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In search of a verification language

language concurrency Iris ~ OCaml translation automation
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coq_of_ocaml ® ® © © ®
CFML &) ® © © ®
Osiris ® © © © ®
HeapLang © © ® ® e
Zoo © © © © e
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/oo in practice

project
dune-project
1ib
domainslib
dune
scheduler.ml
scheduler.mli
saturn
dune
queue.ml
queue.mli

$ ocaml2zoo

theories

project

domainslib
k:scheduler__code.v

scheduler__types.v
saturn

t:queue__code.v
queue__types.Vv

theories
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/oo in practice

project
d - ject
1?26 projec theories
. . lg,domainslib

Lg,domalnsllb -

kscheduler__code.v

dune
scheduler__types.v

scheduler.ml
scheduler.mli

$ ocaml2zoo project theories
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/oo in practice

Lemma stack_push_spec_atomic t ¢ v :

Lemma stack_push_spec_seq t ¢ v : <L
{{{ stack_inv t ¢
stack_model t vs | VW vs,
i3 stack_model t vs
stack_push t v >>>
{{{ stack_push t v @ T,
RET O); <<<
stack_model t (v :: vs) stack_model t (v :: vs)
}3r. | RET (); True
Proof. >>>
A Proof.
Qed. C
Qed.
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Algebraic data types

Notation "'Nil'" := (
in_type "t" O

) (in custom zoo_tag) .

Notation "'Cons'" := (
in_type "t" 1

) (in custom zoo_tag) .

type 'a t =
| Nil
| Cons of 'a * 'a t

let rec map fn t =
match t with
[ Nil -> Nil
| Cons (x, t) ->

Definition map : val :=
rec: Ilmapll Ilfnll "t" =>
match: "t" with

let y = fn x in | Nil :i ?Nil..
Cons (y, map fn t) | Cons "x" "t" =>
let: ||y|| c= Nfp" vxh oqp

‘Cons( Ilyll 5 llmapll llfnll Iltll )
end.
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Records

Notation "'f1'" := (
in_type "t" O
t 'at =
ype ‘a ) (in custom zoo_field).
{ mutable f1: 'a; Notation "'£2'" = (
mutable f2: 'a; . '
} in_type "t" 1
) (in custom zoo_field).
let swap t = Definition swa al
inition : =
let f1 - t.f1 in PR
t.f1 <- t.£2 ; ‘ B
’ let: "f1" := "t" . {f1} i
t.£2 < f1 © (1) in

"t o<-{f1} "t".{£2} ;;
ngn <—{f2} N
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Inline records

type 'a node =
| Null
| Node of
{ mutable next:
mutable data:

'a node;
Ia;

Notation "'Null'" := (
in_type "node" O

) (in custom zoo_tag) .

Notation "'Node'" := (
in_type "node" 1

) (in custom zoo_tag) .

Notation "'next'" := (
in_type "node.Node" O
) (in custom zoo_field) .
Notation "'data'" := (
in_type "node.Node" 1
) (in custom zoo_field).

13/52



Mutually recursive functions

Definition f_g := (
recs: |lf|l "X" :> IIgII IIXII
and: Hg'l "X" => ||f n ”X”
)%zoo_recs.

(* boilerplate *)
let rec £ x = g x
and g x = f x Definition £
Definition g :

ValRecs 0 f_g.
ValRecs 1 f_g.

Instance : AsValRecs' f 0 f_g [f;g].
Proof. done. Qed.
Instance : AsValRecs' g 1 f_g [f;g].
Proof. done. Qed.
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Concurrency

Atomic.set e e e <- &
Atomic.exchange e e Xchg e;. [contents] e
Atomic.compare_and_set e; e €3 CAS e;1. [contents] e e3
Atomic.fetch_and_add e e FAA e;. [contents] e
type t = { ...; mutable f: 7 [@atomic]; ... }

Atomic.Loc.exchange [Jatomic.loc e1.f] e Xchg 1. [f] &
Atomic.Loc.compare_and_set [Jatomic.loc e;.f] e e3 CAS e .[f] e e3
Atomic.Loc.fetch_and_add [Jatomic.loc e€;.f] e FAA e1.[f] &

https://github.com/ocaml/ocaml/pull/13404
https://github.com/ocaml/ocaml/pull/13707
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Standard library

» Array

» Dynarray
» List

» Stack

» (Queue

» Deque

» Domain

» Atomic_array
» Mutex

» Condition
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Physical equality
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Classification of Zoo values

» boolean

» integer

» mutable block (pointer)

» immutable block (tag and fields)

» function
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Non-deterministic semantics

let x1 = Some ()
let x2 = Some ()
let testl = x1 == x1 (* true *)
let test2 = x1 == x2 (* false *)

What guarantees when physical equality (1) returns true,
(2) returns false?
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OCaml’s informal specification

el == e2 tests for physical equality of el and e2.

