,I" - t : o are considered identical when C' = D holds. As a result,
it does not make sense to analyze the syntax of a judgement’s constraint
assumption. A judgement is valid, or holds, if and only if it is derivable via
the rules given in Figure 1-7. Please note that a valid judgement may involve
an unsatisfiable constraint. A program t is well-typed within the environment
I' if and only if a judgement of the form C,I' - t : ¢ holds for some satisfiable
constraint C.

Let us now explain the rules. Like DM-VAR, HMX-VAR looks up the environ-
ment to determine the type scheme associated with the program identifier x.
The constraint C' that appears in the conclusion must be strong enough to
guarantee that o has an instance; this is expressed by the second premise.
This technical requirement is used in the proof of Lemma 1.4.1. HMX-ABS,
HMX-APP, and HMX-LET are identical to DM-ABS, DM-APP, and DM-LET,
respectively, except that the assumption C' is made available to every sub-
derivation. We recall that the type T may be viewed as the type scheme
V5[true].T (Definitions 1.2.18 and 1.3.2). As a result, types form a subset of
type schemes, which implies that [';z : T is a well-formed environment and
C,I' F t : T a well-formed typing judgement. To understand HMX-GEN, it
is best to first consider the particular case where C' is true. This yields the
following, simpler rule:

DTFt:T X # fto(D)
SX.D,L'Ft:VXD].T

(HMX-GEN)

1.4 HM(X) 43

The second premise is identical to that of DM-GEN: the type variables that
are generalized must not occur free within the environment. The conclusion
forms the type scheme VX[D].T, where the type variables X have become uni-
versally quantified, but are still subject to the constraint D. Please note that
the type variables that occur free in D may include not only X, but also other
type variables, typically free in I'. The rule’s conclusion carries the constraint
3IX.D, thus recording the requirement that the newly formed type scheme
should have an instance; again, this is used in the proof of Lemma 1.4.1.
HMX-GEN may be viewed as a more liberal version of HMX-GEN’, whereby
part of the current constraint, namely C', need not be copied if it does not
concern the type variables that are being generalized, namely X. This opti-
mization is important in practice, because C' may be very large. An intuitive
explanation for its correctness is given by the constraint equivalence law C-
LETAND, which expresses the same optimization in terms of let constraints.
Because HM(X) does not use let constraints, the optimization is hard-wired
into the typing rule. HMX-INST allows taking an instance of a type scheme.
The reader may be surprised to find that, contrary to DM-INST, it does not
involve a type substitution. Instead, the rule merely drops the universal quan-
tifier, which amounts to applying the identity substitution X — X. One should
recall, however, that type schemes are considered equal modulo a-conversion,
so it is possible to rename the type scheme’s universal quantifiers prior to
using HMX-INST. The reason why this provides sufficient expressive power
appears in the proof of Theorem 1.4.7 below. The constraint D carried by
the type scheme is recorded as part of the current constraint in HMX-INST’s
conclusion. The subsumption rule HMX-SUB allows a type T to be replaced
at any time with an arbitrary supertype T'. Because both T and T' may have
free type variables, whether T < T’ holds depends on the current assumption
C, which is why the rule’s second premise is an entailment assertion. An op-
erational explanation of HMX-SUB is that it requires all uses of subsumption
to be explicitly recorded in the current constraint. Please note that HMX-SUB
remains a useful and necessary rule even when subtyping is interpreted as
equality: then, it allows exploiting the type equations found in C. Last, HMX-
Exi1sTs allows the type variables that occur only within the current constraint
to become existentially quantified. As a result, these type variables no longer
occur free in the rule’s conclusion; in other words, they have become local to
the subderivation rooted at the premise. One may prove that the presence
of HMX-EXISTS in the type system does not augment the set of well-typed
programs, but does augment the set of valid typing judgements; it is a pleas-
ant technical convenience. Indeed, because judgements are considered equal
modulo constraint equivalence, constraints may be transparently simplified at
any time. (By simplifying a constraint, we mean replacing it with an equiva-

Draft of May 20, 2003

lent constraint whose syntactic representation is considered simpler.) Bearing
this fact in mind, one finds that an effect of rule HMX-EXISTS is to enable
more simplifications: because constraint equivalence is a congruence, C' = D
implies 3X.C' = 3X.D, but the converse does not hold in general. For instance,
there is in general no way of simplifying the judgement X <Y< Z,I'+t : 0o,
but if it is known that Y does not appear free in I' or ¢, then HMX-EXISTS
allows deriving 3Y.(X < Y < Z),I' F t : o, which is the same judgement as
X <Z,I'+t:o. Thus, an interesting simplification has been enabled. Please
note that X <Y < Z =X < Z does not hold, while, according to C-EXTRANS,
Y. (X<Y<LZ)=X<Zdoes.

We now establish a few simple properties of the type system HM(X). Our
first lemma is a minor technical property.

LemMmA: C,T'F t: ¢ implies C IF Jo. a

The next lemma states that strengthening a judgement’s constraint assump-
tion preserves its validity. In other words, weakening a judgement preserves its
validity. It is worth noting that in traditional presentations, which rely more
heavily on type substitutions, the analogue of this result is a type substitution
lemma; see for instance (Tofte, 1988, Lemma 2.7), (Leroy, 1992, Proposition
1.2), (Skalka and Pottier, 2002, Lemma 3.4). Here, the lemma further states
that weakening a judgement does not alter the shape of its derivation, a useful
property when reasoning by induction on type derivations.

LEMMA [WEAKENING]: If C’" IF C, then every derivation of C,T' F t : 0 may
be turned into a derivation of C',T' -t : ¢ with the same shape. O

Proof: The proof is by structural induction on a derivation of C,I' - t : o.
In each proof case, we adopt the notations of Figure 1-7.

o Case HMX-VAR. The rule’s conclusion is C,I" F x : . Its premises are
I'(x) = 0 (1) and C IF 3o (2). By hypothesis, we have C' IF C (3). By
transitivity of entailment, (3) and (2) imply C’ IF 3o (4). By HMX-VAR, (1)
and (4) yield C",T'Fx: 0.

o Cases HMX-ABS, HMX-APP, HMX-LET. By the induction hypothesis and
by HMX-ABS, HMX-APP, or HMX-LET, respectively.

o Case HMX-GEN. The rule’s conclusion is C' A 3X.D, T F t : VX[D].T. Its
premises are CAD,T' -t : T (1) and X # ftv(C,T) (2). By hypothesis, we have
C'IF C A3K.D (3). We may assume, w.lo.g., X # ftuv(C") (4). Applying the
induction hypothesis to (1) and to the entailment assertion C’'ACAD I+ CAD,
we obtain C'ACAD,T'Ft:T (5). By HMX-GEN, applied to (5), (2) and (4),
we get C' ANCAIX.D, Tt :VX[D].T (6). By (3) and C-Dup, the constraints
C'"ANC A3X.D and C' are equivalent, so (6) is the goal C',T' F t : VX[D].T.

1.4 HM(X) 45

o Case HMX-INST. The rule’s conclusion is C' A D,T" F t : T. Its premise
is C,T F t : VX[D].T (1). By hypothesis, C' entails C' A D (2). Because (2)
implies C' I+ C, the induction hypothesis may be applied to (1), yielding
C',T F t : VX[D].T (3). By HMx-INST, we obtain C' A D,I' F t : T (4).
Because (2) implies C' = C" A D, (4) is the goal C',T' -t : T.

o Case HMX-SUB. The rule’s conclusion is C,I" - t : T'. Its premises are
C,TFt:T (1) and C IF T < T (2). By hypothesis, we have C" I- C' (3).
Applying the induction hypothesis to (1) and (3) yields C',I' -t : T (4). By
transitivity of entailment, (3) and (2) imply C' IF T < T’ (5). By HMX-SUB,
(4) and (5) yield C", T'F ¢t : T".

o Case HMX-EXISTS. The rule’s conclusion is 3X.C, T t : o. Its premises
are C,T F t : 0 (1) and X # ftv(T',0) (2). By hypothesis, we have C’ IF
3IX.C' (3). We may assume, w.l.o.g., X # ftv(C") (4). Applying the induction
hypothesis to (1) and to the entailment assertion C' A C' IF C, we obtain
C'ANC,T F t:o (5). By HMX-EXIsTs, (5) and (2) yield IX.(C' A C),T -
t: o (6). By (4) and C-EXAND, the constraint 3X.(C’ A C) is equivalent to
C' AN3X.C, which, by (3) and C-DuP, is equivalent to C'. Thus, (6) is the goal
C'TkHt:o. O

We do not give a direct type soundness proof for HM(X). Instead, in sec-
tion 1.5, we prove that it is equivalent to another type system, which later
is itself proven sound. A direct type soundness result, based on a denota-
tional semantics, may be found in (Odersky, Sulzmann, and Wehr, 1999a).
Another type soundness proof, which follows Wright and Felleisen’s syntactic
approach (1994b), appears in (Skalka and Pottier, 2002). Last, a hybrid ap-
proach, which combines some of the advantages of the previous two, is given
in (Pottier, 2001a).

An alternate presentation of HM(X)

The presentation of HM(X) given in Figure 1-7 has only four syntax-directed
rules out of eight. It is a good specification of the type system, but it is far
from an algorithmic description. As a first step towards such a description,
we provide an alternate presentation of HM(X), where generalization is per-
formed only at let expressions and instantiation takes place only at references
to program identifiers (Figure 1-8). It has the property that all judgements
are of the form C,I' F t : T, rather than C,I' I t : ¢. The following theorem
states that the two presentations are indeed equivalent.

THEOREM: C,T' F t : T is derivable via the rules of Figure 1-8 if and only if
it is a valid HM(X) judgement.]

Draft of May 20, 2003

I'(x) = VX[D].T CAD,I'Ft:Ty X# ftv(C,T)
CAD,TFx:T (HMD-VARINST) | 7 o IX.D,(L;z: VX[D].T1) F ta : Ty
C,(D;z:T)Ft: T CAID,TFletz=t;inty : Ty
— ' (HMD-ABS) (HMD-LETGEN)

C,l'HFAzt:T—>T
CTh) Tk T C,'Ht:T ChHTLT (1MD-SUB)
, t1:T—T , to: -
- 2 (HMD-APP) C.,TH&:T
C,F"tltgiTl _
C,'Ft:T X # ftv(T,T)

WO, TFt:T

(HMD-EXISTS)

Figure 1-8: An alternate presentation of HM(X)

This theorem shows that the rule sets of Figures 1-7 and 1-8 derive the
same monomorphic judgements, that is, the same judgements of the form
C,T' F t : T. The fact that judgements of the form C,I" F t : o, where o
is a not a monotype, cannot be derived using the new rule set is a technical
simplification, without deep significance; the first two exercises below shed
some light on this issue.

EXERCISE [¥k|: Show that both rule sets lead to the same set of well-typed
prograins. o

EXERCISE []|: Show that, if HMX-GEN is added to the rule set of Figure 1-
8, then both rule sets derive exactly the same judgements. |

EXERCISE [%k%, -»]: Show that it is possible to simplify the presentation
of Damas and Milner’s type system in an analogous manner. That is, define an
alternate set of typing rules for DM, which allows deriving judgements of the
form I' - t : T; then, show that this new rule set is equivalent to the previous
one, in the same sense as above. Which auxiliary properties of DM does your
proof require? A solution is given in (Clément, Despeyroux, Despeyroux, and
Kahn, 1986).]

Relating HM(X) with Damas and Milner’s type system

In order to explain our interest in HM(X), we wish to show that it is more
general than Damas and Milner’s type system. Since HM (X)) really is a family
of type systems, we must make this statement more precise. First, every mem-
ber of the HM (X)) family contains DM. Conversely, DM contains HM (=), the

1.4 HM(X) 47

constraint-based type system obtained by specializing HM(X) to the setting
of an equality-only syntactic model.

The first of these assertions is easy to prove, because the mapping from
DM judgements to HM(X) judgements is essentially the identity: every valid
DM judgement may be viewed as a valid HM(X) judgement under the trivial
assumption true. This statement relies on the fact that the DM type scheme
VX.T is identified with the constrained type scheme VX]true].T, so DM type
schemes (resp. environments) form a subset of HM(X) type schemes (resp.
environments). Its proof is routine, except perhaps in the case of bm-INST,
where it is shown how the effect of applying a substitution in DM is emulated
by strengthening the current constraint in HM(X).

THEOREM: If I' -t : S holds in DM, then true,I' - t : S holds in HM(X). O

Proof: The proof is by structural induction on a derivation of I' - t : S. In
each proof case, we adopt the notations of Figure 1-3.

o Case DM-VAR. The rule’s conclusion is I' F x : S. Its premise is I'(x) =
S (1). By definition and by C-Ex*, the constraint 3S is equivalent to true.
By applying HMX-VAR to (1) and to the assertion true I true, we obtain
true,' Fx:S.

o Cases DM-ABS, DM-APP, DM-LET. By the induction hypothesis and by
HMX-ABS, HMX-APP or HMX-LET, respectively.

o Case DM-GEN. The rule’s conclusion is I' F t : VX.T. Its premises are
FFt:T (1) and X # ftv(T') (2). Applying the induction hypothesis to (1)
yields true,T' F t : T (3). Furthermore, (2) implies X # ftv(true,T') (4). By
HMX-GEN, (3) and (4) yield true,I' F t : VX[true].T.

o Case DM-INST. The rule’s conclusion is T' F t : [X + T|T. Its premise
is'F t:VXT (1). We may assume, w.l.o.g., X # ftv([',T) (2). Applying
the induction hypothesis to (1) yields true,I' - t : VX[true].T (3). By HMX-
INST, (3) implies true,I' - t : T (4). By Lemma 1.4.2, we may weaken this
judgement so as to obtain X = T,I' F t : T (5). Using C-EqQ, C-EXTRANS,
and C-EXAND, it is possible to establish X = T I T = [X = T|T (6). Applying
HMX-SUB to (5) and (6), we find X = T,I' - t : [X — T|T (7). Last, (2)
implies X # fto([',[X +— T|T) (8). Applying nMx-EX1sTS to (7) and (8), we
obtain 3X.(X = T),T' F t : [X = T|T (9). By (2) and C-NAME, the constraint
3X.(X = T) is equivalent to true, so (9) is the goal.]

We are now interested in proving that HM (=), as defined above, is contained
within DM. To this end, we must translate every HM(=) judgement to a DM
judgement. It quickly turns out that this is possible if the original judgement’s
constraint assumption is satisfiable.

Draft of May 20, 2003

We begin by explaining how an HM (=) is translated into a DM type scheme.
Such a translation is made possible by the fact that the definition of HM(=)
assumes an equality-only syntactic model. Indeed, in that setting, every sat-
isfiable constraint admits a most general unifier (Definition 1.3.41), whose
properties we make essential use of.

In fact, we must not only translate a type scheme, but also apply a type
substitution to it. Instead of separating these steps, we perform both at once,
and parameterize the translation by a type substitution 6. (It does not appear
that separating them would help.) The definition of [o]y is somewhat involved:
it is given in the statement of the following lemma, whose proof establishes
that the definition is indeed well-formed.

LemMA: Consider a type scheme o and an idempotent type substitution €
such that ftv(c) C dom(f) (1) and 36 I+ Jo (2). Write o = VX[D].T, where
X # 6 (8). Then, there exists a type substitution 6’ such that 6’ extends
0, dom(#') is dom(f) UX, and ' is a most general unifier of 30 A D. Let
Y = ftv(0'(X)) \ range(#). Then, the translation of o under 6, written [o]y, is
the DM type scheme VY.6'(T). This is a well-formed definition. Furthermore,
ftv([o]le) C range(F) holds. |

Proof: By (2), 36 is equivalent to 30 A do, which may be written 30 A 3X.D.
By (3) and C-EXAND, this is 3X.(30 A D). Thus, because 6 is a most general
unifier of 30, 6 is also a most general unifier of 3X.(30 A D) (4). Furthermore,
ftv(3X.(30 A D)) is ftv(30 A o), which by definition of 30 and by (1) is a
subset of dom(#) (5). By (4), (3), (5), and Lemma 1.3.45, there exists a type
substitution 6’ such that 6’ extends 6 (6) and ¢’ is a most general unifier of
30 A D (7) and dom(8') = dom () UX (8).

Let us now define Y = ftv(6'(X)) \ range(f) and [o]y = VY.0'(T). By (1), we
have ftv(T) C XU dom(6). Applying 6" and exploiting (6), we find ftv(¢'(T)) C
ftv(0' (X)) U range(f), which by definition of ¥ may be written ftv(0'(T)) C
Y U range(8). Subtracting Y on each side, we find ftv([o]ly) C range(d) (9).

To show that the definition of [o]y is valid, there remains to show that it
does not depend on the choice of X or #’. To prove the former, it suffices to es-
tablish X # ftv([o]s), which indeed follows from (3) and (9). As for the latter,
because of the constraints imposed by (6), (7), and (8), and by Lemma 1.3.44,
distinct choices of §' may differ only by a renaming of ftv(6'(X)) \ range(8),
that is, Y. So, we must check Y # ftv([o]s), which holds by definition. O

Please note that if o is in fact a type T, where ftv(T) C dom(f), then X is
empty, so 0 is 8, Y is empty, and [T]p = 6(T). In other words, the translation
of a type under € is its image through 6. More generally, the translation of an
unconstrained type scheme (that is, a type scheme whose constraint is true)
is its image through 6@, as stated by the following exercise.

1.4 HM(X) 49

EXERCISE [, -|: Prove that [VX.T]s, when defined, is 6(VX.T). |

The translation becomes more than a mere type substitution when applied
to a nontrivial constrained type scheme. Some examples of this situation are
given below.

ExXAMPLE: Let 0 = VXY[X = Y — Y].X. Let 6 be the identity substitution.
The type scheme ¢ is closed and the constraint 3o is equivalent to true, so
[o]e is defined. We must find a type substitution ¢ whose domain is XY and
that is a most general unifier of X =Y — Y. All such substitutions are of the
form [X +— (Z — Z),Y — Z], where Z is fresh. We have ftv(#'(XY)) = Z, whence
[o]lo = VZ.Z — Z. Note that the choice of Z does not matter, since it is bound
in [o]s. Roughly speaking, the effect of the translation was to replace the
body X of the constrained type scheme with its most general solution under
the constraint X =Y — Y.

Let 0 = VXY;[X = Y1 — Y2]X. Let 8 = [Yy — Zy]. We have ftv(o) =
Y, C dom(f). The constraint Jo is equivalent to true, so [o]y is defined. We
must find a type substitution #" whose domain is XY;Y, that extends € and
that is a most general unifier of X = ¥; — Y5. All such substitutions are of
the form [X — (21 — Z2),Y1 — Z;,Y2 — Zy], where Z; is fresh. We have
ftv(0'(XY1)) \ range() = Z1Zy \ Zy = Z;, whence [o]ly = VZ1.Z; — Z». The
type variable Z, is not universally quantified—even though it appears in the
image of X, which was universally quantified in c—because Z, is the image of
Y2, which was free in o. a

Before attacking the main theorem, let us establish a couple of technical
properties of the translation. First, [o]y is insensitive to the behavior of
outside ftv(o), a natural property, since our informal intent is for 6 to be
applied to o.

LeEmMA: If 6; and 6, coincide on ftv(o), then [o]s, and [o]g, are either both
undefined, or both defined and identical. O

Second, if C' IF o < T’ holds, then the translations of ¢ and T' under a
most general unifier of C' are in Damas and Milner’s instance relation. One
might say, roughly speaking, that the instance relation is preserved by the
translation.

LeMMA: Let ftv(o,T') C dom(8) (1) and 30 IF Jo (2). Let 30 IF 0 < T (3).
Then, §(T') is an instance of the DM type scheme [o]s. O

Proof: Write o = VX[D].T, where X # 60 (4) and X # ftv(T') (5). By (1),
(2), and (4), one may define #', Y, and [o]y exactly as in the statement of
Lemma 1.4.8. By (5) and Definition 1.3.3, (3) is synonymous with 3¢ |- 3X.(DA

Draft of May 20, 2003

T =T'). Reasoning in the same manner as in the first paragraph of the proof
of Lemma 1.4.8, we find that there exists a type substitution " such that
0" extends €, dom(0") is dom(f) U X, and 6" is a most general unifier of
FHADAT=T.

We have dom(6") = dom(6") (6). Furthermore, 6" is a most general unifier
of 30 A D, while #" is a most general unifier of 39 A D AT = T’, which implies
30" IF 36" (7). By Lemma 1.3.39, 0" refines 6'. That is, there exists a type
substitution ¢ such that 6" is the restriction of p o8’ to dom(8) UX (8). We
may require dom(p) C range(6) U ftv(6' (X)) (9) without compromising (8).

Consider X € dom(#). Because 0" extends 6, we have 6”(X) = 6(X) (10).
Furthermore, by (8), we have 8" (X) = (¢08')(X) = (po#)(X) (11). Using (10)
and (11), we find 6(X) = ¢(A(X)). Because this holds for every X € dom(9),
© must be the identity over range(8); that is, dom(p) # range(6) (12) holds.
Combining (9) and (12), we find dom(p) C fiv(6'(X)) \ range(f), that is,
dom(p) CY (13).

By construction of 8", we have 36" I+ T = T'. By Lemma 1.3.29, this implies
0"(30") IF 8"(T) = 0" (T'), which by Lemma 1.3.42 may be read true I- 8" (T) =
0"(T"). By Lemma 1.3.32, 8"(T) and 6"(T’) coincide. Because by (1) ftv(T) is
a subset of dom(#) UX and by (8), the former may be written ¢(6'(T)). By (1)
and because 6" extends @, the latter is 6(T’). Thus, we have p(6'(T)) = 0(T').
Together with (13), this establishes that 6(T’) is an instance of VY.6'(T), that

is, [[(7]]9.]

We extend the translation to environments as follows. [@] is @. If 30 I Jo
holds, then [I';x : o]p is [[]a; x : [o]s, otherwise it is [I']s. Notice that [I']g
contains fewer bindings than I'; which ensures that bindings z : o for which
36 I+ do does not hold will not be used in the translation. Please note that
[T'Je is defined when ftv(I') C dom(6) holds.

We are now ready to prove the main theorem. Please note that, by requir-
ing 6 to be a most general unifier of C', we also require C' to be satisfiable.
Judgements that carry an unsatisfiable constraint cannot be translated.

THEOREM: Let C,T' F t : ¢ hold in HM(=). Let # be a most general unifier
of C such that ftv(I',o) C dom(#). Then, [I']y F t : [o]p holds in DM. o

Proof: Let us first remark that, by Lemma 1.4.1, we have C' IF Jo. This
may be written 30 |- Jo, which guarantees that [o]y is defined. The proof
is by structural induction on an HM(=) typing derivation. We assume that
the derivation is expressed in terms of the rules of Figure 1-8, but split HMD-
LETGEN into HMX-LET and HMX-GEN for the sake of readability.

o Clase HMD-VARINST. The rule’s conclusion is C' A D,I" x : T. By hy-
pothesis, ¢ is a most general unifier of C' A D (1), and ftv(T) C dom(8) (2)

1.4 HM(X) 51

holds. The rule’s premise is I'(x) = o (3), where o stands for VX[D].T. By
(1), we have 30 = C AD It D I+ 3X.D = Jo (4). Furthermore, we have
ftv(o) C ftv(T') C dom(#) (5). These facts show that [o]y is defined. To-
gether with (3), this implies [I']p(x) = [o]ls. By DM-VAR, [I]o F x : [o]y (6)
follows. Now, by Lemma 1.3.19, we have D IF ¢ < T, which, combined with
30 Ik D, yields 30 IF ¢ < T (7). By (7), (4), (5), (2), and Lemma 1.4.12, we
find that #(T) is an instance of [o]y. Thus, applying DM-INST to (6) yields
[T]e F t : 6(T).

o Case HMD-ABs. The rule’s conclusion is C,I' - Az.t : T — T'. Its premise
is C,(I';z: T) F t : T'. Applying the induction hypothesis to it yields [[]s;z :
6(T) - t : 6(T"). By DM-ABS, this implies [[']s - Az.t : 8(T) — 6(T'), that is,
[T]e - Az.t : 0(T - T').

o Case HMD-APP. By an extension of dom(d) to include ftv(T), by the
induction hypothesis, and by bm-App.

o Case HMX-LET. By an extension of dom(f) to include ftv(o), by the
induction hypothesis, and by bM-LET.

o Case HMX-GEN. The rule’s conclusion is C'Ado, ' - t : o, where ¢ stands
for VX[D].T. By hypothesis, 6 is a most general unifier of C' A do (1), and
ftv(T',0) C dom(6) (2) holds. The rule’s premises are CAD, 't : T (3) and
X # ftv(C,T) (4). We may further assume, w.l.0.g., X # 6 (5). Given (1), (2),

and (5), we may define 6" and Y exactly as in Lemma 1.4.8. Then, 6’ is a most
general unifier of 30 A D, that is, C A D. Furthermore, dom(6") is dom(8) UX,
which by (2) is a superset of ftv(I', T). Thus, the induction hypothesis applies
to ' and to (3), yielding [I'ler F t : €'(T). Because #' extends 6, by (2)
and by Lemma 1.4.11, this may be read [y F t : 6'(T) (6). According to
Lemma 1.4.8, we have fto([T']s) C range(6), which by construction of Y implies
Y # fto([T']e) (7). By DM-GEN, (6) and (7) yield [[']p - t : VY.0'(T), that is,
[[F]]g Ft: [[U]]g.

o Case HMD-SUB. The rule’s conclusion is C,I" F t : T. By hypothesis, 6
is a most general unifier of C' (1), and ftv(T',T") C dom(6) (2) holds. The
goal is [T F t : 6(T") (3). The rule’s premises are C,T" - t : T (4) and
CIFT =T (5). We may assume, w.l.o.g., ftv(T) # range(d) (6). Then,
by (6) and Lemma 1.3.43, we may extend the domain of 6, so as to achieve
fto(T) C dom(8) (7), without compromising (1) or (2) or affecting the goal
(3). By (1), (2), and (7), the induction hypothesis applies to (4), yielding
[T]o - t : 6(T) (8). Now, thanks to (1), (5) may be read 3¢ IF T = T', which
by Lemmas 1.3.29 and 1.3.42 implies true IF §(T) = §(T'). Then, Lemma 1.3.32
shows that 6(T) and (T') coincide. As a result, (8) is the goal (3).

o Case HMD-EXISTS. The rule’s conclusion is 3X.C, T F t : T. By hypothesis,
6 is a most general unifier of IX.C' (1), and ftv(I', T) C dom(6) (2) holds. The

Draft of May 20, 2003 1 ML

rule’s premises are C,I' F t : T (3) and X # ftv(T,T). We may assume,
w.l.o.g., X # 6 (4). As in the previous case, we may extend the domain of
6 to guarantee ftv(IX.C') C dom(6) (5). By (1), (4), (5), and Lemma 1.3.45,
there exists a type substitution 6’ such that ¢ extends § (6) and ¢’ is a
most general unifier of C'. Applying the induction hypothesis to ' and to (3)
yields [T']er F t : 6'(T). By (2), (6), and Lemma 1.4.11, this may be read
[T]o F t: 6(T). |

Together, Theorems 1.4.7 and 1.4.13 yield a precise correspondence between
DM and HM(=): there exists a compositional translation from each to the
other. In other words, they may be viewed as two equivalent formulations of
a single type system. One might also say that HM(=) is a constraint-based
formulation of DM. Furthermore, Theorem 1.4.7 states that every member of
the HM(X) family is an extension of DM. This explains our double interest in
HM(X), as an alternate formulation of DM, which we believe is more pleasant,
for reasons already discussed, and as a more expressive framework.

A purely constraint-based type system: PCB(X)

In the previous section, we have presented HM(X), an elegant constraint-
based extension of Damas and Milner’s type system. However, HM(X), as
described there, suffers from a drawback. A typing judgement involves both
a constraint, which represents an assumption about its free type variables,
and an environment, which represents an assumption about its free program
identifiers. At a let node, HMD-LETGEN turns a part of the current constraint,
namely D, into a type scheme, namely VX[D].T, and stores it into the envi-
ronment. Then, at every occurrence of the let-bound variable, HMD-VARINST
retrieves this type scheme from the environment and adds a copy of D back to
the current constraint. In practice, it is important to simplify the type scheme
VX[D].T before it is stored in the environment, because it would be inefficient
to copy an unsimplified constraint. In other words, it appears that, in order to
preserve efficiency, constraint generation and constraint simplification cannot
be separated.

Of course, in practice, it is not difficult to intermix these phases, so the
problem is not technical, but pedagogical. Indeed, we argued earlier that it is
natural and desirable to separate them. Type scheme introduction and elim-
ination constraints, which we introduced in Section 1.3 but did not use in
the specification of HM(X), are intended as a means of solving this prob-
lem. In the present section, we exploit them to give a novel formulation of
HM(X), which no longer requires copying constraints back and forth between
the environment and the constraint assumption. In fact, the environment is

1.5 A purely constraint-based type system: PCB(X)

CH‘XjT CiFt1:Tq Cy bty :To
_— (VAR) -
Chkx:T let z : VV[C1].T; in Cy
Ckt:T Fletz=t;inty: Ty
i ' (ABs) Ckt:T
letz:TinCkFAzt:T—T :
! .ol
ClktllT—)T’ Czl_tziT (A) C/\TSTl_t'T
PP 7
CiNColFtyte: T CkHt:T X#ﬁ’U(T)
WXCFL:T

(LET)

(Ex1sTs)

Figure 1-9: Typing rules for PCB(X)

suppressed altogether: taking advantage of the new constraint forms, we en-
code information about program identifiers within the constraint assumption.

Presentation

We now employ the full constraint language (Section 1.3). Typing judgements
take the form C' F t : T, where C' may have free type variables and free
program identifiers. The rules that allow deriving such judgements appear in
Figure 1-9. As before, we identify judgements up to constraint equivalence.
Let us review the rules. VAR states that x has type T under any constraint
that entails x < T. Note that we no longer consult the type scheme associated
with x in the environment—indeed, there is no environment. Instead, we let
the constraint assumption record the fact that the type scheme should admit
T as one of its instances. Thus, in a judgement C' F t : T, any program identi-
fier that occurs free within t typically also occurs free within C'. ABS requires
the body t of a Ad-abstraction to have type T' under assumption C'. Although
no explicit assumption about z appears in the premise, C' typically contains
a number of instantiation constraints bearing on z, of the form z < T;. In
the rule’s conclusion, C is wrapped within the prefix let z : T in [], where T
is the type assigned to z. This effectively requires every T; to denote a super-
type of T, as desired. Please note that z does not occur free in the constraint
let z : T in C, which is natural, since it does not occur free in Az.t. ApP
exhibits a minor stylistic difference with respect to HMX-APP: its constraint
assumption is split between its premises. It is not difficult to prove that, when
weakening holds (see Lemma 1.5.2 below), this choice does not affect the set
of valid judgements. This new presentation encourages reading the rules in
Figure 1-9 as the specification of an algorithm, which, given t and T, pro-

Draft of May 20, 2003

duces C such that C'F t : T holds. In the case of APP, the algorithm invokes
itself recursively for each of the two subexpressions, yielding the constraints
C1 and Oy, then constructs their conjunction. LET is analogous to ABS: by
wrapping Cy within a let prefix, it gives meaning to the instantiation con-
straints bearing on z within Cs. The difference is that z may now be assigned
a type scheme, as opposed to a monotype. An appropriate type scheme is built
in the most straightforward manner from the constraint C; and the type Ty
that describe ti. All of the type variables that appear free in the left-hand
premise are generalized, hence the notation YV[C;].T;, which is a convenient
shorthand for Vftv(C4, T1)[C1].T1. The side-condition that “type variables that
occur free in the environment must not be generalized”, which was present in
DM and HM(X), naturally disappears, since judgements no longer involve an
environment. SUB again exhibits a minor stylistic difference with respect to
HMX-SUB: the comments made about APP above apply here as well. EXISTS
is essentially identical to HMX-EXISTS.

In the standard specification of HM(X'), HMD-ABS and HMD-LETGEN accu-
mulate information in the environment. Through the environment, this infor-
mation is made available to HMD-VARINST, which retrieves and copies it. Here,
instead, no information is explicitly transmitted. Where a program identifier
is bound, a type scheme introduction constraint is built; where a program
identifier is used, a type scheme instantiation constraint is produced. The two
are related only by our definition of the meaning of constraints.

The reader may be puzzled by the fact that LeT allows all type variables
that occur free in its left-hand premise to be generalized. The following exer-
cise sheds some light on this issue.

EXERCISE [%, RECOMMENDED|: Build a type derivation for the expression
Az;.let zp = z; in zy within PCB(X). Draw a comparison with the solution
of Exercise 1.2.21. O

The following lemma is an analogue of Lemma 1.4.2.

LEMMA [WEAKENING]: If C" IF C, then every derivation of C' - t : T may be
turned into a derivation of C' F t : T with the same shape. O

Proof: The proof is by structural induction on a derivation of C' -t : T. In
each proof case, we adopt the notations of Figure 1-9.

o Case VAR. By transitivity of entailment.

o Case ABS. The rule’s conclusion is let z : Tin C F Az.t : T — T' (1).
By hypothesis, we have C' IF let z : T in C' (2). We may assume, w.l.0.g.,
z & fpi(C") (3). The rule’s premise is C' + ¢t : T' (4). Applying the induction
hypothesis to (4) yields C AC" F t : T', which by ABS implies let z: Tin (C' A

1.5 A purely constraint-based type system: PCB(X) 55

C')F Xzt : T = T (5). By (3) and C-INAND*, let z : T in (C' AC') is
equivalent to (let z : T in C) A C', which by (2) and C-DuUP is equivalent to
C'. Thus, (5) is the goal C' F A\z.t : T — T'.

o Case ApPP. By applying the induction hypothesis to each premise, using
the fact that C' IF C; A Cy implies C' IF C7 and C' I+ Cs.

o Case LET. Analogous to the case of ABS. The induction hypothesis is
applied to the second premise only.

o Case SUB. Analogous to the case of App.
o Case EXISTS. See the corresponding case in the proof of Lemma 1.4.2. O

Relating PCB(X) with HM(X)

Let us now provide evidence for our claim that PCB(X) is an alternate pre-
sentation of HM(X). The next two theorems define an effective translation
from HM(X) to PCB(X) and back.

The first theorem states that if, within HM(X), t has type T under as-
sumptions C' and I, then, within PCB(X), t also has type T, under some
assumption C’. The relationship C IF let I' in C" states that C entails the
residual constraint obtained by confronting I', which provides information
about the free program identifiers in t, with C’, which contains instantiation
constraints bearing on these program identifiers. The statement requires C'
and T' to have no free program identifiers, which is natural, since they are
part of an HM (X)) judgement. The hypothesis C' IF 3I" excludes the somewhat
pathological situation where I' contains constraints not apparent in C'. This
hypothesis vanishes when I is the initial environment; see Definition 1.7.3.

THEOREM: Let C' IF 3. Assume fpi(C,I') = @. It C,T' - t : T holds in
HM(X), then there exists a constraint C’ such that C' - t : T holds in
PCB(X) and C entails let I"in C". O

Proof: The proof is by structural induction on a derivation of C,I"' F t : T.
In each proof case, we adopt the notations of Figure 1-8.

o Clase HMD-VARINST. The rule’s conclusion is CAD,T' F x : T. By hypoth-
esis, we have C' A D I+ 3I' (1) and fpi(C,D,T") = @ (2). The rule’s premise
is I'(x) = VX[D].T (3). By VAR, we have x < T x : T, so there remains to
establish C AD IFletI'inx < T (4). By (3), (2), and C-INID, the constraint
let T'in x < T is equivalent to let T in VX[D].T < T, which, by (2) and C-IN¥,
is itself equivalent to 3T AVX[D].T X T (5). By (1) and Lemma 1.3.19, C A D
entails (5). We have established (4).

o Case HMD-ABs. The rule’s conclusion is C,I' - Az.t : T — T'. Its premise
is C,(T;z:T) Ft: T (1). The constraints 3" and 3(I';z : T) are equivalent,

Draft of May 20, 2003

so the induction hypothesis applies to (1) and yields a constraint C’ such
that C' F t : T (2) and C Ik let I';z : T in C' (3). Applying ABS to (2)
yields let z : Tin C' + Az.t : T — T’. There remains to check that C entails
let Tin let z : T in C'—but that is precisely (3).

o Case HMD-App. The rule’s conclusion is C,T" F t; to : T'. Its premises
are C,'Fty : T — T (1) and C,T' F ty : T (2). Applying the induction
hypothesis to (1) and (2), we obtain constraints C] and C!, such that C] F
t1 : T = T (8) and C) F t2 : T (4) and C IF let T in C] (5) and C IF
let Tin C} (6). By ApPP, (3) and (4) imply C] A C4 F t1 to : T'. Furthermore,
by C-INAND, (5) and (6) yield C'IFlet 'in C] A C},.

o Case HMD-LETGEN. The rule’s conclusion is C A 3X.D,T I let z =
t; in ty : To. By hypothesis, we have C' A 3X.D I 3T (1) and fpi(C,D,T) =
@ (2). The rule’s premises are C A D,T'F t; : Ty (3) and X # ftv(C,T) (4)
and C' A 3X.D,I" F ty : Ty (5), where I is I';z : VX[D].T;. Applying the
induction hypothesis to (3) yields a constraint C] such that C| F t; : Ty (6)
and CAD IFlet T'in C] (7). By (1), (2), and C-IN*, we have C A3X.D IF 31”.
Thus, the induction hypothesis applies to (5) and yields a constraint C} such
that C, F ty : Ty (8) and C A 3IX.D I let IV in CY (9). By LeT, (6) and (8)
imply let z : VV[C]].T1 in C} I let z = t1 int : Ty (10). By Lemmas 1.3.25
and 1.5.2, (10) yields let z : VX[C]].T1 in C} - let z = t; in ty : Ty (11),
where the universal quantification is over X only. There remains to establish
that C' A 3X.D entails let I';z : VX[C{].T; in C} (12). By (4), (2), and C-
LeETDUP, the constraint (12) is equivalent to let I'; z : VX[let I in C{].T; in C}.
By (7), this constraint is entailed by let T';z : VX[C' A D].T; in C), which by
(4) and C-LETAND, is equivalent to C' A let I';z : VX[D].T; in C}, that is,
C Alet " in C). By (9), this constraint is entailed by C' A 3X.D.

o Case HMD-SUB. The rule’s conclusion is C,I' F t : T'. Its premises are
C,'Ft:T (1) and C IF T < T (2). Applying the induction hypothesis to
(1) yields a constraint C' such that C' F t : T (3) and C IF let T" in C' (4).
By SuB, (3) implies C' AT < T' t : T'. There remains to establish C I+
let T'in (C" AT <T'), which follows from (4) and (2) by C-INAND*.

o Case HMD-EX1STS. The rule’s conclusion is 3X.C,T" F t : T. Its premises
are C,I' F t : T (1) and X # ftv(I',T) (2). By hypothesis, we have IX.C' I+
dIl', which by Lemma 1.3.16 implies C' IF 3I'. Thus, the induction hypothesis
applies to (1) and yields a constraint C’ such that C' F t : T (3) and C I
let T in C' (4). By EX1sTs, (3) and (2) imply 3X.C" F t : T. There remains
to establish 3X.C' IF let T in 3X.C". By congruence of entailment, (4) implies
IX.C Ik FX.let T in C'. The result follows by (2) and C-INEX.]

The second theorem states that if, within PCB(X), t has type T under
assumption C, then, within HM(X), t also has type T, under assumptions

1.5 A purely constraint-based type system: PCB(X) 57

let I' in C' and T'. The idea is simple: the constraint C' represents a combined
assumption about the initial judgement’s free type variables and free program
identifiers. In HM(X), these two kinds of assumptions must be maintained
separately. So, we split them into a pair of an environment I', which may be
chosen arbitrarily, provided it satisfies fpi(C) C dpi(I')—that is, provided it
defines all program variables of interest, and the residual constraint let I" in C',
which has no free program identifiers, thus represents an assumption about
the new judgement’s type variables only. Distinct choices of I' give rise to
distinct HM(X) judgements, which may be incomparable; this is related to
the fact that ML-the-type-system does not have principal typings (Jim, 1995).
Again, the hypothesis fpi(I') = fpi(let I in C') = & is natural, since we wish
I and let T in C to appear in an HM(X) judgement.

THEOREM: Assume fpi(I') = fpi(let I'in C) = @ and C Zfalse. I CFt: T
holds in PCB(X), then let I"in C,T" - t : T holds in HM(X). O

Proof: The proof is by structural induction on a derivation of C' - t : T. In
each proof case, we adopt the notations of Figure 1-9.