On non-mutable types, the behavior of (==) is
implementation-dependent; however, it is guaranteed
that el == e2 implies compare el e2 = 0.
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Treiber stack

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not ©@ Atomic.compare_and_set t old new_ then (
Domain.cpu_relax () ;
push t v

)
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Treiber stack specification

Lemma stack_push_spec t ¢ v :

<<
stack_inv t ¢
| VW vs,
stack_model t vs
>>>
stack_push t v @ T¢
<<
stack_model t (v :: vs)
| RET (); True
>>>,
Proof.

Qea:‘
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OCaml'’s informal specification is too imprecise

type 'a t =
'a ref list Atomic.t

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in

if not Q0 Atomic.compare_and_set t old new_ then (

Domain.cpu_relax () ;
push t v

)
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Sharing

Some 0 == Some 0 (* true *)
[0;1] == [0;1] (* true %)

let testl
let test2
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Value representation conflicts

let testl = Obj.repr false == 0bj.repr O (* true *)
let test2 = Obj.repr None == Obj.repr O (* true *)
let test3 = 0bj.repr [ == 0bj.repr 0 (* true *)
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Sharing + conflicts

type any =

Any : 'a -> any
let testl = Any false == Any 0 (* true *)
let test2 = Any None == Any O (* true *)
let test3 = Any [] == Any O (* true *)
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Back to Treiber stack

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not 0O Atomic.compare_and_set t old new_ then (
Domain.cpu_relax () ;
push t v

)
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Jourdan's physical equality

Chapter 9. Data Structures with Sharing in Coq

purposes: first, it provides a fast mechanism for comparing values using physical equal-
ity or hash equality. Second, it is easy to use hash-consing to build fast map structures
using hash-consed values as keys. Finally, using such maps it is possible to implement
memoization.

This assessment led us, in collaboration with Braibant and Monniaux [BJM13, BJM14],
to the study of several methods to implement maximal sharing (i.e., hash-consing) and
memoization in formally verified Coq programs. We used the case study of binary decision
diagrams (BDDs), which are one of the well known uses of the hash-consing technique. We
tried different approaches and compared them, as reported in the following sections. These
ideas are not currently implemented in Verasco, but we believe some of them (especially the
SMART and SMART-+UID approaches described in Section 9.4) could be adapted to many of
its data structures.

9.1. Safe Physical Equality in Coq: the PHYSEQ
Approach

The obvious way of introducing physical equality in Coq is to declare it as an axiom in the
development, state that physical equality implies Leibniz equality, and ask the extraction
mechanism to extract it to OCaml’s physical equality:

Parameter physEq: ¥ A:Type, A -> A -> bool.

Axiom physEq_correct: ¥ (A:Type) (x y:A), physEq x y = true -> x = y.
Extract Constant physEq => "

However, this appears to be unsound. Let a and b be two physically different copies of
the same value. Then we have physEq a a = true and a = b, using Coq’s Leibniz equality.
Thus, we deduce, in Coq’s logic, that physEq a b = true, which is wrong.

This unsoundness is of a particular kind: in fact, the axioms we postulate are not in-
consistent: they can be easily instantiated by posing physEq x y = false. However, the
OCaml term (==) is not a valid extraction for physEq, and using it would make it possible
to prove properties on programs that will become false after extraction.
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Eio.Rcfd

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable ops: int [@atomic]; mutable state: state [@atomic] }

let make fd = { ops= 0; state= Open fd }

let closed = Closing (fun OO -> ())
let close t =
match t.state with
| Closing _ -> false
| Open fd as prev ->
let close () = Unix.close fd in
let next = Closing close in
if Atomic.Loc.compare_and_set [J,atomic.loc t.state] prev next then

else

false
29/52



Unsharing

let x = Some O
let test = x ==

-

Clément Allain Armaél Guéneau Vincent Laviron
Impossible! Unique identity. This would be unsharing. It's possible!
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Back to Eio.Rcfd

let closed = Closing (fun () -> ()
let close t =
match t.state with
| Closing _ -> false
| Open fd as prev ->
let close () = Unix.close fd in
let next = Closing close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] prev next then

else
false
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Generative constructors

type 'a list =
| Nil
| Cons of 'a * 'a list [Ogenerative]

type state =

| Open of Unix.file_descr [Q@generative] [Qzoo.reveall]
| Closing of (unit -> unit)
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Structural equality
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Specification

Axiom structeq_spec : V “{zoo_G : !ZooG X} {vl v2} footprint,
val_traversable footprint vl -
val_traversable footprint v2 -

{{{

structeq_footprint footprint
11}

vl = v2
{{{ b,

RET #Db;

structeq_footprint footprint x
"(if b then val_structeq else val_structneq) footprint vi v2'

1.
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Specification for abstract values

Lemma structeq_spec_abstract {zoo_G : !ZooG X} vl v2
val_abstract vl -
val_abstract v2 -

{{{

True

i3d;
vl = v2
{{{ b,
RET #b;
T(if b then (&) else (%)) vi v2'

T}

Proof.