By Lemma 1.3.30, the hypothesis C' # false is preserved whenever the in-
duction hypothesis is invoked. It is explicitly used only in case VAR, where it
guarantees that the identifier at hand is bound in I'.

o Case VAR. The rule’s conclusion is C' x : T. Its premise is C' IF x <
T (1). By Lemma 1.3.24, (1) and the hypothesis C' # false imply x € fpi(C).
Because let T in C' has no free program identifiers, this implies x € dpi(T),
that is, the environment I' must define x. Let ['(x) = VX[D].T' (2), where
X # fto(D,T) (3). By (2), HMD-VARINST, and HMD-SUB, we have D AT’ <
T,I' - x : T. By (3) and HMD-EXI1sTS, this implies 3X.(DAT' < T),['F x : T (4).
Now, by (3), the constraint 3X.(D AT' < T) may be written VX[D].T' < T (5).
The hypothesis fpi(I") = @ implies fpi(D) = @ (6). By (6), C-INID and C-
IN*, (5) is equivalent to let I' in x < T. Thus, (4) may be written let I in x <
T,I' F x : T. By (1), by congruence of entailment, and by Lemma 1.4.2, this
implies let ['in C, "' F x : T.

o Case ABS. The rule’s conclusion is let z : Tin C F Az.t : T — T'. Its
premise is C' F t : T’ (1). Let IV stand for I';z : T. Applying the induction
hypothesis to (1) yields let I in C,I" F t : T'. By uMD-ABs, this implies
letI"inC,TF Azt : T—T.

o Case App. The rule’s conclusion is C; A Cy = t1 t2 : T'. Its premises are
CiFt1:T—T and Cs F t5 : T. Applying the induction hypothesis yields
respectively let I'in C;,I' - t; : T — T' and let " in C3, " F t5 : T, which by
Lemma 1.4.2 and HMD-APP imply let Tin (C; A Cy),T'F t1 to : T'.

o Case LET. The rule’s conclusion is let z : YV[C1].T; in Cy F let z =

Draft of May 20, 2003 1 ML

t; in ty : Ty. Its premises are C F ty : Ty (1) and Cy F ty : Ty (2). Let X
stand for ftv(Cy,Ty). We may require, w.l.0.g., X # ftv(T', Cy) (3). By hypoth-
esis, we have fpi(I') = @ (4). We also have fpi(let I'; z : VV[C}].T; in Cs) = @,
which implies fpi(let T' in C;) = &. Thus, the induction hypothesis ap-
plies to (1) and yields let T in C;,T' F t; : Ty (5). Now, let o stand
for VX[let T" in C1].T; and I" stand for I';z : o. We have fpi(I') =
fri(let I" in Cy) = @. Thus, the induction hypothesis applies to (2) and
yields let I in C5,T" = ty : T2 (6). Let us now weaken (5) and (6) so as to
make them suitable premises for HMD-LETGEN. Applying Lemma 1.4.2 to (5)
yields (let IV in C3) A (let Tin Cy),T' =ty : Ty (7). Applying Lemma 1.4.2 to
(6) yields (let I in C2) A3X.(let T in C1),I" F £y : T2 (8). Last, (3) implies
X # fto(T,let T in C2) (9). Applying HMD-LETGEN to (7), (9) and (8), we
obtain (let I in C2)ATX.(let Tin Cy),T' F let z = t; in t : Ty (10). Now, by
(4), (3), and C-LETDUP, let I' in C is equivalent to let I'; z : VX[C1].Ty in C5.
Using this fact, as well as (3), C-INEX, and C-INAND, we find that the con-
straint (let I' in Cy) A 3X.(let T in Cy) is equivalent to let T' in (let z :
VX[C1].Ty in Cy A 3X.CY), which by definition of the let form, is itself equiv-
alent to let T';z : VX[C1].T; in Cy. Last, by definition of X, this constraint is
let I'; z : VV[C1].Ty in Cs. Thus, (10) is the goal.

o Case SUB. The rule’s conclusion is CAT < T' F t : T'. Its premiseis C' F t :
T (1). Applying the induction hypothesis to (1) yields let T"in C,T' -t : T (2).
By Lemma 1.4.2 and HMD-SUB, (2) implies (let C'in C) AT < T, T Ft: T,
which by C-INAND* may be written let T'in (CAT<T),I'Ft:T.

o Case EXISTS. The rule’s conclusion is 3X.C' F t : T. Its premises are C -
t: T (1) and X # ftv(T) (2). We may further require, w.l.o.g., X # ftv(T) (3).
Applying the induction hypothesis to (1) yields let ' in C,T" F t : T (4).
Applying HMD-EXISTS to (2), (3), and (4), we find IX.let I'in C,T' - ¢t : T,
which, by (3) and C-INEX, may be written let I'in 3X.C,T F ¢t : T. |

As a corollary, we find that, for closed programs, the type systems HM(X)
and PCB(X) coincide. In particular, a program is well-typed with respect to
one if and only if it is well-typed with respect to the other. This supports the
view that PCB(X) is an alternate formulation of HM(X).

THEOREM: Assume fpi(C) = @ and C # false. Then, C, @ F t : T holds in
HM(X) if and only if C'F t : T holds in PCB(X).]

Constraint generation

We now explain how to reduce type inference problems for PCB(X) to con-
straint solving problems. A type inference problem consists of an expression

1.6 Constraint generation

[x:T] = x=<T
[[/\z.t : T]] EIX1X2.(Iet z:Xyin [[t : XQ]] ANX1 =X < T)
[[tl Ty : T]] Ele.([[tl Xy — T]] A [[t2 . Xzﬂ)
[letz=t;inty:T] = letz:VX[[ty:X]].Xin [tz :T]

Figure 1-10: Constraint generation

t and a type T of kind x. The problem is to determine whether t is well-typed
with type T, that is, whether there exists a satisfiable constraint C' such that
C F t : T holds. This formulation of the problem may seem to require an
appropriate type T to be known in advance; this is not really the case, since T
may be a type variable. A constraint solving problem consists of a constraint
C'. The problem is to determine whether C' is satisfiable. To reduce a type
inference problem (t,T) to a constraint solving problem, we must produce
a constraint C' that is both sufficient and necessary for C' - t : T to hold.
Below, we explain how to compute such a constraint, which we write [t : T].
We check that it is indeed sufficient by proving [t : T] F t : T. That is, the
constraint [t : T] is specific enough to guarantee that t has type T. We say
that constraint generation is sound. We check that it is indeed necessary by
proving that, for every constraint C, C' - t : T implies C I [t : T]. That is,
every constraint that guarantees that t has type T is at least as specific as
[t : T]. We say that constraint generation is complete. Together, these prop-
erties mean that [t : T] is the least specific constraint that guarantees that t
has type T.

We now see how to reduce a type inference problem to a constraint solving
problem. Indeed, if there exists a satisfiable constraint C' such that C -t : T
holds, then, by the completeness property, C' IF [t : T] holds, so [t : T] is
satisfiable. Conversely, the soundness property states that [t : T] F t : T
holds, so, if [t : T] is satisfiable, then there exists a satisfiable constraint C
such that C'F t : T holds. In other words, t is well-typed with type T if and
only if [t : T] is satisfiable.

The existence of such a constraint is the analogue of the existence of princi-
pal type schemes in classic presentations of ML-the-type-system (Damas and
Milner, 1982). Indeed, a principal type scheme is least specific in the sense
that all valid types are substitution instances of it. Here, the constraint [t : T]
is least specific in the sense that all valid constraints entail it. Earlier, we have
established a connection between constraint entailment and refinement of type
substitutions, in the specific case of equality constraints interpreted over a free
algebra of finite types; see Lemma 1.3.39.

Draft of May 20, 2003

The constraint [t : T] is defined in Figure 1-10 by induction on the structure
of the expression t. We refer to these defining equations as the constraint
generation rules. The definition is quite terse. It is perhaps even simpler than
the declarative specification of PCB(X) given in Figure 1-9; yet, we prove
below that the two are equivalent.

Before explaining the definition, we state the requirements that bear on
the type variables X;, X5, and X, which appear bound in the right-hand sides
of the second, third, and fourth equations. These type variables must have
kind *. They must be chosen distinct (that is, X1 # Xo in the second equation)
and fresh in the following sense: type variables that appear bound in an equa-
tion’s right-hand side must not appear free in the equation’s left-hand side.
Provided this restriction is obeyed, different choices of Xy, X3, and X lead to
a-equivalent constraints—that is, to the same constraint, since we identify
objects up to a-conversion—which guarantees that the above equations make
sense. We remark that, since expressions do not have free type variables, the
freshness requirement may be simplified to: type variables that appear bound
in an equation’s right-hand side must not appear free in T. However, this sim-
plification is rendered invalid by the introduction of type annotations within
expressions (page 102). Please note that we are able to state a formal fresh-
ness requirement. This is made possible by the fact that [t : T] has no free
type variables other than those of T, which in turn depends on our explicit
use of existential quantification.

Let us now review the four equations. The first one simply mirrors VAR.
The second one requires t to have type X, under the hypothesis that z has
type X1, and forms the arrow type X; — Xo; this corresponds to ABS. Here, X3
and X, must be fresh type variables, because we cannot in general guess the
expected types of z and t. The expected type T is required to be a supertype
of X; — X»; this corresponds to SUB. We must bind the fresh type variables
X; and X5, so as to guarantee that the generated constraint is unique up
to a-conversion. Furthermore, we must bind them existentially, because we
intend the constraint solver to choose some appropriate value for them. This
is justified by EXIsTs. The third equation uses the fresh type variable X,
to stand for the unknown type of t,. The subexpression t; is expected to
have type X — T. This corresponds to AppP. The fourth equation, which
corresponds to LET, is most interesting. It summons a fresh type variable X
and produces [t; : X]. This constraint, whose sole free type variable is X, is
the least specific constraint that must be imposed on X so as to make it a
valid type for t;. As a result, the type scheme VX[[t; : X]].X, abbreviated o
in the following, is a principal type scheme for t;. There remains to place
[t2 : T] inside the context let z : ¢ in [|. Indeed, when placed inside this
context, an instantiation constraint of the form z < T’ acquires the meaning

1.6 Constraint generation 61

o <X T', which by definition of o and by Lemma 1.6.4 (see below) is equivalent
to [ty : T']. Thus, the constraint produced by the fourth equation simulates a
textual expansion of the let construct, whereby every occurrence of z would
be replaced with t;. Thanks to type scheme introduction and instantiation
constraints, however, this effect is achieved without duplication of source code
or constraints. In other words, constraint generation has linear time and space
complexity; duplication may take place during constraint solving only.

EXERCISE [%, -|: Define the size of an expression, of a type, and of a con-
straint, viewed as abstract syntax trees. Check that the size of [t : T] is linear
in the sum of the sizes of t and T. O

We now establish several properties of constraint generation. We begin with
soundness, whose proof is straightforward.

THEOREM [SOUNDNESS]: [t : T]Ft:T.

Proof: By induction on the structure of t.
o Case x. The goal x < T+ x: T follows from VAR.

o Case Az.t. By the induction hypothesis, we have [t : X3] F t : X2. By
ABs, this implies let z : X; in [t : X3] F Az.t : X3 — Xy. By SuB, this implies
let z : Xy in [t : X2] AXy — X2 < T+ Az.t : T. Lastly, because X;Xo # ftv(T)
holds, EX1STS applies and yields [Az.t : T F Az.t : T.

o Case t; t2. By the induction hypothesis, we have Jt; : Xo — T] F t; :
Xy — T and [t2 : X2] F to : X2. By App, this implies [t; : X2 — T] A
[t2 : X2] F t1 to : T. Because Xy ¢ fto(T) holds, EXISTs applies and yields
[[tl To IT]]l_tl ty : T.

o Case let z = t; in ty. By the induction hypothesis, we have [ty :
X F t; : Xand [ty : T] F to : T. By LET, these imply let z : VV[[t; :
X[].Xin [ty : T] F let z = t1 in to : T. Because ftv([t; : X]) is X, the universal
quantification on V really bears on X alone. We have proved [let z = t; in ts :
TJFletz=1t; inty : T. |

The following lemmas are used in the proof of the completeness property and
in a number of other occasions. The first two state that [t : T] is covariant with
respect to T. Roughly speaking, this means that enough subtyping constraints
are generated to achieve completeness with respect to SUB.

LEMMA: [t :TJAT < T' entails [t : T'].

LEMMA: X & fto(T) implies IX.([t : XJAX < T) = [t : T].

Draft of May 20, 2003

The next lemma gives a simplified version of the second constraint genera-
tion rule, in the specific case where the expected type is an arrow type. Then,
fresh type variables need not be generated; one may directly use the arrow’s
domain and codomain instead.

LEMMA: [Az.t : Ty — Ts] is equivalent to let z : Ty in [t : T2].
We conclude with the completeness property.

THEOREM [COMPLETENESS]: if C'Ft: T, then C IF [t : T].

Proof: By induction on the derivation of C't : T.

o Case VAR. The rule’s conclusion is C' F x : T. Its premise is C' IF x < T,
which is also the goal.

o Case ABS. The rule’s conclusion is let z : Tin C' F Az.t : T — T'. Its
premise is C' - t : T'. By the induction hypothesis, we have C IF [t : T']. By
congruence of entailment, this implies let z : Tin C' IF let z : T in [t : T'],
which, by Lemma 1.6.5, may be written let z: Tin C' I+ [Az.t : T = T'].

o Case APP. The rule’s conclusion is C; A Cs - t; t2 : T'. Its premises are
CiFty:T— T and Cy F t5 : T. By the induction hypothesis, we have C; IF
[[tl T — T’]] and Cs IF [[t2 : T]]. Thus, C1 N Cy entails [[tl T — T’]] A [[t2 : T]],
which, by C-NAMEEQ, may be written 3X».(X2 = TA[t1 : Xo = T'JA[t2 : X2]),

where Xo & ftv(T,T'). Forgetting about the equation X» = T, we find that
C1 A Cy entails Eng.(lItl 1 Xy — TI]] A [[t2 : Xg]]), which is precisely [[tl to TI]].

o Case LET. The rule’s conclusion is let z : VV[C1].Ty in Cy F let z =
t; in to : To. Its premises are C; F t; : Ty and Cy F to : Ty. By the
induction hypothesis, we have Cy I+ [ty : T;] and Cy I+ [to : T2], which
implies let z : VV[Cl]Tl inCy IF let z : VV[[[tl . Tl]]].Tl in [[tz : TQ]] (1)

Now, let us establish true I VX[[t; : X]].X =< VV[[t1 : T1]].T1 (2). By
definition, this requires proving 3X;.([t1 : Ti] ATy < Z) IF IX.([t1 : X[AX <
Z) (3), where X; = ftv(T;) and Z ¢ XX; (4). By Lemma 1.6.3, (4), and C-
Ex*, the left-hand side of (3) entails [ty : Z]. By (4) and Lemma 1.6.4, the
right-hand side of (3) is [ty : Z]. Thus, (3) holds, and so does (2).

By (2) and Lemma 1.3.22, we have let z : VV[[t1 : T1]].T1 in [to : T2] IF
let z : VX[[t1 : X]].X in [t2 : T2] (5). By transitivity of entailment, (1) and (5)
yield let z : VV[C1].T1 in C IF [let z =t; in ty : To].

o Case SUB. The rule’s conclusion is C AT < T' + t : T'. Its premise is
C F t : T. By the induction hypothesis, we have C' I [t : T], which implies
CAT ST IF[t: TJAT < T'. By lemma 1.6.3 and by transitivity of entailment,
we obtain C AT < T IF [t : T'].

o Case EXisTs. The rule’s conclusion is 3X.C' = t : T. Its premises are
Ctt:TandX # ftv(T) (1). By the induction hypothesis, we have C' I [t : T].

1.7 Type soundness 63

By congruence of entailment, this implies 3X.C' |- 3X.[t : T] (2). Furthermore,
(1) implies X # fto([t : T]) (3). By (3) and C-EX*, (2) may be written
IXCIF[t:T]. o

Type soundness

We are now ready to establish type soundness for our type system. The state-
ment that we wish to prove is sometimes known as Milner’s slogan: well-typed
programs do not go wrong (Milner, 1978). Below, we define well-typedness in
terms of our constraint generation rules, for the sake of convenience, and estab-
lish type soundness with respect to that particular definition. Theorems 1.4.7,
1.5.4, and 1.6.6 imply that type soundness also holds when well-typedness is
defined with respect to the typing judgements of DM, HM(X), or PCB(X).
We establish type soundness by following Wright and Felleisen’s so-called syn-
tactic approach (1994b). The approach consists in isolating two independent
properties. Subject reduction, whose exact statement will be given below, im-
plies that well-typedness is preserved by reduction. Progress states that no
stuck configuration is well-typed. It is immediate to check that, if both prop-
erties hold, then no well-typed program can reduce to a stuck configuration.
Subject reduction itself depends on a key lemma, usually known as a (term)
substitution lemma. We immediately give two versions of this lemma: the for-
mer is stated in terms of PCB(X) judgements, while the latter is stated in
terms of the constraint generation rules.

LEMMA [SUBSTITUTION]: C' F t : T and Cy F to : Tp imply let z
VXO[C()].TO inCF [ZO — to]t . T. O

Proof: The proof is by structural induction on the derivation of C' F t : T.
In each proof case, we adopt the notations of Figure 1-9. We write oy for
VXo[Co]-To. We refer to the hypothesis Cyp F tp : Ty as (1). We assume,
w.l.0.g., Xo # ftv(C,T) (2) and z¢ & fpi(oo) (3).

o Case VAR. The rule’s conclusion is C F x : T (4). Its premise is C' IF x <
T (5). Two subcases arise.

Subcase x is zg. Applying SUB to (1) yields Co ATy < T F to : T. By (2)
and EXISTs, this implies 3X,.(Co ATop < T) F to : T (6). Furthermore, by
(2) again, the constraint 3%.(Co A Top < T) is 09 < T, which is equivalent to
let zp : 0p in zp =X T. As a result, (6) may be written let zg : 0g in x < T F
[zo — to]x: T (7).

Subcase x isn’t zg. Then, [zg — to]x is x. Thus, VAR yields Jog Ax < T+
[zo — to]x : T. By C-IN*, this may be read let zg : 0p in x <X T F [zg — to]x:
T, that is, again (7).

Draft of May 20, 2003

In either subcase, by (5), by congruence of entailment, and by Lemma 1.5.2,
(7) implies let zg : 0g in C' + [z — to]t : T.

o Case ABS. The rule’s conclusion is let z : Tin C' - Az.t : T — T'. Its
premise is C' -t : T (8). We may assume, w.l.0.g., that z is distinct from zg
and does not occur free within to or og (9). Applying the induction hypothesis
to (8) yields let zg : o¢ in C' F [z9 — to]t : T/, which, by ABS, implies
let z:Tin (let zg : g in C) F Az.[zg = to]t : T — T'. By (9) and C-LETLET,
this may be written let zg : g in (let z: Tin C) I [zg > to](Az.t) : T — T'.

o Case App. By the induction hypothesis, by App, and by C-INAND.

o Case LET. The rule’s conclusion is let z : VX [C1].T; in Cy + let z =
ty in ty : To, where X; = ftv(C,Ty). Its premises are C; F t; : Ty (10) and
Cy F ty : T2 (11). We may assume, w.l.o.g., that z is distinct from zy and
does not occur free within tg or oy (12). We may also assume, w.l.0.g., X; #
ftv(oo) (13). Applying the induction hypothesis to (10) and (11) respectively
yields let zg : 0¢ in C7 F [ZO = to]t1 Ty (14) and let zg : 09 in Cs F [ZO =
to]ts : T2 (15). Applying LET to (14) and (15) produces let z : VV]let z; :
op in Cl].Tl in let zg : 0g in Cy [ZO d to](let Z=1%t; in tg) 1 To (16) Now,
we have

let Zgp 00,2 VXl[C’l].Tl in 02

let zo : 09;z : VXy[let zg : 09 in C1].T1 in Cy (17)
= letz:VXi[let zg : og in C1].T1;2p : 09 in Cy (18)
IF letz:VV [let zg : 0g in C1].T1;20 : 0p in C2 (19)

where (17) follows from (13), (3), and C-LETDuUP; (18) follows from (12) and
C-LETLET; and (19) is by Lemma 1.3.25. Thus, applying Lemma 1.5.2 to (16)
yields let zg : 09;z : VX1 [C1].T1 in Cy F [zg — to](let z=t; in to) : Ts.

o Case SuB. By the induction hypothesis, by SuB, and by C-INAND*.

o Case EXISTS. The rule’s conclusion is 3X.C' F t : T. Its premises are C +
t : T (20) and X # ftv(T) (21). We may assume, w.l.o.g., X # ftv(og) (22).
Applying the induction hypothesis to (20) yields let zg : o¢ in C' F [zg + to]t :
T, which, by (21) and EXISTS, implies 3X.let zg : ¢ in C'F [zg — to]t : T (23).
By (22) and C-INEX, (23) is let zg : g9 in IX.C' F [z > to]t : T.]

LEMMA: let z : \V’X[[[tz . T2]]].T2 in [[tl : Tl]] entails [[[Z = tz]tl : Tl]]. O

Before going on, let us give a few definitions and formulate several require-
ments. First, we must define an initial environment 'y, which assigns a type
scheme to every constant. A couple of requirements must be made to ensure

that 'y is consistent with the semantics of constants, as specified by 2.
Second, we must extend constraint generation and well-typedness to configu-
rations, as opposed to programs, since reduction operates on configurations.

1.7 Type soundness 65

Last, we must formulate a restriction to tame the interaction between side
effects and let-polymorphism, which is unsound if unrestricted.

DEFINITION: Let 'y be an environment whose domain is the set of constants
Q. We require ftv(Ly) = @, fpi(Ty) = @, and ATy = true. We refer to [y as
the initial typing environment. |

DEFINITION: Let ref be an isolated, invariant type constructor of signature
* = *. A store type M is a finite mapping from memory locations to types. We
write ref M for the environment that maps m to ref M (m) when m is in the
domain of M. Assuming dom(u) and dom (M) coincide, the constraint [u : M]
is defined as the conjunction of the constraints [u(m) : M(m)], where m
ranges over dom(p). Under the same assumption, the constraint [t/p : T/M]
is defined as [t : T] A [: M]. A configuration t/u is well-typed if and only
if there exist a type T and a store type M such that dom(u) = dom (M) and
the constraint let Tp;ref M in [t/u : T/M] is satisfiable. O

The type refT is the type of references (that is, memory locations) that
store data of type T. It must be invariant in its parameter, reflecting the fact
that references may be read and written.

A store is a complex object: it may contain values that indirectly refer to
each other via memory locations. In fact, it is a representation of the graph
formed by objects and pointers in memory, which may contain cycles. We rely
on store types to deal with such cycles. In the definition of well-typedness,
the store type M imposes a constraint on the contents of the store—the value
w(m) must have type M (m)—but also plays the role of a hypothesis: by
placing the constraint [t/u : T/M] within the context let ref M in [], we give
meaning to free occurrences of memory locations within [t/u : T/M], and
stipulate that it is valid to assume that m has type M (m). In other words, we
essentially view the store as a large, mutually recursive binding of locations
to values. Since no satisfiable constraint may have a free program identifier
(Lemma 1.3.31), every well-typed configuration must be closed. The context
let Ty in [] gives meaning to occurrences of constants within [t/ : T/M].

We now define a relation between configurations that plays a key role in the
statement of the subject reduction property. The point of subject reduction is
to guarantee that well-typedness is preserved by reduction. However, such a
simple statement is too weak to be amenable to inductive proof. Thus, for the
purposes of the proof, we must be more specific. To begin, let us consider the
simpler case of a pure semantics, that is, a semantics without stores. Then,
we must state that if an expression t has type T under a certain constraint,
then its reduct t’ has type T under the same constraint. In terms of generated
constraints, this statement becomes: let I'y in [t : T] entails let T'g in [t’ : T].

Draft of May 20, 2003

Let us now return to the general case, where a store is present. Then, the
statement of well-typedness for a configuration t/u involves a store type M
whose domain is that of u. So, the statement of well-typedness for its reduct
t'/p' must involve a store type M’ whose domain is that of p'—which is
larger if allocation occurred. The types of existing memory locations must
not change: we must request that M and M’ agree on dom(M), that is, M’
must extend M. Furthermore, the types assigned to new memory locations in
dom(M")\ dom (M) might involve new type variables, that is, variables that do
not appear free in M or T. We must allow these variables to be hidden—that
is, existentially quantified—otherwise the entailment assertion cannot hold.
These considerations lead us to the following definition:

DEFINITION: t/p C t'/u' holds if and only if, for every type T and for every
store type M such that dom(u) = dom (M), there exist a set of type variables
Y and a store type M’ such that ¥ # ftv(T, M) and ftv(M') C YU ftv(M) and
dom(M'") = dom(p') and M' extends M and

let To;ref M in [t/p: T/M]
Ik 3Y.let Do;ref M'in [t'/p' - T/M']

The relation C is intended to express a connection between a configuration
and its reduct. Thus, subject reduction may be stated as: (—») C (C), that
is, C is indeed a conservative description of reduction. |

We have introduced an initial environment I'g and used it in the definition
of well-typedness, but we haven’t yet ensured that the type schemes assigned
to constants are an adequate description of their semantics. We now formu-
late two requirements that relate I'g with 2. They are specializations of
the subject reduction and progress properties to configurations that involve
an application of a constant. They represent proof obligations that must be

discharged when concrete definitions of Q, —6>, and [y are given.

DEFINITION: We require (i) (—6>) C (B); and (ii) if the configuration
cvy ... vg/p (where k& > 0) is well-typed, then either it is reducible, or
cvy ... Vg is a value. i

The last point that remains to be settled before proving type soundness
is the interaction between side effects and let-polymorphism. The following
example illustrates the problem:

let r = ref Az.z in let _= (r := Az.(z + 1)) in !r true

This expression reduces to true + 1, so it must not be well-typed. Yet, if
natural type schemes are assigned to ref, !, and := (see Example 1.9.5), then

1.7 Type soundness 67

it is well-typed with respect to the rules given so far, because r receives the
polymorphic type scheme VX.ref (X — X), which allows writing a function of
type int — int into r and reading it back with type bool — bool. The
problem is that let-polymorphism simulates a textual duplication of the let-
bound expression ref A\z.z, while the semantics first reduces it to a value m,
causing a new binding m — Az.z to appear in the store, then duplicates the
address m. The new store binding is not duplicated: both copies of m refer to
the same memory cell. For this reason, generalization is unsound in this case,
and must be restricted. Many authors have attempted to come up with a sound
type system that accepts all pure programs and remains flexible enough in the
presence of side effects (Tofte, 1988; Leroy, 1992). These proposals are often
complex, which is why they have been abandoned in favor of an extremely
simple syntactic restriction, known as the value restriction (Wright, 1995).

DEFINITION: A program satisfies the value restriction if and only if all subex-
pressions of the form let z = t; in t, are in fact of the form let z = vy in t,.
In the following, we assume that either all constants have pure semantics, or
all programs satisfy the value restriction. |

Put slightly differently, the value restriction states that only values may be
generalized. This eliminates the problem altogether, since duplicating values
does not affect a program’s semantics. Note that any program that does not
satisfy the value restriction can be turned into one that does and has the same
semantics: it suffices to change let z = t; in ts into (Az.ts) t; when t; is not
a value. Of course, such a transformation may cause the program to become
ill-typed. In other words, the value restriction causes some perfectly safe pro-
grams to be rejected. In particular, as stated above, it prevents generalizing
applications of the form c vy ... vi, where ¢ is a destructor of arity k. This
is excessive, because many destructors have pure semantics; only a few, such
as ref, allocate new mutable storage. Furthermore, we use pure destructors
to encode numerous language features (Section 1.9). Fortunately, it is easy
to relax the restriction to allow generalizing not only values, but also a more
general class of nonexpansive expressions, whose syntax guarantees that such
expressions cannot allocate new mutable storage (that is, ezpand the domain
of the store). The term nonezpansive was coined by Tofte (1988). Nonexpan-
sive expressions may include applications of the form c t; ... ty, where cis a
pure destructor of arity k£ and ti,...,t; are nonexpansive. Experience shows
that this slightly relaxed restriction is acceptable in practice. Some other im-
provements to the value restriction exist; see e.g. Exercise (Garrigue, 2002).
Another frequent limitation of the value restriction are constructor functions,
that is, functions that only build values, which are treated as ordinary func-
tions and not as constructors, and their applications are not considered to be

Draft of May 20, 2003

values. For instance, in the expression let £ = c v in let z = f w in t where
c is a constructor of arity 2, the partial application ¢ v bound to f is a con-
structor function (of arity 1), but £ w is treated as a regular application and
cannot be generalized. Technically, the effect of the (strict) value restriction
is summarized by the following result.

LemMA: Under the value restriction, the production £ ::= let z = € in t
may be suppressed from the grammar of evaluation contexts (Figure 1-1)
without altering the operational semantics. O

We are done with definitions and requirements. We now come to the bulk
of the type soundness proof.

THEOREM [SUBJECT REDUCTION]: (—) C (C). |

Proof: Because — and — are the smallest relations that satisfy the rules
of Figure 1-2, it suffices to prove that C satisfies these rules as well. We remark
that if, for every type T, [t : T] IF [t : T]] holds, then t/u C t'/u holds. (Take
Y = @ and M’ = M and use the fact that entailment is a congruence to check
that the conditions of Definition 1.7.5 are met.) We make use of this fact in
cases R-BETA and R-LET below.

o Case R-BETA. We have

[(Az.t) v:T]
I ([Azt : X = T] A [v: X]) (1)
. (letz:Xin[t: TJA[v:X]) (2)
I.letz : V[[v: X]].Xin [t : T] (3)
[[z +— v]t : T] (4)

T 1

where (1) is by definition of constraint generation; (2) is by Lemma 1.6.5; (3)
is by C-LETAND; (4) is by Lemma 1.7.2 and C-Ex*.

o Case R-LET. We have

[letz=vint:T]
= letz:VX[[v:X]]Xin[t:T] (1)
IF [z — v]t:T] (2)

where (1) is by definition of constraint generation and (2) is by Lemma 1.7.2.
o Case R-DELTA. This case is exactly requirement (i) in Definition 1.7.6.
o Case R-EXTEND. Our hypotheses are t/pu C t'/u' (1) and dom(u") #
dom(p') (2) and range(pn') # dom(p' \ p) (3). Because dom(p) must be
a subset of dom(u'), it is also disjoint with dom(p'). Our goal is t/pup” C
t'/p'p" (4). Thus, let us introduce a type T and a store type of domain

1.7 Type soundness 69

dom(pp'), or (equivalently) two store types M and M" whose domains are
respectively dom(p) and dom(u”). By (1), there exist type variables Y and
a store type M' such that Y # ftv(T,M) (5) and ftv(M') C YU ftv(M)
and dom(M') = dom(p') and M' extends M (6) and let Tg;ref M in [t/p :
T/M] IF 3¥.let To;ref M' in [t'/p' : T/M']. We may further require, w.l.o.g.,
Y # ftu(M") (7). Let us now add the conjunct let To;ref M in [u” : M"]
to each side of this entailment assertion. On the left-hand side, by C-INAND
and by Definition 1.7.4, we obtain let T'o;ref M in [t/up” : T/MM"] (8).
On the right-hand side, by (5), (7), C-EXAND, and C-INAND, we obtain
3¥.let Ty in (let ref M' in [t'/p' = T/M'] Alet ref M in [@ M"]) (9).
Now, recall that M’ extends M (6) and, furthermore, (3) implies fpi([p'" :
M"]) # dpi(M'\ M) (10). By (10), C-INAND*, and C-INAND, (9) is
equivalent to 3IY.let To;ref M in ([t'/p' = T/M'] A" : M"]), that is,
AV.let To;ref M’ in [t'/p/'p” : T/M'M"] (11). Thus, we have established
that (8) entails (11). Let us now place this entailment assertion within
the constraint context let refM" in []. On the left-hand side, because
fpi(To, M, M") = @ and dpi(M") N dpi(Ty, M) C dom(p")N(QU dom(p)) =
@, C-LETLET applies, yielding let o;ref MM" in [t/pp' : T/MM"] (12).
On the right-hand side, by (7), C-INEX, and by analogous reasoning, we ob-
tain 3Y.let To;ref M'M" in [t/ /p/p"" - T/M'M"] (13). Thus, (12) entails (13).
Given (5), (7), given fto(M'M") C YU fto(MM"), and given that M'M"
extends M M", this establishes the goal (4).

o Case R-CONTEXT. The hypothesis is t/pu C t'/u'. The goal is E[t]/p E
E[t']/u'. Because —» relates closed configurations only, we may assume that
the configuration £[t]/p is closed, so the memory locations that appear free
within £ are members of dom(u). Let us now reason by induction on the
structure of £.

Subcase € = []. The hypothesis and the goal coincide.

Subcase € = & t1. The induction hypothesis is &1[t]/p T E[t']/p (1).
Let us introduce a type T and a store type M such that dom (M) = dom(p).
Consider the constraint let I'o;ref M in [E[t]/p : T/M] (2). By definition of
constraint generation, C-EXAND, C-INEX, and C-INAND, it is equivalent to

3X.(let To;ref M in [E1[t]/p : X — T/M] Alet To;ref M in [tq1 : X]) (3)

where X & ftv(T,M) (4). By (1), there exist type variables ¥ and a store
type M’ such that Y # ftv(X,T,M) (5) and ftv(M') C YU ftv(M) (6) and
dom(M'") = dom(p') and M' extends M and (3) entails

IX.(3V.let To; ref M in [E1[t']/1 : X — T/M'] A let To; ref M in [ty : X]) (7).

We pointed out earlier that the memory locations that appear free in t; are
members of dom (M), which implies let ref M in [t1 : X] = let ref M’ in [tq :

Draft of May 20, 2003

X] (8). By (5), C-EXAND, (8), C-INAND, and by definition of constraint
generation, we find that (7) is equivalent to

3xY.let Do;ref M in ([E1[t"] : X = T] A [t1 : X] A [= M']) (9).

(4), (5) and (6) imply X & fto(M"). Thus, by C-INEX and C-EXAND, (9) may
be written

JV.let To;ref M in (3X.([E1[t"] : X = T]A[t1 : X]) A [’ : M']),
which, by definition of constraint generation, is
3Y.let To; ref M in [E[t']/p' : T/M'] (10).

Thus, we have proved that (2) entails (10). By Definition 1.7.5, this establishes
Elt)/p C £}/

Subcase £ = v £ . Analogous to the previous subcase.

Subcase &€ = let z = & in t;. The induction hypothesis is & [t]/p C
E1[t']/p" (1). This subcase is particularly interesting, because it is where
let-polymorphism and side effects interact. In the previous two subcases, we
relied on the fact that the Y quantifier, which hides the types of the memory
cells created by the reduction step, commutes with the connectives 3 and
A introduced by application contexts. However, it does not in general (left-
)commute with the let connective (Example 1.3.28). Fortunately, under the
value restriction, this subcase never arises (Lemma 1.7.8). By Definition 1.7.7,
this subcase may arise only if all constants have pure semantics, which implies
u = = @. Then, we have

let Ty in [E]t] - T]

let To;z : VX[[E1[t] : X]].X in [ty : T] (2
let To;z : VX[let Tg in [E1[t] : X]].Xin [t1 : T] (3
let To;z : VX[let Tg in [E1[t'] : X]].Xin [t1 : T] (4
let T in [Et'] : T] (5

where (2) is by definition of constraint generation; (3) follows from ftv(I'g) =
fri(Cy) = @ and C-LerDup; (4) follows from (1), specialized to the case of a
pure semantics; and (5) is obtained by performing these steps in reverse. O

EXERCISE [RECOMMENDED, %% |: Try to carry out the last subcase of the
above proof in the case of an impure semantics and in the absence of the value
restriction. Find out why it fails. Show that it succeeds if Y is assumed to be
empty. Use this fact to prove that generalization is still safe when restricted to
nonexpansive expressions, provided (i) evaluating a nonexpansive expression

1.7 Type soundness 71

cannot cause new memory cells to be allocated, (ii) nonexpansive expres-
sions are stable by substitution of values for variables, and (iii) nonexpansive
expressions are preserved by reduction. |

Subject reduction ensures that well-typedness is preserved by reduction.

LEMMA: Let t/p — t'/p. If t/p is well-typed, then so is t'/p’. o

Proof: Assume t/p — t'/p’ (1) and t/p is well-typed (2). By (2) and
Definition 1.7.4, there exist a type T and a store type M such that dom(u) =
dom(M) and the constraint let To;ref M in [t/u : T/M] (3) is satisfiable.
By Theorem 1.7.9 and Definition 1.7.5, (1) implies that there exist a set of
type variables Y and a store type M’ such that dom(M') = dom(u') (4) and
the constraint (3) entails 3Y.let Do;ref M in [t'/u' : T/M'] (5). Because (3)
is satisfiable, so is (5), which implies that let To;ref M’ in [t'/p' : T/M'] is
satisfiable (6). By (4) and (6) and Definition 1.7.4, t'/u’ is well-typed. O

Let us now establish the progress property.

LeEMMA: If t; to is well-typed, then t;/p and to/p are well-typed. If 1let z =
ty in to/p is well-typed, then t1 /p is well-typed. O

THEOREM [PROGRESS|: If t/u is well-typed, then either it is reducible, or t
is a value. O

Proof: The proof is by induction on the structure of t.
o Case t = z. Well-typed configurations are closed: this case cannot occur.
o Case t = m. t is a value.
o Case t = c. By requirement (ii) of Definition 1.7.6.
o Case t = Az.t;. t is a value.

o Case t = t1 t2. By Lemma 1.7.12, t,/u is well-typed. By the induction
hypothesis, either it is reducible, or t; is a value. If the former, by R-CONTEXT
and because every context of the form &£ ts is an evaluation context, the
configuration t/p is reducible as well. Thus, let us assume t; is a value. By
Lemma 1.7.12, to/p is well-typed. By the induction hypothesis, either it is
reducible, or to is a value. If the former, by R-CONTEXT and because every
context of the form t; &—where t; is a value—is an evaluation context, the
configuration t/u is reducible as well. Thus, let us assume ty is a value. Let
us now reason by cases on the structure of t;.

Subcase t1 = z. Again, this subcase cannot occur.

Subcase t; = m. Because t/p is well-typed, a constraint of the form
let To;ref M in (3X.(m < X — TA [tz : X]) A [p : M]) must be satisfi-
able. This implies that m is a member of dom (M) and that the constraint

Draft of May 20, 2003

ref M (m) < X — T is satisfiable. Because the type constructors ref and — are
incompatible, this is a contradiction. So, this subcase cannot occur.

Subcase t1 = Az.t}. By R-BETA, t/u is reducible.

Subcase t1 = c vy ... vg. Then, t is of the form c v; ... vg41. The result
follows by requirement (ii) of Definition 1.7.6.

o Case t = let z=t; in ty. By Lemma 1.7.12, t1/p is well-typed. By the
induction hypothesis, either t;/u is reducible, or t; is a value. If the former,
by R-CONTEXT and because every context of the form let z = £ in ty is
an evaluation context, the configuration t/p is reducible as well. If the latter,
then t/p is reducible by R-LET.]

We may now conclude:

THEOREM |[TYPE SOUNDNESS|: Well-typed source programs do not go
wrong.]

Proof: We say that a source program t is well-typed if and only if the configu-
ration t/@ is well-typed, that is, if and only if 3X.let T'g in [t : X] = true holds.
By Lemma 1.7.11, all reducts of t/& are well-typed. By Theorem 1.7.13, none
is stuck. ad

Let us recall that this result holds only if the requirements of Definition 1.7.6
are met. In other words, some proof obligations remain to be discharged when

concrete definitions of Q, i), and Ty are given. This is illustrated by several
examples in the next section.

Constraint solving

We have introduced a parameterized constraint language, given equivalence
laws that describe the interaction between its logical connectives, and ex-
ploited them to prove theorems about type inference and type soundness,
which are valid independently of the nature of primitive constraints—the so-
called predicate applications. However, there would be little point in proposing
a parameterized constraint solver, because much of the difficulty of designing
an efficient constraint solver precisely lies in the treatment of primitive con-
straints and in its interaction with let-polymorphism. For this reason, in this
section, we focus on constraint solving in the setting of an equality-only free
tree model. Thus, the constraint solver developed here allows performing type
inference for HM(=) (that is, for Damas and Milner’s type system) and for
its extension with recursive types. Of course, some of its mechanisms may
be useful in other settings. Other constraint solvers used in program analysis
or type inference are described e.g. in (Aiken and Wimmers, 1992; Niehren,

1.8 Constraint solving 73

Miiller, and Podelski, 1997; Fahndrich, 1999; Melski and Reps, 2000; Miiller,
Niehren, and Treinen, 2001; Pottier, 2001b; Nielson, Nielson, and Seidl, 2002;
McAllester, 2002, 2003).

We begin with a rule-based presentation of a standard, efficient first-order
unification algorithm. This yields a constraint solver for a subset of the
constraint language, deprived of type scheme introduction and instantiation
forms. On top of it, we build a full constraint solver, which corresponds to the
code that accompanies this chapter.

Unification

Unification is the process of solving equations between terms. We now present
a unification algorithm due to Huet (1976) as a (nondeterministic) system of
constraint rewriting rules. The specification is almost the same in the case
of finite and regular tree models: only one rule, which implements the occurs
check, must be removed in the latter case. In other words, the algorithm works
with possibly cyclic terms, and does not rely in an essential way on the occurs
check. In order to accurately reflect the behavior of the actual algorithm, which
relies on a wunion-find data structure (Tarjan, 1975), we modify the syntax of
constraints by replacing equations with multi-equations. A multi-equation is
an equation that involves an arbitrary number of types, as opposed to exactly
two.

DEFINITION: Let there be, for every kind x and for every n > 1, a predi-
cate =, of signature k" = -, whose interpretation is (n-ary) equality. The

predicate constraint =i T; ... T, is written Ty = ... = T,, and called a
multi-equation. We consider the constraint true as a multi-equation of length
0. In the following, we identify multi-equations up to permutations of their
members, so a multi-equation e of kind x may be viewed as a finite multi-
set of types of kind k. We write € = € for the multi-equation obtained by

concatenating € and €. O

Thus, we are interested in the following subset of the constraint language:

U:=true|false|e |[UAU | XU

Equations are replaced with multi-equations; no other predicates are available.
Type scheme introduction and instantiation forms are absent.

DEFINITION: A multi-equation is standard if and only if its variable members
are distinct and it has at most one nonvariable member. A constraint U is
standard if and only if every multi-equation inside U is standard and every
variable that occurs (free or bound) in U is a member of at most one multi-
equation inside U. O

Draft of May 20, 2003

A union-find algorithm maintains equivalence classes (that is, disjoint sets)
of variables, and associates, with each class, a descriptor, which in our case
is either absent or a nonvariable term. Thus, a standard constraint represents
a state of the union-find algorithm. A constraint that is not standard may
be viewed as a superposition of a state of the union-find algorithm, on the
one hand, and of control information, on the other hand. For instance, a
multi-equation of the form ¢ = T; = T, where T; and T, are nonvariable
terms, may be viewed, roughly speaking, as the equivalence class ¢ = Ty,
together with a pending request to solve Ty = T» and to update the class’s
descriptor accordingly. Because multi-equations encode both state and control,
our specification of unification is rather high-level. It would be possible to
give a lower-level description, where state (standard conjunctions of multi-
equations) and control (pending binary equations) are distinguished.

DEFINITION: Let U be a conjunction of multi-equations. Y is dominated by X
with respect to U (written: Y <y X) if and only if U contains a conjunct of
the form X = F'T = ¢, where Y € fto(T). U is cyclic if and only if the graph of
<y exhibits a cycle. |

The specification of the unification algorithm consists of a set of con-
straint rewriting rules, given in Figure 1-11. Rewriting is performed modulo
a-conversion, modulo permutations of the members of a multi-equation, mod-
ulo commutativity and associativity of conjunction, and under an arbitrary
context. The specification is nondeterministic: several rule instances may be
simultaneously applicable.