Qea:‘
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Specimen: Kcas (ongoing work)
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Kcas: software transactional memory for OCaml

let a = Loc.make 10 in
let b = Loc.make 52 in
let x = Loc.make 0 in
let tx "xt =

let a = Xt.get "xt a in
let b = Xt.get "xt b in
Xt.set "xt x (b - a)

in

Xt.commit { tx }
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Vesa Karvonen
The main author of Kcas
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Kcas: software transactional memory for OCaml

type ('k, 'v) cache =

{ space: int Loc.t;

table: ('k, 'k Dllist.Xt.node * 'v) Hashtbl.Xt.t;
order: 'k Dllist.Xt.t;
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MCAS

let a
let b
let x

let a
let b

Xt.set "xt x (b - a)

Loc.make 10 in
Loc.make 52 in
Loc.make O in

Xt.get "xt a in CAS (a, 10, 10)
Xt.get "xt b in CAS (b, 52, 52)
CAS (x, 0, 42)
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MCAS specification

<vvs. >k sz>

L,vels,vs
mcas (s befores afters, 1t

if b then vs = befores * >l< {—v

3 l,vEls,afters
else Ji. vs; # befores; * * (v
L,vels,vs

{b.True }
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MCAS specification: taking physical equality seriously

<st. >k sz>

L,vels,vs
mcas (s befores afters, 1t

if b then vs ~ befores % >l< {— v

- l,vEls,afters
else 3i. vs; % befores; * >l< {r— v
l,vels,vs

{b.True }
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MCAS specification: read-only locations

<sz,vs. * [ — v * >I< £>—>V>

l,vels,ws L,vels,vs

mcas (s (s befores afters, 11
if b then vs ~ befores * >I< l— v

3b. v % L,v€ls,afters
< * else (/s # [| V 3i. vs; 3 befores;) * >l< (s v

l,vels,ws

l,vels,vs

{b.True }
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MCAS specification: relaxed memory

{QW**loc—invfa}

lels

<Vvs, Vs. >l< 0— (v, V) >

Lv,VEls,vs, Vs
mcas (s befores afters, 11

if b then vs ~ befores * >l< C— (v, UW)
= l,v,VeEls, afters,Vs
else Ji. vs; & befores; * >|< l— (v,))

l,v,VEls,vs,Vs

{ .if b then >l< V) else True}

VeVs
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MCAS algorithm: Harris, Fraser & Pratt (2002)

1

A Practical Multi-Word
Compare-and-Swap Operation

Timothy L. Harris, Keir Fraser and Tan A. Pratt

University of Cambridge Computer Laboratory, Cambridge, UK
{tim.harris,keir.fraser,ian.pratt}@cl.cam.ac.uk

Abstract. Work on non-blocking data structures has proposed extend-
ing processor designs with a compare-and-swap primitive, CAS2, which
acts on two arbitrary memory locations. Experience suggested that cur-
rent. operations, typically single-word compare-and-swap (CAS1), are not
expressive enough to be used alone in an efficient manner. In this pa-
per we build CAS2 from CAS1 and, in fact, build an arbitrary multi-word
compare-and-swap (CASN). Our design requires only the primitives avail-
able on contemporary systems, reserves a small and constant amount
of space in each word updated (either 0 or 2 bits) and permits non-
overlapping updates to occur concurrently. This provides compelling ev-
idence that current primitives are not only universal in the theoretical
sense introduced by Herlihy, but are also universal in their use as foun-
dations for practical algorithms. This provides a straightforward mecha-
nism for deploying many of the interesting non-blocking data structures
presented in the literature that have previously required CAS2.

Introduction
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Verified RDCSS by Jung et al.