S-EXAND is a directed version of C-EXAND, whose effect is to float up all
existential quantifiers. In the process, all multi-equations become part of a
single conjunction, possibly causing rules whose left-hand side is a conjunc-
tion of multi-equations, namely S-Fusk and S-CYCLE, to become applicable.
S-FUsk identifies two multi-equations that share a common variable X, and
fuses them. The new multi-equation is not necessarily standard, even if the
two original multi-equations were. Indeed, it may have repeated variables or
contain two nonvariable terms. The purpose of the next few rules, whose left-
hand side consists of a single multi-equation, is to deal with these situations.
S-STUTTER eliminates redundant variables. It only deals with variables, as
opposed to terms of arbitrary size, so as to have constant time cost. The
comparison of nonvariable terms is implemented by S-DECOMPOSE and S-
CLASH. S-DECOMPOSE decomposes an equation between two terms whose
head symbols match. It produces a conjunction of equations between their
subterms, namely X = T. Only one of the two terms remains in the original
multi-equation, which may thus become standard. The terms X are copied—
there are two occurrences of X on the right-hand side. For this reason, we

1.8 Constraint solving

(El)_(Ul) A U2 E')_((Ul A U2) (S—EXAND)
if X # ftv(Us)

X=e=¢ (S-Fuse

X=¢ (S-STUTTER

=TAFX=¢ (S-DECOMPOSE

XKEX=T,AFT,...X...T,, =¢) (S-NaME-1
if T; %V/\X%ftv(Tl,...,Tn,e)

false (S-CLaAsH)
if £ F

true (S-SINGLE)
ifTgV

U A true U (S-TRUE)
U false (S-CyCLE)

if the model is syntactic and U is cyclic

Ufalse] false (S-FaIL)
if U #]

Figure 1-11: Unification

require them to be type variables, as opposed to terms of arbitrary size. (We
slightly abuse notation by using X to denote a vector of type variables whose
elements are not necessarily distinct.) By doing so, we allow explicitly rea-
soning about sharing: since a variable represents a pointer to an equivalence
class, we explicitly specify that only pointers, not whole terms, are copied. As
a result of this decision, S-DECOMPOSE is not applicable when both terms at
hand have a nonvariable subterm. S-NAME-1 remedies this problem by intro-
ducing a fresh variable that stands for one such subterm. When repeatedly
applied, S-NAME-1 yields a unification problem composed of so-called small
terms only—that is, where sharing has been made fully explicit. S-CLASH
complements S-DECOMPOSE by dealing with the case where two terms with
different head symbols are equated; in a free tree model, such an equation is
false, so failure is signaled. S-SINGLE and S-TRUE suppress multi-equations of
size 1 and 0, respectively, which are tautologies. S-SINGLE is restricted to non-
variable terms so as not to break the property that every variable is a member

Draft of May 20, 2003

of exactly one multi-equation (Definition 1.8.2). S-CYCLE is the occurs check:
that is, it signals failure if the constraint is cyclic. It is applicable only in the
case of syntactic unification, that is, when ground types are finite trees. It is
a global check: its left-hand side is an entire conjunction of multi-equations.
S-FaAiL propagates failure; I/ ranges over unification constraint contexts.
The constraint rewriting system in Figure 1-11 enjoys the following prop-
erties. First, rewriting is strongly normalizing, so the rules define a (nonde-
terministic) algorithm. Second, rewriting is meaning-preserving. Third, every
normal form is either false or of the form 3X.U, where U is satisfiable. The
latter two properties indicate that the algorithm is indeed a constraint solver.

LeEMMA: The rewriting system — is strongly normalizing. O
LeEMmMA: Uy — U, implies Uy = Us. O

LeEMMA: Every normal form is either false or of the form X'[U], where X is an
existential constraint context, U is a standard conjunction of multi-equations
and, if the model is syntactic, U is acyclic. These conditions imply that U is
satisfiable. O

A constraint solver

On top of the unification algorithm, we now define a constraint solver. Its spec-
ification is independent of the rules and strategy employed by the unification
algorithm. However, the structure of the unification algorithm’s normal forms,
as well as the logical properties of multi-equations, are exploited when per-
forming generalization, that is, when creating and simplifying type schemes.
Like the unification algorithm, the constraint solver is specified in terms of a
reduction system. However, the objects that are subject to rewriting are not
just constraints: they have more complex structure. Working with such richer
states allows distinguishing the solver’s external language—namely, the full
constraint language, which is used to express the problem that one wishes
to solve—and an internal language, introduced below, which is used to de-
scribe the solver’s private data structures. In the following, C' and D range
over external constraints, that is, constraints that were part of the solver’s
input. External constraints are to be viewed as abstract syntax trees, subject
to no implicit laws other than a-conversion. As a simplifying assumption, we
require external constraints not to contain any occurrence of false—otherwise
the problem at hand is clearly false. Internal data structures include unifica-
tion constraints U, as previously studied, and stacks. Stacks form a subset of
constraint contexts, defined on page 24. Their syntax is as follows:

S =11 SIIAC]| SEX]]| Sllet x : ¥X[[]].Tin C] | S[let x : o in []]

1.8 Constraint solving 77

In the second and fourth productions, C' is an external constraint. In the last
production, we require o to be of the form VX[U].X, and we demand o = true.
A stack may be viewed as a list of frames. Frames may be added and deleted
at the inner end of a stack, that is, near the hole of the constraint context that
it represents. We refer to the four kinds of frames as conjunction, ewvistential,
let, and environment frames, respectively. A state of the constraint solver is
a triple S;U; C, where S is a stack, U is a unification constraint, and C' is an
external constraint. The state S;U; C is to be understood as a representation
of the constraint S[U A C]. The notion of a-equivalence between states is
defined accordingly. In particular, one may rename type variables in dtv(S),
provided U and C' are renamed as well. In short, the three components of
a state play the following roles. C' is an external constraint that the solver
intends to examine next. U is the internal state of the underlying unification
algorithm: one might think of it as the knowledge that has been obtained so
far. S tells where the type variables that occur free in U and C' are bound,
associates type schemes with the program variables that occur free in C, and
records what should be done after C' is solved. The solver’s initial state is
usually of the form [];true; C, where C' is the external constraint that one
wishes to solve—that is, whose satisfiability one wishes to determine. For
simplicity, we make the (unessential) assumption that states have no free
type variables.

The solver consists of a (nondeterministic) state rewriting system, given
in Figure 1-12. Rewriting is performed modulo a-conversion. S-UNIFY makes
the unification algorithm a component of the constraint solver, and allows the
current unification problem U to be solved at any time. Rules S-EX-1 to S-
Ex-4 float existential quantifiers out of the unification problem into the stack,
and through the stack up to the nearest enclosing let frame, if there is any, or to
the outermost level, otherwise. Their side-conditions prevent capture of type
variables, and may always be satisfied by suitable a-conversion of the left-hand
state. If S;U;C is a normal form with respect to the above five rules, then
every type variable in dtv(S) is either universally quantified at a let frame, or
existentially bound at the outermost level. (Recall that, by assumption, states
have no free type variables.) In other words, provided these rules are applied
in an eager fashion, there is no need for existential frames to appear in the
machine representation of stacks. Instead, it suffices to maintain, at every let
frame and at the outermost level, a list of the type variables that are bound
at this point; and, conversely, to annotate every type variable in dtv(S) with
an integer rank, which allows telling, in constant time, where the variable is
bound: type variables of rank 0 are bound at the outermost level, and type
variables of rank k& > 1 are bound at the k' let frame down in the stack S.
The code that accompanies this chapter adopts this convention. Ranks were

Draft of May 20, 2003

S;U;C
S;3XU;C

S[EX.[) A C]

Sllet x : VX[3V.[]].T in C]
Sllet x : o in IX.[]

S;U;T; =Ts
S;U;x<T
S;U;Cy N Cy
S;U;3X.C

S;Uslet x : VX[D].T in C

S A C];U; true
Sllet x : VX[[]].T in C]; U; true

Sllet x : VXY[[]].Xin C;Y =Z = e AU;true

Sllet x : VXY[[]].X in C|;Y = e AU; true
Sllet x : VXY[[]].X in C]; U; true
Sllet x : VX[[]]-X in C]; Uy A Us;true

Slletx : o in []]; U; true

Figure 1-12: A constraint solver

S;U"C

ifU — U’

SER {5050

if X # ftv(C)

S[EX.([J A C))

if X # ftu(C)

Sllet x : VXY[[]].T in C]

if ¥ # ftu(T)

S[EAX.let x : o in []]

if X # flu(o)

S;U ATy = Ta;true
S;U;S(x) XT

S[[] A 02]; U; Cl
SEL[LU;C

if X # fto(U)

Sllet x : VX[[]].T in C];U; D
if X # fto(U)

S;U;C

Sllet x : VXX[[]].X in CJ;

U ANX =T;true

X g fo(U,T)ATEZY

Sllet x : VXY[[]].0(X) in C;
YAZ=06(c) NO(U); true
FY#ZAO=[Y 2]

Sllet x : VX[[]].X in C];€ A U true
ifYZ XU ftu(e,U)

S[AY.let x : VX[[]].X in C; U; true
if ¥ # ftv(C) A 3X.U determines Y
Sllet x : VX[Uz] X in []]; Uy; C
it X # ftv(Ur) A 3IX.Uz = true

S;U; true

(S-UNiry)
(S-Ex-1)
(S-Ex-2)
(S-Ex-3)
(S-Ex-4)

(S-Sowve-EqQ
(S-Sowve-Ip
(S-SOLVE-AND

(S-SoLve-EX
(S-SoLvE-LET)
(S-Pop-AND)

(S-NAME-2)

(S-COMPRESS)
(S-UNNAME)
(S-LETALL)
(S-Pop-LET)

(S-Pop-ENvV)

1.8 Constraint solving 79

initially described in (Rémy, 1992a), and also appear in (McAllester, 2003).

Rules S-SOLVE-EQ to S-SOLVE-LET encode an analysis of the structure of
the third component of the current state. There is one rule for each possible
case, except false, which by assumption cannot arise, and true, which is dealt
with further on. S-SOLVE-EQ discovers an equation and makes it available to
the unification algorithm. S-SOLVE-ID discovers an instantiation constraint
x < T and replaces it with o < T, where the type scheme o = S(x) is the type
scheme carried by the nearest environment frame that defines x in the stack
S. It is defined as follows:

S[IACl(x)

_ SEX](=)

Sllet y = VX[[]].T in C](x)
Sllety :oin []](x)

Sllet x : o in []](x)

If x € dpi(S) does not hold, then S(x) is undefined and the rule is not applica-
ble. If it does hold, then the rule may always be made applicable by suitable
a-conversion of the left-hand state. Please recall that, if o is of the form
VX[U].X, where X # ftv(T), then o < T stands for 3X.(U AX = T). The process
of constructing this constraint is informally referred to as “taking an instance
of ¢”. It involves taking fresh copies of the type variables X, of the unification
constraint U, and of the body X. In the worst case, this process is just as ineffi-
cient as textually expanding the corresponding let construct in the program’s
source code, and leads to exponential time complexity (Mairson, Kanellakis,
and Mitchell, 1991). In practice, however, the unification constraint U is often
compact, because it was simplified before the environment frame let x : ¢ in [|
was created. which is why the solver usually performs well. (The creation of
environment frames, performed by S-Pop-LET, is discussed below.) S-SOLVE-
AND discovers a conjunction. It arbitrarily chooses to explore the left branch
first, and pushes a conjunction frame onto the stack, so as to record that the
right branch should be explored afterwards. S-SOLVE-EX discovers an exis-
tential quantifier and enters it, creating a new existential frame to record its
existence. Similarly, S-SOLVE-LET discovers a let form and enters its left-hand
side, creating a new let frame to record its existence. The choice of examining
the left-hand side first is not arbitrary. Indeed, examining the right-hand side
first would require creating an environment frame—but environment frames
must contain simplified type schemes of the form VX[U].X, whereas the type
scheme VX[D].T is arbitrary. In other words, our strategy is to simplify type
schemes prior to allowing them to be copied by S-SOLVE-ID, so as to avoid any
duplication of effort. The side-conditions of S-SOLVE-EX and S-SOLVE-LET
may always be satisfied by suitable a-conversion of the left-hand state.

Draft of May 20, 2003

Rules S-SOLVE-EQ to S-SOLVE-LET may be referred to as forward rules,
because they “move down into” the external constraint, causing the stack to
grow. This process stops when the external constraint at hand becomes true.
Then, part of the work has been finished, and the solver must examine the
stack in order to determine what to do next. This task is performed by the last
series of rules, which may be referred to as backward rules, because they “move
back out”, causing the stack to shrink, and possibly scheduling new external
constraints for examination. These rules encode an analysis of the structure
of the innermost stack frame. There are three cases, corresponding to con-
junction, let, and environment frames. The case of existential stack frames
need not be considered, because rules S-EX-2 to S-EX-4 allow either fusing
them with let frames or floating them up to the outermost level, where they
shall remain inert. S-POP-AND deals with conjunction frames. The frame is
popped, and the external constraint that it carries is scheduled for exami-
nation. S-PoP-ENV deals with environment frames. Because the right-hand
side of the let construct at hand has been solved—that is, turned into a uni-
fication constraint U—it cannot contain an occurrence of x. Furthermore,
by assumption, do is true. Thus, this environment frame is no longer useful:
it is destroyed. The remaining rules deal with let frames. Roughly speak-
ing, their purpose is to change the state S[let x : VX[[]].T in C];U;true into
Sllet x : VX[U].T in []];true; C, that is, to turn the current unification con-
straint U into a type scheme, turn the let frame into an environment frame,
and schedule the right-hand side of the let construct (that is, the external
constraint C') for examination. In fact, the process is more complex, because
the type scheme VX[U].T must be simplified before becoming part of an envi-
ronment frame. The simplification process is described by rules S-NAME-2 to
S-PopP-LET. In the following, we refer to type variables in X as young and to
type variables in dtv(S) \ X as old. The former are the universal quantifiers of
the type scheme that is being created; the latter are its free type variables.

S-NAME-2 ensures that the body T of the type scheme that is being created
is a type variable, as opposed to an arbitrary term. If it isn’t, then it is
replaced with a fresh variable X, and the equation X = T is added so as to
recall that X stands for T. Thus, the rule moves the term T into the current
unification problem, where it potentially becomes subject to S-NAME-1. This
ensures that sharing is made explicit everywhere. S-COMPRESS determines
that the (young) type variable Y is an alias for the type variable Z. Then,
every free occurrence of Y other than its defining occurrence is replaced with
Z. In an actual implementation, this occurs transparently when the union-find
algorithm performs path compression (Tarjan, 1975, 1979), provided we are
careful never to create a link from a variable to a variable of higher rank. This
requires making the unification algorithm aware of ranks, but is otherwise

1.8 Constraint solving 81

easily achieved. S-UNNAME determines that the (young) type variable Y has
no occurrences other than its defining occurrence in the current type scheme.
(This occurs, in particular, when S-COMPRESS has just been applied.) Then,
Y is suppressed altogether. In the particular case where the remaining multi-
equation € has cardinal 1, it may then be suppressed by S-SINGLE. In other
words, the combination of S-UNNAME and S-SINGLE is able to suppress young
unused type variables as well as the term that they stand for. This may,
in turn, cause new type variables to become eligible for elimination by S-
UNNAME. In fact, assuming the current unification constraint is acyclic, an
inductive argument shows that every young type variable may be suppressed
unless it is dominated either by X or by an old type variable. (In the setting
of a regular tree model, it is possible to extend the rule so that young cycles
that are not dominated either by X or by an old type variable are suppressed
as well.) S-LETALL is a directed version of C-LETALL. It turns the young
type variables Y into old variables. How to tell whether 3X.U determines Y
is discussed later (see Lemma 1.8.7). Why S-LETALL is an interesting and
important rule will be explained shortly. S-POP-LET is meant to be applied
when the current state has become a normal form with respect to S-UNIFY, S-
NAME-2, S-COMPRESS, S-UNNAME, and S-LETALL, that is, when the type
scheme that is about to be created is fully simplified. It splits the current
unification constraint into two components Uy and Uy, where U; is made up
entirely of old variables—as expressed by the side-condition X # ftv(U;)—
and U, constrains young variables only—as expressed by the side-condition
3IX.Us = true. Please note that Us may still contain free occurrences of old type
variables, so the type scheme VX[Us].X that appears on the right-hand side is
not necessarily closed. It is not obvious why such a decomposition must exist;
the proof of Lemma 1.8.11 sheds more light on this issue. Let us say, for now,
that S-LETALL plays a role in guaranteeing its existence, whence part of its
importance. Once the decomposition U; A U, is obtained, the behavior of S-
Pop-LET is simple. The unification constraint U; concerns old variables only,
that is, variables that are not quantified in the current let frame; thus, it need
not become part of the new type scheme, and may instead remain part of the
current unification constraint. This is justified by C-LETAND and C-INAND*
(see the proof of Lemma 1.8.10) and corresponds to the difference between
HMX-GEN’ and HMX-GEN discussed in Section 1.4. The unification constraint
Us, on the other hand, becomes part of the newly built type scheme VX[Us].X.
The property 3X.Us = true guarantees that the newly created environment
frame meets the requirements imposed on such frames. Please note that, the
more type variables are considered old, the larger U; may become, and the
smaller Us,. This is another reason why S-LETALL is interesting: by allowing
more variables to be considered old, it decreases the size of the type scheme

Draft of May 20, 2003

VX[Us].X, making it cheaper to take instances of.

To complete our description of the constraint solver, there remains to ex-
plain how to decide when 3IX.U determines Y, since this predicate occurs in
the side-condition of S-LETALL. The following lemma describes two impor-
tant situations where, by examining the structure of an equation, it is possible
to discover that a constraint C' determines some of its free type variables Y
(Definition 1.3.26). In the first situation, the type variables Y are equated with
or dominated by a distinct type variable X that occurs free in C'. In that case,
because the model is a free tree model, the values of the type variables Y are
determined by the value of X—they are subtrees of it at specific positions.
For instance, X = Y; — Yo determines Y;Yy, while 3Y;.(X = Y; — Ys) de-
termines Y. In the second situation, the type variables Y are equated with
a term T, all of whose free type variables are free in C. Again, the value of
the type variables Y is then determined by the values of the type variables
ftv(T)—indeed, the term T itself defines a function that maps the latter to
the former. For instance, X = Y; — Y, determines X, while 3Y;.(X =Y; — Y»)
does not. In the second situation, no assumption is in fact made about the
model. Please note that X = Y; — Y5 determines Y;Y, and determines X, but
does not simultaneously determine XY;Ys.

LEMMA: Let X # Y. Assume either € is X = €', where X ¢ XY and Y C fiv(€),

oreis Y=T=¢, where ftv(T) # XY. Then, 3X.(C A €) determines Y.]

Proof: Let X # Y (1). Let ¢ + def T in IX.(C A€) (2) and ¢ F
def T'in 3X.(C' A€) (3), where ¢ and ¢’ coincide outside of Y. We may assume,
w.l.o.g., X # ftv(D) (4). By (2), (4), CM-Exists, and CM-AND, we obtain
¢1 - def Iin € (5), where ¢ and ¢; coincide outside X. By CM-PREDICATE,
(5) implies that all members of € have the same image through ¢, . Similarly,
exploiting (3) and (4), we find that all members of € have the same image
through ¢!, where ¢' and ¢} coincide outside X. Now, we claim that ¢; and
¢} coincide on Y. Once the claim is established, by (1), there follows that ¢
and ¢ must coincide on Y as well, which is the goal. So, there only remains
to establish the claim; we distinguish two subcases.

Subcase € is X = ¢ and X € XY (6) and Y C ftv(€¢') (7). Because ¢; and
¢} coincide outside XY and by (6), we have ¢1(X) = ¢} (X). As a result, all
members of ¢’ have the same image through ¢; and ¢}. In a free tree model,
where decomposition is valid, a simple inductive argument shows that ¢; and
¢} must coincide on ftv(e"), hence—by (7)—also on Y.

Subcase € is Y = T = €' and ftv(T) # XY (8). Because ¢; and ¢} coincide
outside XY and by (8), we have ¢;(T) = ¢/ (T). Thus, for every Y € Y, we have
d1(Y) = ¢1(T) = ¢} (T) = ¢, (Y). That is, ¢; and ¢ coincide on Y.]

Thanks to Lemma 1.8.7, a straightforward implementation of S-LETALL

1.8 Constraint solving 83

comes to mind. The problem is, given a constraint 3X.U, where U is a standard
conjunction of multi-equations, to determine the greatest subset Y of X such
that (X \ Y).U determines Y. By the first part of the lemma, it is safe for Y
to include all members of X that are directly or indirectly dominated (with
respect to U) by some free variable of 3X.U. Those can be found, in time
linear in the size of U, by a top-down traversal of the graph of <. By the
second part of the lemma, it is safe to close Y under the closure law X €
XNMVY Y=<y X=Y€Y) = X eV That is, it is safe to also include all
members of X whose descendants (with respect to U) have already been found
to be members of Y. This closure computation may be performed, again in
linear time, by a bottom-up traversal of the graph of <. When U is acyclic,
it is possible to show that this procedure is complete, that is, does compute
the greatest subset Y that meets our requirement. This is the topic of the
following exercise.

EXERCISE [%%, -|: Assuming U is acyclic, prove that the above proce-
dure computes the greatest subset Y of X such that (X \ Y).U determines Y.
In the setting of a regular tree model, exhibit a satisfiable constraint U such
that the above procedure is incomplete. Can you define a complete procedure
in that setting? O

The above discussion has shown that when Y and Z are equated, if Y is
young and Z is old, then S-LETALL allows making Y old as well. If binding
information is encoded in terms of integer ranks, as suggested earlier, then
this remark may be formulated as follows: when Y and Z are equated, if the
rank of Y exceeds that of Z, then it may be decreased so that both ranks
match. As a result, it is possible to attach ranks with multi-equations, rather
than with variables. When two multi-equations are fused, the smaller rank is
kept.

S-SOovE-LET and S-NAME-2 to S-Pop-LET are unnecessarily complex
when x is assigned a monotype T, rather than an arbitrary type scheme
VX[D].T. In that case, the combined effect of these rules may be obtained
directly via the following two new rules, which may be implemented in a more
efficient way:

S;Usletx:TinC — S[EX[;UAX=T;letx:XinC
(S-NAME-2-MONO)

if X ¢ fto(U,T,C) ATV
S;Usletx:XinC — Slletx:Xin[]|;U;C (S-SoLvE-LET-MONO)

If T isn’t a variable, it is replaced with a fresh variable X, together with the
equation X = T. This corresponds to the effect of S-NAME-2. Then, we directly

Draft of May 20, 2003

create an environment frame for x, without bothering to create and discard a
let frame, since there is no way the type scheme X may be further simplified.

Let us now state and establish the properties of the constraint solver. First,
the reduction system is terminating, so it defines an algorithm.

LeEMMA: The reduction system — is strongly normalizing. O

Second, every rewriting step preserves the meaning of the constraint that
the current state represents. We recall that the state S;U;C is meant to
represent the constraint S[U A C].

LemMmaA: S;U;C — S U';C" implies S[UAC] = S'[U' A C'].

Proof: By examination of every rule.
o Case S-UNIFY. By Lemma 1.8.5.
o Case S-Ex-1, S-EX-2, S-SowveE-EX. By C-EXAND.
o Case S-EX-3. By C-LETEX.
o Case S-Ex-4. By C-INEX.
o Case S-SOLWVE-EQ, S-Por-AND. By C-Dup.

o Case S-SOLVE-ID. Because o is of the form VX[U].X, we have fpi(o) = @.
The result follows by C-INID.

o Case S-SOLVE-AND. By C-ANDAND.
o Case S-SOLVE-LET. By C-LETAND.

o Case S-NAME-2. By Definition 1.3.21 and C-NAMEEQ, X ¢ ftv(U,T) im-
plies true IF VX[U].T = VXX[U A X = T].X. The result follows by Lemma 1.3.22.

o Case S-COMPRESS. Let § = [Y — Z]. By Definition 1.3.21 and C-
NAMEEQ, Y # Z implies true IF VXY[Y = Z = e AU]X = VXY[YAZ =
0(e) AG(U)].0(X). The result follows by Lemma 1.3.22.

o Case S-UNNAME. Using Lemma 1.3.18, it is straightforward to check
that Y & ftv(e) implies 3Y.(Y = €¢) = e. The result follows by C-EXAND and
C-LETEX.

o Case S-LETALL. By C-LETALL.
o Case S-PoP-LET. By C-LETAND and C-INAND*.
o Case S-Pop-ENv. By C-IN*, recalling that 3o must be true.

Last, we classify the normal forms of the reduction system:

LEMMA: A normal form for the reduction system — is one of (i) S;U;x < T,
where x ¢ dpi(S); (ii) S;false; true; or (iii) X'; U; true, where A is an existential
constraint context and U a satisfiable conjunction of multi-equations. |

1.8 Constraint solving 85

Proof: Because, by definition, S;U;false is not a valid state, a normal form
for S-Sowve-EqQ, S-SOLVE-ID, S-SOLVE-AND, S-SOLVE-EX, and S-SOLVE-
LET must be either an instance of the left-hand side of S-SoLvEe-ID, with
x ¢ dpi(S), which corresponds to case (i), or of the form S;U;true. Let us
consider the latter case. Because S;U;true is a normal form with respect to
S-UNIFY, by Lemma 1.8.6, U must be either false of the form X'[U’'], where
U’ is a standard conjunction of multi-equations and, if the model is syntactic,
U’ is acyclic. The former case corresponds to (ii); thus, let us consider the
latter case. Because S; X'[U'];true is a normal form with respect to S-EX-
1, the context X must in fact be empty, and U’ is U. If S is an existential
constraint context, then we are in situation (iii). Otherwise, because S; U;true
is a normal form with respect to S-Ex-2, S-EX-3, and S-EX-4, the stack S
does not end with an existential frame. Because S;U;true is a normal form
with respect to S-POP-AND and S-PoP-ENV, S must then be of the form
S'[let x : VX[[]].T in C]. Because S;Ujtrue is a normal form with respect to
S-NAME-2, T must be a type variable X. Let us write U as U; A Us, where
X # ftv(Uy), and where U; is maximal for this criterion. Then, consider a
multi-equation € € U. By the first part of Lemma 1.8.7, if one variable member
of € is free (that is, outside X), then 3X.U determines all other variables in
ftu(e). Because S;U;true is a normal form with respect to S-LETALL, all
variables in ftv(e) must then be free (that is, outside X). By definition of
Ui, this implies € € U;. By contraposition, for every multi-equation € € Us,
all variable members of € are in X. Furthermore, let us recall that Us is a
standard conjunction of multi-equations and, if the model is syntactic, U, is
acyclic. We let the reader check that this implies 3X.Us = true; the proof is a
slight generalization of the last part of that of Lemma 1.8.6. Then, S;U;true
is reducible via S-Pop-LET. This is a contradiction, so this last case cannot
arise. O

In case (i), the constraint S[UAC] has a free program identifier x, so it is not
satisfiable. In other words, the source program contains an unbound program
identifier. Such an error could of course be detected prior to constraint solving,
if desired. In case (ii), the unification algorithm failed. By Lemma 1.3.30, the
constraint S[U A C] is then false. In case (iii), the constraint S[U A C] is
equivalent to X[U], where U is satisfiable, so it is satisfiable as well. Thus,
each of the three classes of normal forms may be immediately identified as
denoting success or failure. Thus, Lemmas 1.8.10 and 1.8.11 indeed prove that
the algorithm is a constraint solver.

Draft of May 20, 2003 1 ML

From MUL-the-calculus to ML-the-programming-language

In this section, we explain how to extend the framework developed so far
to accommodate operations on values of base type (such as integers), pairs,
sums, references, and recursive function definitions. Then, we describe more
complex extensions, namely algebraic data type definitions, pattern matching,
and type annotations. Last, the issues associated with recursive types are
briefly discussed. Exceptions are not discussed; the reader is referred to (TAPL
Chapter 14).

Simple extensions

Many features of ML-the-programming-language may be introduced into ML-

the-calculus by introducing new constants and extending 2 and Ty appro-
priately. In each case, it is necessary to check that the requirements of Def-
inition 1.7.6 are met, that is, the new initial environment faithfully reflects
the nature of the new constants as well as the behavior of the new reduction
rules. Below, we describe several such extensions in isolation.

EXERCISE [INTEGERS, RECOMMENDED, %% |: Integer literals and integer
addition have been introduced and given an operational semantics in Exam-
ples 1.2.1, 1.2.2 and 1.2.4. Let us now introduce an isolated type constructor
int of signature x and extend the initial environment I'y with the bindings
f @ int, for every integer n, and + : int — int — int. Check that these
definitions meet the requirements of Definition 1.7.6. O

EXERCISE [BOOLEANS, RECOMMENDED, %k, -|: Booleans and condition-
als have been introduced and given an operational semantics in Exercise 1.2.6.
Introduce an isolated type constructor bool to represent Boolean values and
explain how to extend the initial environment. Check that your definitions
meet the requirements of Definition 1.7.6. What is the constraint generation
rule for the syntactic sugar if to then t; else t2? a

EXERCISE [PAIRS, Yk, -|: Pairs and pair projections have been introduced
and given an operational semantics in Examples 1.2.3 and 1.2.5. Let us now
introduce an isolated type constructor x of signature * ® x = %, covariant
in both of its parameters, and extend the initial environment I'y with the
following bindings:

(,): VEYX =Y XxY

m o VXY.XXY—=X

my : VXY XXY—=Y

Check that these definitions meet the requirements of Definition 1.7.6.

1.9 From ML-the-calculus to ML-the-programming-language 87

EXERCISE [SUMS, %k, -]: Sums have been introduced and given an oper-
ational semantics in Example 1.2.7. Let us now introduce an isolated type
constructor + of signature x ® * = %, covariant in both of its parameters, and
extend the initial environment I'g with the following bindings:

inj; : VXYX—=X+Y
inj, : VXY.Y - X+Y
case: VXYZ.X4+Y) > X—Z) > (Y—2Z) —>1Z

Check that these definitions meet the requirements of Definition 1.7.6. O

EXERCISE [REFERENCES, %% |: References have been introduced and
given an operational semantics in Example 1.2.9. The type constructor ref has
been introduced in Definition 1.7.4. Let us now extend the initial environment
I’y with the following bindings:

ref : VXX — refX
I': VX.refX = X
=: VXrefX 52X —=X

Check that these definitions meet the requirements of Definition 1.7.6. O

EXERCISE [RECURSION, RECOMMENDED, %%%|: The fixpoint combinator
fix has been introduced and given an operational semantics in Exam-
ple 1.2.10. Let us now extend the initial environment I'y with the following
binding:

fix: VXY.(X=Y) > X—=Y)=>X—Y

Check that these definitions meet the requirements of Definition 1.7.6. Recall
how the letrec syntactic sugar was defined in Example 1.2.10, and check that
this gives rise to the following constraint generation rule:

let I'p in [letrec £ = Az.t; in to : T]
= letTginlet£f:VXY[letf:X— Y;z:Xin [ty : Y]].X = Yin [ta : T]

Note the somewhat peculiar structure of this constraint: the program variable
f is bound twice in it, with different type schemes. The constraint requires
all occurrences of £ within t; to be assigned the monomorphic type X — Y.
This type is generalized and turned into a type scheme before inspecting to,
however, so every occurrence of £ within t, may receive a different type, as
usual with let-polymorphism. A more powerful way of typechecking recursive
function definitions is discussed in Section 1.10 (page 113). O

Draft of May 20, 2003

Algebraic data types

Exercises 1.9.3 and 1.9.4 have shown how to extend the language with binary,
anonymous products and sums. These constructs are quite general, but still
have several shortcomings. First, they are only binary, while we would like to
have k-ary products and sums, for arbitrary k£ > 0. Such a generalization is of
course straightforward. Second, more interestingly, their components must be
referred to by numeric index (as in “please extract the second component of the
pair”), rather than by name (“extract the component named y”). In practice,
it is crucial to use names, because they make programs more readable and
more robust in the face of changes. One could introduce a mechanism that
allows defining names as syntactic sugar for numeric indices. That would help
a little, but not much, because these names would not appear in types, which
would still be made of anonymous products and sums. Third, in the absence
of recursive types, products and sums do not have sufficient expressiveness to
allow defining unbounded data structures, such as lists. Indeed, it is easy to
see that every value whose type T is composed of base types (int, bool, etc.),
products, and sums must have bounded size, where the bound | T | is a function
of T. More precisely, up to a constant factor, we have |int| = |bool| = 1,
| Ty xTo| =14|Ty |4+|T2|, and | Ty + T2 | = 1+ max(| Ty |,| T2 |). The following
example describes another facet of the same problem.

EXAMPLE: A list is either empty, or a pair of an element and another list. So,
it seems natural to try and encode the type of lists as a sum of some arbitrary
type (say, unit), on the one hand, and of a product of some element type
and of the type of lists itself, on the other hand. With this encoding in mind,
we can go ahead and write code—for instance, a function that computes the
length of a list:

letrec length = Al.case 1 (A_.0) (A\z.1 + length (s z))

We have used integers, pairs, sums, and the letrec construct introduced in
the previous section. The code analyzes the list 1 using a case construct.
If the left branch is taken, the list is empty, so 0 is returned. If the right
branch is taken, then z becomes bound to a pair of some element and the
tail of the list. The latter is obtained using the projection operator ms. Its
length is computed using a recursive call to length and incremented by 1.
This code makes perfect sense. However, applying the constraint generation
and constraint solving algorithms eventually leads to an equation of the form
X =Y+ (Z x X), where X stands for the type of 1. This equation accurately
reflects our encoding of the type of lists. However, in a syntactic model, it has
no solution, so our definition of length is ill-typed. It is possible to adopt a free

1.9 From ML-the-calculus to ML-the-programming-language 89

regular tree model,thus introducing equirecursive types into the system (TAPL
Chapter 20); however, there are good reasons not to do so (page 106). O

To work around this problem, ML-the-programming-language offers alge-
braic data type definitions, whose elegance lies in the fact that, while repre-
senting only a modest theoretical extension, they do solve the three problems
mentioned above. An algebraic data type may be viewed as an abstract type
that is declared to be isomorphic to a (k-ary) product or sum type with named
components. The type of each component is declared as well, and may refer
to the algebraic data type that is being defined: thus, algebraic data types are
isorecursive (TAPL Chapter 20). In order to allow sufficient flexibility when
declaring the type of each component, algebraic data type definitions may be
parameterized by a number of type variables. Last, in order to allow the de-
scription of complex data structures, it is necessary to allow several algebraic
data types to be defined at once; the definitions may then be mutually re-
cursive. In fact, in order to simplify this formal presentation, we assume that
all algebraic data types are defined at once at the beginning of the program.
This decision is of course at odds with modular programming, but will not
otherwise be a problem.

In the following, D ranges over a set of data types. We assume that data types
form a subset of type constructors. We require each of them to be isolated
and to have a signature of the form £ = x. Furthermore, ¢ ranges over a set £
of labels, which we use indifferently as data constructors and as record labels.
An algebraic data type definition is either a variant type definition or a record
type definition, whose respective forms are

k
Di%zgi:Ti and Di%HfiCTi.
i=1 i=1

In either case, kK must be nonnegative. If D has signature £ = x, then the type
variables X must have kind . Every T; must have kind . We refer to X as
the parameters and to T (the vector formed by Ty, ..., T;) as the components
of the definition. The parameters are bound within the components, and the
definition must be closed, that is, ftv(T) C X must hold. Last, for an algebraic
data type definition to be valid, the behavior of the type constructor D with
respect to subtyping must match its definition. This requirement is clarified
below.

DEFINITION: Consider an algebraic data type definition whose parameters
and components are respectively X and T. Let X' and T' be their images under
an arbitrary renaming. Then, DX < DX’ I+ T < T’ must hold. O

The above requirement bears on the definition of subtyping in the model.
The idea is, since DX is declared to be isomorphic to (a sum or a product of)

Draft of May 20, 2003 1 ML

T, whenever two types built with D are comparable, their unfoldings should be
comparable as well. The reverse entailment assertion is not required for type
soundness, and it is sometimes useful to declare algebraic data types that
do not validate it—so-called phantomn types (Fluet and Pucella, 2002). Note
that the requirement may always be satisfied by making the type constructor D
invariant in all of its parameters. Indeed, in that case, DX < DX’ entails X = X/,
which must entail T = T since T' is precisely [X — X']T. In an equality free
tree model, every type constructor is naturally invariant, so the requirement
is trivially satisfied. In other settings, however, it is often possible to satisfy
the requirement of Definition 1.9.8 while assigning D a less restrictive variance.
The following example illustrates such a case.

EXAMPLE: Let list be a data type of signature x = x. Let Nil and Cons be
data constructors. Then, the following is a definition of list as a variant type:

listX ~ X (Nil : unit;Cons : X X listX)

Because data types form a subset of type constructors, it is valid to form the
type listX in the right-hand side of the definition, even though we are still in
the process of defining the meaning of list. In other words, data type definitions
may be recursive. However, because = is not interpreted as equality, the type
listX is mot a recursive type: it is nothing but an application of the unary
type constructor list to the type variable X. To check that the definition of list
satisfies the requirement of Definition 1.9.8, we must ensure that

listX < listX' IF unit < unit AX x listX < X’ x listX’'

holds. This assertion is equivalent to listX < listX’ IF X < X'. To satisfy the
requirement, it is sufficient to make list a covariant type constructor, that is,
to define subtyping in the model so that listX < listX’ = X < X’ holds.

Let tree be a data type of signature x = *. Let root and sons be record
labels. Then, the following is a definition of tree as a record type:

tree X & I (root : X; sons : list (tree X))

This definition is again recursive, and relies on the previous definition. Because
list is covariant, it is straightforward to check that the definition of tree is valid
if tree is made a covariant type constructor as well. |

EXERCISE [%%, -|: Consider a nonrecursive algebraic data type definition,
where the variance of every type constructor that appears on the right-hand
side is known. Can you systematically determine, for each of the parameters,
the least restrictive variance that makes the definition valid? Generalize this
procedure to the case of recursive and mutually recursive algebraic data type
definitions. O

1.9 From ML-the-calculus to ML-the-programming-language 91

A prologue is a set of algebraic data type definitions, where each data type is
defined at most once and where each data constructor or record label appears
at most once. A program is a pair of a prologue and an expression. The effect of
a prologue is to enrich the programming language with new constants. That
is, a variant type definition extends the operational semantics with several
injections and a case construct, as in Example 1.2.7. A record type definition
extends it with a record formation construct and several projections, as in
Examples 1.2.3 and 1.2.5. In either case, the initial typing environment I’y is
extended with information about these new constants. Thus, algebraic data
type definitions might be viewed as a simple configuration language that allows
specifying in which instance of ML-the-calculus the expression that follows
the prologue should be typechecked and interpreted. Let us now give a precise
account of this phenomenon.

To begin, suppose the prologue contains the definition DX ~ Zle l; Ty
Then, for each i € {1,...,k}, a constructor of arity 1, named /;, is intro-
duced. Furthermore, a destructor of arity k£ + 1, named casep, is introduced.
When k > 0, it is common to write case t [¢; : t;]¥_, for the application
casep t t; ... t,. The operational semantics is extended with the following
reduction rules, for i € {1,...,k}:

case ({;v) [¢; : vj];?:1 LN ViV (R-ALG-CASE)
For each i € {1,...,k}, the initial environment is extended with the binding
; : VX.T; — DX. It is further extended with the binding casep : VXZ.DX —
(Ty 2 Z) = ...(Ty = Z) = Z.

Now, suppose the prologue contains the definition DX ~ Hle l; : T;. Then,
for each i € {1,...,k}, a destructor of arity 1, named /;, is introduced. Fur-
thermore, a constructor of arity k, named makep, is introduced. It is common
to write t.¢ for the application £ t and, when k > 0, to write {¢; = t;}}_, for
the application makep t; ... tg. The operational semantics is extended with
the following reduction rules, for i € {1,...,k}:

({4 = v o)l v (R-ALc-PRrOJ)
For each i € {1,...,k}, the initial environment is extended with the binding

l; :YX.DX — T;. It is further extended with the binding makep : VX.T; — ... —
T — DX.

ExAMPLE: The effect of defining list (Example 1.9.9) is to make Nil and Cons
data constructors of arity 1 and to introduce a binary destructor casejs;. The
definition also extends the initial environment as follows:

Nil: VX.unit — listX
Cons: VX.X X listX — listX
casejst : VXZ.listX — (unit — Z) - X x listX — 2) —» Z

Draft of May 20, 2003 1 ML

Thus, the value Cons(0,Nil()), an integer list of length 1, has type list int. A
function that computes the length of a list may now be written as follows:

letrec length = Al.case 1 [Nil: A_.0 | Cons : Az.1 § length (m; z)]

Recall that this notation is syntactic sugar for
letrec length = Al.casejst 1 (A_.0) (A\z.1 + length (m z))

The difference with the code in Example 1.9.7 appears minimal: the case
construct is now annotated with the data type list. As a result, the type
inference algorithm employs the type scheme assigned to casejs, which is
derived from the definition of list, instead of the type scheme assigned to the
anonymous case construct, given in Exercise 1.9.4. This is good for a couple
of reasons. First, the former is more informative than the latter, because it
contains the type T; associated with the data constructor ¢;. Here, for instance,
the generated constraint requires the type of z to be X x listX for some X, so a
good error message would be given if a mistake was made in the second branch,
such as omitting the use of m,. Second, and more fundamentally, the code is
now well-typed, even in the absence of recursive types. In Example 1.9.7, a
cyclic equation was produced because case required the type of 1 to be a sum
type and because a sum type carries the types of its left and right branches as
subterms. Here, instead, casejs requires 1 to have type list X for some X. This
is an abstract type: it does not explicitly contain the types of the branches. As
a result, the generated constraint no longer involves a cyclic equation. It is, in
fact, satisfiable; the reader may check that length has type VX.listX — int,
as expected. o

Example 1.9.11 stresses the importance of using declared, abstract types, as
opposed to anonymous, concrete sum or product types, in order to obviate the
need for recursive types. The essence of the trick lies in the fact that the type
schemes associated with operations on algebraic data types implicitly fold and
unfold the data type’s definition. More precisely, let us recall the type scheme
assigned to the i'" injection in the setting of (k-ary) anonymous sums: it is
VXi...Xk.X; = X1 + ...+ Xy, or, more concisely, VX; ... Xp.X; — Zle X;. By
instantiating each X; with T; and generalizing again, we find that a more spe-
cific type scheme is VX.T; — Zle T;. Perhaps this could have been the type
scheme assigned to ¢;7 Instead, however, it is VX.T; — D X. We now realize that
this type scheme not only reflects the operational behavior of the i*" injec-
tion, but also folds the definition of the algebraic data type D by turning the
anonymous sum Zle T;,—which forms the definition’s right-hand side—into
the parameterized abstract type DX—which is the definition’s left-hand side.
Conversely, the type scheme assigned to casep unfolds the definition. The

1.9 From ML-the-calculus to ML-the-programming-language 93

situation is identical in the case of record types: in either case, constructors
fold, destructors unfold. In other words, occurrences of data constructors and
record labels in the code may be viewed as explicit instructions for the type-
checker to fold or unfold an algebraic data type definition. This mechanism is
characteristic of isorecursive types.