The Future is Ours: Prophecy Variables in Separation Logic

RALF JUNG, MPI-SWS, Germany
RODOLPHE LEPIGRE, MPI-SWS, Germany

GAURAV PARTHASARATHY, ETH Zurich, Switzerland and MPI-SWS, Germany
MARIANNA RAPOPORT, University of Waterloo, Canada and MPI-SWS, Germany
AMIN TIMANY, imec-DistriNet, KU Leuven, Belgium

DEREK DREYER, MPI-SWS, Germany

BART JACOBS, imec-DistriNet, KU Leuven, Belgium

Early in the development of Hoare logic, Owicki and Gries introduced auxiliary variables as a way of encoding
information about the history of a program’s execution that is useful for verifying its correctness. Over a
decade later, Abadi and Lamport observed that it is sometimes also necessary to know in advance what a
program will do in the future. To address this need, they proposed prophecy variables, originally as a proof
technique for refinement mappings between state machines. However, despite the fact that prophecy variables
are a clearly useful reasoning mechanism, there is (surprisingly) almost no work that attempts to integrate
them into Hoare logic. In this paper, we present the first account of prophecy variables in a Hoare-style
program logic that s flexible enough to verify logical atomicity (a relative of linearizability) for classic examples
from the concurrency literature like RDCSS and the Herlihy-Wing queue. Our account is formalized in the Iris
framework for separation logic in Coq. It makes essential use of ownership to encode the exclusive right to
resolve a prophecy, which in turn lets us enforce soundness of prophecies with a very simple set of proof rules.

CCS Concepts: « Theory of computation — Separation logic: I logic; Of mantic
Additional Key Words and Phrases: Prophecy variables, separation logic, logical atomicity, lincarizability, Iris

ACM Reference Format:
Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart
Jacobs. 2020. The Future s Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL,
Article 45 (January 2020), 32 pages. https://doi.org/10.1145/3371113 4

1 INTRODUCTION
‘When proving correctness of a program P, it is often easier and more natural to reason forward—that

45 /52




MCAS algorithm: Guerraoui, Kogan, Marathe & Zablotchi (2020)

Efficient Multi-Word Compare and Swap
Rachid Guerraoui

EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Alex Kogan

Oracle Labs, Burlington, MA, USA
alex.kogan@orac
Virendra J. Marathe
Oracle Labs, Burlinton, MA, USA
virendra.marathe@oracle.com
Igor Zablotchi'

EPFL, Lausanne, Switzerland
igor.zablotchi@epfl.ch

com

—— Abstract

Atomic lock-free multi-word compare-and-swap (MCAS) is a powerful tool for designing concurrent
algorithms. Yet, its widespread usage has been limited because lock-free implementations of
MCAS make heavy use of expensive compare-and-swap (CAS) instructions. Existing MCAS
implementations indeed use at least 2k + 1 CASes per k-CAS. This leads to the natural desire to
minimize the number of CASes required to implement MCAS.

We first prove in this paper that it is impossible to “pack” the information required to perform
a k-word CAS (k-CAS) in less than k locations to be CASed. Then we present the first algorithm
that requires k + 1 CASes per call to k-CAS in the common uncontended case. We implement our
algorithm and show that it outperforms a state-of-the-art baseline in a variety of benchmarks in
most considered workloads. We also present a durably linearizable (persistent memory friendly)
version of our MCAS algorithm using only 2 persistence fences per call, while still only requiring
k+1 CASes per k-CAS.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms 46 /52



MCAS location

{— vy or vy

V2
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Finished MCAS

{r— v {— v
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Undetermined MCAS

l— %1

i

Vo K
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MCAS algorithm

by ——

R1

ly ——

R2

50/52



MCAS algorithm

l

R1

o

ly ——

R2

50/52



MCAS algorithm

l

R1

l>

R2

50/52



MCAS algorithm

l

R1

l>

R2

50/52



MCAS algorithm

l

R1

l>

R2

50/52



MCAS algorithm

l

R1

l>

R2

50/52



MCAS algorithm

l

R1

o

ly ——

R2

50/52



MCAS algorithm

l

R1

ly ——

R2

50/52



MCAS algorithm

l

R1

ly ——

R2

50/52



MCAS algorithm

l

R1

ly ——

R2

50/52



Future work
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Coupling with semi-automated verification (Gospel)

GOSPEL — Providing OCaml
with a Formal Specification Language

Arthur Charguéraud’?, Jean-Christophe Filliatre®!,
Claudio Lourengo®!, and Mario Pereira*

! Inria
2 Université de Strasbourg, CNRS, ICube
3 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
4 NOVA LINCS & DI, FCT, Universidade Nova de Lisboa, Portugal

Abstract. This paper introduces GOSPEL, a behavioral specification
language for OCaml. It is designed to enable modular verification of data
structures and algorithms. GOSPEL is a contract-based, strongly typed
language, with a formal semantics defined by means of translation into
Separation Logic. Compared with writing specifications directly in Sepa-
ration Logic, GOSPEL provides a high-level syntax that greatly improves
conciseness and makes it accessible to programmers with no familiarity
with Separation Logic. Although GOSPEL has been developed for speci-
fying OCaml code, we believe that many aspects of its design could apply
to other programming languages. This paper presents the design and se- 52 /52
mantics of GCOSPEI and reports on its application for the develonpment


https://ocaml-gospel.github.io/gospel/

Thank you for your attention!
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