EXERCISE [%, —»]: For a fixed k, check that all of the machinery associated
with k-ary anonymous products—that is, constructors, destructors, reduction
rules, and extensions to the initial typing environment—may be viewed as the
result of a single algebraic data type definition. Conduct a similar check in
the case of k-ary anonymous sums. |

EXERCISE [k, »]: Check that the above definitions meet the require-
ments of Definition 1.7.6. |

EXERCISE [k, -]|: For sake of simplicity, we have assumed that data
constructors are always of arity one. It is indeed possible to allow data con-
structors of any arity and define variants as DX ~ Zle ¢; - T;. For instance,
the definition of list could then be listX &~ ¥ (Nil;Cons : X x listX) and for
instance Cons(0,Nil) would be a list value. Make the necessary changes in
the definitions above and check that they still meet the requirements of Defi-
nition 1.7.6. a

In this formal presentation of algebraic data types, we have assumed that all
algebraic data type definitions are known before the program is typechecked.
This simplifying assumption is forced on us by the fact that we interpret
constraints in a fixed model, that is, we assume a fixed universe of types.
In practice, programming languages have module systems, which allow dis-
tinct modules to have distinct, partial views of the universe of types. Then,
it becomes possible for each module to come with its own data type defi-
nitions. Interestingly, it is even possible, in principle, to split the definition
of a single data type over several modules, yielding extensible algebraic data
types. For instance, module A might declare the existence of a parameter-
ized variant type DX, without giving its components. Later on, module B
might define a component £ : T, where ftv(T) C X. Such a definition makes
¢ a unary constructor with type scheme VX.T — DX, as before. It becomes
impossible, however, to introduce a destructor casep, because the definition
of an extensible variant type can never be assumed to be complete—other,
unknown modules might extend it further. To compensate for its absence, one
may supplement every constructor ¢ with a destructor £~!, whose semantics

is given by (=1 (0 v) vy vs — vi v and £ (¢ v) vy vo — vs (' v) when
¢ # ', and whose type scheme is VXZ.DX — (T — Z) — (DX — Z) — Z. When

Draft of May 20, 2003 1 ML

pattern matching is available, £~! may in fact be defined in the language. ML-
the-programming-language does not offer extensible algebraic data types as a
language feature, but does have one built-in extensible variant type, namely
the type exn of exceptions. Thus, it is possible to define new constructors for
the type exn within any module. The price of this extra flexibility is that no
exhaustive case analysis on values of type exn is possible.

One significant drawback of algebraic data type definitions resides in the
fact that a label ¢ cannot be shared by two distinct variant or record type
definitions. Indeed, every algebraic data type definition extends the calculus
with new constants. Strictly speaking, our presentation does not allow a sin-
gle constant ¢ to be associated with two distinct definitions. Even if we did
allow such a collision, the initial environment would contain two bindings for
c, one of which would then become inaccessible. This phenomenon arises in
actual implementations of ML-the-programming-language, where a new alge-
braic data type definition may hide some of the data constructors or record
labels introduced by a previous definition. An elegant solution to this lack of
expressiveness is discussed in Section 1.11.

Pattern matching

Our presentation of products, sums and algebraic data types has remained
within the setting of ML-the-calculus: that is, data structures have been built
out of constructors, while the case analysis and record access operations have
been viewed as destructors. Some syntactic sugar has been used to recover
standard notations. The language is now expressive enough to allow defin-
ing and manipulating complex data structures, such as lists and trees. Yet,
experience shows that programming in such a language is still somewhat cum-
bersome. Indeed, case analysis and record access are low-level operations: the
former allows inspecting a tag and branching, while the latter allows deref-
erencing a pointer. In practice, one often needs to carry out more complex
tasks, such as determining whether a data structure has a certain shape or
whether two data structures have comparable shapes. Currently, the only
way to carry out these tasks is to program an explicit sequence of low-level
operations. It would be much preferable to extend the language so that it be-
comes directly possible to describe shapes, called patterns, and so that check-
ing whether a patterns matches a value becomes an elementary operation.
ML-the-programming-language offers this feature, called pattern matching.
Although pattern matching may be added to ML-the-calculus by introduc-
ing a family of destructors, we rather choose to extend the calculus with a
new match construct, which subsumes the existing let construct. This ap-
proach appears somewhat simpler and more powerful. We now carry out this

1.9 From ML-the-calculus to ML-the-programming-language

Patterns: | Pattern matching
Wildcard
Variable [=v]=02
cp; .- Data [cp; ... P, CVL ... V]
ce Qt Ak =alc) =[PP vi]®... 0 [p = Vi
PAP Conjunction [Py APy V] =[p, = V] @ [P, = V]
L PVp Disjunction [Py VP v =[p, = v]®[p, = V]

P1
P1

Figure 1-13: Patterns and pattern matching

extension.

Let us first define the syntax of patterns (Figure 1-13) and describe (in-
formally, for now) which values they match. To a pattern p, we associate a
set of defined program variables dpi(p), whose definition appears in the text
that follows. The pattern p is well-formed if and only if dpi(p) is defined.
To begin, the wildcard _ is a pattern, which matches every value and binds
no variables. We let dpi(_) = @. Although the wildcard may be viewed as
an anonymous variable, and we have done so thus far, it is now simpler to
view it as a distinct pattern. A program variable z is also a pattern, which
matches every value and binds z to the matched value. We let dpi(z) = {z}.
Next, if c is a constructor of arity k, then cp; ... p, is a pattern, which
matches c vy ... vy when p, matches v; for every i € {1,...,k}. We let
dpi(cp, ... p,) = dpi(p;)W... " dpi(p,). That is, the pattern c p, ... p; is
well-formed when p,,...,p, define disjoint sets of variables. This condition
rules out nonlinear patterns such as (z,z). Defining the semantics of such a
pattern would require a notion of equality at every type, which introduces vari-
ous complications, so it is commonly considered ill-formed. The pattern p, Ap,
matches all values that both p, and p, match. It is commonly used with p, a
program variable: then, it allows examining the shape of a value and binding a
name to it at the same time. Again, we define dpi(p, Ap,) = dpi(p,)W dpi(p,).
The pattern p, V p, matches all values that either p; or p, matches. We define
dpi(p, V py) = dpi(p,) = dpi(p,). That is, the pattern p; V p, is well-formed
when p, and p, define the same variables. Thus, (inj, z)V (inj, z) is a well-
formed pattern, which binds z to the component of a binary sum, without
regard for its tag. However, (inj; z1) V (inj, 2z2) is ill-formed, because one
cannot statically predict whether it defines z; or z,.

Let us now formally define whether a pattern p matches a value v and
how the variables in dpi(p) become bound to values in the process. This is
done by introducing a generalized substitution, written [p — v], which is either

Draft of May 20, 2003

Expressions: | Reduction rules

match t with (p; . t;)% ;

k
match v with (p; . t;)¥ , — Plp; — v]t:
Evaluation Contexts: i=1 _
match & with (p; . t;)k (R-MATCH)

i=1

Figure 1-14: Extended syntax and semantics of ML-the-calculus

undefined or a substitution of values for the program variables in dpi(p). If the
former, then p does not match v. If the latter, then p matches v and, for every
z € dpi(p), the variable z becomes bound to the value [p — v]z. Of course,
when p is a variable z, the generalized substitution [z — v] is defined and
coincides with the substitution [z — v], which justifies our abuse of notation.
To construct generalized substitutions, we use two simple combinators. First,
when dpi(p,) and dpi(p,) are disjoint, [p; — vi] ® [p, + va] stands for
the set-theoretic union of [p; — vi] and [p, — vs], if both are defined, and is
undefined otherwise. We use this combinator to ensure that p; matches v; and
p, matches vy and to combine the two corresponding sets of bindings. Second,
when o; and 0, are two possibly undefined mathematical objects that belong
to the same space when defined, 0, @ oy stands for oy, if it is defined, and
for oo otherwise—that is, @ is an angelic choice operator with a left bias. In
particular, when dpi(p,) and dpi(p,) coincide, [p; + v1|®[p, — v2] stands for
[p; + v1], if it is defined, and for [p, + v3] otherwise. We use this combinator
to ensure that p, matches v; or p, matches vy and to retain the corresponding
set of bindings. The full definition of generalized substitutions, which relies on
these combinators, appears in Figure 1-13. It reflects the informal presentation
of the previous paragraph.

Once patterns and pattern matching are defined, it is straightforward to ex-
tend the syntax and operational semantics of ML-the-calculus. We enrich the
syntax of expressions with a new construct, match t with (p, . t;)5_,, where
k > 1. It consists of a term t and a nonempty, ordered list of clauses, each
of which is composed of a pattern p; and a term t;. The syntax of evaluation
contexts is extended as well, so that the term t that is being examined is first
reduced to a value v. The operational semantics is extended with a new rule,
R-MATcH, which states that match v with (p; . t;)¥ | reduces to [p;, — v]t,
where 7 is the least element of {1, ..., k} such that p, matches v;. Technically,
@le[pi > v]t; stands for [p; = v]t1 @ ... @ [p, — v]tk, so that the reduct
is the first term that is defined in this sequence.

As far as semantics is concerned, the match construct may be viewed as a

1.9 From ML-the-calculus to ML-the-programming-language 97

generalization of the let construct. Indeed, let z = t; in ts may now be
viewed as syntactic sugar for match t; with z . ty, that is, a match construct
with a single clause and a variable pattern. Then, R-LET becomes a special
case of R-MATCH.

It is pleasant to introduce some more syntactic sugar. We write A(p,.t;)%_;
for Azmatch z with (p, . t;)%_,, where z is fresh for (p;.t;)%_;. Thus, it be-
comes possible to define functions by cases—a common idiom in ML-the-
programming-language.

ExampLE: Using pattern matching, a function that computes the length of a
list (Example 1.9.11) may now be written as follows:

letrec length = A(Nil _.0| Cons (_,z) .1+ length z)

The second pattern matches a nonempty list and binds z to its tail at the
same time, obviating the need for an explicit application of 7. O

EXERCISE [k, RECOMMENDED, —]: Under the above definition of length,
consider an application of length to the list Cons(0,Nil()). After eliminating
the syntactic sugar, determine by which reduction sequence this expression
reduces to a value. O

Before we can proceed and extend the type system to deal with the new
match construct, we must make two mild extensions to the syntax and meaning
of constraints. First, if o is VX[C].T, where X # ftv(T'), then T' < o stands
for the constraint 3X.(C' AT < T). This relation is identical to the instance
relation (Definition 1.3.3), except the direction of subtyping is reversed. We
extend the syntax of constraints with instantiation constraints of the form
T < x and define their meaning by adding a symmetric counterpart of CM-
INSTANCE. We remark that, when subtyping is interpreted as equality, the
relations ¢ < T and T < ¢ coincide, so this extension is unnecessary in that
particular case. Second, we extend the syntax of environments so that several
successive bindings may share a set of quantifiers and a constraint. That
is, we allow writing VX[C].(x; : T1;...;5%% : Tg) for x1 : VX[C].Ty;.. ;% :
VX[C].T).. From a theoretical standpoint, this is little more than syntactic
sugar; however, in practice, it is useful to implement this new idiom literally,
since it avoids unnecessary copying of the constraint C'.

Let us now extend the type system. For the sake of brevity, we extend
the constraint generation rules only. Of course, it would also be possible to
define corresponding extensions of the rule-based type systems shown earlier,
namely DM, HM(X), and PCB(X). We begin by defining a constraint [T : p]
that represents a necessary and sufficient condition for values of type T to
be acceptable inputs for the pattern p. Its free type variables are a subset of

Draft of May 20, 2003

[T:_] = true
[T:z] = T<z
[T:cpy -..p] = EIX.()E—)ch/\/\fZl [X: :p;l)
[T:pyAp] = [T:p AT :p,]
[T:py Vel = [T:p AT :p,]

[match t with (p;.t;)k , :T] = /\f:1 let VXX [[t : X Alet Z; : X; in [X : p,]).(Z : Xi) in [t; : T]
where Z; = dpi(p;)

Figure 1-15: Constraint generation for patterns and pattern matching

ftu(T), while its free program identifiers are either constructors or program
variables bound by p. It is defined in the upper part of Figure 1-15. The first
rule states that a wildcard matches values of arbitrary type. The second and
third rules govern program variables and constructor applications in patterns.
They are identical to the rules that govern these constructs in expressions
(page 59), except that the direction of subtyping is reversed. In the absence
of subtyping, they would be entirely identical. We write X for X; ...X; and

X > Tfor Xy — ... > X; — T. As usual, the type variables X1, ..., X; must
have kind x and must be distinct and fresh for the equation’s left-hand side.
The last two rules simply distribute the type T to both subpatterns. It is easy
to check that [T : p] is contravariant in T:

LeEMMA: T < TA[T: p] entails [T' : p]. O

This property reflects the fact that T represents the type of an input for the
pattern p. Compare it with Lemma 1.6.3.

ExampLi: Consider the pattern Cons (_,z), which appears in Exam-
ple 1.9.15. We have

[T : Cons (_,z)]

3Z,.([21 — T : Cons] A [Z1 : (_,2)])

EIZl.(Zl — T < Cons A ElZQZg.([[ZQ — 23 — 71 : (',)]] AN [[Zz Z_]] AN [[23 . Z]]))
ElZlZQZg.(Zl — T <ConsAZy = Z3 = 71 X (',) NZs < Z)

where Zy, Zy, Z3 are fresh for T. Let us now place this constraint within the
scope of the initial environment, which assigns type schemes to the construc-
tors Cons and (-,-), and within the scope of a binding of z to some type T'.

1.9 From ML-the-calculus to ML-the-programming-language

We find

let Tginletz: T"in [T : Cons (_, z)]
321Z273.(IX.(Z1 = T < X x listX — listX) A
3Y1Y2.(Z2 — Z3 — 71 S Y =Yy = Y X Yg) N Zs S TI)
= IX(T<IlistXAlistX <T')

where the final simplification relies mainly on C-ARROW, on the correspond-
ing rule for products, and on C-EXTRANS, and is left as an exercise to the
reader. Thus, the constraint states that the pattern matches values that have
type listX (equivalently, values whose type T is a subtype of listX), for some
undetermined element type X, and binds z to values of type list X (equivalently,
values whose type T' is a supertype of listX). O

The above example seems to indicate that the constraint generation rules for
patterns make some sense. Still, the careful reader may be somewhat puzzled
by the third rule, which, compared to its analogue for expressions, reverses
the direction of subtyping, but does not reverse the direction of instantiation.
Indeed, in order for this rule to make sense, and to be sound, we must for-
mulate a requirement concerning the type schemes assigned to constructors.

DEFINITION: A constructor c is invertible if and only if, when X and X' have

length a(c), the constraint let Ty in (X' = T<cAc <X — T) entails X < X'.
In the following, we assume patterns contain invertible constructors only. O

Intuitively, when c is invertible, it is possible to recover the type of every v;
from the type of c vy ... vg, a crucial property for pattern matching to be
possible. Please note that, if I'g(c) is monomorphic, then c is invertible. The
following lemma identifies another important class of invertible constructors.

LEMMA: The constructors of algebraic data types are invertible. |

Proof: Let c be a constructor introduced by the definition of an algebraic data
type D. Let k = a(c). Then, the type scheme Ty(c) is of the form VY.T — DY,
where ¥ are the parameters of the definition and T, a vector of length k,
consists of some of the definition’s components. (More precisely, T contains
just one component in the case of variant types and contains all components
in the case of record types.) Let X and X' have length k. Let vy, T, > DY,
and ¥Y,.T, — DY, be two a-equivalent forms of the type scheme I'y(c), with
Y, # Y, and Y, Y, # fto(X,X',T). The constraint let Ty in (X’ = T < cAc <
X — T) is, by definition, equivalent to X' — T < [y(c)ATy(c) < X — T, that is,
I, (X' 2 T<T, DY) ATV, (T, = DY, <X — T). By C-EXAND and C-
ARROW, this may be written 3¥;¥5.(DY> < T <DY; AX < Ty AT, < X'). Now,

Draft of May 20, 2003 1 ML

by Definition 1.9.8, DY, < DY, entails T, < T;, so the previous constraint
entails 3Y,Y,.(X < X'), that is, X < X'. O

An important class of noninvertible constructors are those associated with
existential type definitions (page 118), where not all quantifiers of the type
scheme Ig(c) are parameters of the type constructor D. For instance, under
the definition D ~ ¢ : IX.X, the type scheme associated with ¢ is VX.X — D.
Then, it is easy to check that ¢ is not invertible. This reflects the fact that it
is not possible to recover the type of v from the type of ¢ v—which must be
D in any case—and explains why existential types require special treatment.

We are now ready to associate a constraint generation rule with the match
construct. It is given in the lower part of Figure 1-15. In the rule’s right-hand
side, we write Z; for the program variables bound by the pattern p;, and we
write X; for a vector of type variables of the same length. The type variables XX;
must have kind x, must be pairwise distinct and must not appear free in the
rule’s left-hand side. Let us now explain the rule. Its right-hand side is a con-
junction, where each conjunct deals with one clause of the match construct,
requiring t; to have type T under certain assumptions about the program
variables Z; bound by the pattern p,. There remains to explain how these as-
sumptions are built. First, as in the case of a 1et construct, we summon a fresh
type variable X and produce [t : X], the least specific constraint that guar-
antees t has type X. Then, reflecting the operational semantics, which feeds
(the value produced by) t into the pattern p;, we feed the type X into p; and
produce let Z; : X; in [X : p,], a constraint that guarantees that X; is a correct
vector of type assumptions for the program variables Z; (see Example 1.9.18).
This explains why we may place [T : t;] within the scope of (Z; : X;). There re-
mains to point out that, as in the case of the let construct, every assignment
of ground types to XX; that satisfies the constraint [t : X]Alet Z; : X; in [X : p;]
is acceptable, so it is valid to universally quantify these type variables. This
allows the program variables Z; to receive polymorphic type schemes when t
itself has polymorphic type.

EXERCISE [%, RECOMMENDED|: We have previously suggested viewing
let z = t; in ty as syntactic sugar for match t; with z.ts, and shown
that the operational semantics validates this view. Check that it is also valid
from a typing perspective. a

The match constraint generation rule, if implemented literally, takes k copies
of the constraint [t : X]. When & is greater than 1, this compromises the linear
time and space complexity of constraint generation. To remedy this problem,
one may modify the rule as follows: replace every copy of [t : X] with z < X
and place the constraint within the context let z : VX[[t : X]].X in [], where z is

1.9 From ML-the-calculus to ML-the-programming-language 101

a fresh program variable. It is not difficult to check that the logical meaning of
the constraint is not affected and that a linear behavior is recovered. In prac-
tice, solving the new constraint requires taking instances of the type scheme
VX[[t : X]]-X, which essentially requires copying [t : X] again—however, an
efficient solver may now simplify this subconstraint before duplicating it.

The following lemma is a key to establishing subject reduction for R-
MatrcH. It relies on the requirement that constructors be invertible.

LEMMA: Assume [p + v] is defined and maps Z to W, where z = dpi(p).
Let Z : T be an arbitrary monomorphic environment of domain z. Then,
let T in ([v:T] Alet Z: Tin [T : p]) entails let Ty in [« : T]. O

We now prove that our extension of ML-the-calculus with pattern match-
ing enjoys subject reduction. We only state that R-MATCH preserves types,
and leave the new subcase of R-CONTEXT, where the evaluation context in-
volves a match construct, to the reader. For this subcase to succeed, the value
restriction (Definition 1.7.7) must be extended to require that either all con-
stants have pure semantics or all match constructs are in fact of the form
match v with (p; . t;)¥

i=1"
THEOREM [SUBJECT REDUCTION]: (R-MatrcH) C (C). O

EXERCISE [%%, -|: For the sake of simplicity, we have omitted the pro-
duction ref p from the syntax of patterns. The pattern ref p matches every
memory location whose content (with respect to the current store) is matched
by p. Determine how the previous definitions and proofs must be extended in
order to accommodate this new production. |

The progress property does mnot hold in general: for instance,
match Nil with (Coms z.z) is well-typed (with type VX.X) but is stuck.
In actual implementations of ML-the-programming-language, such errors are
dynamically detected. This may be considered a weakness of ML-the-type-
system. Fortunately, however, it is often possible to statically prove that a
particular match construct is ezhaustive and cannot go wrong. Indeed, if
match v with (p;.t;)¥, is well-typed, then for every i € {1,...,k}, the
constraint let Iy in ([v : X] A3X.let Z; : Xin [X : p;]), where z; are the program
variables bound by p,, must be satisfiable; that is, v must have some type
that is an acceptable input for p;. This fact yields information about v, from
which it may be possible to derive that v must match one of the patterns p,.

EXAMPLE: Let k = 2, p; = Nil _, and p, = Cons (z1,23). Then, the con-
straints let Ty in 3X.let Z; : X in [X : p;], for i € {1,2}, are both equivalent
(after simplification, when i = 2) to 3Z.X < list Z. Because the type construc-
tor list is isolated, every closed value v whose type X satisfies this constraint

Draft of May 20, 2003

must be an application of Nil or Coms. If the latter, because Cons has type
VX.X x listX — list X, and because the type constructor x is isolated, the argu-
ment to Cons must be a pair. We conclude that v must match either p; or p,,
which guarantees that this match construct is exhaustive and its evaluation
cannot go wrong. a

It is beyond the scope of this chapter to give more details about the check for
exhaustiveness. The reader is referred to (Sekar, Ramesh, and Ramakrishnan,
1995; Le Fessant and Maranget, 2001).

Type annotations

So far, we have been interested in a very pure, and extreme, form of type
inference. Indeed, in ML-the-calculus, expressions contain no explicit type in-
formation whatsoever: it is entirely inferred. In practice, however, it is often
useful to insert type annotations within expressions, because they provide a
form of machine-checked documentation. Type annotations are also helpful
when attempting to trace the cause of a type error: by supplying the type-
checker with (supposedly) correct type information, one runs a better chance
of finding a type inconsistency near an actual programming mistake.

When type annotations are allowed to contain type variables, one must
be quite careful about where (at which program point) and how (existen-
tially or universally) these variables are bound. Indeed, the meaning of type
annotations cannot be made precise without settling these issues. In what fol-
lows, we first explain how to introduce type annotations whose type variables
are bound locally and existentially. We show that extending ML-the-calculus
with such limited type annotations is again a simple matter of introducing
new constants. Then, we turn to a more general case, where type variables
may be explicitly existentially introduced at any program point. We defer the
discussion of universally bound type variables to Section 1.10.

Let a local existential type annotation IX.T be a pair of a set of type vari-
ables X and a type T, where T has kind x, X is considered bound within T,
and X contains ftv(T). For every such annotation, we introduce a new unary
destructor (- : 3X.T). Such a definition is valid only because a type annota-
tion must be closed, that is, does not have any free type variables. We write
(t : 3X.T) for the application ((-: 3X.T)) t. Since a type annotation does not
affect the meaning of a program, the new destructor has identity semantics:

(v:3X.T) vy (R-ANNOTATION)

Its type scheme, however, is not that of the identity, namely VX.X — X: instead,
it is less general, so that annotating an expression restricts its type. Indeed,

1.9 From ML-the-calculus to ML-the-programming-language

we extend the initial environment I'y with the binding

(+:3KT):VXT—>T

EXERCISE [%]: Check that VX.T — T is an instance of VX.X — X in Damas
and Milner’s sense, that is, the former is obtained from the latter via the
rule DM-INST’ given in Exercise 1.2.23. Does this allow arguing that the type
scheme assigned to (- : 3X.T) is sound? Check that the above definitions meet
the requirements of Definition 1.7.6. O

Although inserting a type annotation does not change the semantics of the
program, it does affect constraint generation, hence type inference. We let the
reader check that, assuming X # ftv(t,T’), the following derived constraint
generation rule holds:

let T in [(t: IX.T) : T'] = let T in IX.([t : TJAT L T')

So far, expressions cannot have free type variables, so the hypothesis X #
ftu(t) may seem superfluous. However, we shall soon allow expressions to
contain type annotations with free type variables, so we prefer to make this
condition explicit now. According to this rule, the effect of the type annotation
is to force the expression t to have type T, for some choice of the type variables
X. As usual in type systems with subtyping, the expression’s final type T’
may then be an arbitrary supertype of this particular instance of T. When
subtyping is interpreted as equality, T' and T are equated by the constraint,
so this constraint generation rule may be read: a valid type for (t : IX.T) must
be of the form T, for some choice of the type variables X.

ExAMPLE: In DM extended with integers, the expression (Az.z : int — int)
has most general type int — int, even though the underlying identity func-
tion has most general type VX.X — X, so the annotation restricts its type.
The expression (Az.z 4 1 : 3X.X — X) has type int — int, which is also the
most general type of the underlying function, so the annotation acts merely
as documentation in this case. Note that the type variable X is instantiated to
int by the constraint solver. The expression (Az.(z 1) : 3X.X — int) has type
(int — int) — int because the underlying function has type (int — Y) — Y,
which successfully unifies with X — int by instantiating X to int — int
and Y to int. Last, the expression (Az.(z1) : 3X.int — X) is ill-typed—
even though the underlying expression is well-typed—because the equation
(int — Y) — Y = int — X is unsatisfiable. O

Draft of May 20, 2003

ExamMpPLE: In DM extended with pairs, the expression Az;.Azs.((z1

JX.X), (z2 : 3X.X)) has most general type VXY.X — Y — X X Y. In other words,
the two occurrences of X do not represent the same type. Indeed, one could
just as well have written Az;.Az2.((z1 : 3X.X), (z2 : 3Y.Y)). If one wishes z;
and z, to receive the same type, one must lift the type annotations and merge
them above the pair constructor, as follows: Az;.\zs.((z1,22) : IX.X x X). In
the process, the type constructor x has appeared in the annotation, causing
its size to increase. O

The above example reveals a limitation of this style of type annotations:
by requiring every type annotation to be closed, we lose the ability for two
separate annotations to share a type variable. Yet, such a feature is sometimes
desirable. If the two annotations where sharing is desired are distant in the
code, it may be awkward to lift and merge them into a single annotation; so,
more expressive power is sometimes truly needed.

Thus, we are lead to consider more general type annotations, of the form
(t : T), where T has kind x, and where the type variables that appear within
T are considered free, so that distinct type annotations may refer to shared
type variables. For this idea to make sense, however, it is still necessary to
specify where these type variables are bound. We do so using expressions
of the form 3X.t. Such an expression binds the type variables X within the
expression t, so that all free occurrences of X (where X € X) in type annotations
inside t stand for the same type. Thus, we break the simple type annotation
construct (- : 3X.T) into two more elementary constituents, namely ezistential
type variable introduction 3X.- and type constraint (- : T). Note that both are
new forms of expressions; neither can be encoded by adding new constants to
the calculus, because it is not possible to assign closed type schemes to them.

Technically, allowing expressions to contain type variables requires some
care. Several constraint generation rules employ auxiliary type variables,
which become bound in the generated constraint. These type variables may
be chosen in an arbitrary way, provided they do not appear free in the rule’s
left-hand side—a side-condition intended to avoid inadvertent capture. So far,
this side-condition could be read: the auxiliary type variables used to form the
constraint [t : T must not appear free within T. Now, since type annotations
may contain free type variables, the side-condition becomes: the auziliary type
variables used to form [t : T must not appear free within t or T.

With this extended side-condition in mind, our original constraint genera-
tion rules remain unchanged. We add two new rules to describe how the new
expression forms affect constraint generation:

[FXt:T] = 3XK[t:T] provided X # ftv(T)
[t:7):T] = [t:T]AT<T

1.9 From ML-the-calculus to ML-the-programming-language 105

The effect of these rules is simple. The construct 3X.t is an indication to the
constraint generator that the type variables X, which may occur free within
type annotations inside t, should be existentially bound at this point. The
side-condition X # ftv(T) ensures that quantifying over X in the generated
constraint does not capture type variables in the expected type T. It can always
be satisfied by a-conversion of the expression 3X.t. The construct (t : T) is
an indication to the constraint generator that the expression t should have
type T, and it is treated as such by generating the subconstraint [t : T]. The
expression’s type may be an arbitrary supertype of T, hence the auxiliary
constraint T < T’.

ExampLE: In DM extended with pairs, the expression Azj.Az2.3X.((z1

X), (22 : X)) has most general type VX.X = X — X x X. Indeed, the constraint
generated for this expression contains the pattern 3X.([z1 : X[Az2 : X]A...),
which causes z; and z, to receive the same type. Note that this style is more
flexible than that employed in Example 1.9.28, where we were forced to use a
single, monolithic type annotation to express this sharing constraint. |

REMARK: In practice, a type variable is usually represented as a memory cell
in the typechecker’s heap. So, one cannot say that the source code contains
type variables; rather, it contains mames that are meant to stand for type
variables. Let us write X for such a name, and T for a type made of type
constructors and names, rather than of type constructors and type variables.
Then, our new expression forms are really 3X.t and (t : 7). When the con-
straint generator enters the scope of an introduction form 3X .t, it allocates a
vector of fresh type variables X, and augments an internal environment with
the bindings X ~ X. Because the type variables are fresh, the side-condition
of the first constraint generation rule above is automatically satisfied. When
the constraint generator finds a type annotation (t : 7'), it looks up the in-
ternal environment to translate the type annotation 7" into an internal type
T—which fails if 7' contains a name that is not in scope—and applies the
second constraint generation rule above. O

EXERCISE [k, +|: Let X D ftw(T) and X # ftv(t). Check that the con-
straints [(t : 3X.T) : T'] and [IX.(t : T) : T'] are equivalent. In other words,
the local type annotations introduced earlier may be expressed in terms of the
more complex constructs described above. |

EXERCISE [%%, -|: One way of giving identity semantics to our new type
annotation constructs is to erase them altogether prior to execution. Give
an inductive definition of [t], the expression obtained by removing all type
annotation constructs from the expression t. Check that [t : T] entails [|t] :
T] and explain why this is sufficient to ensure type soundness. O

Draft of May 20, 2003

It is interesting to study how explicit introduction of existentially quantified
type variables interacts with let-polymorphism. The source of their interac-
tion lies in the difference between the constraints let z : VX[3X.C1].T in Cs
and JX.let z : VX[C1].T in Cy, which was explained in Example 1.3.28. In the
former constraint, every free occurrence of z inside C5 causes a copy of IX.Cy
to be taken, thus creating its own fresh copy of X. In the latter constraint,
on the other hand, every free occurrence of z inside C5 produces a copy of
C1. All such copies share references to X, because its quantifier was not dupli-
cated. In the former case, one may say that the type scheme assigned to z is
polymorphic with respect to X, while in the latter case it is monomorphic. As
a result, the placement of type variable introduction expressions with respect
to let bindings in the source code is meaningful: introducing a type variable
outside of a let construct prevents it from being generalized.

ExaMPLE: In DM extended with integers and Booleans, the program let f =
IX.Az.(z : X) in (f 0, f true) is well-typed. Indeed, the type scheme assigned
to f is VX.X — X. However, the program 3X.1let f = Az.(z : X) in (f 0, f true)
is ill-typed. Indeed, the type scheme assigned to £ is X — X; then, no value
of X satisfies the constraints associated with the applications £ 0 and f true.
The latter behavior is observed in Objective Caml, where type variables are
implicitly introduced at the outermost level of expressions:

let £ z = (z:’a) in (f 0, f true);;
This expression has type bool but is here used with type int

More details about the treatment of type annotations in Standard ML, Ob-
jective Caml, and Haskell are given on page 113. |

EXERCISE [%, -»]: Determine which constraints are generated for the two
programs in Example 1.9.33. Check that the former is indeed well-typed, while
the latter is ill-typed. O

Recursive types

We have shown that specializing HM(X) with an equality-only syntactic
model yields HM(=), a constraint-based formulation of Damas and Milner’s
type system. Similarly, it is possible to specialize HM(X) with an equality-
only free regular tree model, yielding a constraint-based type system that may
be viewed as an extension of Damas and Milner’s type discipline with recur-
sive types. This flavor of recursive types is sometimes known as equirecursive,
since cyclic equations, such as X = X — X, are then satisfiable. Our theorems
about type inference and type soundness, which are independent of the model,
remain valid. The constraint solver described in Section 1.8 may be used in

1.10 Universal quantification in constraints 107

the setting of an equality-only free regular tree model: the only difference with
the syntactic case is that the occurs check is no longer performed.

Please note that, although ground types are regular, types remain finite
objects: their syntax is unchanged. The g notation commonly employed to
describe recursive types may be emulated using type equations: for instance,
the notation uX.X — X corresponds, in our constraint-based approach, to the
type scheme VXX = X — X].X.

Although recursive types come for free, as explained above, they have not
been adopted in mainstream programming languages based on ML-the-type-
system. The reason is pragmatic: experience shows that many nonsensical
expressions are well-typed in the presence of recursive types, whereas they
are not in their absence. Thus, the gain in expressiveness is offset by the fact
that many programming mistakes are detected later than otherwise possible.
Consider, for instance, the following 0Caml session:

ocaml -rectypes
let rec map f = function

| O — 0
| x it 1 — (map £ x) :: (map f 1);;
val map : ’a — (’b list as ’b) — (’c list as ’c) = <fun>

This nonsensical variant of map is essentially useless, yet well-typed. Its prin-
cipal type scheme, in our notation, is VXYZ[Y = listYAZ = listZ].X — Y — Z.
In the absence of recursive types, it is ill-typed, since the constraint Y =
listY AZ = listZ is then false.

The need for equirecursive types is usually suppressed by the presence of al-
gebraic data types, which offer isorecursive types, in the language. Yet, they
are still necessary in some situations, such as in Objective Caml’s object-
oriented extension (Rémy and Vouillon, 1998), where recursive object types
are commonly inferred. In order to allow recursive object types while still
rejecting the above variant of map, Objective Caml’s constraint solver imple-
ments a selective occurs check, which forbids cycles unless they involve the
type constructor (-) associated with objects. The corresponding model is a
tree model where every infinite path down a tree must encounter the type
constructor (-) infinitely often.

Universal quantification in constraints

The constraint logic studied so far allows a set of variables X to be existentially
quantified within a formula C. The resulting formula 3X.C receives its stan-
dard meaning: it requires C' to hold for some X. However, we currently have
no way of requiring a formula C' to hold for all X. Is it possible to extend our

Draft of May 20, 2003

logic with universal quantification? If so, what are the new possibilities offered
by this extension, in terms of type inference? The present section proposes
some answers to these questions.

It is worth noting that, although the standard notation for type schemes
involves the symbol V, type scheme introduction and instantiation constraints
do not allow an encoding of universal quantification. Indeed, a universal quan-
tifier in a type scheme is very much like an existential quantifier in a constraint:
this is suggested, for instance, by Definition 1.3.3 and by C-LETEX.

Constraints

We extend the syntax of constraints as follows:
C:=...|VX.C

Universally quantified variables are often referred to as rigid, while existen-
tially quantified variables are known as flezible. The logical interpretation of
constraints (Figure 1-5) is extended as follows:

Vi @K+ t]FdefDinC

X # fu(I)
¢ Fdef T'in VX.C

We let the reader check that none of the results established in Section 1.3
are affected by this addition. Furthermore, the extended constraint language
enjoys the following properties.

(CM-FoORALL)

LeEmMA: VX.C Ik C. Conversely, X # ftv(C) implies C' IF VX.C. O
LeEMMA: X # ftv(Cy) implies VX.(Cy A C2) = (VX.Cy) A Cs. a
LEMMA: VX.VY.C = VXY.C. o

LEMMA: Let X # Y. Then, 3X.VY.C entails VY.3X.C. Conversely, if IY.C' de-
termines X, then VY.3X.C entails IX.VY.C. O

Constraint solving

We briefly explain how to extend the constraint solver described in Section 1.8
with support for universal quantification. (Thus, we again assume an equality-
only free tree model.) Constraint solving in the presence of equations and of
existential and universal quantifiers is known as wnification under a mized
prefiz. It is a particular case of the decision problem for the first-order theory
of equality on trees; see e.g. (Comon and Lescanne, 1989). Extending our
solver is straightforward: in fact, the treatment of universal quantifiers turns

1.10 Universal quantification in constraints

S;U;VX.C SIVX.[;U; C (S-SoLvE-ALL)
if X # fto(U)
S[VKIYZ.[]]; U; true S[AY.VX.3Z.[]}; U; true (S-ALLEX)
if X # YA 3XZ.U determines Y
S[VXX.3V.[]]; U; true false (S-ALL-FaIL-1)
HXZIAX<, ZAZEXT
SIVXX.AV.[]; X =T =€eAU;true false (S-ALL-FaAIL-2)
HXZIATEY

SIVX.3Y.[J]; UL A Us;true S; Uy true (S-Popr-ALL)
if XY # ftv(Ur) A 3Y.Uz = true

Figure 1-16: Solving universal constraints

out to be surprisingly analogous to that of let constraints. To begin, we extend
the syntax of stacks with so-called universal frames:

S = ... | S[VX.[]]

Because existential quantifiers cannot, in general, be hoisted out of universal
quantifiers, rules S-Ex-1 to S-Ex-4 now allow floating them up to the nearest
enclosing let or universal frame, if any, or to the outermost level, otherwise.
Thus, in our machine representation of stacks, where rules S-Ex-1 to S-Ex-4
are applied in an eager fashion, every universal frame carries a list of the type
variables that are existentially bound immediately after it, and integer ranks
count not only let frames, but also universal frames.

The solver’s specification is extended with the rules in Figure 1-16. S-
SOLVE-ALL, a forward rule, discovers a universal constraint and enters it,
creating a new universal frame to record its existence. S-ALLEX exploits
Lemma 1.10.4 to hoist existential quantifiers out of the universal frame. It
is analogous to S-LETALL, and its implementation may rely upon the same
procedure (Exercise 1.8.8). The next two rules detect failure conditions. S-
ALL-FAIL-1 states that the constraint VX.3Y.U is false if the rigid variable
X is directly or indirectly dominated by a free variable Z. Indeed, the value
of X is then determined by that of Z—but a universally quantified variable
ranges over all values, so this is a contradiction. In such a case, X is com-
monly said to escape its scope. S-ALL-FAIL-2 states that the same constraint
is false if X is equated with a nonvariable term. Indeed, the value of X is then

Draft of May 20, 2003

partially determined, since its head constructor is known, which again con-
tradicts its universal status. Last, S-POP-ALL splits the current unification
constraint into two components U; and Us, where U; is made up entirely of
old variables and U, constrains young variables only. This decomposition is
analogous to that performed by S-Pop-LET. Then, it is not difficult to check
that VX.3Y.(U; A Us) is equivalent to Uy. So, the universal frame, as well as
U,, are discarded, and the solver proceeds by examining whatever remains on
top of the stack S.

It is possible to further extend the treatment of universal frames with two
rules analogous to S-CompPRESS and S-UNNAME. In practice, this improves
the solver’s efficiency, and makes it easier to share code between the treatment
of let frames and that of universal frames.

It is interesting to remark that, as far as the underlying unification algo-
rithm is concerned, there is no difference between existentially and universally
quantified type variables. The algorithm solves whatever equations are pre-
sented to it, without inquiring about the status of their variables. Equations
that lead to failure, because a rigid variable escapes its scope or is equated
with a nonvariable term, are detected only when the universal frame is ex-
ited. A perhaps more common approach is to mark rigid variables as such,
allowing the unification algorithm to signal failure as soon as one of the two
error conditions is encountered. In this approach, a rigid variable may success-
fully unify only with itself or with flexible variables fresher than itself. It is
often called a Skolem constructor in the literature (Laufer and Odersky, 1994;
Shields and Peyton Jones, 2002). An interesting variant of this approach ap-
pears in Dowek, Hardin, Kirchner and Pfenning’s treatment of (higher-order)
unification (1995; 1998), where flexible variables are represented as ordinary
variables, while rigid variables are encoded using De Bruijn indices.

The properties of our constraint solver are preserved by this extension: it
is possible to prove that Lemmas 1.8.9, 1.8.10, and 1.8.11 remain valid.

Type annotations, continued

In Section 1.9, we introduced the expression form (t : 3X.T), allowing an ex-
pression t to be annotated with a type T whose free variables X are locally and
existentially bound. It is now natural to introduce the symmetric expression
form (t : VX.T), where T has kind , X is bound within T, and X contains ftv(T),
as before. Its constraint generation rule is as follows:

[(t:VXT):T] = VX[t:TJAIK(T<T) provided X # ftv(t,T')

The first conjunct requires t to have type T for all values of X. Here, the type
variables X are universally bound, as expected. The second conjunct requires

1.10 Universal quantification in constraints 111

T’ to be some instance of the universal annotation VX.T. Since T’ is only a
monotype, it seems difficult to think of another sensible way of constraining
T'. For this reason, the type variables X are still ezistentially bound in the
second conjunct. This makes the interpretation of the universal quantifier in
type annotations a bit more complex than that of the existential quantifier. For
instance, when subtyping is interpreted as equality, the constraint generation
rule may be read: a valid type for (t : VX.T) is of the form T, for some choice
of the type variables X, provided t has type T for all choices of X.

We remark that (t : VX.T) must be a new expression form: it cannot be
encoded by adding new constants to the calculus—whereas (t : 3X.T) could—
because none of the existing constraint generation rules produce universally
quantified constraints. Like all type annotations, it has identity semantics.

What is the use of universal type annotations, compared with existential
type annotations? When a type variable is existentially bound, the typechecker
is free to assign it whatever value makes the program well-typed. As a result,
the expressions (Az.z 4+ 1 : 3X.X — X) and (Az.z : 3X.X — X) are both well-
typed: X is assigned int in the former case, and remains undetermined in the
latter. However, it is sometimes useful to be able to insist that an expression
should be polymorphic. This effect is naturally achieved by using a universally
bound type variable. Indeed, (Az.z+1 : VX.X — X) is ill-typed, because VX.(X =
int) is false, while (Az.z : VX.X = X) is well-typed.

EXERCISE [%]: Write down the constraints 3Z.[(Az.z+1 : VX.X — X) : Z] and
3Z.[(Az.z : VX.X — X) : Z], which tell whether these expressions are well-typed.
Check that the former is false, while the latter is satisfiable. O

A universal type annotation, as defined above, is nothing but a (closed)
Damas-Milner type scheme. Thus, the new construct (t : VX.T) gives us the
ability to ensure that the expression t admits the type scheme VX.T. This
feature is exploited at the module level in ML-the-programming-language,
where it is necessary to check that the inferred type for a module component t
is more general than the type scheme S that appears in the module’s signature.
In our view, this process simply consists in ensuring that (t : 8) is well-typed.

In Section 1.9, we have pointed out that local (that is, closed) type annota-
tions offer limited expressiveness, because they cannot share type variables. To
lift this limitation, we have introduced the expression forms 3X.t and (t : T).
The former binds the type variables X within t, making them available for use
in type annotations, and instructs the constraint generator to existentially
quantify them at this point. The latter requires t to have T. It is natural to
proceed in the same manner in the case of universal type annotations. We now
introduce the expression form VX.t, which also binds X within t, but comes

Draft of May 20, 2003

with a different constraint generation rule:

[VXt:T] = VX3IZJt:ZJA3X[t:T] provided X # ftv(T) AZ & ftu(t)

This rule is a bit more complex than that associated with the expression form
IX.t. Again, this is due to the fact that we do not wish to overconstrain T.
The first exercise below shows that a more naive version of the rule does not
yield the desired behavior. The second exercise shows that this version does.
The third exercise clarifies an efficiency concern.

EXERCISE [%|: Assume that [VX.t : T] is defined as VX.[t : T], provided
X # ftu(T). Write down the constraint [VX.(Az.z : X — X) : Z]. Can you
describe its solutions? Does it have the intended meaning? O

EXERCISE [k |: Let X D ftv(T) and X # ftv(t). Check that the constraints
[(t : VXT) : T'] and [VX.(t : T) : T'] are equivalent. In other words, local
universal type annotations may also be expressed in terms of the more complex
constructs described above. O

EXERCISE [k, »]: The constraint generation rule that appears above
compromises the linear time and space complexity of constraint generation,
because it duplicates the term t. It is possible to avoid this problem, but
this requires a slight generalization of the constraint language. Let us write
let x : VXY[C1].T in Cs for VX.3Y.Cy A def x : VXY[C1].T in Cs. In this extended
let form, the underlined variables X are interpreted as rigid, instead of flexible,
while checking that C; is satisfiable. However, the type scheme associated
with x is not affected. Check that the above constraint generation rule may
now be written as follows:

[VXt:T] = letx:VXZ[[t:Z]].Zinx X T provided Z & ftv(t)

Roughly speaking, the new rule forms a most general type scheme for t,
ensures that the type variables X are unconstrained in it, and checks that T
is an instance of it. Furthermore, it does not duplicate t. To complete the
exercise, extend the specification of the constraint solver (Figures 1-12 and 1-
16), as well as its implementation, to deal with this extension of the constraint
language. O

To conclude, let us once again stress that, if T has free type variables, the
effect of the type annotation (t : T) depends on how and where they are
bound. The effect of how stems from the fact that binding a type variable
universally, rather than existentially, leads to a stricter constraint. Indeed,
we let the reader check that [VX.t : T] entails [3X.t : T], while the converse

1.10 Universal quantification in constraints 113

does not hold in general. The effect of where has been illustrated, in the case
of existentially bound type variables, in Section 1.9. It is due, in that case,
to the fact that let and 3 do not commute. In the case of universally bound
type variables, it may be imputed to the fact that V and 3 do not commute.
For instance, Az.VX.(z : X) is ill-typed, because inside the A-abstraction, the
program variable z cannot be said to have every type. However, VX.\z.(z : X)
is well-typed, because the identity function does have type X — X for every X.

EXERCISE [%|: Write down the constraints JZ.[Az.VX.(z : X) : Z] and
JZ.[VX.Az.(z : X) : Z], which tell whether these expressions are well-typed.
Is the former satisfiable? Is the latter? O

In Standard ML and Objective Caml, the type variables that appear in
type annotations are mplicitly bound. That is, there is no syntax in the
language for the constructs 3X.t and VX.t. When a type annotation (t : T)
contains a free type variable X, a fixed convention tells how and where X is
bound. In Standard ML, X is universally bound at the nearest val binding
that encloses all related occurrences of X (Milner, Tofte, and Harper, 1990).
The 1997 revision of Standard ML (Milner, Tofte, Harper, and MacQueen,
1997b) slightly improves on this situation by allowing type variables to be
ezplicitly introduced at val bindings. However, they still must be universally
bound. In Objective Caml, X is ezistentially bound at the nearest enclosing
toplevel let binding; this behavior seems to be presently undocumented. We
argue that (i) allowing type variables to be implicitly introduced is confusing;
and (i) for expressiveness, both universal and existential quantifiers should
be made available to programmers. Surprisingly, these language design and
type inference issues seem to have received little attention in the literature,
although they have most likely been “folklore” for a long time. Peyton Jones
and Shields (2003) study these issues in the context of Haskell, and concur
with (i). Concerning (ii), they seem to think that the language designer must
choose between existential and universal type variable introduction forms—
which they refer to as “type-sharing” and “type-lambda”—whereas we point
out that they may and should coexist.

Polymorphic recursion

Example 1.2.10 explains how the letrec construct found in ML-the-
programming-language may be viewed as an application of the constant fix,
wrapped inside a normal let construct. Exercise 1.9.6 shows that this gives
rise to a somewhat restrictive constraint generation rule: generalization oc-
curs only after the application of fix is typechecked. In other words, in
letrec f = Az.t; in to, all occurrences of £ within t; must have the same

Draft of May 20, 2003

(monomorphic) type. This restriction is sometimes a nuisance, and seems un-
warranted: if the function that is being defined is polymorphic, it should be
possible to use it at different types even inside its own definition. Indeed, My-
croft (1984) extended Damas and Milner’s type system with a more liberal
treatment of recursion, commonly known as polymorphic recursion. The idea
is to only request occurrences of £ within t; to have the same type scheme.
Hence, they may have different types, all of which are instances of a common
type scheme. It was later shown that well-typedness in Mycroft’s extended
type system is undecidable (Henglein, 1993; Kfoury, Tiuryn, and Urzyczyn,
1993). To work around this stumbling block, one solution is to use a semi-
algorithm, falling back to monomorphic recursion if it does not succeed or
fail in reasonable time. Although such a solution might be appealing in the
setting of an automated program analysis, it is less so in the setting of a
programmer-visible type system, because it may become difficult to under-
stand why a program is ill-typed. Thus, we describe a simpler solution, which
consists in requiring the programmer to explicitly supply a type scheme for
f. This is an instance of a mandatory type annotation.

To begin, we must change the status of fix, because if fix remains a
constant, then f must remain A-bound and cannot receive a polymorphic
type scheme. We turn fix into a language construct, which binds a program
variable £, and annotates it with a DM type scheme. The syntax of values
and expressions is thus extended as follows:

vi=...|fix f:S.Az.t tu=...|fixf:S.Az.t

Please note that f is bound within Az.t. The operational semantics is extended
as follows.

(fixf:8 A zt)v— (let f =fixf:S. Azt inAz.t) v (R-FIxX’)
The type annotation S plays no essential role in the reduction; it is merely
preserved. It is now possible to define letrec f : S = Az.t; in to as syntactic
sugar for let £ = fix £ : S.Az.t; in t,.
We now give a constraint generation rule for fix:

[fixf:SAzt:T] = letf:Sin[Azt:SJAS=T

The left-hand conjunct requires the function Az.t to have type scheme S, under
the assumption that £ has type S. Thus, it is now possible for different occur-
rences of f within t to receive different types. If S is VX.T, where X # ftv(t),
then we write [t : 8] for VX.[t : T]. Indeed, checking the validity of a poly-
morphic type annotation—be it mandatory, as is the case here, or optional,
as was previously the case—requires a universally quantified constraint. The
right-hand conjunct merely constrains T to be an instance of S.

1.10 Universal quantification in constraints 115

Given the definition of letrec £ : S = Az.t; in t2 as syntactic sugar, the
above rule leads to the following derived constraint generation rule for letrec:

[letrecf:S=Az.t;inty:T] = letf:Sin ([Az.t; : S]A [t :T])

This rule is arguably quite natural. The program variable f is assigned the
type scheme S throughout its scope, that is, both inside and outside of the
function’s definition. The function Az.t; must itself have type scheme S. Last,
t2 must have type T, as in every let construct.

EXERCISE [Yk]: Prove that the derived constraint generation rule above is
indeed valid. o

It is straightforward to prove that the extended language still enjoys subject
reduction. The proof relies on the following lemma: if t has type scheme S,
then every instance of S is also a valid type for t.

LEMMA: [t :SJ]AS<TIF [t :T]. |

THEOREM [SUBJECT REDUCTION]: (R-F1x’) C (C). O

The programming language Haskell (Hudak, Peyton Jones, Wadler, Boutel,
Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, Kieburtz, Nikhil,
Partain, and Peterson, 1992) offers polymorphic recursion. Interesting details
about its typing rules may be found in (Jones, 1999).

It is worth pointing out that some restricted instances of type inference
in the presence of polymorphic recursion are decidable. This is typically the
case in certain program analyses, where a type derivation for the program is
already available, and the goal is only to infer extra atomic annotations, such
as binding time or strictness properties. Several papers that exploit this idea
are (Dussart, Henglein, and Mossin, 1995a; Jensen, 1998; Rehof and Fihn-
drich, 2001).

Universal types

ML-the-type-system enforces a strict stratification between types and type
schemes, or, in other words, allows only prenex universal quantifiers inside
types. We have pointed out earlier that there is good reason to do so: type
inference for ML-the-type-system is decidable, while type inference for Sys-
tem F, which has no such restriction, is undecidable. Yet, this restriction comes
at a cost in expressiveness: it prevents higher-order functions from accepting
polymorphic function arguments, and forbids storing polymorphic functions
inside data structures. Fortunately, it is in fact possible to circumvent the
problem by requiring the programmer to supply additional type information.

Draft of May 20, 2003

The approach that we are about to describe is reminiscent of the way alge-
braic data type definitions allow circumventing the problems associated with
equirecursive types (Section 1.9). Because we do not wish to extend the syn-
tax of types with universal types of the form VY.T, we instead allow universal
type definitions, of the form

DX~ VY.T

where D still ranges over data types. If D has signature £ = %, then the type
variables X must have kind &. The type T must have kind . The type variables
X and Y are considered bound within T, and the definition must be closed, that
is, ftv(T) C XY must hold. Last, the variance of the type constructor D must
match its definition—a requirement stated as follows:

DEFINITION: Let DX ~ VY.T and DX ~ VY'.T' be two a-equivalent instances
of a single universal type definition, such that ¥ # fto(T') and Y # ftu(T).
Then, DX < DX’ IF V¥ .3Y.T < T' must hold. O

This requirement is analogous to that found in Definition 1.9.8. The idea
is, if DX and DX’ are comparable, then their unfoldings VY.T and VY .T' should
be comparable as well. The comparison between them is expressed by the
constraint VY'.3Y.T < T', which may be read: every instance of VY.T' is (a
supertype of) an instance of VY.T. Again, when subtyping is interpreted as
equality, the requirement of Definition 1.10.13 is always satisfied; it becomes
nontrivial only in the presence of true subtyping.

The effect of the universal type definition DX ~ VY.T is to enrich the pro-
gramming language with a new construct:

vi=...|packy v t=...|packyt € = ...|packy &

and with a new unary destructor open;. Their operational semantics is as
follows:

open, (pack, v) LA (R-OPEN-ALL)
Intuitively, pack, and open; are the two coercions that witness the isomor-
phism between DX and VY.T. The value packy v behaves exactly like v, except
it is marked, as a hint to the typechecker. As a result, the mark must be
removed using open;, before the value can be used.

What are the typing rules for pack, and open,? In System F, they would
receive types VX.(VY.T) — DX and VX.DX — VY.T, respectively. However, nei-
ther of these is a valid type scheme: both exhibit a universal quantifier under
an arrow.

In the case of packy, which has been made a language construct rather
than a constant, we work around the problem by embedding this universal

1.10 Universal quantification in constraints

quantifier in the constraint generation rule:
[packy, t : T'] = 3X.([t:VL.TJADX<T)

The rule implicitly requires that X be fresh for the left-hand side and that
DX ~ VY.T be (an a-variant of) the definition of D. The left-hand conjunct
requires t to have type scheme VY.T. The notation [t : S| was defined on
page 114. The right-hand conjunct states that a valid type for pack, t is (a
supertype of) DX.

We deal with open,, as follows. Provided X # Y, we extend the initial envi-
ronment I'y with the binding open;, : VX¥.DX — T. We have simply hoisted the
universal quantifier outside of the arrow—a valid isomorphism in System F.

The proof of the subject reduction theorem must be extended with the
following new case:

THEOREM [SUBJECT REDUCTION]: (R-OPEN-ALL) C (E).
Proof: We have

let I'g in Jopeny, (packy v) : To]

let 'y in 3Z.(openy < Z — Ty A [packy v : Z])

let [in 3Z.(3X'Y.(DX' — T < Z — Tp) A IX.([v : VT.T] ADX < 2))

let [in IXX'Y'.([v: VI.T] ADX < DX' AT’ < Ty)

let To in IXYX'Y .([v: VI.IJAT < T'AT < Tp)

let T in IXYX'Y .[v : To]

let I in [[V : To]] 6

T T

where (1) is by definition of constraint generation for applications and for
constants; Z is fresh; (2) is by definition of constraint generation for pack,
and open,, where DX ~ VY.T and DX' ~ VY.’ are two a-equivalent instances
of the definition of D; X, ¥, X, and Y’ are fresh and satisfy Y # ftv(T') and
Y' # fto(T); (3) is by C-EXAND, C-ARROW, and C-EXTRANS, which allows
eliminating Z; (4) is by Definition 1.10.13, Lemma 1.10.1, and C-EXAND; (5)
is by Lemmas 1.10.11 and 1.6.3; (6) is by C-Ex*. O

The proof of (R-CONTEXT) C (C) must also be extended with a new sub-
case, corresponding the new production £ = ... | packy £. If the language
is pure, this is straightforward. In the presence of side effects, however, this
subcase fails, because universal and existential quantifiers in constraints do
not commute. The problem is then avoided by restricting pack;, to values, as
in Definition 1.7.7.

This approach to extending ML-the-type-system with universal (or
existential—see below) types has been studied in (Laufer and Odersky, 1994;

Draft of May 20, 2003

Rémy, 1994; Odersky and Laufer, 1996; Shields and Peyton Jones, 2002).
Laiifer and Odersky have suggested combining universal or existential type
declarations with algebraic data type definitions. This allows suppressing the
cumbersome packy and open; constructs; instead, one simply uses the stan-
dard syntax for constructing and deconstructing variants and records.

Existential types

Existential types (TAPL Chapter 24) are close cousins of universal types, and
may be introduced into ML-the-type-system in the same manner. Actually,
existential types have been introduced in ML-the-type-system before universal
types. We give a brief description of this extension, insisting mainly on the
differences with the case of universal types.

We now allow ezistential type definitions, of the form DX ~ 3Y.T. The condi-
tions required of a well-formed definition are unchanged, except the variance
requirement, which is dual:

DEFINITION: Let DX ~ 3Y.T and DX’ ~ 3Y".T' be two a-equivalent instances
of a single existential type definition, such that ¥ # ftv(T') and Y # ftv(T).
Then, DX < DX’ IF VY.3Y".T < T' must hold. O

The effect of this existential type definition is to enrich the programming
language with a new unary constructor pack, and with a new construct:
tu=...|open, ttand £ :=...| openy £ t | openy v . Their operational
semantics is as follows:

open,, (packyvy) vo — vy V1 (R-OPEN-EX)

In the literature, the second argument of open; is often required to be a
A-abstraction Az.t, so the construct becomes open, t (Az.t), often written
open, t as z in t.

Provided X # Y, we extend the initial environment I'y with the binding
pack, : VXY.T — DX. The constraint generation rule for openy, is as follows:

[openy t1 t2: T'] = JX.([t1: Df]] Atz : VY.T = T'])

The rule implicitly requires that X be fresh for the left-hand side, that Y be
fresh for T', and that DX & VY.T be (an a-variant of) the definition of D.
The left-hand conjunct simply requires t; to have type DX. The right-hand
conjunct states that the function t, must be prepared to accept an argument
of type T, for any Y, and produce a result of the expected type T'. In other
words, ty must be a polymorphic function.

The type scheme of existential pack, resembles that of universal openy,
while the constraint generation rule for existential open; is a close cousin

1.11 Rows 119

of that for universal pack,. Thus, the duality between universal and exis-
tential types is rather strong. The main difference lies in the fact that the
existential openy construct is binary, rather than unary, so as to limit the
scope of the newly introduced type variables Y. The duality may be better
understood by studying the encoding of existential types in terms of universal
types (Reynolds, 1983b).

As expected, R-OPEN-EX preserves types.

THEOREM [SUBJECT REDUCTION]: (R-OPEN-EX) C (C).]

EXERCISE [k, -]: Prove Theorem 1.10.16. The proof is analogous, al-
though not identical, to that of Theorem 1.10.14. O

In the presence of side effects, the new production & ::= ... | openy v £ is
problematic. The standard workaround is to restrict the second argument to
open, to be a value.

Rows

In Section 1.9, we have shown how to extend ML-the-programming-language
with algebraic data types, that is, variant and record type definitions, which
we now refer to as simple. This mechanism has a severe limitation: two distinct
definitions must define incompatible types. As a result, one cannot hope to
write code that uniformly operates over variants or records of different shapes,
because the type of such code is not even expressible.

For instance, it is impossible to express the type of the polymorphic record
access operation, which retrieves the value stored at a particular field £ inside
a record, regardless of which other fields are present. Indeed, if the label ¢
appears with type T in the definition of the simple record type DX, then the
associated record access operation has type VXDX — T. If £ appears with
type T’ in the definition of another simple record type, say D’'X', then the
associated record access operation has type VX'.D' X’ — T'; and so on. The most
precise type scheme that subsumes all of these incomparable type schemes
is VXY.X — Y. It is, however, not a sound type scheme for the record access
operation. Another powerful operation whose type is currently not expressible
is polymorphic record extension, which copies a record and stores a value at
field £ in the copy, possibly creating the field if it did not previously exist, again
regardless of which other fields are present. (If £ was known to previously exist,
the operation is known as polymorphic record update.)

In order to assign types to polymorphic record operations, we must do away
with record type definitions: we must replace named record types, such as DX,
with structural record types that provide a direct description of the record’s

Draft of May 20, 2003

domain and contents. (Following the analogy between a record and a partial
function from labels to values, we use the word domain to refer to the set of
fields that are defined in a record.) For instance, a product type is structural:
the type T; x Ts is the (undeclared) type of pairs whose first component has
type T; and whose second component has type T». Thus, we wish to design
record types that behave very much like product types. In doing so, we face two
orthogonal difficulties. First, as opposed to pairs, records may have different
domains. Because the type system must statically ensure that no undefined
field is accessed, information about a record’s domain must be made part of
its type. Second, because we suppress record type definitions, labels must now
be predefined. However, for efficiency and modularity reasons, it is impossible
to explicitly list every label in existence in every record type.

In what follows, we explain how to address the first difficulty in the sim-
ple setting of a finite set of labels. Then, we introduce rows, which allow
dealing with an infinite set of labels, and address the second difficulty. We
define the syntax and logical interpretation of rows, study the new constraint
equivalence laws that arise in their presence, and extend the first-order unifi-
cation algorithm with support for rows. Then, we review several applications
of rows, including polymorphic operations on records, variants, and objects,
and discuss alternatives to rows.

Records with finite carrier

Let us temporarily assume that £ is finite. In fact, for the sake of definiteness,
let us assume that £ is {€4, ¢y, L.}

To begin, let us consider only full records, whose domain is exactly £L—in
other words, tuples indexed by L. To describe them, it is natural to introduce
a type constructor record of signature * ® x ® * = . The type record T, Tj T,
represents all records where the field ¢, (resp. ¢y, £.) contains a value of
type T, (resp. Ty, T.). Please note that record is nothing but a product type
constructor of arity 3. The basic operations on records, namely creation of
a record out of a default value, which is stored into every field, update of a
particular field (say,), and access to a particular field (say, ¢;), may be
assigned the following type schemes:

{}: VXX - record XXX
{-with {, =-}: VX.XsX,X..record X, Xy X. — X} — record X, X} X,
{Zb} : VXaXbXC.record Xo Xp Xe = X

Here, polymorphism allows updating or accessing a field without knowledge of
the types of the other fields. This flexibility is made possible by the property
that all record types are formed using a single record type constructor.

1.11 Rows 121

This is fine, but in general, the domain of a record is not necessarily L: it
may be a subset of £. How may we deal with this fact, while maintaining the
above key property? A naive approach consists in encoding arbitrary records
in terms of full records, using the standard algebraic data type option, whose
definition is option X & pre X + abs. We use pre for present and abs for absent:
indeed, a field that is defined with value v is encoded as a field with value pre v,
while an undefined field is encoded as a field with value abs. Thus, an arbitrary
record whose fields, if present, have types T,, Ty, and T, respectively, may be
encoded as a full record of type record (option T,) (option Tp) (option T.). This
naive approach suffers from a serious drawback: record types still contain no
domain information. As a result, field access must involve a dynamic check,
so as to determine whether the desired field is present: in our encoding, this
corresponds to the use of casegption-

To avoid this overhead and increase programming safety, we must move
this check from runtime to compile time. In other words, we must make the
type system aware of the difference between pre and abs. To do so, we re-
place the definition of option by two separate algebraic data type definitions,
namely preX = pre X and abs = abs. In other words, we introduce a unary
type constructor pre, whose only associated data constructor is pre, and a
nullary type constructor abs, whose only associated data constructor is abs.
Record types now contain domain information: for instance, a record of type

record abs (pre Tp) (pre T.) must have domain {¢;, {.}. Thus, the type of a field
tells whether it is defined. Since the type pre has no data constructors other

than pre, the accessor pre™!, whose type is VX.pre X — X, and which allows

retrieving the value stored in a field, cannot fail. Thus, the dynamic check has
been eliminated.

To complete the definition of our encoding, we now define operations
on arbitrary records in terms of operations on full records. To distinguish
between the two, we write the former with angle braces, instead of curly
braces. The empty record (), where all fields are undefined, may be defined
as {abs}. Eztension at a particular field (say, £,) (- with £, = -) is defined as
Ar.Az.{r with £, = pre z}. Access at a particular field (say, ¢) -.(€) is defined
as Az.pre z.{fy}. It is straightforward to check that these operations have
the following principal type schemes:

() - record abs abs abs
(- with €y = -) : VX,XpX}Xc.record X, Xp X = X} — record X, (pre X}) X
(b)) = VX XpXc.record X, (pre Xp) X. — Xp

It is important to notice that the type schemes associated with extension
and access at £, are polymorphic in X, and X., which now means that these
operations are insensitive not only to the type, but also to the presence or

Draft of May 20, 2003

absence of the fields ¢, and (.. Furthermore, extension is polymorphic in X,
which means that it is insensitive to the presence or absence of the field ¢,
in its argument. The subterm pre X} in its result type reflects the fact that
ly is defined in the extended record. Conversely, the subterm pre X; in the
type of the access operation reflects the requirement that ¢, be defined in its
argument.

Our encoding of arbitrary records in terms of full records was carried out
for pedagogical purposes. In practice, no such encoding is necessary: the data
constructors pre and abs have no machine representation, and the compiler
is free to lay out records in memory in an efficient manner. The encoding is
interesting, however, because it provides a natural way of introducing the type
constructors pre and abs, which play an important role in our treatment of
polymorphic record operations.

We remark that, in our encoding, the arguments of the type constructor
record are expected to be either type variables or formed with pre or abs,
while, conversely, the type constructors pre and abs are not intended to appear
anywhere else. It is possible to enforce this invariant using kinds. In addition
to %, let us introduce the kind ¢ of field types. Then, let us adopt the following
signatures: pre: x = ©, abs : ¢, and record : ¢ ® 0 ® © = *.

EXERCISE [%, RECOMMENDED, —»|: Check that the three type schemes

given above are well-kinded. What is the kind of each type variable? O

EXERCISE [%%, RECOMMENDED, —]: Our record types contain information
about every field, regardless of whether it is defined: we encode definedness
information within the type of each field, using the type constructors pre and
abs. A perhaps more natural approach would be to introduce a family of record
type constructors, indexed by the subsets of £, so that the types of records
with different domains are formed with different constructors. For instance,
the empty record would have type {}; a record that defines the field ¢, only
would have a type of the form {¢, : T,}; a record that defines the fields ¢, and
. only would have a type of the form {¢, : Ty; ¢, : T.}; and so on. Assuming
that the type discipline is Damas and Milner’s (that is, assuming an equality-
only syntactic model), would it be possible to assign satisfactory type schemes
to polymorphic record access and extension? Would it help to equip record
types with a nontrivial subtyping relation? |

Records with infinite carrier

Finite records are insufficient both from practical and theoretical points of
view. In practice, the set of labels could become very large, making the type
of every record as large as the set of labels itself, even if only a few labels are

1.11 Rows 123

actually defined. In principle, the set of labels could even be infinite. Actually,
in modular programs the whole set of labels may not be known in advance,
which amounts in some way to working with an infinite set of labels. Thus,
records must be drawn from an infinite set of labels—whether their domains
are finite or infinite. Still, we can restrict our attention to records that are
almost constant, that is, records where only a finite number of fields differ.
With this restriction, full records (defined everywhere) can always be built by
giving explicit definitions for a finite number of fields and a default value for
all other fields, as in the finite case. For instance, the record {{{false} with
¢ =1} with ¢ = true} is the record equal to true on field ¢/, to 1 on field ¢,
and to false on any other field.

Types of records are functions from labels to types, called rows. However,
for sake of generality, we use a unary type constructor, say II, as an indirection
between rows and record types. Moreover, we further restrict our attention
to the case where rows are also almost constant. (The fact that the property
holds for record values does not imply that it also holds for record types, for
the default value of some record could have a polymorphic type, and one could
wish to see each field with a different instance of this polymorphic type. So this
is a true restriction, but a reasonable one.) Thus, rows can also be represented
by giving explicit types for a finite number of fields and a default type for all
other fields. We write OT the row whose type is T on every field, and (£:T ; T')
the row whose type is T on field £ and T’ on other fields. Formally, d is a unary
type constructor and ¢ is a family of binary type constructors, written with
syntactic sugar (£ :- ; -). For example, II(¢ : bool ; (¢' : int ; dbool)) is a
record type that describes records whose field ¢ carries a value of type bool,
field ¢' carries a value of type int, and all other fields carry values of type
bool. In fact, this is a sound type for the record defined above. In fact, the
type II(¢' :int ; (£:bool ; Obool)) should also be a sound type for this record,
since the order in which fields are specified should not matter. We actually
treat both types as equivalent. Furthermore, the row (¢ :bool ; dbool), which
stands for bool on field ¢ and Obool everywhere else, must also be equivalent
to Obool, which stands for bool everywhere.

A record type may also contain type variables. For instance, the record
Az.{z} that maps any value v to a record with the default value v has type
X — II(0X). Projections of this record on any field will return a value of the
same type X. By comparison, the function that reads some field £ of its (record)
argument has type II(€ : X ; Y) — X: this says that the argument must be a
record where field £ has type X and other fields may have any type. Variable Y
is called a row variable, since it can be instantiated to any row. For instance, Y
can be instantiated to (¢ :int ; Y') and as a result this function can be applied
to the record above. Conversely, the row 9X, which is equal to (¢' : X ; X), can

Draft of May 20, 2003

only be instantiated to rows of the form OT, which are equal to (¢' : T ; T),
that is, to constant rows.

Syntax of row types

Let £ be a denumerable collection of labels. We write ¢.L for {¢} & L, which
implies ¢ ¢ L. We first introduce kinds, so as to distinguish rows such as
(¢ :int ; Obool) from basic types, such as int or int — int.

DEFINITION [ROW KINDS|: Let row kinds be composed of a particular kind
Type and the collection of kinds Row(L) where L ranges over finite subsets
of L. We use letter s to range over row kinds. O

Intuitively, a row of kind Row(L) is a function of domain £\ L to types. That
is, L specifies the set of labels that the row must not define. For instance, the
(basic) type II(¢:int ; X) has kind Type, the row (£:int ; X) has kind Row()
provided X has kind Row({¢}).

To remain abstract the definition of rows is parameterized by a signature Sy
for building basic types and a signature &; for building rows. From those two
signatures, we then define a new signature S that completely specifies the set
of types. However, the signature & must superimposed row kinds on top of the
(basic) kinds of the two input signatures Sp and S;. We use product signatures
to enlighten this process. More precisely, we build a product signature from
two signatures K = x and K’ = £’ with the following notations: we write x.x’'
for the pair (k,&'); K. for the mapping (d — K (d).)* €™ K (K =)./
for the kind signature K.x = k.x'; and symmetrically, we write x.K’' and
k.(K' = k'). The signature S reuses the same input type constructors as Sp
and &y, but at different row kinds. We use superscripts to provide copies of
type constructors at different kinds, and thus avoid overloading of kinds.

DEFINITION [ROW EXTENSION OF A SIGNATURE]: Let Sy and S; be signa-
tures where all symbols of S; are unary. The row extension of Sy with Sy is
the signature S defined as follows where x ranges over basic kinds (those used
in Sp and S;) and s ranges over row kinds:

F € dom(S) | Signature Conditions
G® (K = K).s (G: K=k €S
H K.Row(0) = k. Type (H:K=k)eS
ok k.(Type = Row(L))
L k.(Type @ Row(¢.L) = Row(L)) | L ¢ L

O

We usually write €L : t; ; to instead of £ t; t, and let this symbol be
right-associative. We often drop the superscripts of type constructors since,

1.11 Rows 125

for any type expression T, superscripts can be unambiguously recovered from
the kind of T.

ExaMPLE: Let us assume there is a single basic kind * and that S; contain a
unique type constructor II (hence of kind x =). An example of row type is
Xo = (4, : G ; (Y = 0%p)). With all superscripts annotations, this type is

Xo _)*,Type H(El*,Row(@) :GType : (Y _)*,Row({ll}) 6*7R0w({l1})X0)).

Intuitively, this is the type of a function that takes a value of type Xy and
returns a record where field ¢; has type G and all other fields are functions
that given a value of an arbitrary type would returns a value of (the same) type
Xo. An instance of this type is Xo = [I(¢1 : G 5 (b2 : Y2 ; Y') = (€2:Xo ; 0%p))),
obtained by instantiating row variable Y and by expanding the constant row
0%p. As shown below, this type is actually equivalent to Xo — II(¢; : G ;
by 1Yo — Xo ; (Y — 0X%p)), by distributivity of type constructor — other type
constructor ¢>. Please, note again the difference between Y, which is a row
variable that can expand to different type variables on different labels, and
OX, which is a constant row that expands to the same type variable X on all
labels. O

EXAMPLE [ILL-KINDED EXPRESSION |: Under the assumptions of the previ-
ous example, the expression X — II(X) is not a row type, since variable X
cannot simultaneously be of row kind Type and Row(() as required by its two
occurrences, from left to right respectively. The expression (£:X; £:X"; X") is
also ill-kinded, for the inner expression (¢ : X' ; X") of row kind Row(L) with
¢ ¢ L cannot also have row kind Row({(}), as required by its occurrence in
the whole expression. Indeed, row kinds prohibit multiple definitions of the
same label, as well as using rows in place of basic types and conversely. Notice
that II(II(X)) is also ill-formed, since type constructors of S; are not lifted to
row kinds and thus cannot appear in rows, except under the type constructor
0, hence as basic types. O

EXERCISE k% ,~]: Design an algorithm that infers superscripts of type
constructors of a type expression from its kind. Can the kind of the expression
be inferred as well? Can you give an algorithm to check that type expressions
are well-kinded when both the superscripts of type constructors and the kinds
of the whole type expressions are omitted? O

Meaning of rows

As mentioned above, a row of kind Row(L) stands for a function from £\ L
to types. Actually, it is simpler to represent this function explicitly as an

Draft of May 20, 2003

infinitely branching tree in the model. For this purpose, we use a collection of
constructors L of (infinite but denumerable) arity £\ L.

DEFINITION [ROW MODEL]: Let S be the row extension of a signature Sy
with a signature S;. Let Saq be the following signature, where s ranges over
basic kinds and L ranges over finite subsets of L:

F € dom(Sa) | Signature Conditions

G (K = k).Type (G:K=k €S
H K.Row(0) = k. Type (H: K=k €S
L» k.(Type“\ = Row(L))

Let M, consist of the regular trees t built over the signature Sp¢ such that
t(e) has image kind x. We interpret a type constructor F' of signature K = k.s
as a function that maps T' € Mg to t € M, s defined by cases on F' and on
the basic kind «.

Fes t(e) | For d € dom(K) and ¢ € L\ L,{ # (.
GTwe | G | t/d=T(d)

H H |t/1=T(1)

GRow(@) | IF | t(l) =G At/(L-d) =T(d)/¢

oL Lr | t/t=T()

wr LF | t/ly =TQ)At/L=T(2)/¢

In the presence of subtyping, we let type constructors G and H behave in Sy
as in Sp and §; and type constructors L" be isolated and covariant in every
position. Models that define ground types and interpret type constructors in
this manner are referred to as row models. O

Reasoning with row types

In this section, we assume a subtyping model. All reasoning principles also
apply to the equality-only model, which is a subcase of the subtyping model.

The meaning of rows has been carefully defined so as to be independent
of some syntactical choices. In particular, the order in which the types of
significant fields have been declared leaves the meaning of rows unchanged.
This is formally stated by the following Lemma.

LEMMA: The equations of Figure 1-17 are equivalent to true. |

Proof: Each equation can be considered independently. It suffices to see that
any ground assignment ¢ sends both sides of the equation to the same element

1.11 Rows 127

(Zl ' Ty ;Zz 1Ty ; T3) = (Zz 1Ty ;Zl 1Ty ; T3) (C—R,OW-LL)
OT=(£:T;0T) (C-Row-DL)

O(GT, ... T,) =G T, ... IT, (C-Row-DG)

GU:T;T)) ... :T;T)=0C:GTy ... T,;GT, ... T)) (C-Row-GL)

Figure 1-17: Equational reasoning for row types.

(61 1Ty ; Tll) = (62 1Ty ; T’2) ElX(Tll = (62 1Ty X) A T’2 = (61 1Ty X)) (C-MUTE-LL)
if X # fto(T1, T, T2, Th) Ay # Lo

(¢:T;T)=GT! AKX (T=GXAT =G X AT = (£:X ;X))
if (i, Xi)" # fro(T,7,1]) (C-MUTE-LG)

OT=GT! I(T=G XA (T =0x:))) (C-MuTE-DG)
if XI # fto(T,TI)

OT=(L:T;T") = T=TAIT=T" (C-MuTe-DL)

Figure 1-18: Constraint equivalence laws for rows.

in the model, which follows directly from the meaning of row types. Notice
that this fact only depends on the semantics of types and not on the semantics
of the subtyping predicate. |

It follows from those equations that type constructors ¢, 9, and G are never
isolated, each equation exhibiting a pair of compatible top symbols. Variances
and incompatible pairs of type constructors depend on the signature Sp W Sj.
However, it is not difficult to see that type constructors @ and ¢ are logically
covariant in all directions and that the logical variance of types constructors
G of dom(Sp W S1) correspond to their syntactic variance, which, in most
cases, will allow the decomposition of equations with the same top symbols.
Moreover, an equation between two terms whose top symbols form one of
the four compatible pairs derived from the equations of Figure 1-17 holds
only if immediate subexpressions can be “conciliated” in some way. There is a
transformation quite similar to decomposition, called mutation, that mimics
the equations for rows (Figure 1-17) and described by the rules of Figure 1-18.
For sake of readability and conciseness, we write T/ instead of T:</.

LEMMA [MUTATION]: All equivalence laws in Figure 1-18 hold.

Proof:

Draft of May 20, 2003

o Case C-MUTE-LL: Let X # ftv(T1, T}, T2, Th) (1) and ¢; # £5. Let Row(L)
be the row kind of this equation. Let ¢ be a ground assignment that validates
the constraint (¢; : Ty ; T)) = ({2 : T2 ; Th). That is, ¢ sends all terms of
the multi-equation to the same ground type ¢ of row kind Row(L). Moreover,
the row-term semantics implies that ¢ satisfies t(e) = L, t/{; = ¢(T1) =
B(13)/1, /6 = $(T))/ls = B(Tz), and t/¢ = G(T3)/L = B(T})/¢ for all
te L\{l.ly.L (2). Let ¢’ be the tree defined by t'(e) = ¢;.¢>.L and t'/¢ =t/¢
for all £ € L\ ¢;.05.L. By construction and (2), ¢[X +— t'] satisfies both
equations T} = (f3 : Ty ; X) and T}, = (¢ : Ty ; X). Thus by CM-EXIsTS and
(1), ¢ satisfies IX.T) = (€2 : T2 ; X) AT, = (¢1 : Ty ; X). Conversely, we have the
entailment:

(T, = (e : T2 ;X) ATy = (44 : Ty 5 X))
= ElX((El Ty)Tl) (61 Tl ;€2 T 5 ’ X) A
(ly :To 5 TZ) (€3 :Ty ;01 : Ty ;X))
IF3X.(4 : T1 ;T = (62 : Ty ;5 T)
=l :Ty;T)) =(ly: Ty ; TH)

(3) follows by covariance of £; and ls; (4) by C-Row-LL and transitivity of
equivalence; (5) by C-EX* and (1).

o Cases C-MUTE-LG, C-MuUTE-DG, and C-MuTE-DL: The reasoning is
similar to the case C-Mute-LL.]

Solving row constraints in an equality model

In this section, we extend the constraint solver for the equality-only free tree
model (Figure 1-11), so as to handle rows. We thus assume an equality-only
model.

Mutation is a common technique to solve equations in a large class of non-
free algebras that are described by syntactic theories (Kirchner and Klay,
1990). The equations of Figure 1-17 happen to be a syntactic presentation
of an equational theory, from which a unification algorithm could be auto-
matically derived (Rémy, 1993). We recover the same transformation rules
directly, without using results on syntactic theories.

The following lemma shows that all pairs of distinct type constructors for
which there is no mutation rule are in fact incompatible.

LEMMA: All symbols H € &; are isolated. Furthermore for every pair of
distinct type constructors Gi,Gs € dom(Sp W S1), and every row kind s, we
have G7 > G3. o

Proof: Terms of the form HT are interpreted by ground types with H at
occurrence €, and conversely the only interpretations of types with H at oc-
currence € are terms of the form HT. Hence, no ground assignment can ever

1.11 Rows

(6 : X1 ;X)) =l :T2;Th) =€ (X, =y T2 Y)AT, = (€1 :X15Y))
Al X ;5X)) =€ (S-MuTtE-LL)
ifY # fto(X1, X, T2, Th) A b1 # Lo
(L:X;X)=GT¢ =¢ YY) X=G YA =G YIS AT = (Y5 Y)
AN{L:X;X)=€ (S-MuTE-LG)
if (Y5, YT # fo(X,X', Ti€T)
IX=G T =¢ IEL (X = G Y A (T; = 9Y,) €T

NOX =€ (S-MuTE-DG)
if YT # fro(x, Ti€T)

OX={:T;T)=c¢ X=TAIX=T'ANOX=¢ (S-MuTEe-DL)

GT=G'T =¢ false (S-Crasu-I)

if Foa FY

Figure 1-19: Unification addendum for row types

send HT and FT' to the same ground term when F' # H and, as a result, H
is isolated.

Let GG; and G5 be two type constructors of Sp. For s = Type, the interpre-
tations of terms of the form fo and G;'f’ are ground types with symbols G
and G2 at occurrence e, respectively. Hence they cannot be made equal under
any ground assignment. For s = Row(L), the interpretations of terms of the
form G5T and G3T' are ground types with constructor L at occurrence € and
constructors (G; and G5 at occurrence 1, respectively. Hence they cannot be
made equal under any ground assignment. O

Any other combination of type constructors forms a compatible pair, as illus-
trated by equations of Figure 1-17 and can be transformed by mutation rules
of Figure 1-18. The constraint solver for row-terms is the relation —' defined
by the rewriting rules of Figure 1-11, except Rule S-CLASH, which is replaced
by the set of rules of Figure 1-19.

LEMMA: The rewriting system —! is strongly normalizing. O

Please, note that the termination of —% relies on types being well-kinded.
In particular, =t would not terminate on the ill-kinded system of equations
X=0:T;XXANX =/0:T;X.

LemMA: f U =t U’, then U = U'.

Draft of May 20, 2003

Proof: Tt suffices to check the property independently for each rule defining
—1. The proof for rules of Figure 1-11 but S-CLASH remain valid for row terms.
For S-DECOMPOSE, it follows by the invariance of all type constructors, which
is preserved for row terms. For rule S-CrLASS-I it follows by Lemma 1.11.11
and for mutation rules, it follows by Lemma 1.11.10. O

Although reductions — are not sound for row types, hence — cannot be
used for computation over row types, it has some interest. In particular, the
following property shows that normal forms for row types are identical to
normal forms for regular types.

LEMMA: A system U in normal form for - is also in normal form for —. O

Proof: The only rule of — that is not in —' is S-CrAsH. Thus, it suffices to
observe that if Rule S-CLASH would be applicable, then either Rule S-CrLAss-1I
or a mutation rule would be applicable as well. O

As a corollary, Lemma 1.8.6 extends to row types.

Operations on records

We now illustrate the use of rows for typechecking operations on records. The
simplest application of rows are full records with infinite carrier. Records types
are expressed with rows instead of a simple product type. The basic operations
are the same as in the finite case, that is, creation, polymorphic update, and
polymorphic access, but labels are now taken from an infinite set. However,
creation and polymorphic update, which where destructors are now taken as
constructors and used to represent records as association lists. The access of a
record v at a field £ is obtained by linearly searching v for a definition of field
¢ and returning this definition, or returning the default value if no definition
has been found for /.

EXAMPLE [FULL RECORDS|: We assume a unique basic kind * and a unique
covariant isolated type constructor II in &;. Let {-} be a unary construc-
tor, ({- with - = £})*¢£ a collection of binary constructors, and (£.{-})*¢* a
collection of unary destructors with the following reduction rules:

{v}i{¢} 2y (RD-DEFAULT)
{wwith ¢ = v}.{¢} 2oy (rRD-FouND)
{wwith ¢ =v} {0} 2 w{0} if O£ 0 (RD-FOLLOW)

Let the initial environment I'y contain the following bindings
{-}: VX X—II(0X)
{~witht="}: VXX'YV.II({:X;Y) =X > II(£:X";Y)
A0} VXYLII(C:X;Y) = X

1.11 Rows

O

EXERCISE [FULL RECORDS, %k, »]: Check that these definitions meet
the requirements of Definition 1.7.6. O

EXERCISE [FIELD EXCHANGE, Yok |: Add an operation to permute two fields
of a record: give the reduction rules and the typing assumptions and check
that the requirements of Definition 1.7.6 are preserved. |

EXERCISE [NORMAL FORMS FOR RECORDS, %% |: Record values may con-
tain repetitions. For instance, {{w with ¢ = v} with ¢ = v'} is a value that is
in fact observationally equivalent to {w with £ = v'}. So are the two record
values {{w with ¢ = v} with ¢' = v'} and {{w with ¢ = v'} with £ = v} when
0" # £. Modify the semantics, so that two record values of the same type have
similar structure and records do not contain inaccessible values. O

EXERCISE [MAP APPLY, %% |: Add a binary operation map such that the
expressions (map v w).{¢} and v.{¢} w.{¢} reduce to the same value for every
label £. O

EXERCISE [%, -»]: So far, full records are almost constants. This condition
is not necessary for values, but only for types. As an example, introduce a
primitive record, that is a nullary record constructor, that maps every label
to a distinct integer. Give its typing assumption and review the semantics of
records. O

As opposed to full records, standard records are partial and their domains
are finite (but with infinite carrier) and statically determined from their types.
Standard records can be built by extending the empty record on a finite num-
ber of fields. We refer to such records as records with polymorphic extension.
Record with polymorphic extension can be obtained by means of encoding
into full records, much as in the finite case.

EXAMPLE [ENCODING OF POLYMORPHIC EXTENSION]: Reusing the two type
definitions abs and pre that have introduced for the finite case, we let abs
encodes an undefined field and prev encode a field with value v. We use the
following syntactic sugar with their meaning and principal types:

() < {abs}
: I[I(Dabs)
(-with £ =) def Av. Aw.{w with £ = pre v}
VXXV II(C:X; Y) = X' = II(€ : pre X';Y)
(0 L Avpre=t (v.{(})
VXY II(¢ :pre X;Y) = X

Draft of May 20, 2003

]

EXERCISE [RECOMMENDED, %|: Extension may actually override an exist-
ing field. Can you define a version polymorphic extension that prevents this
situation from happening? Add an operation that hide some particular field
of a record. O

Extensible records can also be implemented directly, without encoding into
full records. In fact, this requires only a tiny variation on full records.

EXAMPLE [RECORDS WITH POLYMORPHIC EXTENSION]: Let x and ¢ be two
basic kinds. Let the basic signature Sy contain (in addition to —) the covari-
ant isolated type constructors pre of kind * = ¢ and abs of kind ¢. In the
presence of subtyping, we may assume pre < abs. Let §; contain the unique
covariant isolated type constructor II of kind ¢ = %. Let () be a unary con-
structor, ({- with - = £})€~ be a binary constructor, and (£.{-})‘* be a unary
destructor with the following reduction rules:

(w with £ = v).({) BLEG (ErR-FOUND)

(w with ' = v). LI w.{l} ifte£0 (Er-FoLLow)

Let 'y contain the following typing assumptions:

() - II(Oabs)
(-with¢="-): VXX'V.II({:X;Y) =X = I(¢:pre X' ;Y)
{0y - VXY.II(£:pre X;Y) = X

]

Notice that the typing assumptions obtained from the direct approach are
identical to those obtained via the encoding into full records in Exam-
ple 1.11.21.

EXERCISE [%¥k%, +|: Prove the equivalence between the direct semantics
and the semantics via the encoding into records with a default. O

EXERCISE [RECOMMENDED, %, -»|: Prove that type soundness for exten-
sible records hold in both the subtyping model and equality-only models.
O

EXERCISE [RECOMMENDED, %, —+|: Check that in the subtyping a record
with more fields can be used in place of records with fewer fields. Check that
this is not the case in the equality-only model. |

1.11 Rows 133

EXAMPLE [REFINEMENT OF RECORD TYPES|: In an equality-only model,
records with more fields cannot be used in place of records with fewer fields.
However, this may be partially recovered by a small refinement of the struc-
ture of types. The presence of fields can actually be split form their types, thus
enabling some polymorphism over the presence of fields while type of fields
themselves remains fixed. Let o be a new basic kind. Let type constructors
abs and pre be both of kind o and let - be a new type constructor of kind
o® * = ¢. Let 'y contain the following typing assumptions:

() - VX.II(O(abs- X))
(-withf="-): VZXX'Y.II(£:X;Y) > X = I(:Z-X;Y)
- (0y: VXY.II(£:pre-X;Y) =X

The semantics of records remain unchanged. The new signature strictly gener-
alizes the previous one (strictly more programs can be typed) while preserving
type soundness. Here is a program that can now be typed and that could not
be typed before:

(if a then ((() with £' = true) with £ = 1) else (() with £ = 2)).(¢)

Notice however, that when a present field is forgotten, the type of the field
is not. Therefore two records defining the same field but with incompatible
types can still not be mixed, which is possible in the subtyping model. m|

EXAMPLE [REFINED SUBTYPING|: The previous refinement for an equality-
only model is not much interesting in the case of a subtyping model.

The subtyping assumption pre < abs makes abs play the role of T for fields.
That is, abs encodes the absence of information and not the information of
absence. In other words, a value whose field ¢ has type abs may either be
undefined or defined on field ¢; in the latter case, the fact that field /¢ is
actually defined has just been forgotten. Thus, types only provides a lower
approximation of the actual domain of records. This is a lost of accuracy by
comparison with the equality-only model, where a record domain is known
from its type. As a result, some optimizations in the representation of records
that are only possible when the exact domain of a record is statically known
are lost.

Fortunately, there is a way to recover such accuracy. A conservative solution
could of course to drop the inequality pre < abs. Notice that this would still
be more expressive than using an equality model since, for instance II(¢ :
pre (Ty — Ta); T) <II(¢:pre T ;T) would still hold, as long as — < T does
hold. This solution is known as depth-only subtyping for records, while the
previous one provided both depth and width record subtyping. Conversely, one
could also keep width subtyping and disallow depth subtyping, by preserving

Draft of May 20, 2003

the relation pre < abs while requiring pre to be invariant; in this case, presence
of fields can be forgotten as a whole, but the types of fields cannot be weakened
as long as fields remain visible.

Another more interesting solution consists in introducing another type con-
structor either of signature ¢ and assuming that pre < either and abs < either
(but pre £ abs). Here, either plays the role of T for fields and means either
present (and forgotten) or absent. while abs really means absent. The accuracy
of typechecking can be formally stated as the fact that a record value of type
II(¢ : abs ; T) cannot define field ¢. o

EXAMPLE [MIXED SUBTYPING]|: It is tempting to mix all variations of Ex-
ample 1.11.28 together. As a first attempt, we may assume that the basic
signature Sy contains covariant type constructors pre and maybe and invari-
ant type constructors pre_ and maybe_, all of kind x = ¢ and two type
constructors abs and either of kind ¢, and that the subtype ordering < is
defined by the following diagram:

either
maybe

™~

pre maybe_

N 7N

pre_ abs

Intuitively, we wish that pre_ and maybe_ be logically invariant, pre and maybe
be logically covariant, and the equivalences pre_ T < maybe_ T' = T = T’ and

pre_ T < pre T' = pre T < maybe T' = maybe_ T <maybe T'=T<T (1)

simultaneously hold. However, (1) requires, for instance, type constructors
pre_ and pre to have the same direction, which is not currently possible since
they do not have the same variance. Interestingly, this restriction may be
relaxed by assigning variances of directions on a per type constructor basis and
define structural subtyping accordingly (See Exercise 1.11.30). Then, replacing
all occurrences of pre by pre_ in I'y preserves type soundness and allows for
both accurate record types and flexible subtyping in the same setting. a

EXERCISE |RELAXED VARIANCES, %k, -|: Let () be allowed as a new
variance, let extend the composition of variances defined in Example 1.3.9
with 0 = 0, and let <? stands for the full relation on type constructors.
Let each type constructor F' of signature K = k now come with a map-
ping ¥(F) from dom(K) to variances. Let ¥(¢,t',7) be the variance of two

1.11 Rows 135

ground types ¢t and t' at a path 7 recursively defined by 9(¢,t',d - 7) =
(D(t(e))(d) N I(t'(€))(d)) I(t/d,t'/d,) and V(t,t',€) = +. Then define the
interpretation of subtyping as follows: if ¢, € M, let ¢t < ¢’ hold if and only
if for all path 7 € dom(t) N dom(t'), t(x) <’ /() holds.

Check that the relation < remains a partial ordering. Check that a type
constructor whose direction d has been syntactically declared covariant (re-
spectively contravariant, invariant) is still logically covariant (respectively con-
travariant, invariant) in d. O

Record concatenation

Record concatenation takes two records and combines them into a new record
whose fields are taken from whatever argument defines them. Of course, there
is an ambiguity when the two records do not have disjoint domains and a
choice should be made to disambiguate such cases. Symmetric concatenation
let concatenation be undefined in this case (Harper and Pierce, 1991), while
asymmetric concatenation let one-side (usually the right side) always take pri-
ority. Despite a rather simple semantics, record concatenation remains hard to
type (with either a strict or a priority semantics). Solutions to type inference
for record concatenation may be found, for instance, in (Wand, 1989; Rémy,
1992; Pottier, 2000).

Polymorphic variants

Variants can be defined via algebraic data-type definitions. However, as fields
for records, variant tags are taken from a relatively small, finite collection
of labels and two variant definitions will have incompatible types. Thus, to
remain compatible, two variants must chose their tag among a larger collection
that is a superset of all the possible tags of either variant. In general, this
reduces the accuracy of types and forces useless dynamic checks for tags that
could otherwise be known not to occur. Extensible variants (page 93) allow to
work with an arbitrary large collection of tags, but do not improve accuracy.
Polymorphic variants refers to a more precise typechecking mechanism for
variants, where types more accurately describes the tags that may actually
occur. They allow to build values of sum types out of a large, potentially
infinite predefined set of tags and call polymorphic functions to explore them.
As for record, this problem could be tackled by first considering polymorphic
operations over variants built from a finite set of tags and total variants with
an infinite set of tag independently and then by combining both approaches
together. We propose a direct solution by a simple analogy with records.
Indeed, type constructor pre can be used to distinguish a (finite) set of tags

Draft of May 20, 2003

that the variant may actually carry, from other tags that are certain not to
occur and typed with abs. For example, a variant £.v, built from a value v with
a constructor tag ¢ of arity one. may be assigned the principal type scheme
VX.X(L : pre T;X) where T is the type of v. The unary type constructor X is
used to coerce rows to variant types—thus, variant types and record types
may share the same inner row structure and be simply distinguished by their
top symbol. An instance of this polymorphic type is VX.X(¢:pre T ; abs), which
tells that the variant must have been built with tag ¢ and no other tag, thus
retaining exact information about the shape of the value. Another instance
of the variant polymorphic type is X(¢ : pre T ; ¢’ : pre T’ ; abs). Indeed, it is
sound to assume that the value might also have been built with some other
tag ¢', even if we know that this is not actually the case. Interestingly, both
values £.v and ¢'.v have this type and can be mixed at this type.

We use filters to explore variants. A filter [£ : v | v/] is a function that
expects a variant argument, thus of the form ¢'.w. It then proceeds with either
v, if ¢/ = ¢, or v w otherwise. The type of this filter is (£ :pre T;T') — T"
where T is the type of values accepted by v, 3(¢:T" ; T') is the type of values
accepted by v/, and T" is the type of values returned by both v and v'. Any
type T""" would do, including, in particular, abs. Indeed, when w is passed to v’,
it is known not to have tag ¢, so the behavior of v/ on £ does not matter. The
null filter [] can be used for v'. This filter should actually never be applied,
which we ensure by assigning [] the type VX.X(dabs) — X, for no variant value
has type X(0abs). For instance, the filter [¢ : v¢ | [¢' : vg | []]], which may
be abbreviated as [£ : v, | ¢’ : vy] can be applied to either £.v or ¢'.v'. The
following example formalizes polymorphic variants.

EXAMPLE [POLYMORPHIC VARIANTS]: Let % and ¢ be two basic kinds. Let S
contain in addition to the arrow type constructor the two type constructors pre
of kind x => ¢ and abs of kind ¢. In the presence of subtyping we may assume
abs < pre. Let S; contain the unique covariant isolated type constructor X of
kind o = . Let I'g be composed of unary constructors (£.-)*€* and primitives
] of arity 0 and ([£: - | -])*€F of arity 3, given with the following reduction
rules:

[(:v]|Vv']Llw 2 vw (Ev-FOUND)

[C:v|Vv']lw 2 v ife#£0 (Ev-FoLLow)

and contain the following typing assumptions:

lo: VXY.X — X({:pre X;Y)
[[: VX.X(0abs) — X
[€:-]-] VXXYY.X—=Y) > (Z({:X;Y)—>Y)—> X

1.11 Rows 137

EXERCISE [SOUNDNESS FOR EXTENSIBLE VARIANTS, sk ,—|: Prove type
soundness for extensible variants in both equality-only and subtyping models.
O

Other applications of rows

Polymorphic records and variants are the most well-known applications of
rows. Besides the many variations on their presentations—we have only il-
lustrated some of them—there are several other interesting applications of
rOws.

Since objects can be viewed as record-of-functions, at least from a typing
point of view, rows can also be used to type structural objects (Wand, 1994;
Rémy, 1994; Rémy and Vouillon, 1998) and provide, in particular, polymor-
phic method invocation. This is the key to typechecking objects in Objec-
tive Caml (Rémy and Vouillon, 1998). First-class messages (Nishimura, 1998;
Miiller and Nishimura, 1998; Pottier, 2000) combine records and variants in
an interesting way: while filters over variant types enforce all branches to have
the same return type, first-class messages treat filters as records of functions
(also called objects) rather than functions from a variant type to a shared
return type. A message is an element of a variant type. The application of an
object to a message, that is of a record of functions to a variant type, selects
from the record the branch labeled with the same tag as the message and
applies it to the content of the message, much as pattern matching. However,
these applications are typechecked more accurately by first restricting the do-
main of the record to the set of tags that the message may possibly carry, and
thus other branches and in particular their return type are left unconstrained.

Row types may also represent set of properties within types or type refine-
ments and be used in type systems for program analysis. Two examples worth
mentioning are their application to soft-typing (Cartwright and Fagan, 1991;
Wright and Cartwright, 1994) and typechecking of uncaught exceptions (Leroy
and Pessaux, 2000).

The key to rows is to decompose the set of row labels into a class of fi-
nite partitions that is closed by some operations. Here, those partitions are
composed of singleton labels and co-finite sets of labels; the operations are
merging (or conversely splitting) a singleton label and a co-finite set of la-
bels. Other decompositions are possible, for instance, one could imagine to
consider labels in a two-dimensional space. More generally, labels might also
be given internal structure, for instance, one might consider automatons as
labels. Notice also that record types are stratified, since rows, that is, expres-
sions of kind Row(L), may not themselves contain records —constructors of
S1 are only given the image row kind Type. This restriction can be partially

Draft of May 20, 2003

relaxed leading to rows of increasing degrees (Rémy, 1992b) ...and complex-
ity! Yet more intriguing are typed-indexed rows where labels are themselves
types (Shields and Meijer, 2001).

Alternatives to rows

The original idea of using rows to describe types of extensible records is due
to Wand (Wand, 1987, 1988). A key simplification to row types is to make
them total functions from labels to types and encode definiteness explicitly
in the structure of fields, for instance with pre and abs type constructors,
as presented here. This decomposition reduces the resolution of unification
constraints to a simple equational reasoning (Rémy, 1993, 1992a). Other ap-
proaches that do not treat rows as total functions seem more ad hoc and
have often hard-wired restrictions (Jategaonkar and Mitchell, 1988; Ohori
and Buneman, 1989; Berthomieu, 1993; Ohori, 1999). Among these partial
solutions, (Ohori, 1999) is quite interesting for its overall simplicity in the
case where polymorphic access alone is required. Rows and fields may also
be represented within ad-hoc type constraints rather than terms and equality
(or subtyping) constraints. For example, qualified types use the predicates
(T has ¢ : T') and (T lacks £) to mean that field ¢ of row T is defined with
type T' or undefined, respectively (Jones, 1994b; Odersky, Sulzmann, and
Wehr, 1999b). These constraints are in fact equivalent in our equality-model
to IX.T = (L:pre T’ ; X) and IX.T = (£:abs ; X), respectively. Record typecheck-
ing has also been widely studied in the presence of subtyping. Usually, record
subtyping is given meaning directly and not via rows. While these solutions
are quite expressive, thanks to subtyping, they still suffer from their nonstruc-
tural treatment of record types and cannot type row extension. Thus, even
in subtyping models the use of rows increases expressiveness, and is usually a
simplification as well. The subtyping model can then also take advantage of
the possibility of enriching type constructors pre and abs with more structure
and relate them via subtyping (Pottier, 2000). Notice, that even though rows
have been introduced for type inference, they seem to be beneficial to explic-
itly typed languages as well since even other advanced solutions (Cardelli and
Mitchell, 1991; Cardelli, 1992) are limited.

Rules of Figure 1-19 are one way of solving row type constraints. In a
model with subtyping constraints, a more direct closure-based resolution may
be more appropriate (Pottier, 2003).

B Solutions to Selected Exercises

Draft of May 20, 2003 B Solutions to Selected Exercises

SOLUTION: The definition does not behave as expected, because if is a de-
structor, whose arguments—according to the call-by-value semantics of ML-
the-calculus—are evaluated before R-TRUE or R-FALSE is allowed to fire. As
a result, the semantics of the expression if tg then t; else t» is to evaluate
both t; and t, before choosing one of them. Since these expressions may have
side effects (for instance, they may fail to terminate, or update a reference),
this semantics is undesirable. The desired evaluation order can be obtained by
placing t; and t, within closures, which delays their evaluation, then invok-
ing the closure returned by the conditional, forcing its body to be evaluated.
In other words, the expression if ty then t; else to should now be viewed
as syntactic sugar for if to (Az.t1) (Az.t2) 0. The choice of the constant 0 is
arbitrary, since it is discarded; any value would do.

SoruTioN: Within Damas and Milner’s type system, we have:

— DM-VAR DM-VAR
z1:XFz: X z1:X;22 : XF 29 :X

DM-LET

z1 :XFletzo =2z inzs : X
DM-ABS

FF Azp.letzo =21 inzy : X — X

Please note that, because X occurs free within the environment z; : X, it is
impossible to apply DM-GEN to the judgement z; : X F z; : X in a nontrivial
way. For this reason, z, cannot receive the type scheme VX.X, and the whole
expression cannot receive type X — Y, where X and Y are distinct.

SoruTioN: It is straightforward to prove that the identity function has type
int — int:

DM-VAR

[g;z:int - z: int
DM-ABS

I'oF Az.z:int — int

In fact, nothing in this type derivation depends on the choice of int as the type
of z. Thus, we may just as well use a type variable X instead. Furthermore,
after forming the arrow type X — X, we may employ DM-GEN to quantify
universally over X, since it no longer appears in the environment.

DM-VAR

lop;z:XFz:X
FoFAzz:X—X X & fto(Dy)
ok Azz: VXX =X

DM-ABS

DM-GEN

It is worth noting that, although the type derivation employs an arbitrary
type variable X, the final typing judgement has no free type variables. It is

B Solutions to Selected Exercises 489

thus independent of the choice of X. In the following, we refer to the above
type derivation as Ay.

Next, we prove that the successor function has type int — int under the
initial environment I'y. We write I'y for I'g;z : int, and make uses of bM-VAR
implicit.

'y - 4 :int — int — int
I'i Fz:int

DM-APP

I F4z:int — int Fll—i:int
Fll—z—?—i:int
Fgl—)\z.z—T—i:int—>int

DM-APP
DM-ABS

In the following, we refer to the above type derivation as A;. We may now
build a derivation for the third typing judgement. We write I's for I'g;f :
int — int. .
'y B f:int — int 'y H2:int
Ay I's H £ Q ;int
Fgl—letfz)\z.z—?—i inf 2:int

DM-APP

DM-LET

To derive the fourth typing judgement, we re-use Ay, which proves that the
identity function has polymorphic type. We write I's for I'g; £ : VX.X — X. By
DM-VAR and DM-INST, we have I'; F £ : (int — int) — (int — int) and
I's £ :int — int. Thus, we may build the following derivation:

s - f:(int — int) — (int — int)

'3k f:int — int
DM-APpPP

Fgl—ff:ji.nt—>int

I'skH2:int

Ag IsFff2:int
Lot letf=Azzinff2:int

DM-ApP

DM-LET

The first and third judgements are valid in the simply-typed A-calculus, be-
cause they use neither DM-GEN nor DM-INST, and use DM-LET only to in-
troduce the monomorphic binding £ : int — int into the environment.
The second judgement, of course, is not: because it involves a nontrivial
type scheme, it is not even a well-formed judgement in the simply-typed
A-calculus. The fourth judgement is well-formed, but not derivable, in the
simply-typed A-calculus. This is because f is used at two incompatible types,
namely (int — int) — (int — int) and int — int, inside the expression
f £ 2. Both of these types are instances of VX.X — X, the type scheme assigned
to f in the environment I's.

Draft of May 20, 2003 B Solutions to Selected Exercises

By inspection of DM-VAR, DM-GEN, and DM-INST, it is straightforward to
see that, if o - 1 : T is derivable, then T must be int. Since int is not an
arrow type, the application 1 2 cannot be well-typed under I'y. In fact, because
this expression is stuck, it cannot be well-typed in a sound type system.

The expression Af.(f £) is ill-typed in the simply-typed A-calculus, because
no type T may coincide with a type of the form T — T'. Indeed, T would
then be a subterm of itself. For the same reason, this expression is ill-typed in
DM as well. Indeed, it is not difficult to check that the presence of bM-GEN
and DM-INST makes no difference: DM-GEN cannot generalize T as long as the
binding f : T appears in the environment, and DM-INST can only instantiate
T to T itself. Thus, the self-application f £ is well-typed in DM only if £
is let-bound, as opposed to A-bound. The argument crucially relies on the
fact that £ must be assigned a monotype. Indeed, the expression Af.(f f)
is well-typed in an implicitly-typed variant of System F: one of its types is
(VXX = X) — (VX.X — X). It also relies on the fact that types are finite:
indeed, this expression is well-typed in an extension of the simply-typed A-
calculus with recursive types, where the equation T = T — T’ has a solution.

SOLUTION: It is clear that the effect of DM-GEN may be obtained by a series
of successive applications of DM-GEN’. Conversely, consider an instance of
DM-GEN’, whose premises are I' -t : S (1) and X & ftv(I') (2). Let us write
S = VX.T, where X # ftv(L') (3). Applying DM-INST to (1) and to the identity
substitution yields I' -t : T (4). Applying bM-GEN to (4), (2) and (3) yields
't : VXX.T, that is, I' F t : VX.S. Thus, the effect of DM-GEN’ may be
obtained by DM-INST and DM-GEN.

It is clear that DM-INST is a particular case of DM-INST’ where Y is empty.
Conversely, consider an instance of DM-INST’, whose premises are [' - t :
VX.T (1) and Y # ftv(VX.T) (2). Let p be a renaming that exchanges Y with
Z, where Z # fto(VY.[X — T|T) (3) and Z # ftv(T') (4). Applying DM-INST to
(1) yields T' F t : [X = pT|T (5). Applying bM-GEN to (5) and (4) yields T' -
t : VZ.[X — pT|T, that is, T' - t : VpY.[X — pT|T (6). Now, by (2) and (3), we
have [X — pT|T = p([X = T|T), so (6) may be written T' F t : VpY.p([X — T|T),
that is, I F t : p(VY.[X = T|T) (7). By (3), this is exactly T' F ¢t : VY.[X s T|T.
Thus, the effect of DM-INST” may be obtained by DM-INST and DM-GEN.

SOLUTION: Let us recall that a program t is well-typed if and only if a judge-
ment of the form C,I' F t : o, where C' is satisfiable, holds. Let us show that
it is in fact possible, without loss of generality, to require o to be a monotype.

Assume C,I' F t : ¢ (1) is derivable within HM(X). Let us write o =
VX[D].T, where X # ftv(C) (2). Applying Lemma 1.4.1 to (1) yields C I+
3X.D (3). By HM-INST, (1) implies C A D,T' F t : T (4). By (3), we have
C =CA3X.D =3X(CAD). Because C is satisfiable, this implies that C' A D

B Solutions to Selected Exercises 491

is satisfiable as well. Thus, the judgement (4), which involves the monotype
T, witnesses that t is well-typed.

We have shown that a program t is well-typed if and only if a judgement
of the form C,I' F t : T, where C' is satisfiable, holds. Thus, by Theorems ??
and 7?7, well-typedness is the same for both rule sets.

SoLuTION: By Theorem ??, every rule in Figure 1-8 is admissible in HM(X).
Of course, so is HM-GEN. So, every judgement that is derivable via the rules
of Figure 1-8 and HM-GEN is a valid HM(X) judgement.

Conversely, assume C,I' -t : ¢ (1) holds in HM(X). We must show that
it is derivable via the rules of Figure 1-8 and HM-GEN. Let us write 0 =
VX[D].T, where X # ftv(C,I') (2). By HM-INST and (1), the judgement C' A
D,T'F t:T (3) holds in HM(X). This judgement involves a monotype, so, by
Theorem ?7, it is derivable via the rules of Figure 1-8. Furthermore, from (3)
and (2), HM-GEN allows deriving C AJo, 't : o (4). Applying Lemma 1.4.1
to (1) yields C I+ Jo, so the judgement (4) may be written C,T' F t : 0. We
have shown that (1) is derivable via the rules of Figure 1-8 and HM-GEN. In
fact, it is possible to apply HM-GEN only once, at the end of the derivation.

SoruTION: Within the type system PCB(X), we have

—— VAR —— VAR
z1 XZFz :Z zo XYk zy:Y

let z5 : VZ[zy < Z].Zinzy XYk letzy =25 inzy: Y
let z; : X;20 : VZ[zg < Z]|.Zinzy X YF Azj.letzy =2z inzy : X — Y

LeET

ABs

The type variable Z, which occurs free in the left-hand instance of VAR, is
generalized. However, z, does not receive the type scheme VZ.Z, which, as
suggested earlier, is unsound; instead, it receives the constrained type scheme
VZ[z1 = Z].Z. The latter is more restrictive than the former: indeed, the former
claims that z, has every type, while the latter only claims that every valid
type for z; is also a valid type for zs. Let us now examine the constraint let z; :
X;22 @ VZ[z; < Z].Z in 2 < Y, which appears at the root of the derivation.
By C-INID and C-IN*, it is equivalent to let z; : X in 3Z.(zy X ZAZ <Y)
and to 3Z.(X < Z A Z < Y), which by C-EXTRANS is equivalent to X < Y.
Thus, the judgement at the root of the above derivation may be written X <
Y F Azy.let zo = z; in z5 : X — Y. In other words, the expression let zo =
z1 in zy has type X — Y only under the assumption that X is a subtype of Y,
which is sound. Even though LET allows unrestricted generalization of type
variables, it remains sound, because the type scheme that it produces typically
has free program identifiers, such as VZ[z, < Z].Z above.

Draft of May 20, 2003 B Solutions to Selected Exercises

SOLUTION: Let £ =1let z =& inty and &1[t]/p C &1[t']/1’ (1). Then,

let To;ref M in [E]t]/p : T/M]

let To;ref M in ((let z : VX[[E1[t] : X]].X in [t1 : T]) A [u : M]) (2)
let Tosref M;z : VX[[E1[t]/p : X/M]].X in [ty : T] (3)
let Do; ref Mz : VX[let To; ref M in [E1[t]/p : X/M]].X in [ty : T] (4)
let To; ref M;z : VXY[let To;ref M in [E1[t']/p’ : X/M']].Xin [t : T] (5)

where (2) is by definition of constraint generation, where X & ftv (T, M) (6); (3)
is by (6), C-LETAND, and by definition of constraint generation; (4) is by (6)
and C-LeTDup; (5) follows from (1) and C-LETEX, for some Y and M’ suc
that ¥ # ftv(X, M) (7) and ftv(M') C YUftv(M) (8) and dom(M') = dom(p)
and M' extends M. Note that (6), (7) and (8) imply X & ftv(M') (9).

At this point, the type variables ¥, which determine the types of the newly
allocated store cells, are universally quantified in the type scheme assigned
to z, which is undesirable. We are stuck, because we cannot in general apply
C-LETALL to hoist 3Y out of the let constraint. Let us now assume that, by
some external means, we are guaranteed Y = @ (10). Then, we may proceed
as follows:

let To;ref M';z : VX[let To;ref M" in [E1[t]/p' : X/M']].X in [ty : T]
let To;ref M in [E[t']/p' : T/M']

where (11) follows from the fact the the memory locations that appear free in
[t1 : T] are members of dom (), thus are not members of dom(M')\ dom(M);
(12) is obtained by performing the steps that lead to (4) in reverse.

The requirement that Y be empty, that is, ftv(M) = ftv(M'), is clas-
sic (Tofte, 1988). How is it enforced? Assume that the left-hand side of every
let construct is required to be a non-expansive expression. By assumptions
(i) and (iii), this invariant is preserved by reduction. So, & [t] must be non-
expansive, which, by assumption (i), guarantees that the reduction step does
not allocate new memory cells. Then, p' is u, so M’ is M.

SoLuTION: We must first ensure that R-ADD respects T (Definition 1.7.5).
Since the rule is pure, it is sufficient to establish that let Ty in [k + k2 : T]

entails let I'g in [[kl/-;-\kg : T]. In fact, we have

let T in II]Aﬁ -T']Aﬁz :T]]
let Do in IXY.(+ <X =Y > TAk <XAky <Y) (1
JXY.(int — int > int <X =Y —=>TAint <XAint <Y) (2
IXY.(X = int AY = int A int < T) (3
(
(

int<T 4
let Iy in IIkl + ko : T]] 5

B Solutions to Selected Exercises 493

where (1) is by definition of constraint generation; (2) is by definition of I'y, by
C-INID and C-IN*; (3) is by C-ARROW and by antisymmetry of subtyping;
(4) is by C-EXAND and C-NAME; (5) is again by definition of I'g, by C-INID
and C-IN*, and by definition of constraint generation.

Second, we must check that if the configuration ¢ vy ... vi/u (where k > 0)
is well-typed, then either it is reducible, or c v; ... vy is a value.

We begin by checking that every value that is well-typed with type int is
of the form k. Indeed, suppose that let To;ref M in [v : int] is satisfiable.
Then, v cannot be a program variable, for a well-typed value must be closed.
v cannot be a memory location m, for otherwise ref M (m) < int would be
satisfiable—but the type constructors ref and int are incompatible. v cannot
be + or 4 v/, for otherwise int — int — int < int or int — int < int
would be satisfiable—but the type constructors — and int are incompatible.
Similarly, v cannot be a A-abstraction. Thus, v must be of the form];7, for it
is the only case left.

Next, we note that, according to the constraint generation rules, if the
configuration c vy ... vip/p is well-typed, then a constraint of the form
let To;refM in (¢ < X3 = ... > X = TAJvy : 5] Ao A Jvg 2 Xg]) is
satisfiable. We now reason by cases on c.

o Case cis k. Then, I'g(c) is int. Because the type constructors int and —

are incompatible with each other, this implies k£ = 0. Since kis a constructor,
the expression is a value.

o Case c is +. We may assume k > 2, because otherwise the expression
is a value. Then, I'g(c) is int — int — int, so, by C-ARROW, the above
constraint entails let Tp;ref M in (X; < int A Xs < int A vy : X1 A [ve : X2]),
which, by Lemma 1.6.3, entails let I'g; ref AL in ([vy : int] A [vs : int]). Thus,
vi and v are well-typed with type int. By the remark above, they must
be integer literals k1 and ko. As a result, the configuration is reducible by
R-ADD.

SoLUTION: We must first ensure that R-REF, R-DEREF and R-ASSIGN re-
spect C (Definition 1.7.5).

o Case R-REF. The reduction is ref v/@ — m/(m ~ v), where m ¢
fpi(v) (1). Let T be an arbitrary type. According to Definition 1.7.5, the goal
is to show that there exist a set of type variables Y and a store type M’ such
that Y # ftv(T) and ftv(M') C Y and dom(M') = {m} and let I'y in [ref v : T]

Draft of May 20, 2003 B Solutions to Selected Exercises

entails 3Y.let T'g;ref M’ in [m/(m +— v) : T/M']. Now, we have

let Tg in [ref v: T]
let Tp in IXY.(Y = ref Y <X = TA[v:X]) (2)
Av.let Iy in (refY < T A [v: Y]) (3)
Av.let o;ref M in (m X TA[v: M'(m)]) (4)
v.let To;ref M in [m/(m +— v) : T/M'] (5)

where (2) is by definition of constraint generation and by definition of I'g(ref);
(3) is by C-ARROW, Lemma 1.6.4, and C-INEX; (4) assumes M’ is defined as
m +— Y, and follows from (1), C-INID and C-IN*; and (5) is by definition of
constraint generation.

Subcase R-DEREF. The reduction is !m/(m — v) — v/(m — v). Let T be
an arbitrary type and let M be a store type of domain {m}. We have

let To;ref M in ['m/(m +— v) : T/M]

let To;ref M in IXY.(ref Y 5 Y <X > TAm <XXA[v: M(m)])
let To;ref M in IXY.(ref M (m) <X <ref YAY S TA[v: M(m)])
let To;ref M in IY.(M(m) =YAY S TA[v: M(m)])

let To;ref M in (M (m) < TA[v:M(m)])

let To;ref M in ([v : T] A [v : M (m)])

let To;ref M in [v/(m — v) : T/M]

T 00

where (1) is by definition of constraint generation and by definition of I'y(!);
(2) is by C-Arrow and C-INID; (3) follows from C-EXTRANS and from
the fact that ref is an invariant type constructor; (4) is by C-NAMEEQ; (5)
is by Lemma 1.6.3 and C-Dup; and (6) is again by definition of constraint
generation.

o Case R-ASSIGN. The reduction is m := v/(m +— vo) — v/(m — v). Let
T be an arbitrary type and let M be a store type of domain {m}. We have

let To;ref M in [m :=v/(m +— vq) : T/M]

let To;ref M in [m :=v : T] 1
let To;ref M in IXYZ.(refZ 5 Z 5 Z<X—>Y—->TAmXA[v:Y]) (2
let To;ref M in IXYZ.(ref M(m) <X <refZAZLSTA[v:YJAY<Z) (3
let Tosref M in 3Z.(M(m) =ZAZ<TA[v:Z])

let To;ref M in (M (m) < TA[v:M(m)]) 5
let To;ref M in [v/(m — v) : T/M] (6

-

-

where (1) and (2) are by definition of constraint generation; (3) is by C-
ARrrOW and C-INID; (4) is by C-ExXTRANS, Lemma 1.6.4, and from the fact
that ref is an invariant type constructor; (5) is by C-NAMEEQ; and (6) is
obtained as in the previous case.

B Solutions to Selected Exercises 495

Second, we must check that if the configuration ¢ vy ... vi/p (where k > 0)
is well-typed, then either it is reducible, or c v; ... vy is a value. We only give
a sketch of this proof; see the solution to Exercise 1.9.1 for details of a similar
proof.

We begin by checking that every value that is well-typed with a type of the
form ref T is a memory location. This assertion relies on the fact that the type
constructor ref is isolated.

Next, we note that, according to the constraint generation rules, if the
configuration c¢ vy ... vi/p is well-typed, then a constraint of the form
let Tos;ref M in (¢ <Xy = ... = X = TAJvy : 4] Ao A vy 2 X)) is
satisfiable. We now reason by cases on c.

o Case c is ref. If k£ = 0, then the expression is a value; otherwise, it is
reducible by R-REF.

o Case c is |. We may assume k > 1, because otherwise the expres-
sion is a value. Then, by definition of I'y(!), the above constraint entails
let Do;ref M in IY.(refY - Y < X — ... = X = TA[vy : X1]), which, by
C-ARROW, Lemma 1.6.3, and C-INEX, entails 3Y.let T'g; ref M in [vy : ref Y].
Thus, vy is well-typed with a type of the form ref Y. By the remark above, vy
must be a memory location m. Furthermore, because every well-typed configu-
ration is closed, rn must be a member of dom(u). As a result, the configuration

ref vy ... vi/p is reducible by R-DEREF.

o Case c is :=. We may assume k > 2, because otherwise the expression is a
value. As above, we check that v; must be a memory location and a member
of dom(p). Thus, the configuration is reducible by R-ASSIGN.

SoLuTION: We must first ensure that R-FIX respects C (Definition 1.7.5).
Since the rule is pure, it is sufficient to establish that let T'g in [fix v; vy : T]
entails let T in vy (fix vy) vo : T]. Let C stand for the constraint fix =<
(X=2Y) =2 X=Y) 2 X2 YAYLSTAvi : X =Y) = (X = V)] A[ve: X].
We have

let I in [fix vy vo : T]

let IT'yin E|X1X2.(fix <X —+X—=TA [[Vl : X1]] A [[V2 : Xz]])

let To in X1 X2XY.((X =2 Y) > (X = Y) 2 X>Y¥Y<X; > X =T
/\[[Vl : X1]] A [[V2 : XQ]])

let D in IXY.(Y < TA[vy : (X = Y) = (X = Y)] A [vs : X])

let I'g in IXY.C

where (1) is by definition of constraint generation; (2) is by definition of
[o(fix); (3) is by C-ARROW and Lemma 1.6.4; (4) is by definition of I'y(fix).
By Theorem 1.6.2 and WEAKEN, the judgements C F v; : (X—>Y) —

Draft of May 20, 2003 B Solutions to Selected Exercises

(X—=Y) and C F vy : X hold. By VAR, WEAKEN, APp, and SUB, it fol-
lows that C' F vy (fixvy) vo : T holds. By Theorem 1.6.6, this implies
C Ik [vy (fix vi) v : T]. By congruence of entailment and by C-Ex*, (4)
entails let Iy in [vy (fix vy) vo : T].

Second, we must check that if the configuration fix vy ... vi/p (where
k > 0) is well-typed, then either it is reducible, or fix vy ... vy is a value.
This is immediate, for it is a value when k < 2, and it is reducible by R-Fix
when k > 2.

We now recall that the construct letrec £ = Az.t; in t, provided by
ML-the-programming-language may be viewed as syntactic sugar for let f =
fix (AMf.Az.t1) in to, and set forth to discover the constraint generation rule
that arises out of such a definition. We have

let T in [fix (Af.Az.t1) : T]

let Tg in 3Z.(fix < Z — T A [Af.Az.t; : Z]) (1)
let [in IXY.(X 5 Y < TA[MAzt (X = ¥) > X = V)]) (2)
let Toin IXY.(X > Y<TAletf:X— Y;z:Xin [ty : Y]) (3)

where (1) is by definition of constraint generation; (2) is by definition
of Tp(fix), by C-ARROW, and by Lemma 1.6.4; and (3) follows from
Lemma 1.6.5. This allows us to write

let Tp in [let £ = fix (Af.Az.t1) in ty : T]

let Do; £ : VZ[[£ix (Af.Az.t1) : Z]].Z in [t : T]

let Do; £ : VZ[FXY.(X > Y <ZAletf:X = Y;z:Xin [ty : Y])].Zin [tz : T]
let To; £ : VXY[let £: X — Y;z :Xin [ty : Y]].X — Yin [t2 : T]

where (4) is by definition of constraint generation; (5) follows from C-LETDUP
and from the previous series of equivalences; (6) is by C-LETEX, C-EXTRANS
and Lemma 1.3.22.

SoLuTION: We have

[match t; withz.ty : T]

let VXX'[[t1 : X[Aletz: X in [X:z]].(z: X) in [tz : T]
let z : VX'[3X.([t1 : XA X < X)X in [t : T]

let z : VX'[[t1 : X']].X" in [ta : T]

[let z=t; in to : T]

where (1) is by definition of constraint generation for match; (2) is by definition
of constraint generation for patterns, by C-INID, C-IN*, and C-LETEX; (3)
is by Lemma 1.6.4; (4) is by definition of constraint generation for let.

SoLuTION: The type scheme VX.T — T may be written VX.[X — T|(X — X).
Furthermore, X # VX.X — X holds. Thus, VX.T — T is an instance of VX.X — X

B Solutions to Selected Exercises 497

in the sense of DM-INST’. Since DM-INST’ is an admissible rule for the type
system DM, and since it is clear that the identity function Az.z has type
VX.X — X, it must also have type VX.T — T. (A more direct proof of this
fact would not be difficult.) So, the destructor (- : 3X.T) has not only identity
semantics, but also an identity type. This shows that our definitions are sound.

Let us now check requirement (i) of Definition 1.7.6. Since R-ANNOTATION
is pure, it suffices to show that let Iy in [(v : 3X.T) : T'] entails let Iy in [v : T'].
Now, we have

let Tg in (v : 3X.T) : T']

let Ty in IKK(T > T< X = T' A [v : X])
let To in XXX T<S<T Afv:X])

let I in [v: T']

where (1) is by definition of constraint generation and by definition of T'g((- :
JX.T)); (2) is by C-ArRrROW; and (3) follows from Lemma 1.6.3 and C-EX*.

SoLUTION: We have

let T in 3Z.[(A\z.z + 1 : VXX = X) : Z]
let T in 3Z.(VX.[Azz + 1: X = X[AKX = X<2Z) (1)
let T in VX.let z: X in [z 4+ 1: X] (2)
VX.(int — int — int < X — int — X) (3)
VX.(X = int) (4)
false (5)

where (1) is by definition of constraint generation for universal type annota-
tions; (2) is obtained by restricting the scope of 3Z to the second conjunct,
then dropping the latter altogether, since it is equivalent to true, and by
Lemma 1.6.5; (3) is obtained by definition of constraint generation, by defini-
tion of To(4) and of Ty(1), and by a few simple equivalence laws; (4) follows
from C-ARROW and antisymmetry of subtyping; (5) follows from the fact
that int and (say) int — int have distinct interpretations, since the type
constructors int and — are incompatible. On the other hand, we have

let I'g in 3Z.[(Az.z : VX.X = X) : Z]
let I'g in VX.let z : X in [z : X]
VX.(X < X)

true

where (1) is obtained as above; (2) by definition of constraint generation,
C-INID and C-IN*; (3) is by reflexivity of subtyping.

Draft of May 20, 2003 B Solutions to Selected Exercises

SoLUTION: Under the naive constraint generation rule for universal type vari-
able introduction, the constraint [VX.(Az.z : X — X) : Z] is equivalent to
VX.([Az.z : X = X] AX — X < Z). Since the first conjunct is a tautology, this
is in turn equivalent to VX.(X — X < Z). In a nondegenerate free term model
where subtyping is interpreted as equality, this constraint is unsatisfiable. In
a non-structural subtyping model equipped with a least type L and a greatest
type T, it is equivalent to L — T < Z. This is a pretty restrictive constraint:
since no value has type L, a function whose type is (a supertype of) L — T
cannot ever be invoked at runtime. This situation is clearly unsatisfactory.
Checking that VX.[Az.z : X — X] holds was indeed part of our intent, but
constraining Z to be a supertype of X — X for every X was not.

SoLuTION: Let X D ftv(T) (1) and X # ftv(t) (2). We may assume, w.l.0.g.,
X # fto(T") (3). By (1), (2), (3), and by definition of constraint generation
for local universal type annotations, [(t : VX.T) : T'] is well-defined and is
VX.[t: T ATX(T < T') (4). By (3) and by definition of constraint generation
for introduction of universal type variables and for general type annotations,
[VX.(t : T) : T'] is VX.3Z.([t : T]AT < Z)AZX.([t : TJAT < T'), where Z is fresh,
which we may immediately simplify to VX.[t : TJATX.([t : T]AT < T') (5).
Using C-EXAND and Lemma 1.10.1, it is straightforward to check that (4)
and (5) are equivalent.

SOLUTION: We have

3Z.[Az.VX.(z : X) : Z]
Ik 3Z1Zydet z : Zy in [VX.(z: X) : Zo] (1)
Ik 3Z,.VX.(Z1 <X) (2)

where (1) is by definition of constraint generation for A-abstractions, drop-
ping the constraint that relates Z, Z;, and Zo; (2) is by definition of constraint
generation for universal type variable introduction, this time dropping infor-
mation about Z;. Now, in a nondegenerate equality model, the constraint (2)
is equivalent to false. In fact, for (2) to be satisfiable, the interpretation of
subtyping must admit a least element L. We now see that [Az.VX.(z : X) : Z]
is a very restrictive constraint. Indeed, it requires z to have every type at
once. Because z is A-bound—hence monomorphic—it must in fact have type
L. On the other hand, we have

3Z.[VX.Az.(z : X) : Z]

VX.3Z.[Az.(z : X) : Z]

VX.322125.(Z1 < XAX < Zo AZy — Zy < Z)
true

B Solutions to Selected Exercises 499

where (1) is by definition of constraint generation for universal type variable
introduction, dropping the second conjunct, which is entailed by the first; (2)
is by Lemma 1.6.5, by definition of constraint generation for general type an-
notations, and by a few simple equivalence laws; (3) follows from C-NAMEEQ
and the witness substitution [Z; — X,Z2 — X,Z — (X — X)].

SoLuTION: We have

[letrec f : S = Az.t; in ty : T]

let £ : VX[[fix £ : S.Az.t; : X]].X in [t2 : T] (1
let £ :VX[let £:Sin[Az.t; :SJAS <X].Xin[t2:T] (2
let £:Sin[Az.t; : S[Alet£:VX[S<X].Xin[t2:T] (3
let £ :Sin ([Az.t1 : S] A Jt2 : T]) (4

where (1) is by definition of the letrec syntactic sugar and by the definition
of constraint generation for let constructs; we have X & ftv(S,t1); (2) is by
definition of constraint generation for fix; (3) is by C-LETAND; (4) follows
from the equivalence between the type schemes VX[S < X].X and S—which
itself is a direct consequence of C-EXTRANS—and from C-INAND.

SoLuTiON: We reason simultaneously in both the subtyping model or the
equal-only model, that is, we only rely on properties that are valid in both
models.

We must first ensure that rules RD-DEFAULT, RD-FOUND, and RD-FoLLOW
respect (Definition 1.7.5).

o Case RD-DEFAULT. The reduction is {v}.{¢} N v, which is pure.
Therefore, it is sufficient to establish that let Ty in [{v}.{¢} : T] entails
let T in [v : T]. In fact, we have:

let To in [{v}.{¢} : T]

let Tp in E'XY({E} <X—=TA {} <Y—=XA [[V : Y]])

let I'pin E'XY.(HXle.(H(E 1 Xy Xg) —+ X <X—= T)
/\ElYl.(Yl — H(aYl) <Y— X) A IIV : Y]])

let I'pin HXQY.(GY < (é : Xy X2) ANX; <TA IIV : Y]])

let Tp in E'Y.(Y <X AX LZTA IIV : Y]])

let Tg in v : T]

where (1) is by definition of constraint generation; (2) is by definition of 'y,
C-INID; (3) by variances of II, ¢, and —, C-AND, C-Ex*, C-ExXAND; (4) by
C-Row-DL and covariance of £; (5) by Lemma 1.6.3.

o Case RD-FOUND: The reduction is {w with ¢ = v}.{¢} %4 v. It suffices to
establish let T'g in [{w with £ = v}.{¢} : T] entails let I'g in [v : T]. In fact, we

Draft of May 20, 2003 B Solutions to Selected Exercises

have:

let Tg in [{w with £ = v}.{¢} : T]
let To in IXYY' .({{} <X > TA{-with{=-} <Y > Y - XA
Aw:Y]Av:Y]) (1)
let I'pin E'XYYI.(HXng.(H(E : Xy X2) —+ X <X—= T)
A E|Y1Y2Y3.(H(€ 1Yy Y3) — Yy — H((1Yo ; Y3) <Y — Y — X)
Aw:Y[Av:YT]) (2)
I let FO in ElY’XlYQ.(Y’ S Yo A Yo S X1 ANXy S TA [[V H Y’]]) (3)
IF letTyin [v:T] (4)

where (1) is by definition of constraint generation; (2) is by definition of I,
C-INID; (3) by variances of II, ¢, and —, C-AND, C-Ex*, C-ExAND; (4) by
Lemma 1.6.3.

o Case RD-FoLLOW The proof is similar to the previous case.

We must now check that if the configuration F vy ... vi/p is is well-typed,
then either it is reducible, or it is a value.

We begin by checking that every value that is well-typed with type II T is
a record value, that is, either of the form {v'} or {v" with ¢ = v'}. Indeed,
suppose that let T'g in [v : II T] is satisfiable. Then, v cannot be a program
variable, for a well-typed value must be closed; v cannot be a memory loca-
tion m, for otherwise ref M (m) < II T would be satisfiable—but the top type
constructors ref and II are incompatible (since II is isolated); v cannot be a
partial application of a constructor or a primitive, nor a A-abstraction, since
otherwise T — T"” < II T would be satisfiable but the top type constructors
— and II are incompatible (since they are both isolated); thus v must either
be of the form {v} or {w with ¢ = v}, for these are the only left cases.

Next, we note that, according to the constraint generation rules, if the
configuration c vy ... vi/p is well-typed, then a constraint of the form
let To;ref M in (¢ < X3 = ... > X = TAJvr : X Ao A Jvg 2 X)) is
satisfiable. We now reason by cases on c.

o Case c is {-}. We may asume k > 2, since otherwise, the expression is a
value. Then I'g(c) is VXY.X — II(0X), so by C-INID and C-ARROW the above
constraint entails 3X.(II(0X) < Xy — ... = T), which by C-Class-I entails
false since — and II are imcompatible. Thus, this case cannot occur.

o Case c is {- with £ = -}. Similar to the previous case.

o Case c is -.{f}. We may asume k > 1, since otherwise, the expression is
a value. Then I'y(c) is VXY.II(£ : X ; Y) — X, so by C-INID and C-ARROW the
above constraint entails let I'p;ref M in (IXY.(X; < II(C:X ;5 Y)) A vy : X1]),
which by lemma 1.6.3 entails let I'g; ref M in 3XY.[vy : II(£:X ; Y)]. Thus vy is a
record value, that is, either of the form {v'} and the configuration is reducible

B Solutions to Selected Ezercises 501

to v' or of the form {v’" with ¢ = v'} and the configuration is reducible to
either v/ or v".{(}.

SoLuTIiON: We add a collection of destructors -[¢;+£5] of arity 1 for all pairs
of distinct labels, with the following semantics:

(v} ot] - v
{wwith £ = v}l e50] -2 {u[ly 50] with £ = v} if 0 ¢ {05}
{wwith £ = v}[l1 0] = {w[liob] with C=v} if {¢,0} = {€1, 0}

The initial environment 'y must be extended with the following typing asump-
tion:

[Zl(—)éz] o VXXV, H(gl : X1 62 : Xy ; Y) — H(Zl 1 Xy ; 62 1 X1 Y)

We must then check subjection reduction for the new primitive. Since we only
added a constructor, it sufficies to check progress for the new primitive, that is,
that well-typed expressions of the form [{;<+{s]vy ... v, are either value or
can be further reduced. Both parts are easy and similar to the corresponding
parts in Exercice 1.11.16.

SoLuTION: There are several solutions. One of them is to asume a fixed total
ordering on row-labels, and to retain as constructors only £%% such that ¢ < L,
that is £ < ¢ for all £’ € L; other constants ¢*-* such that ¢ ¢ L are moved
from constructors to the status of destructors with the following collection of
reduction rules:
{{w with ¢/ = v'} with £ = v} LN {{w with £ = v} with ¢/ =v'}
(RD-TRANSPOSE)

for all labels ¢ and ¢’ such that ¢' < ¢ and

{{wwith £ = v'} with £ = v} -5 {w with £ = v} (RD-DISCARD)
for all labels £. It is now obvious that values are in normal forms, in the sense
that explicit fields are never repeated and are always listed in order. Typing
rules need not be changed, so requirement (i) of Definition 1.7.6 still holds.
Requirement (ii) need to be check, in particular, for the new primitives %,
which we leave to the reader (the proof for -.{¢} should hold unchanged).

SOLUTION: Let map have type II(X — Y) — II(X) — II(Y), and the following
reduction rules in the semantics with normal forms:

map {v' with¢{ = v} w N {map v’ w with ¢ = v (w.{¢})}
map v {w’ with { = w} N {map v w’ with ¢ = (v.{¢}) w}

map {v} {w} - {v w}

Draft of May 20, 2003 B Solutions to Selected Exercises

SoLUTION: To ensure that the field is not present in the argument of extension,
it sufficies to restrict its the typing asumptions as follows:

(-with ¢ ="-) : VXX'Y. II(¢ : abs ; Y) = X' = II(¢ : pre X' ;Y).

To remove an existing field, we can use the following syntactic sugar:

AL \v {v with £ = abs}

(VXY II(C :X; Y) — II(£ : abs ; Y)

The following weaker typing asumption could also be used to ensure that the
field is always present before removal:

VXY. II(¢ :pre X;Y) — II(¢ :abs; Y)

SOLUTION: The proof is similar to 1.11.16 but slightly more complex because
we must also check that labels are defined when accessed, and with subtyping.
We reason simultaneously in both the subtyping model or the equal-only
model, that is, we only rely on properties that are valid in both models.
We must first ensure that rules RE-FOUND and RE-FOLLOW respect (Defi-
nition 1.7.5).

o Case RE-FOUND: See Exercice ?7. In line 77, field ¢ is pre X; instead of
X; and pre Y, instead of Y, and step 77 also uses covariance of pre.

o Case RE-FOLLOW The proof is similar.

We must then check that if the configuration F' vy ... v /p is is well-typed,
then either it is reducible, or it is a value.

We begin by checking that every value that is well-typed with type II T
is a record value, that is, either of the form () or (v with ¢/ = v'). See
Exercice 1.11.16.

Next, we note that, according to the constraint generation rules, if the
configuration c vy ... vi/p is well-typed, then a constraint of the form
let To;ref M in (¢ < X3 = ... > X = TAJvr : X Ao A Jvg @ X)) is
satisfiable. We now reason by cases on c.

o Case c is () or (- with £ =). See Exercice 1.11.16.

o Case c is -.(¢). We may asume k > 1, since otherwise, the expression is a
value. Then I'g(c) is VXY.II(£:pre X;Y) — X, so by C-INID and C-ARROW the
above constraint entails let Io; ref A in (3XY.(X; < II(€:pre X;Y))A[vy : X1]),
which by lemma 1.6.3 entails let ['g;ref M in IXY.[vy : II(¢ : pre X ; Y)]. Thus
vy is a record value, that is, either of the form () or (v/' with £ = v'). In fact,
the former case cannot occur, since let Io; ref M in IXY.[() : II(£ : pre X ; Y)]
entails IXYII(Qabs) < II(¢:pre X;Y) by C-INID and C-IN*, which in turns

B Solutions to Selected Ezercises 503

entails JX.abs < pre X by C-Row-DL and covariance of IT and ¢. However,
this constraint is equivalent to false, because ¢(abs) < ¢(pre X) does not hold
in any ground assignment ¢. Thus v; is (v"" with ¢/ = v') and the configuration
is reducible to v’ if ¢’ is £ or v" otherwise.

References

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. Journal of Functional Programming, 1(4):375-416, 1991. Summary
in ACM Symposium on Principles of Programming Languages (POPL), San Fran-
cisco, California, 1990.

Amal Ahmed and David Walker. The logical approach to stack typing. In ACM
Workshop on Types in Compilation, New Orleans, Lousiana, January 2003.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 1986.

Alexander Aiken, Manuel Fahndrich, and Raph Levien. Better static memory man-
agement: Improving region-based analysis of higher-order languages. In Program-
ming Language Design and Implementation, volume 30(6), pages 174-185, 18-21
June 1995. URL http://www.cs.berkeley.edu/"aiken/publications/papers/
pldi95.ps.

Alexander Aiken and Edward L. Wimmers. Solving systems of set constraints (ex-
tended abstract). In IEEE Symposium on Logic in Computer Science (LICS),
pages 329-340, Santa Cruz, California, 22-25 June 1992. IEEE Computer Society
Press.

Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type
inference. In ACM Symposium on Functional Programming Languages and Com-
puter Architecture (FPCA), pages 31-41, 1993.

Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In ACM Symposium on Principles of Prograrmmming Languages
(POPL), Portland, Oregon, pages 163-173, January 1994.

Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, LFCS, University of Edinburgh, 1993. URL http://www.lfcs.
informatics.ed.ac.uk/reports/93/ECS-LFCS-93-279/index.html.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In POPL POPL
(a), pages 104-118.

References 537

Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson. Type and Effect Sys-
tems: Behaviours for Concurrency. IC Press, 1999.

Andrew W. Appel and Amy P. Felty. A semantic model of types and machine
instructions for proof-carrying code. In ACM Symposium on Principles of Pro-
gramming Languages (POPL), Boston, Massachusetts, pages 243-253, January
2000.

David Aspinall. Subtyping with Singleton Types. In Proc. Computer Science Logic
(CSL ’94), 1995. In LNCS 933.

Lennart Augustsson. Cayenne — a language with dependent types. In Inter-
national Conference on Functional Programming (ICFP), Baltimore, Maryland,
USA, pages 239-250, 1998.

Henk P. Barendregt. The Lambda Calculus. North Holland, revised edition, 1984.

Henk P. Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125-154, 1991.

Henk P. Barendregt. Lambda calculi with types. In Abramsky, Gabbay, and
Maibaum, editors, Handbook of Logic in Computer Science, volume II. Oxford
University Press, 1992.

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph
rewrite systems. In Shyamasundar, editor, Foundations of Software Technology
and Theoretical Computer Science, number 761 in LNCS, pages 41-51, Bombay,
India, 1993. Springer-Verlag.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saibi, and Ben-
jamin Werner. The Coq proof assistant reference manual : Version 6.1. Technical
Report RT-0203, Inria (Institut National de Recherche en Informatique et en
Automatique), France, 1997.

Lujo Bauer, Andrew W. Appel, and Edward W. Felten. Mechanisms for se-
cure modular programming in java. Technical Report TR-603-99, 1999. URL
citeseer.nj.nec.com/bauer99mechanisms.html.

Stephan Bellantoni and Stephan Cook. A new recursion-theoretic characterization
of polytime functions. Computational Complezity, 2(2):97-110, 1992.

Stephan Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Higher type recursion,
ramification and polynomial time. Annals of Pure and Applied Logic, 104:17-30,
2000.

Stefano Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of
constructions and the other systems in Barendregt’s cube. Technical report, De-
partment of Computer Science, CMU, and Dipartimento Matematica, Universita
di Torino, 1988.

Bernard Berthomieu. Tagged types, a theory of order sorted types for tagged ex-
pressions. Research Report 93083, LAAS, 7, Avenue du Colonnel Roche, 31077
Toulouse, France, March 1993.

Draft of May 20, 2003 References

G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a
polymorphic linear lambda calculus with recursion. In Fourth International Work-
shop on Higher Order Operational Techniques in Semantics, Montréal, volume 41
of Electronic Notes in Theoretical Computer Science. Elsevier, September 2000.
URL http://www.elsevier.nl/locate/entcs/volume4l.html.

L. Birkedal and R. W. Harper. Constructing interpretations of recursive types in an
operational setting. Information and Computation, 155:3-63, 1999.

Lars Birkedal and Mads Tofte. A constraint-based region inference algorithm. Theo-
retical Computer Science, 258:299-392, 2001. URL http://www.it-c.dk/people/
birkedal/papers/conria.ps.gz.

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Principles of Pro-
gramming Languages, pages 171-183, New York, NY, USA, 21-24 January 1996.
ACM Press. ISBN 0-89791-769-3. URL http://www.it-c.dk/people/birkedal/
papers/reginm.ps.gz.

Matthias Blume. The SML/NJ Compilation and Library Manager, May 2002. URL
http://www.smlnj.org/doc/CM/index.html.

Matthias Blume and Andrew W. Appel. Hierarchical modularity. ACM Transactions
on Programming Languages and Systems, 21(4):813-847, 1999. URL citeseer.
nj.nec.com/blume98hierarchical .html.

Kim B. Bruce. Typing in object-oriented languages: Achieving expressibility and
safety, 1995. Available through http://wuw.cs.williams.edu/simkim.

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.
In Theoretical Aspects of Computer Software (TACS), Sendai, Japan, September
1997. An earlier version was presented as an invited lecture at the Third Interna-
tional Workshop on Foundations of Object Oriented Languages (FOOL 3), July
1996.

T. H. Brus, M. C. J. D. van Eekelen, M. O. van Leer, and M. J. Plasmeijer. Clean:
A language for functional graph rewriting. In G. Kahn, editor, Functional Pro-
gramming Languages and Computer Architecture, pages 364—384. Springer-Verlag,
Berlin, DE, 1987. ISBN 3-540-18317-5. Lecture Notes in Computer Science 274;
Proceedings of Conference held at Portland, OR.

Rod Burstall and Butler Lampson. A kernel language for abstract data types and
modules. In G. Kahn, D. MacQueen, and G. Plotkin, editors, Semantics of Data
Types, volume 173 of Lecture Notes in Computer Science, pages 1-50. Springer-
Verlag, 1984.

Rod Burstall, David MacQueen, and Donald Sannella. HOPE: An experimental
applicative language. In Proceedings of the 1980 LISP Conference, pages 136-143,
Stanford, California, 1980. Stanford University.

Cristiano Calcagno. Stratified operational semantics for safety and correctness of
region calculus. In POPL POPL (b), pages 155-165. ISBN 1-58113-336-7. URL
ftp://ftp.disi.unige.it/person/CalcagnoC/regions.ps.

References 539

Cristiano Calcagno, Simon Helsen, and Peter Thiemann. Syntactic type sound-
ness results for the region calculus. Information & Computation, 173
(2):199-221, 2002. URL http://www.informatik.uni-freiburg.de/ helsen/
calcagno-helsen-thiemann-iandc-2001.ps.gz.

Luca Cardelli. A polymorphic A-calculus with Type:Type. Research report 10,
DEC/Compaq Systems Research Center, May 1986.

Luca Cardelli. Phase distinctions in type theory. unpublished manuscript, 1988a.

Luca Cardelli. Typechecking dependent types and subtypes. In M. Boscarol, L. Car-
lucci Aiello, and G. Levi, editors, Foundations of Logic and Functional Program-
ming, Workshop Proceedings, Trento, Italy, (Dec. 1986), volume 306 of Lecture
Notes in Computer Science, pages 45-57. Springer-Verlag, 1988b.

Luca Cardelli. Extensible records in a pure calculus of subtyping. Research re-
port 81, DEC/Compaq Systems Research Center, January 1992. Also in Carl
A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design, MIT Press, 1994.

Luca Cardelli. Program fragments, linking, and modularization. In Conference
Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 266-277, Paris, France, January 1997.
ACM Press.

Luca Cardelli, Jim Donahue, Mick Jordan, Bill Kalso, and Greg Nelson. The modula-
3 type system. In SizteenthACM Symposium on Principles of Programming Lan-
guages (POPL), pages 202-212, Austin, TX, January 1989.

Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. Technical
Report 56, Digital Equipment Corporation Systems Research Center, Palo Alto,
CA, March 1990.

Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of Func-
tional Programming, 1(4):417-458, October 1991. Summary in ACM Conference
on Lisp and Functional Programming, June 1990. Also available as DEC/Compaq
SRC Research Report 55, Feb. 1990.

Luca Cardelli and John Mitchell. Operations on records. Mathematical Structures
in Computer Science, 1:3-48, 1991. Also in Carl A. Gunter and John C. Mitchell,
editors, Theoretical Aspects of Object-Oriented Programming: Types, Semantics,
and Language Design, MIT Press, 1994; available as DEC/Compaq Systems Re-
search Center Research Report #48, August, 1989, and in the proceedings of
MFPS ’89, Springer LNCS volume 442.

. Cartmell. Generalised algebraic theories and contextual categories. Annals of
Pure and Applied Logic, 32:209-243, 1986.

R. Cartwright and M. Fagan. Soft typing. In Proceedings of the SIGPLAN ’91
Conference on Programming Language Design and Implementation, pages 278—
292, June 1991. Also available as SIGPLAN Notices 26(6) June 1991.

Draft of May 20, 2003 References

Iliano Cervesato and Frank Pfenning. A linear logical framework. In Information
and Computation, July 2000. To appear.

Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: Model
checking message-passing programs. In Principles of Programming Languages,
pages 45-57, New York, NY, USA, 16-18 January 2002. ACM Press. ISBN 1-
58113-450-9.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a
computational interpretation of linear logic. Journal of Functional Programming,
6(2):195-244, March 1996.

Alonzo Church. The calculi of lambda-conversion. The Annals of Mathematical
Studies, 6, 1941.

Alonzo Church. The weak theory of implication. Kontroliertes Denken: Unter-
suchungen zum Logikkalk ul und zur Logik der Einzelwissenschaften, pages 22-37,
1951.

Dominique Clément, Joélle Despeyroux, Thierry Despeyroux, and Gilles Kahn. A
simple applicative language: Mini-ML. In ACM Symposium on Lisp and Func-
tional Programming (LFP), pages 13-27, August 1986.

Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Ken-
neth Cline. A certifying compiler for Java. ACM SIGPLAN Notices, 35(5):95-107,
May 2000. ISSN 0362-1340.

Hubert Comon. Constraints in term algebras (short survey). In Conference on Alge-
braic Methodology and Software Technology (AMAST), Workshops in Computing.
Springer-Verlag, 1993.

Hubert Comon and Pierre Lescanne. Equational problems and disunification. Jour-
nal of Symbolic Computation, 7:371-425, 1989.

R. L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.
Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki,
and S.F. Smith. Implementing Mathematics with the Nuprl Development System.
Prentice-Hall, NJ, 1986. URL http://www.nuprl.org/book/doc.html.

Catarina Coquand. The AGDA proof system homepage, 1998. At http://www.cs.
chalmers.se/"catarina/agda/.

Thierry Coquand. An analysis of Girard’s paradox. In Proceedings, Symposium on
Logic in Computer Science IEE (1986), pages 227-236.

Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 2556—279. Cambridge
University Press, 1991a.

Thierry Coquand. An Algorithm for Testing Conversion in Type Theory. In Gérard
Huet and G. Plotkin, editors, Logical frameworks, pages 255—277. Cambridge Uni-
versity Press, 1991b.

References 541

Thierry Coquand. Pattern matching with dependent types. In Proceedings of
the Workshop on Types for Proofs and Programs, Baastad. Informal proceedings
available by ftp from ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/
proc.ps.Z, 1992.

Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information
and Computation, 76(2/3):95-120, February /March 1988.

Erik Crank and Matthias Felleisen. Parameter-passing and the lambda calculus.
In ACM Symposium on Principles of Programming Languages (POPL), pages
233-244, January 1991.

Karl Crary. Toward a foundational typed assembly language. In ACM Symposium
on Principles of Programming Languages (POPL), New Orleans, Louisiana, pages
198-212, January 2003.

Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In SIG-
PLAN 99 Conference on Programming Language Design and Implementation
(PLDI), pages 50-63, Atlanta, GA, 1999a. ACM SIGPLAN.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in
a calculus of capabilities. In ACM Symposium on Principles of Programming
Languages (POPL), pages 262-275, January 1999b.

Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. Intensional polymorphism
in type-erasure semantics. In International Conference on Functional Program-
ming (ICFP), Baltimore, Maryland, USA, pages 301-312, 1998.

Pavel Curtis. Constrained Quantification in Polymorphic Type Analysis. PhD thesis,
Cornell University, February 1990.

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
ACM Symposium on Principles of Programming Languages (POPL), Albuquerque,
New Mezico, pages 207-212, 1982.

Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pages 589-606. Academic Press, 1980.

Robert DeLine and Manuel Féahndrich. Enforcing high-level protocols in low-level
software. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Snowbird, Utah, pages 56—69, June 2001.

Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-level
software. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 59-69, June 2001.

James Donahue and Alan Demers. Data types are values. ACM Transactions on
Programming Languages and Systemns, 7(3):426-445, July 1985.

Kosta Dosen and Peter Schroeder-Heister, editors. Substructural Logics, chapter
A historical introduction to substructural logics, pages 1-30. Oxford University
Press, 1993.

Draft of May 20, 2003 References

Gilles Dowek, Thérése Hardin, and Claude Kirchner. Higher order unification via
explicit substitutions. Research Report 2709, INRIA, November 1995.

Gilles Dowek, Thérése Hardin, Claude Kirchner, and Frank Pfenning. Unification via
explicit substitutions: the case of higher-order patterns. Research Report 3591,
INRIA, December 1998.

Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order
modules. In POPL 2003: Proceedings of the 30th ACM SIGPLAN-SIGACT
Sumpostum on Principles of Programming Languages, pages 236—249, New Or-
leans, January 2003.

Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphic recursion and
subtype qualifications: Polymorphic binding-time analysis in polynomial time. In
Alan Mycroft, editor, Static Analysis Symposium (SAS), volume 983 of Lecture
Notes in Computer Science, pages 118-135. Springer-Verlag, September 1995a.

Dirk Dussart, Fritz Henglein, and Christian Mossin. Polymorphic recursion and
subtype qualifications: Polymorphic binding-time analysis in polynomial time. In
Alan Mycroft, editor, Static Analysis Symposium, volume 983 of Lecture Notes in
Computer Science, pages 118-135, Heidelberg, Germany, 25-27 September 1995b.
Springer-Verlag. ISBN 3-540-60360-3.

Thomas Erhard. A categorical semantics of constructions. In Symposium on Logic

in Computer Science, pages 264-273, July 1988.

Manuel Fahndrich, Jakob Rehof, and Manuvir Das. Scalable context-sensitive flow
analysis using instantiation constraints. In Programming Language Design and
Implementation, volume 35(5) of SIGPLAN Notices, pages 253-263, New York,
NY, USA, 18-21 June 2000. ACM Press. ISBN 1-58113-199-2.

M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103:235-271, 1992.

Manuel Féahndrich. BANE: A Library for Scalable Constraint-Based Program Anal-
ysts. PhD thesis, University of California at Berkeley, 1999.

Manuel Fé&hndrich, Jakob Rehof, and Manuvir Das. Scalable context-sensitive
flow analysis using instantiation constraints. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Vancouver, British
Columbia, Canada, June 2000.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages.
In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation, pages 236-248, 1998. URL citeseer.nj.nec.com/
flatt98unit.html.

Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. pages 448-460,
August 2002.

Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and
the join-calculus. In Principles of Programming Languages, January 1996.

References 543

Alexandre Frey. Satisfying subtype inequalities in polynomial space. In Pascal Van
Hentenryck, editor, International Symposium on Static Analysis (SAS), num-
ber 1302 in Lecture Notes in Computer Science, pages 265—277. Springer-Verlag,
September 1997.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In H. Ganzinger,
editor, European Symp. on Programming (ESOP), volume 300 of Lecture Notes
in Computer Science, pages 94-114. Springer-Verlag, 1988.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13(3-5):341-363, July 2002.

Jacques Garrigue. Relaxing the value restriction. Draft., November 2002.

Jacques Garrigue and Didier Rémy. Extending ML with semi-explicit higher-order
polymorphism. Information and Computation, 155(1):134-169, 1999.

David Gay and Alexander Aiken. Language support for regions. In Programming
Language Design and Implementation, volume 36(5) of SIGPLAN Notices, pages
70-80, New York, NY, USA, 20-22 June 2001. ACM Press. ISBN 1-58113-414-2.
URL http://www.cs.berkeley.edu/~dgay/papers/pldiOl.ps.

Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal typing.
Theoretical Computer Science, 193:75-96, 1998. TR version originally announced
on Types list in Summer 1992.

David K. Gifford and John M. Lucassen. Integrating functional and imperative
programming. In LISP and Functional Programming, pages 28-38, New York,
NY, USA, 4-6 August 1986. ACM Press.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
Uarithmetique d’ordre supérieur. PhD thesis, Université Paris VII, 1972a. Theése
de doctorat d’état.

Jean-Yves Girard. Interprétation Fonctionnelle et Elimination des Coupures dans
UArithmétique d’Ordre Supérieure. PhD thesis, Université Paris VII, 1972b.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
Jean-Yves Girard. Light linear logic. Information and Computation, 143, 1998.

Neal Glew. Type dispatch for named hierarchical types. In International Conference
on Functional Programming (ICFP), Paris, France, pages 172-182, 1999.

GNU. GNU C library, version 2.2.5, 2001. URL http://www.gnu.org/manual/
glibc-2.2.5/html_mono/libc.html.

Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,
LFCS, University of Edinburgh, 1994. URL http://www.1lfcs.informatics.ed.
ac.uk/reports/94/ECS-LFCS-94-304/index.html. Report ESC-LFCS-94-304.

A. D. Gordon. Functional Programming and Input/Output. Distinguished Disserta-
tions in Computer Science. Cambridge University Press, 1994.

Draft of May 20, 2003 References

A. D. Gordon. Bisimilarity as a theory of functional programming. In Eleventh
Conference on the Mathematical Foundations of Programming Semantics, New
Orleans, 1995, volume 1 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1995.

A. D. Gordon. Operational equivalences for untyped and polymorphic object calculi.
In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques
in Semantics, Publications of the Newton Institute, pages 9-54. Cambridge Uni-
versity Press, 1998.

Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for security protocols.
In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW 2001),
Cape Breton, pages 145-159, 2001a.

Andrew D. Gordon and Alan Jeffrey. Typing correspondence assertions for commu-
niation protocols. Electronic Notes in Theoretical Computer Science, 45:22 pages,
2001b. http://www.elsevier.nl/locate/entcs/volume45.html.

Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic
protocols. In Proc. 15th IEEE Computer Security Foundations Workshop (CSFW
2002), Cape Breton, pages 77-91, 2002.

Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation, volume 78 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1979a.

Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF.
Springer-Verlag LNCS 78, 1979b.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and
James Cheney. Region-based memory management in cyclone. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
282-293, June 2002a.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and
James Cheney. Region-based memory management in Cyclone. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation (PLDI’02), pages 282-293. ACM Press, 2002b.

Jorgen Gustavsson and Josef Svenningsson. Constraint abstractions. In Olivier
Danvy and Andrzej Filinski, editors, Programs as Data Objects, volume 2053 of
LNCS, pages 63-83, Heidelberg, Germany, 21-23 May 2001a. Springer-Verlag.
ISBN 3-540-42068-1.

Jorgen Gustavsson and Josef Svenningsson. Constraint abstractions. In Symposium
on Programs as Data Objects, volume 2053 of Lecture Notes in Computer Science.
Springer-Verlag, May 2001b.

Jr. Guy L. Steele. Common Lisp the Language. Digital Press, 1990.

Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference and
garbage collection. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’02). ACM Press, June 2002. Berlin, Germany.

References 545

Thomas Hallgren and Aarne Ranta. An extensible proof text editor (abstract).
In Logic for Programming and Automated Reasoning (LPAR’2000), pages 70-84.
Springer-Verlag LNCS/LNAL 1955, 2000.

Nadeem Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni.
A syntactic approach to foundational proof-carrying code. In IEEE Symposium
on Logic in Computer Science (LICS), pages 89-100, July 2002.

David R. Hanson. Fast allocation and deallocation of memory based on object
lifetimes. Software—Practice and Ezperience, 20(1):5-12, 1990.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM, 40(1):
143-184, 1993a. URL http://www.cs.cmu.edu/"fp/elf-papers/jacm93.dvi.gz.

Robert Harper. On equivalence and canonical forms in the LF type theory. (Sub-
mitted for publication.), August 2002.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143-184, 1993b. Summary in LICS’87.

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In ACM Symposium on Principles of Programming Lan-
guages (POPL), Portland, Oregon, pages 123-137, January 1994.

Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM
Transactions on Programming Languages and Systems, 15(2):211-252, April 1993.

Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In SeventeenthACM Symposium on Principles of Programming
Languages (POPL), San Francisco, CA, January 1990a.

Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In ACM Symposium on Principles of Programming Languages
(POPL), San Francisco, California, pages 341-354, January 1990b.

Robert Harper and Benjamin Pierce. A record calculus based on symmetric concate-
nation. In ACM Symposium on Principles of Programming Languages (POPL),
Orlando, Florida, pages 131-142, January 1991. Extended version available as
Carnegie Mellon Technical Report CMU-CS-90-157.

Robert Harper and Robert Pollack. Type checking with universes. Theoretical
Computer Science, 89:107-136, 1991.

Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML.
In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction: Essays in Honor of Robin Milner. MIT Press, 2000a.

Robert Harper and Christopher Stone. A type-theoretic interpretation of Standard
ML. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000b.

Nevin Heintze. Set based analysis of ML programs. Technical Report CMU-CS-93-
193, Carnegie Mellon University, School of Computer Science, July 1993.

Draft of May 20, 2003 References

Simon Helsen and Peter Thiemann. Syntactic type soundness for the region calculus.
In Alan Jeffrey, editor, ACM Workshop on Higher Order Operational Techniques
in Semantics, volume 41(3) of Electronic Notes in Theoretical Computer Science,
pages 1-20. Elsevier, September 2000. URL http://wuw.elsevier.nl/locate/
entcs/volume4l.html.

Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems, 15(2):253-289, 1993.

Fritz Henglein, Henning Makholm, and Henning Niss. A direct approach to control-
flow sensitive region-based memory management. In Proceedings of the 3rd In-
ternational ACM SIGPLAN Conference on Principles and Practice of Declara-
tive Programming (PPDP), pages 175-186, Firenze, Italy, September 2001. ACM
Press. URL http://wuw.diku.dk/"hniss/publications/ppdp2001-abstract.
html.

Fritz Henglein and Christian Mossin. Polymorphic binding-time analysis. In Donald
Sannella, editor, 5th European Symposium on Programming, volume 788 of Lecture
Notes in Computer Science, pages 287-301, Heidelberg, Germany, 11-13 April
1994. Springer-Verlag. ISBN 3-540-57880-3.

Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In
European Symposium on Programming, pages 6-20, 2002. URL citeseer.nj.
nec.com/article/hirschowitz02mixin.html.

C. A. R. Hoare. Proof of correctness of data representation. Acta Informatica, 1:
271-281, 1972.

Martin Hofmann. Syntax and semantics of dependent types. In P. Dybjer and
A. Pitts, editors, Semantics of Logics of Computation, chapter 3. Cambridge
University Press, 1997. URL http://www.mathematik.th-darmstadt.de/ mh/
cupart.dvi.gz.

Martin Hofmann. Linear types and non-size-increasing polynomial time compu-
tation. In Logic in computer science, pages 464-473, Los Alamitos, CA, June
1999.

Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of
Pure and Applied Logic, 2000.

F. Honsell, I. A. Mason, S. F. Smith, and C. L. Talcott. A variable typed logic of
effects. Information and Computation, 119(1):55-90, 1995.

William A. Howard. Hereditarily majorizable functionals of finite type. In
Anne Sjerp Troelstra, editor, Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics, pages
454-461. Springer-Verlag, Berlin, 1973. Appendix.

William A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Cal-
culus, and Formalism, pages 479-490. Academic Press, New York, 1980. Reprint
of 1969 article.

References 547

D. J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation, 124(2):103-112, 1996.

Paul Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Par-
tain, and J. Peterson. Report on the programming language Haskell, version 1.2.
SIGPLAN Notices, 27(5), May 1992.

Gérard Huet. Résolution d’equations dans les langages d’ordre 1,2, ...,w. Theése de
Doctorat d’Etat, Université de Paris 7 (France), 1976.

Proceedings, Sympostum on Logic in Computer Science, Cambridge, Massachusetts,
16-18 June 1986. IEEE Computer Society.

Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus.
In POPL POPL (b), pages 128-141. ISBN 1-58113-336-7.

Atsushi Igarashi and Benjamin C. Pierce. Foundations for virtual types. In Eu-
ropean Conference on Object-Oriented Programming (ECOOP), 1999. Also in
informal proceedings of the Sixth International Workshop on Foundations of
Object-Oriented Languages (FOOL). Full version to appear in Information and
Computation.

Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics 141. North Holland, Elsevier, 1999.

Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern matching

and subtypes (preliminary version). In Proceedings of the ACM Conference on
Lisp and Functional Programming, pages 198-211, Snowbird, Utah, July 1988.

Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-
Verlag, second edition, 1975.

Thomas Jensen. Inference of polymorphic and conditional strictness properties. In
ACM Symposium on Principles of Programming Languages (POPL), pages 209—
221. ACM Press, January 1998. http://www.irisa.fr/lande/jensen/papers/
popl98.ps.

Trevor Jim. What are principal typings and what are they good for? Technical
Report MIT/LCS TM-532, Massachusetts Institute of Technology, August 1995.

Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of the Gen-
eral Track: 2002 USENIX Annual Technical Conference, pages 275—288. USENIX
Association, 2002.

P. Johann. A generalization of short-cut fusion and its correctness proof. Higher-
Order and Symbolic Computation, 15(4):273-300, 2002.

Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University Press,
November 1994a.

Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University Press,
Cambridge, England, 1994b.

Draft of May 20, 2003 References

Mark P. Jones. Using parameterized signatures to express modular structure. In
Conference Record of the 23rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’96), St. Petersburg, Florida, 21-24, 1996.
ACM Press. URL citeseer.nj.nec.com/jones96using.html.

Mark P. Jones. Typing haskell in haskell. In Haskell Workshop, October 1999.

Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras:
a rule-based survey of unification. In Jean-Louis Lassez and Gordon Plotkin,
editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages
257-321. MIT Press, 1991.

Pierre Jouvelot and David K. Gifford. Reasoning about continuations with control
effects. In Programming Language Design and Implementation, volume 24(7),
pages 218-226, 21-23 June 1989.

Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects.
In POPL POPL (a), pages 303-310.

A. Jung and A. Stoughton. Studying the fully abstract model of PCF within its
continuous function model. In M. Bezem and J.M. Groote, editors, Proc. Typed
Lambda Calculi and Applications (TLCA), volume 664 of Lecture Notes in Com-
puter Science, pages 230-244. Springer-Verlag, 1993.

L.S. van Benthem Jutting, James McKinna, and Robert Pollack. Checking algo-
rithms for Pure Type Systems. In Henk Barendregt and Tobias Nipkow, editors,
Proceedings of the International Workshop on Types for Proofs and Programs,
pages 1961, Nijmegen, The Netherlands, May 1994. Springer-Verlag LNCS 806.

Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in the pres-
ence of polymorphic recursion. ACM Transactions on Programming Languages
and Systems, 15(2):290-311, April 1993.

Claude Kirchner and F. Klay. Syntactic theories and unification. In Proceedings 5th
IEEE Symposium on Logic in Computer Science, Philadelphia (Pa., USA), pages
270-277, June 1990.

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive sub-
typing. Mathematical Structures in Computer Science, 5(1):113-125, 1995.

Viktor Kuncak and Martin Rinard. Structural subtyping of non-recursive types is
decidable. In IEEE Symposium on Logic in Computer Science (LICS), June 2003.

Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157—
180, 1988.

Joachim Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65:154-170, 1958.

B. Lampson and R. Burstall. Pebble, a kernel language for modules and abstract
data types. Information and Computation, 76:278-346, February/March 1988.

S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, 1998.

References 549

Jean-Louis Lassez, Michael J. Maher, and Kim G. Marriott. Unification revisited. In
Jack Minker, editor, Foundations of Deductive Databases and Logic Programming,
chapter 15, pages 587-625. Morgan Kaufmann, 1988.

Konstantin Liufer and Martin Odersky. Polymorphic type inference and ab-
stract data types. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(5):1411-1430, September 1994. Summary in Phoeniz Seminar and
Workshop on Declarative Programming, Nov. 1991.

Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In Inter-
national Conference on Functional Programming (ICFP), Firenze, Italy. ACM
Press, 2001.

Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type infer-
ence algorithm. ACM Transactions on Programming Languages and Systems, 20
(4):707-723, 1998.

Daniel Leivant. Stratified functional programs and computational complexity. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming languages,
pages 325-333, jan 1993.

Xavier Leroy. Polymorphic typing of an algorithmic language. Research Report
1778, INRIA, October 1992.

Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings
of the Twenty-first Annual ACM Symposium on Principles of Programming Lan-
guages, Portland. ACM, January 1994a.

Xavier Leroy. Manifest types, modules and separate compilation. In ACM Sympo-
stum on Principles of Programming Languages (POPL), Portland, Oregon, pages
109-122, January 1994b.

Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
Conference Record of POPL °95: ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 142-153, San Francisco, CA, January
1995a.

Xavier Leroy. Applicative functors and fully transparent higher-order modules. In
Proceedings of the Twenty-Second ACM Symposium on Principles of Programming
Languages (POPL), Portland, Oregon, pages 142-153, San Francisco, California,
January 1995b.

Xavier Leroy. The Objective Caml system: Documentation and user’s guide. Avail-
able at http://pauillac.inria.fr/ocaml/htmlman/., 1996a.

Xavier Leroy. A syntactic theory of type generativity and sharing. Journal of
Functional Programming, 6(5):667-698, 1996b.

Xavier Leroy. A syntactic theory of type generativity and sharing. Journal of
Functional Programming, 6(5):667-698, September 1996¢.

Xavier Leroy. The Objective Caml system: Documentation and user’s manual, 2000.
With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jéréme Vouillon.
Available from http://caml.inria.fr.

Draft of May 20, 2003 References

Xavier Leroy and Frangois Pessaux. Type-based analysis of uncaught excep-
tions. ACM Transactions on Programming Languages and Systems, 22(2):340—
377, March 2000. Summary in ACM Symposium on Principles of Programming
Languages (POPL), San Antonio, Tezas, 1999.

Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sys-
tems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, December 1996.

Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sys-
tems. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, May 1997.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java

Series. Addison-Wesley, Reading, MA, USA, January 1997. ISBN 0-201-63452-X.
URL http://wuw.aw.com/cp/javaseries.html.

Barbara Liskov. A history of CLU. ACM SIGPLAN Notices, 28(3):133-147, 1993.

Ralph Loader. Finitary PCF is not decidable. Theoretical Computer Science, 266
(1-2):341-364, September 2001.

John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Principles
of Programming Languages, pages 47-57, New York, NY, USA, January 1988.
ACM Press.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Num-

ber 11 in International Series of Monographs on Computer Science. Oxford Uni-
versity Press, 1994.

Zhaohui Luo and Robert Pollack. The LEGO proof development system: A user’s
manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.

David MacQueen. Modules for Standard ML. In 198/ACM Conference on LISP
and Functional Programming, pages 198-207, 1984.

David MacQueen. Using dependent types to express modular structure. In Thir-
teenthACM Symposium on Principles of Programming Languages (POPL), 1986.

David B. MacQueen. Using dependent types to express modular structure. In
ACM Symposium on Principles of Programming Languages (POPL), St. Peters-
burg Beach, Florida, 1986.

Lena Magnusson and Bengt Nordstrom. The ALF proof editor and its proof engine.
In Types for Proofs and Programs, volume 806, pages 213-237. Springer-Verlag
LNCS 806, 1994.

Harry G. Mairson, Paris C. Kanellakis, and John C. Mitchell. Computational Logic:
Essays in Honor of Alan Robinson, chapter Unification and ML type reconstruc-
tion, pages 444-478. MIT Press, 1991.

Henning Makholm. Region-based memory management in Prolog. Master’s the-
sis, Department of Computer Science, University of Copenhagen (DIKU), March
2000. URL ftp://ftp.diku.dk/diku/semantics/papers/D-421.ps.gz. DIKU
Technical Report 00/09.

References 551

Henning Makholm and Kostis Sagonas. On enabling the WAM with region support.
In Peter J. Stuckey, editor, Logic Programming, volume 2401 of Lecture Notes in
Computer Science, pages 163178, Heidelberg, Germany, 29 July—1 August 2002.
Springer-Verlag. ISBN 3-540-43930-7.

Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

I. A. Mason, S. F. Smith, and C. L. Talcott. From operational semantics to domain
theory. Information and Computation, 128(1):26-47, 1996.

I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1:287-327, 1991.

David McAllester. On the complexity analysis of static analyses. Journal of the
ACM, 49(4):512-537, July 2002.

David McAllester. A logical algorithm for ML type inference. Manuscript, March
2003.

Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD the-
sis, LFCS, University of Edinburgh, 2000. URL http://www.1lfcs.informatics.
ed.ac.uk/reports/00/ECS-LFCS-00-419/index.html.

Conor McBride and James McKinna. The view from the left. Submitted, 2002.

James McKinna and Robert Pollack. Pure Type Sytems formalized. In M. Bezem
and J. F. Groote, editors, Proceedings of the International Conference on Typed
Lambda Calculi and Applications, pages 289-305. Springer-Verlag LNCS 664,
March 1993.

David Melski and Thomas Reps. Interconvertibility of a class of set constraints
and context-free language reachability. Theoretical Computer Science, 248(1-2),
November 2000.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997a.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348-375, December 1978.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997b.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997c.

Yasuhiko Minamide. A functional representation of data structures with a hole. In
ACM Symposium on Principles of Programming Languages (POPL), San Diego,
California, pages 75-84, January 1998.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conver-

sion. In ACM Symposium on Principles of Programming Languages (POPL),
St. Petersburg Beach, Florida, pages 271-283, January 1996.

Draft of May 20, 2003 References

J. C. Mitchell. On the equivalence of data representations. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 305-330. Academic Press, 1991a.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM
Transactions on Programming Languages and Systems, 10:470-502, 1988a.

John C. Mitchell. Coercion and type inference (summary). In ACM Symposium
on Principles of Programming Languages (POPL), Salt Lake City, Utah, pages
175-185, January 1984.

John C. Mitchell. Type inference with simple subtypes. Journal of Functional
Programming, 1(3):245-286, July 1991b.

John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

John C. Mitchell and Gordon Plotkin. Abstract types have existential type. ACM
Transactions on Programming Languages and Systems, 10(3):470-502, 1988b.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, July 1991. Presented at LICS ’89.

Shaw-Kwei Moh. The deduction theorems and two new logical systems. Methodos,
2:56-75, 1950.

Christine Mohring. Algorithm development in the calculus of constructions. In
Proceedings, Symposium on Logic in Computer Science IEE (1986), pages 84-91.

Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Snowbird, Utah, pages 81-91, June 2001.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed as-
sembly language. Journal of Functional Programming, 12(1):43-88, January 2002.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System-F to typed
assembly language. ACM Transactions on Programming Languages and Systems,
21(3):527-568, May 1999.

Christian Mossin. Flow Analysis of Typed Higher-Order Programs. PhD thesis,
DIKU, University of Copenhagen, Copenhagen, Denmark, 1997. URL http:
//www.diku.dk/research/published/97-1.ps.gz. Technical Report DIKU-TR-
97/1.

Martin Miiller, Joachim Niehren, and Ralf Treinen. The first-order theory of ordering
constraints over feature trees. Discrete Mathematics and Theoretical Computer
Science, 4(2):193-234, 2001.

Martin Miiller and Susumu Nishimura. Type inference for first-class messages with
feature constraints. In Jieh Hsiang and Atsushi Ohori, editors, Asian Computer
Science Conference (ASIAN 98), volume 1538 of LNCS, pages 169-187, Manila,
The Philippines, December 1998. Springer-Verlag.

Alan Mycroft. Polymorphic type schemes and recursive definitions. In M. Paul and
B. Robinet, editors, Proceedings of the International Symposium on Programming,
volume 167 of LNCS, pages 217-228, Toulouse, France, April 1984. Springer.

References 563

George C. Necula. Proof-carrying code. In ACM Symposium on Principles of Pro-
gramming Languages (POPL), Paris, France, pages 106-119, 15-17 January 1997.

George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
September 1998. Also available as CMU-CS-98-154.

George C. Necula. Translation validation for an optimizing compiler. In ACM
SIGPLAN 00 Conference on Programming Language Design and Implementation
(PDLI), pages 83-94, Vancouver, BC, Canada, 18-21 June 2000. ACM SIGPLAN.

George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
In 2nd Symposium on Operating Systems Design and Implementation (OSDI ’96),
October 28-31, 1996, Seattle, WA, pages 229-243, Berkeley, CA, USA, October
1996. USENIX press.

George C. Necula and Peter Lee. Efficient representation and validation of logical
proofs. pages 93-104. IEEE Computer Society Press, 1998.

Joachim Niehren, Martin Miiller, and Andreas Podelski. Inclusion constraints over
non-empty sets of trees. volume 1214 of Lecture Notes in Computer Science, pages
217-231. Springer-Verlag, April 1997.

Joachim Niehren and Tim Priesnitz. Non-structural subtype entailment in automata
theory. Information and Computation, 2003. To appear.

Flemming Nielson and Hanne Riis Nielson. From CML to its process algebra. The-
oretical Computer Science, 155:179-219, 1996.

Flemming Nielson, Hanne Riis Nielson, and C. L. Hankin. Principles of Program
Analysis. Springer, 1999.

Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. A succinct solver for
ALFP. 9(4):335-372, 2002. http://www.informatik.uni-trier.de/"seidl/
papers/succinct.pdf.

Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with
finite communication topology. In Principles of Programming Languages, pages
84-97, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-636-0.

Susumu Nishimura. Static typing for dynamic messages. In Proceedings of the 25"
ACM Symposium on Principles of Programming Languages, pages 266278, New
York, 1998. ACM Press.

Henning Niss. Regions are Imperative: Unscoped Regions and Control-Flow Sensitive
Memory Management. PhD thesis, Department of Computer Science, University
of Copenhagen (DIKU), 2002.

E.G.J.M.H. N ocker and J.E.W. Smetsers. Partially strict non-recursive data types.
Journal of Functional Programming, 3(2):191-215, 1993.

E.G.J.M.H. N ocker, J.E.-W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer.
Concurrent CLEAN. In Leeuwen and Rem, editors, Parallel Architectures and
Languages Europe, number 505 in LNCS, pages 202-219. Springer-Verlag, 1991.

Draft of May 20, 2003 References

Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias Zenger. A nominal
theory of objects with dependent types. In Workshop on Foundations of Object-
Oriented Languages (FOOL), informal proceedings, 2003.

Martin Odersky and Konstantin Laufer. Putting type annotations to work. In
ACM Symposium on Principles of Programming Languages (POPL), St. Peters-
burg Beach, Florida, pages 54-67, St. Petersburg, Florida, January 21-24, 1996.
ACM Press.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with con-
strained types. Theory and Practice of Object Systems, 5(1):35-55, 1999a.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with con-
strained types. Theory and Practice of Object Systems, 5(1):35-55, 1999b. Sum-
mary in Workshop on Foundations of Object-Oriented Languages (FOOL), infor-
mal proceedings, 1997.

Peter O’Hearn and David Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215-244, 1999.

Atsushi Ohori. A polymorphic record calculus and its compilation. ACM Transac-
tions on Programming Languages and Systems, 17(6):844-895, 1999.

Atsushi Ohori and Peter Buneman. Static type inference for parametric classes. In
ACM Symposium on Object Oriented Programming: Systems, Languages, and Ap-
plications (OOPSLA), pages 445-456, October 1989. Also in Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design, MIT Press, 1994.

I. E. Orlov. The calculus of compatibility of propositions (in russian). Matematich-
eskii Sbornik, 35:263-286, 1928.

Jens Palsberg. Efficient inference of object types. Information and Computation,
123(2):198-209, 1995.

Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analysis. In
Principles of Programming Languages, pages 367-378, New York, NY, USA, 1995.
ACM Press. ISBN 0-89791-692-1.

Jens Palsberg and Michael Schwartzbach. Type substitution for object-oriented pro-
gramming. In N. Meyrowitz, editor, Proc. Conf. Object-Oriented Programming:
Systems, Languages, and Applications and European Conf. on Object-Oriented
Programming, pages 151-160, Ottawa, Canada, October 1990. ACM Press.

Jens Palsberg and Michael Schwartzbach. Object-oriented Type Systems. John Wiley
& Sons, 1994.

Jens Palsberg, Mitchell Wand, and Patrick M. O’Keefe. Type inference with non-
structural subtyping. Formal Aspects of Computing, 9:49-67, 1997.

Christine Paulin-Mohring. Extracting F,,’s programs from proofs in the calculus
of constructions. In ACM Symposium on Principles of Programming Languages
(POPL), Austin, Texas, pages 89-104, January 1989.

References 555

Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for
memory allocation and data layout. In ACM Symposium on Principles of Pro-
gramming Languages (POPL), New Orleans, Louisiana, pages 172-184, January
2003.

Simon Peyton Jones. Special issue: Haskell 98 language and libraries. Journal of
Functional Programming, 13, January 2003.

Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. Submitted
to ICFP’03., March 2003.

Frank Pfenning and Carsten Schiirmann. Algorithms for equality and unification in
the presence of notational definitions. In T. Altenkirch, W. Naraschewski, and
B. Reus, editors, Types for Proofs and Programs, number LNCS 1657. Springer-
Verlag, 1998.

Benjamin C. Pierce and David N. Turner. Object-oriented programming without
recursive types. In ACM Symposium on Principles of Programming Languages
(POPL), Charleston, South Carolina, January 1993.

A. M. Pitts. Relational properties of domains. Information and Computation, 127:
66-90, 1996.

A. M. Pitts. Existential types: Logical relations and operational equivalence. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and Program-
ming, 25th International Colloguium, ICALP’98, Aalborg, Denmark, July 1998,
Proceedings, volume 1443 of Lecture Notes in Computer Science, pages 309-326.
Springer-Verlag, Berlin, 1998.

A. M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10:321-359, 2000.

A. M. Pitts. Operational semantics and program equivalence. In G. Barthe,
P. Dybjer, and J. Saraiva, editors, Applied Semantics, Advanced Lectures, volume
2395 of Lecture Notes in Computer Science, Tutorial, pages 378-412. Springer-
Verlag, 2002a. International Summer School, APPSEM 2000, Caminha, Portugal,
September 9-15, 2000.

A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In A. D. Gordon and A. M. Pitts, editors, Higher Order Operational Techniques
in Semantics. 1996. To appear.

Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Infor-
mation and Computation, 2002b. To appear.

Andrew M. Pitts and Tan D. B. Stark. Observable properties of higher order func-
tions that dynamically create local names, or: What’s new? In Mathematical
Foundations of Computer Science, Proc. 18th Int. Symp., Gdarisk, 1993, volume
711 of Lecture Notes in Computer Science, pages 122—141. Springer-Verlag, Berlin,
1993.

G. D. Plotkin. Lambda-definability and logical relations. Memorandum SAI-RM-4,
School of Artificial Intelligence, University of Edinburgh, 1973.

Draft of May 20, 2003 References

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223-255, 1977.

G. D. Plotkin and M. Abadi. A logic for parametric polymorphism. In M. Bezem
and J. F. Groote, editors, Typed Lambda Calculus and Applications, volume 664
of Lecture Notes in Computer Science, pages 361-375. Springer-Verlag, Berlin,
1993.

Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In Jonathan P.
Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on Combinatory

Logic, Lambda Calculus and Formalism, pages 363—-373. Academic Press, London,
1980.

Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic non-
commutative linear logic. In International Conference on Typed Lambda Calcult,
number 1581 in LNCS, pages 295-309. Springer-Verlag, April 1999.

Jeff Polakow and Frank Pfenning. Properties of terms in continuation-passing style
in an ordered logical framework. In Workshop on Logical Frameworks and Meta-
Languages, Santa Barbara, June 2000.

Erik Poll. Expansion Postponement for Normalising Pure Type Systems. Journal
of Functional Programming, 8(1):89-96, 1998.

Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus
of Constructions. PhD thesis, University of Edinburgh, 1994.

POPL. Principles of Programming Languages, New York, NY, USA, January 1991a.
ACM Press.

POPL. Principles of Programming Languages, New York, NY, USA, 17-19 January
2001b. ACM Press. ISBN 1-58113-336-7.

Frangois Pottier. A versatile constraint-based type inference system. Nordic Journal
of Computing, 7(4):312-347, November 2000.

Frangois Pottier. A semi-syntactic soundness proof for HM(X). Research Report
4150, INRIA, March 2001a.

Frangois Pottier. Simplifying subtyping constraints: a theory. Information and
Computation, 170(2):153-183, November 2001b.

Francois Pottier. A constraint-based presentation and generalization of rows. In
Eighteenth Annual IEEE Symposium on Logic In Computer Science (LICS’03),
Ottawa, Canada, June 2003. URL http://pauillac.inria.fr/“fpottier/
publis/fpottier-1lics03.ps.gz.

Sriram K. Rajamani and Jakob Rehof. A behavioral module system for the pi-
calculus. In SAS 01: Static Analysis, LNCS 2126, pages 375-394. Springer-Verlag,
2001.

Sriram K. Rajamani and Jakob Rehof. Conformance checking for models of asyn-
chronous message passing software. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Computer Aided Verification, volume 2404 of Lecture Notes in Computer

References 557

Science, pages 166-179, Heidelberg, Germany, July 27-31 2002. Springer-Verlag.
ISBN 3-540-43997-8.

Jakob Rehof. Minimal typings in atomic subtyping. In ACM Symposium on Princi-
ples of Programming Languages (POPL), Paris, France, pages 278-291, January
1997.

Jakob Rehof and Manuel Fahndrich. Type-based flow analysis: From polymorphic
subtyping to CFL reachability. In POPL POPL (b), pages 54-66. ISBN 1-58113-
336-7.

Jakob Rehof and Manuel Féahndrich. Type-based flow analysis: From polymorphic
subtyping to CFL-reachability. In ACM Symposium on Principles of Programming
Languages (POPL), pages 54-66, January 2001.

Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide. Knit:
Component composition for systems software. In Proc. of the 4th Operat-
ing Systems Design and Implementation (OSDI), pages 347-360, 2000. URL

citeseer.nj.nec.com/reid0Oknit.html.

Didier Rémy. Extending ML type system with a sorted equational theory. Research
Report 1766, Institut National de Recherche en Informatique et Automatisme,
Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1992a.

Didier Rémy. Projective ML. In ACM Symposium on Lisp and Functional Program-
ming (LFP), pages 66-75, 1992b.

Didier Rémy. Typing record concatenation for free. In ACM Symposium on Prin-
ciples of Programming Languages (POPL), Albuquerque, New Mezico, January
1992. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language Design, MIT
Press, 1994.

Didier Rémy. Syntactic theories and the algebra of record terms. Research Report
1869, Institut National de Recherche en Informatique et Automatisme, Rocquen-
court, BP 105, 78 153 Le Chesnay Cedex, France, 1993.

Didier Rémy. Programming objects with ML-ART: An extension to ML with ab-
stract and record types. In Masami Hagiya and John C. Mitchell, editors, Inter-
national Symposium on Theoretical Aspects of Computer Software (TACS), pages
321-346, Sendai, Japan, April 1994. Springer-Verlag.

Didier Rémy and Jéroéme Vouillon. Objective ML: An effective object-oriented exten-
sion to ML. Theory And Practice of Object Systems, 4(1):27-50, 1998. Summary
in ACM Symposium on Principles of Programming Languages (POPL), Paris,
France, 1997.

Greg Restall. An introduction to substructural logics. Routledge, January 2000.
Greg Restall. Handbook of the history and philosophy of logic. To appear., 2001.

J. C. Reynolds. Towards a theory of type structure. In Paris Colloquium on
Programming, volume 19 of Lecture Notes in Computer Science, pages 408-425.
Springer-Verlag, Berlin, 1974a.

Draft of May 20, 2003 References

J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513—-523. North-Holland, Ams-
terdam, 1983a.

John C. Reynolds. Automatic computation of data set definitions. In A. J. H. Mor-
rell, editor, Information Processing 68, volume 1, pages 456—461. North Holland,
1969a.

John C. Reynolds. Automatic computation of data set definitions. In A. J. H.
Morrell, editor, Information Processing 68, volume 1, pages 456461, Edinburgh,
Scotland, 1969b. North Holland.

John C. Reynolds. Towards a theory of type structure. In Collog. sur la Pro-
grammation, volume 19 of Lecture Notes in Computer Science, pages 408-423.
Springer- Verlag, 1974b.

John C. Reynolds. Syntactic control of interference. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 39-46, Tucson, 1978.

John C. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, pages 513-523, Amsterdam, 1983b.
Elsevier Science Publishers B. V. (North-Holland).

John C. Reynolds. Syntactic control of interference, part 2. In International Collo-
quium on Automata, Languages and Programming, July 1989.

J. Alan Robinson. Computational logic: The unification computation. Machine
Intelligence, 6:63-72, 1971.

Douglas T. Ross. The AED free storage package. Communications of the ACM, 10
(8):481-492, 1967.

Claudio V. Russo. Types for Modules. PhD thesis, Edinburgh University, Edinburgh,
Scotland, 1998. LFCS Thesis ECS-LFCS-98-3809.

Claudio V. Russo. Recursive structures for standard ml. In Proc. Sizth ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’01), pages
50-61, Florence, Italy, September 2001.

Fred B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30-50, February 2000.

Jacob T. Schwartz. Optimization of very high level languages (parts I and II).
Computer Languages, 1(2 & 3):161-194, 197-218, 1975.

R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching.
SIAM Journal on Computing, 24(6):1207-1234, December 1995.

Miley Semmelroth and Amr Sabry. Monadic encapsulation in ML. In International
Conference on Functional Programming, pages 8-17, 1999. URL citeseer.nj.
nec.com/semmelroth99monadic.html.

Peter Sestoft. Moscow ml. URL http://wuw.dina.dk/"sestoft/mosml.html.

Peter Sestoft. Replacing function parameters by global variables. Technical Report
88-7-2, DIKU, University of Copenhagen, October 1988. SE8S.

References 559

Peter Sestoft. Replacing function parameters by global variables. In Proc. Functional
Programming Languages and Computer Architecture (FPCA), London, England,
pages 39-53. ACM Press, September 1989.

Paula Severi and Erik Poll. Pure type systems with definitions. In Proceedings
of Logical Foundations of Computer Science (LFCS), pages 316-328. Springer-
Verlag, 1994. LNCS volume 813.

Zhong Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIG-
PLAN Workshop on Types in Compilation (TIC’97), Amsterdam, The Nether-
lands, June 1997.

Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed inter-
mediate languages. In Proceedings of the 1998 ACM SIGPLAN International
Conference on Functional Programming, pages 313-323, Baltimore, MD, Septem-
ber 1998. ACM SIGPLAN.

Mark Shields and Erik Meijer. Type-indexed rows. In ACM Symposium on Princi-
ples of Programming Languages (POPL), London, England, pages 261-275, Jan-
uary 2001.

Mark B. Shields and Simon Peyton Jones. First class modules for Haskell. In Work-
shop on Foundations of Object-Oriented Languages (FOOL), informal proceedings,
pages 28-40, January 2002.

Olin Shivers. Control flow analysis in Scheme. In Programming Language Design

and Implementation, volume 23(7), pages 164-174, 22-24 June 1988.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda.
PhD thesis, Carnegie Mellon University, May 1991.

Vincent Simonet. Type inference with structural subtyping: A faithful formalization
of an efficient constraint solver. Submitted for publication, March 2003.

Christian Skalka and Francois Pottier. Symtactic type soundness for HM(X). In
Workshop on Types in Programming (TIP’02), volume 75 of Electronic Notes in
Theoretical Computer Science, July 2002.

Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Gert Smolka, ed-
itor, Ninth European Symposium on Programming, volume 1782 of Lecture Notes
in Computer Science, pages 366—-381. Springer-Verlag, April 2000.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading
and subtyping. Science of Computer Programming, 23(2-3):197-226, December
1994.

Jan Smith, Bengt Nordstrom, and Kent Petersson. Programming in Martin-Léf’s
Type Theory. An Introduction. Oxford University Press, 1990.

R. Statman. Logical relations and the typed lambda calculus. Information and
Control, 65:85-97, 1985a.

Richard Statman. Logical relations and the typed A-calculus. Information and
Control, 65(2-3):85-97, May-June 1985b.

Draft of May 20, 2003 References

Christopher A. Stone. Singleton Kinds and Singleton Types. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, August 2000.

Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. In ACM Symposium on Principles of Programming Lan-
guages (POPL), Boston, Massachusetts, Boston, January 2000a.

Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. In Twenty SeventhACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 214-227, Boston, January 2000b.

Thomas Streicher. Semantics of Type Theory. Springer-Verlag, 1991.

Zhendong Su and Alexander Aiken. Entailment with conditional equality con-
straints. In European Symp. on Programming (ESOP), volume 2028 of Lecture
Notes in Computer Science, pages 170-189, April 2001.

Martin Sulzmann. A general framework for Hindley/Milner type systems with con-
straints. PhD thesis, Yale University, Department of Computer Science, May
2000.

Martin Sulzmann, Martin Miiller, and Christoph Zenger. Hindley/Milner style type
systems in constraint form. Research Report ACRC-99-009, University of South
Australia, School of Computer and Information Science, July 1999.

William W. Tait. Intensional interpretations of functionals of finite type I. Journal
of Symbolic Logic, 32(2):198-212, June 1967.

C. Talcott. Reasoning about functions with effects. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Semantics, Publications
of the Newton Institute, pages 347-390. Cambridge University Press, 1998.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect infer-
ence. Journal of Functional Programming (JEP), 2(2), 1992.

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information
and Computation, 111:245-296, 1994.

David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper,
and Peter Lee. TIL : A type-directed optimizing compiler for ML. In ACM

SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Philadephia, Pennsylvania, pages 181-192, May 21-24 1996.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215-225, April 1975.

Robert Endre Tarjan. Applications of path compression on balanced trees. Journal
of the ACM, 26(4):690-715, October 1979.

J. Terlouw. Een nadere bewijstheoretische analyse van GSTTs. Manuscript, Uni-
versity of Nijmegen, Netherlands, 1989.

Kresten Krab Thorup. Genericity in Java with virtual types. In European Confer-
ence on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes
in Computer Science, pages 444-471, Jyviskyld, Finland, June 1997. Springer-
Verlag.

References 561

Jerzy Tiuryn and Mitchell Wand. Type reconstruction with recursive types and
atomic subtyping. In Proceedings of TAPSOFT ’93, volume 668 of Lecture Notes
in Computer Science, pages 686-701. Springer-Verlag, April 1993.

Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,
University of Edinburgh, 1988.

Mads Tofte and Lars Birkedal. A region inference algorithm. ACM Transactions on
Programming Languages and Systems, 20(4):724-767, 1998. URL http://www.
itu.dk/research/mlkit/kit_general/toplas98.ps.gz.

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. Region-based
memory management in perspective. To appear, 2003.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Hgjfeld Olesen,
and Peter Sestoft. Programming with regions in the ML Kit (for version 4).
Technical report, IT University of Copenhagen, October 2001.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Hgjfeld Olesen,
Peter Sestoft, and Peter Bertelsen. Programming with regions in the ML Kit (for
version 3). Technical Report DIKU-TR-98/25, Department of Computer Science,
University of Copenhagen (DIKU), 1998. URL http://www.it-c.dk/research/
mlkit/kit3/manual.ps.gz.

Mads Tofte and Jean-Pierre Talpin. Implementing the call-by-value lambda-calculus
using a stack of regions. In ACM Symposium on Principles of Programming
Languages (POPL), Portland, Oregon, January 1994.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Informa-
tion and Computation, 132(2):109-176, 1 February 1997.

Mads Torgersen. Virtual types are statically safe. In Proceedings of the 5th Workshop
on Foundations of Object-Oriented Languages (FOOL), San Diego, CA, January
1998.

Valery Trifonov and Scott Smith. Subtyping constrained types. In Static Analysis
Symposium (SAS), volume 1145 of Lecture Notes in Computer Science, pages
349-365. Springer-Verlag, September 1996.

David N. Turner. The Polymorphic Pi-calulus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1995.

David N. Turner and Philip Wadler. Operational interpretations of linear logic.
Theoretical Computer Science, 227:231-248, 1999. Special issue on linear logic.

David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In ACM
International Conference on Functional Programming and Computer Architecture,
San Diego, CA, June 1995.

Diederik T. van Daalen. The Language Theory of Autornath. PhD thesis, Technische
Hogeschool Eindhoven, 1980.

Per Velschow and Morten Voetmann Christensen. Region-based memory manage-
ment in Java. Master’s thesis, Department of Computer Science, University of

Draft of May 20, 2003 References

Copenhagen (DIKU), 1998. URL http://www.worldonline.dk/"voet/thesis.
ps.gz.
Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,

editors, Progarmming Concepts and Methods, Sea of Galilee, Israel, April 1990.
North Holland. IFIP TC 2 Working Conference.

Philip Wadler. The marriage of effects and monads. In Proceedings of the
ACM SIGPLAN International Conference on Functional Programming (ICFP
’98), volume 34(1), pages 63—74, 1999. URL citeseer.nj.nec.com/article/
wadler98marriage.html. Journal version submitted to ACM Transactions on
Computational Logic (2003).

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. In 14th ACM Symposium on Operating Systems Principles, pages
203-216. ACM, December 1993.

David Walker, Karl Crary, and Greg Morrisett. Typed memory management in
a calculus of capabilities. ACM Transactions on Programming Languages and
Systems, 22(4):701-771, July 2000a.

David Walker, Karl Crary, and Greg Morrisett. Typed memory management via
static capabilities. ACM Transactions on Programming Languages and Sys-
tems, 22(4):701-771, July 2000b. URL http://www.cs.princeton.edu/~dpw/
capabilities-toplas.pdf.

David Walker and Greg Morrisett. Alias types for recursive data structures. Lecture
Notes in Computer Science, 2071:177+, 2001.

David Walker and Kevin Watkins. On linear types and regions. In International
Conference on Functional Programming, Florence, September 2001a. ACM Press.

David Walker and Kevin Watkins. On regions and linear types. In 6th International
Conference on Functional Programming, pages 181-192, New York, NY, USA,
3-5 September 2001b. ACM Press. ISBN 1-58113-415-0. URL http://wuw.cs.
princeton.edu/~dpw/papers/lr.pdf.

Mitchell Wand. Complete type inference for simple objects. In Proceedings of the
IEEE Symposium on Logic in Computer Science, Ithaca, NY, June 1987.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. In Pro-
ceedings of the IEEE Symposium on Logic in Computer Science, 1988.

Mitchell Wand. Type inference for record concatenation and multiple inheritance.

In Fourth Annual IEEE Symposium on Logic in Computer Science, pages 92-97,
Pacific Grove, CA, June 1989.

Mitchell Wand. Type inference for objects with instance variables and inheritance.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design, pages 97-120.
MIT Press, 1994.

Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors. In ACM
Symposium on Principles of Programming Languages (POPL), London, England,
pages 166-178, January 2001.

References 563

Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In
Twenty-sizth ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 15—28, San Antonio, January 1999.

J. B. Wells. Typability and type checking in system F are equivalent and undecid-
able. Annals of Pure and Applied Logic, 98(1-3):111-156, 1999.

Benjamin Werner. Une Th’eorie des Constructiones Inductives. PhD thesis,
L’Universite Paris, 1994.
Niklaus Wirth. Systematic Programming: An Introduction. Prentice Hall, 1973.

Niklaus Wirth. Programming in Modula-2. Texts and Monographs in Computer
Science. Springer-Verlag, 1983.

A. K. Wright and R. Cartwright. A practical soft type system for scheme. In
Proceedings of the 1994 ACM Conference on Lisp and Functional Programming.
ACM, June 1994. Also available as LISP Pointers VII(3) July-September 1994.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115:38-94, 1994a.

Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Compu-
tation, 8(4):343-356, December 1995.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38-94, November 1994b.

Hongwei Xi and Robert Harper. A dependently typed assembly language. In Inter-
national Conference on Functional Programming (ICFP), Firenze, Italy, 2001.

Jan Zwanenburg. Pure type systems with subtyping. In J.-Y. Girard, editor, Typed
Lambda Calculus and Applications (TLCA), pages 381-396. Springer-Verlag,
1999. Lecture Notes in Computer Science, volume 1581.

Jo o has an instance, 22

dfpi(-) defined and free program

variable identifiers, 24

dpi(-) defined program identifiers,

16
@ empty environment, 16
I entailment, 29
I' environment, 16
fpi(-) free program identifiers, 22
ftu(-) {free type variables, 14, 21
¢ ground assignment, 27
> incompatible, 30
- < - instance of, 21, 22, 31
let - in- let constraints, 22
< subtyping predicate, 20
type, 14
I' type environments, 24
type scheme, 15

contravariant, 26, 29
covariant, 26, 29

entailment, 29
environment, 16

ground assignment, 27

incompatible, 30
instance of
type scheme, 16, 21, 22, 31
invariant, 26, 29
isolated, 30

metavariables
naming conventions, 483

naming conventions for metavariables
and rules, 483

rule
naming conventions, 483
rules
A-Asgs, 282
A-App, 282
A-Boor, 282
A-Ir, 282
A-LVAR, 282
A-PaIr, 282
A-SpuiT, 282
A-UVAR, 282
ADD, 362
ABs, 53
App, 53
BEQ-EQ, 362
BEQ-NEQ, 362
BETA-ABS, 206
BETA-ALL, 217
BEeTA-APPL, 206
BETA-APP2, 206
BeTA-ApPrABS, 206
Bera-Pairl, 213
BETA-PAIR2, 213
Bera-Proy, 213
BETA-PROJPAIR, 213
C-Arrow, 30

Draft of May 20, 2003

C-DEF, 461
CM-AND, 28
CM-ExiIsTs, 28
CM-FoRraLL, 108
CM-INSTANCE, 28
CM-PREDICATE, 28
CM-TRUE, 28
COMMIT, 376
CTX-DEF, 444
CTX-EwmPTY, 443
CTX-KIND, 443
CTX-TYPE, 443
E-App’, 301
E-App, 285
E-AprpRC, 301
E-ARRAyY, 297
E-Boout, 285
E-CrxT, 285
E-DEecl, 301
E-Dec2, 301
E-FRrEE, 297
E-Fun’, 301
E-Fun, 285
E-FunRC, 301
E-IF1, 285

E-Ir2, 285

E-Inc, 301
E-LENGTH, 297
E-MAPprl, 462
E-MAPPABs, 462
E-MLET, 462
E-MLETV, 462
E-MPaIr1, 462
E-MPAIR2, 462
E-MPAIRBETAL, 462
E-MPAIRBETA2, 462
E-MPRroyJ, 462
E-MPRroJsV, 462
E-MSEAL, 462
E-Maprr2, 462
E-PAvpp, 295
E-PFuN, 295
E-PaIr’, 301
E-PaAIr, 285

E-PAaIrRRC, 301
E-QAPP, 295
E-QFuN, 295
E-SpLiT’, 301
E-SpLIT, 285
E-SpLiTRC, 301
E-Swap, 297
E-TLET, 444
E-TERM, 462
ExistTs, 53
I-FuNcTOR, 460
I-OpAQuE, 460
I-PaIr, 460
I-TERM, 460
I-TrANSP, 460
JMP, 362
K-Ags, 443
K-AvLL, 443, 469
K-Aprp, 202, 443, 469
K-ARROW, 443
K-Conv, 202
K-FN-ETa, 469
K-Fn, 469
K-Fst, 469
K-INT, 443, 469
K-MPRroJ, 461
K-PAIr-ETA, 469
K-PAIr, 469
K-Pr1, 202
K-Sicma, 212
K-SiNTRrO, 469
K-Sn~p, 469
K-Sus, 469
K-TVArRDEF, 444
K-VAaR, 202, 443, 469
K-prF, 215
K-prorp, 215
KA-App, 208
KA-Pr, 208
KA-Prr, 217
KA-Provp, 217
KA-Sicma, 214
KA-VaR, 208
LD-S, 376

LD-U, 376

LET, 53

M-ABsl, 294
M-ABs2, 294
M-ABs, 461
M-ApprLy, 461
M-AprpPLYV, 463
M-Ewmpry, 278, 302
M-Fst, 461
M-LiN1, 278, 302
M-LiN2, 278, 302
M-LroR, 302
M-OrpL, 302
M-ORrDR, 302
M-PAIR, 461
M-SEAL, 461
M-SELF-PAIR], 461
M-SELF-PAIR2, 461
M-SELF, 461
M-SND, 461
M-S~NDV, 463
M-SuB, 461
M-TERM, 461
M-Top, 302
M-TYPE, 461
M-UN, 278, 302
M-VAR, 461
MALLOC, 376
MOV-1, 376
MOV, 362

Q-ABs, 140, 203, 443, 469
Q-ALL, 469

Q-App, 140, 149, 203, 443, 469

Q-APPABS, 472
Q-ARROW, 443
Q-BETA-FsT, 472
Q-BeETA-PrOD1, 159
Q-BETA-PROD2, 159
Q-BETA-SND, 472
Q-BETa, 140, 155, 203, 443
Q-DEr, 444
Q-ELmv, 469
Q-ETA-FN, 472
Q-E1A-PAIR, 472

Q-ETa, 203
Q-ExT-PrOD, 159
Q-ExT, 140
Q-Fn-ExT, 469
Q-ForaLL, 443
Q-Fst, 469
Q-MProyJ, 461
Q-PaIr-ExT, 469
Q-PaAIr, 159, 469
Q-Proil, 159, 212
Q-ProJ2, 159, 212
Q-REFL, 140, 203, 443, 469
Q-S~D, 469

Q-Sus, 469
Q-SURJPAIR, 212
Q-SyM, 203, 443, 469
Q-SymM, 140
Q-TrANs, 140, 203, 443, 469
Q-UNIT-WEAK, 144
Q-Unrr, 143
QA-ABs, 209
QA-ALL-E, 217
QA-Arp, 209
QA-NE-PAIR, 214
QA-NaBs1, 209
QA-NaBs2, 209
QA-PAIR-NE, 214
QA-PAIR, 214
QA-VAR, 209
QA-WH, 209
QAN-NORMAL, 147
QAN-REDUCE, 147
QAP-App, 147
QAP-ConsT, 147
QAP-Prousl, 159
QAP-ProJ2, 159
QAP-VaR, 147
QAR-Avrpp, 147
QAR-BETA-PRODI, 159
QAR-BeTA-PrOD2, 159
QAR-BETA, 147
QAR-ProJl, 159
QAR-ProJs2, 159
QAT-ArrOwW, 147

Draft of May 20, 2003

QAT-BASE, 147
QAT-ONE, 147
QAT-Prob, 159
QK-*, 468
QK-Pr1, 203, 468
QK-REFL, 203
QK-Sicma, 468
QK-SING, 468
QK-Sywm, 203
QK-TrANs, 203
QKA-PI1-Prr, 217
QKA-P1, 209
QKA-Prr-P1, 217
QKA-Prr, 217
QKA-STAR, 209
QR-ABs, 143, 447
QR-AvLL, 447
QR-Avp, 143, 447
QR-ARROW, 447
QR-BETA, 143, 447
QR-DEF, 447
QR-ETa, 143
QR-REFL, 143, 447
QT-ALL-E, 217
QT-ALy, 215
QT-Arp, 203
QT-P1, 203
QT-REFL, 203
QT-Sywm, 203
QT-TrANS, 203
QTA-App, 209
QTA-P1, 209
QTA-SicMmA, 214
QTA-VAR, 209
R-Apbp, 10
R-Avrc-CasEg, 91
R-ALg-Proy, 91
R-ANNOTATION, 102
R-ApPABs, 172
R-Assign, 11
R-BETa, 9
R-Casg, 11
R-CoNDFALSE, 172
R-CoNDTRUE, 172

R-CoNTEXT, 9
R-DELTA, 9
R-DEREF, 11
R-EXTEND, 9
R-FALsE, 11
R-Fix’, 114
R-Fix, 11
R-LET, 9
R-MaArcu, 96
R-Op, 172
R-OPEN-ALL, 116
R-OpEN-EXx, 118
R-Proy, 10
R-ProJRcp, 172
R-REF, 11
R-TappTABS, 172
R-TRruEg, 10
R-UnprAaCKPACK, 172
S-Cons, 172
S-ConsVAL, 172
S-NiL, 172
S-NILVAL, 172
S-RED, 172
S-SEQ, 172
SALLOC, 376
SFREE, 376
SI-FORGET, 460
SI-OPAQUE, 460
SI-P1, 460
SI-S1cma, 460
SI-TERM, 460
SI-TRANSP, 460
SK-*, 468
SK-FORGET, 468
SK-P1, 468
SK-SiaMma, 468
SK-SING, 468
ST-S, 376
ST-U, 376
Sus, 53
T-ABs, 140, 202, 223, 276, 280, 294
T-ALrL, 215
T-App, 140, 170, 202, 223, 276,
280, 294

T-ARRAY, 297
T-BooL, 280
T-BROKENVAR, 279
T-CasE, 289
T-ConsT, 140, 170
T-Conv, 202, 223
T-DEc, 300
T-Emp1YS, 286
T-FRrEE, 297
T-Fun, 170

T-Ir, 170, 280
T-Inc, 300

T-INL, 289

T-INR, 289
T-LENGTH, 297
T-Mob-LET, 461
T-Mob-ProuJ, 461
T-NexTRCS, 300
T-NEXTLINS, 286
T-NEXTUNS, 286
T-Orp, 170
T-PABgs, 294
T-PArp, 294
T-Pack, 170
T-Pair, 159, 212, 280
T-P1, 223
T-Proa, 286
T-Prousl, 159, 212
T-ProJ2, 159, 212
T-Proy, 170
T-QABs, 294
T-QApp, 294
T-Rcp, 170
T-RoLr, 289
T-SEqQ, 170
T-SpriT, 280
T-STAR, 223
T-Swap, 297
T-TFun, 289
T-TLET, 444
T-TaABs, 170
T-Tapp, 170
T-Unir, 143
T-UNpPACK, 170

T-UNROLL, 289

T-VAR, 140, 170, 202, 223, 276, 280

TA-Ags, 208
TA-App, 208
TA-PAIR, 214
TA-ProJl, 214
TA-ProJ2, 214
TA-VAR, 208
TERM, 172
VAR, 53

WFA-EwmpPTY, 209

WFA-P1, 208
WPFA-STAR, 208
WFA-TwM, 209
WFA-TY, 209
WH-APP1, 208

WH-AprrABS, 208

WH-Proy, 213

WH-ProJPAIR, 213

WEK-*, 468
WK-P1, 468
WK-S1GMma, 468
WK-SiNgG, 468
WFr-P1, 202
WF-STAR, 202
ANDEL, 322
ANDER, 322
ANDI, 322
CONS, 323
DM-ABS, 16
DM-APP, 16
pM-GEN’, 18
DM-GEN, 16
DM-INST’, 18
pM-INST, 16
DM-LET, 16
DM- VAR, 16
E-Appl, 232
E-APP2, 232
E-BETA, 232
E-CASE, 262

E-CASECONS, 262

E-CASENIL, 262
E-Consl, 262

Draft of May 20, 2003

E-CONs2, 262
E-CONSALLOC, 262
E-FIXBETA, 232
E-IF, 232
E-IFFALSE, 232
E-IFTRUE, 232
E-NEw, 239
E-NEWBETA, 239
E-TAG, 234
E-TAGBETA, 234
E-UNTAG, 234
E-UNTAGBETA, 234
HMD-ABS, 46
HMD-APP, 46
HMD-EXIsTS, 46
HMD-LETGEN, 46
HMD-SUB, 46
HMD-VARINST, 46
HMX-ABS, 42
HMX-APP, 42
HMX-EXIsTS, 42
HMX-GEN’, 42
HMX-GEN, 42
HMX-INsT, 42
HMX-LET, 42
HMX-SUB, 42
HMX-VAR, 42
IMPE, 322

IMPI, 322

INIT, 354

MEMO, 322
MEM1, 322

NEXT, 323

NIL, 323
PTRADDR, 323
RD-DISCARD, 501
RD-TRANSPOSE, 501
RE-AppP1, 246
RE-APP2, 246
RE-BETA, 246
RE-CLOS, 246
RE-DEALLOC, 246
RE-F1x, 246
RE-FIXBETA, 246

RE-IF, 246
RE-IFFALSE, 246
RE-IFTRUE, 246
RE-LETREG, 246
RE-RAPP, 246
RE-RBETA, 246
RE-RCLOS, 246
READ, 354
S-ADD, 364
S-BEQ, 364
s-commIT, 380
S-GEN, 364
S-HEAP, 364
S-INST, 364
S-INT, 364
S-JMP, 364
S-LAB, 364
S-LDS, 380
S-LDU, 380
S-MACH, 364
S-MALLOC, 380
Ss-Mov-1, 380
S-MOV, 364
S-PACK, 387
S-REG, 364
S-REGFILE, 364
S-SALLOC, 380
S-SEQ, 364
S-SFREE, 380
S-sTS, 380
S-sTu, 380
S-TUPLE, 379
S-UNPACK, 387
S-UPTR, 379
S-VAL, 364

SEL, 323

SEND, 354

SET, 323

T-ABS, 232, 238
T-APP, 232, 238
T-BootL, 232, 238
T-BooLSUB, 234, 238
1-Fix, 232, 238
T-FUuNSuB, 234, 238

T-1F, 232, 238 TT-REF, 261
T-LABELSUB, 234, 238 TT-TGEN, 255
T-NEWUNSOUND, 239 1r-TINST, 255
T-SUBTYPE, 234 TT-VAR, 255

T-TAG, 234, 238 UPD, 323
T-TAGVALSUB, 234, 238

T-TAGVALUE, 234, 238 satisfiable, 27

1-UNTAG, 234, 238 standard multi-equation, 73
T—VAR, 232, 238 substitution

TE-ABS, 243 type, 15

TE-APP, 243
TE-AT, 243
TE-BooL, 243
TE-BOOLSUB, 243
TE-CELL, 243
TE-EFFECTSUB, 243
TE-FIX, 243
TE-FROM, 243
TE-FUNSUB, 243
TE-IF, 243
TE-LABELSUB, 243
TE-NEW, 243
TE-SUB, 243
TE-TAGVALSUB, 243
TE-VAR, 243

THIS, 323

TT-ABS, 255
TT-APP, 255
TT-ASSIGN, 262
TT-BOoL, 255
TT-CASE, 262
1T-CLOS, 255
TT-CONS, 262
TT-CONSCELL, 262
TT-DEREF, 261
TT-EGEN, 255
TT-EINST, 255
TT-FIX, 255
TT-IF, 255
TT-LETREG, 255
TT-NIL, 262
TT-RABS, 255
TT-RAPP, 255
TT-RCLOS, 255

type, 14
equirecursive, 106
isorecursive, 89
recursive, 106-107

type scheme, 15

