
Compiling recursion in OCaml

Vincent Laviron

September 27th, 2024

OCamlPro

Context

● The OCaml language supports multiple kinds of recursive definitions
● The OCaml compiler needs to translate those to simpler languages: bytecode or

assembly
● This talk explains some of the challenges and solutions

Compiling recursion in OCaml > 2

Functions

Recursive functions in the target language

● Most (all?) assembly languages support recursive functions
● However, only closed functions can be defined
● Bytecode doesn’t support recursive definitions at all

The current solution: translate all recursive functions to non-recursive equivalent versions

Compiling recursion in OCaml > Functions 4

Recursion in λ-calculus

● Recall the simple 𝜆-calculus:

𝑀 ⩴ 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁
● No recursive definitions… at first glance
● Recursion can be emulated with fix-point combinators:

fact0 = 𝜆𝑓.𝜆𝑥. if 𝑥 = 0 then 1 else 𝑥 ∗ 𝑓(𝑥 − 1)

𝑌 = 𝜆𝑓.(𝜆𝑥.𝑓(𝑥𝑥))(𝜆𝑥.𝑓(𝑥𝑥))

fact = 𝑌 fact0

Compiling recursion in OCaml > Functions 5

OCaml without let rec

● We can use similar techniques in OCaml:

type 'a rec_def = Rec of ('a rec_def −> 'a)
let fact0 (Rec fact) x =
 if x = 0 then 1 else x * fact (Rec fact) (x - 1)
let fact = fact0 (Rec fact0)
● The compiler could automatically translate regular definitions to this form
● The actual compilation scheme for recursive functions is in fact very close

Compiling recursion in OCaml > Functions 6

Digression on closure conversion

● Both the bytecode and native backends of OCaml compile functions as closures
● Here is an example of a possible compilation scheme:

let a = ... and b = ...
let f x y = a + b + x + y
(* compiled into *)
let f_closed x y env = env.a + env.b + x + y
let f_env = { a; b }
let f = (f_closed, f_env)
● Closed functions can be compiled to independent code
● Environments are regular blocks

Compiling recursion in OCaml > Functions 7

closure conversion: call sites

● Calling a function passes the environment to the closed function:

let r = f 0 1
(* compiled into *)
let r =
 let (closed_f, env) = f in
 closed_f 0 1 env
● Curryfication changes a number of things, but the idea stays the same
● Takeaway: closure conversion already forces us to add an extra parameter to functions
● We will reuse this extra parameter to find the closure itself

Compiling recursion in OCaml > Functions 8

Compilation scheme for single functions

● In practice, OCaml closures are flat records:

let f = { fun_ptr = f_closed; a; b }
● That means the extra parameter env is the closure of the function being called
● As a result, we get to compile recursive functions for free:

let rec fact x =
 if x = 0 then 1 else x * fact (x - 1)
(* compiled into *)
let fact_closed x self =
 if x = 0 then 1 else x * self.fun_ptr (x - 1) self
let fact = { fun_ptr = fact_closed }

Compiling recursion in OCaml > Functions 9

Multiple functions

● The scheme doesn’t naturally extend to mutually recursive functions.
● The solution used in the compiler is to have multiple-entry closures:

let rec even x = if x = 0 then true else odd (x - 1)
and odd x = if x = 0 then false else even (x - 1)
(* compiled into *)
let even_closed x self =
 if x = 0 then true else self.odd_ptr (x - 1) (self : even :> odd)
let odd_closed x self =
 if x = 0 then false else self.even_ptr (x - 1) (self : odd :> even)
let closure = { even_ptr = even_closed; odd_ptr = odd_closed }
let even = (closure :> even)
let odd = (closure :> odd)

Compiling recursion in OCaml > Functions 10

Multiple functions (continued)

● The self :> foo operation is needed to support indirect calls.
● It is implemented as a pointer offset: self :> foo points directly to the field for the

function foo instead of the beginning of the block.
● It requires special support in the runtime (mostly the garbage collector).
● It means that projections from self need to take into account the offset for the current

function (so self.var is (self : curr_fun :> first_fun).var).
● In Flambda 2, the record fields corresponding to recursive functions are called function

slots, while the fields for the free variables are called value slots. The whole record is
called a set of closures.

Compiling recursion in OCaml > Functions 11

Generalised `let rec`

Examples

(* cyclic structure with mutation *)
type 'a dll = { data : 'a; mutable prev : dll; mutable next : dll }
let singleton data =
 let rec dll = { data; prev = dll; next = dll } in
 dll

(* infinite list, with lazyness *)
Module LazyList : sig
 type 'a t = private Nil | Cons of 'a * 'a t Lazy.t
 val cons : 'a −> 'a t Lazy.t −> 'a t
end
let rec lazy_cycle = lazy (LazyList.cons 0 lazy_cycle)

Compiling recursion in OCaml > Generalised `let rec` 13

More examples

(* infinite list, no lazyness *)
let rec cycle = 0 :: cycle

(* sequence *)
type 'a node = Nil | Cons of 'a * 'a t
and 'a t = unit −> 'a node
let rec inf_node = Cons (0, inf_seq)
and inf_seq () = inf_node

Compiling recursion in OCaml > Generalised `let rec` 14

The rules

Recursive value definitions in OCaml must follow the following rules:
● Only variables on the pattern side
● The value of the recursive variables must not be inspected until all variables are fully

initialised
● The values produced by the definitions must be compatible with the compiler’s pre-

allocation scheme

The second and third rule are checked (mostly) conservatively by an algorithm described in
the following article:

Reynaud, Alban, Gabriel Scherer, and Jeremy Yallop. 2021. “A Practical Mode System for
Recursive Definitions”. Proceedings of the ACM on Programming Languages 5 (POPL): 1–29

Compiling recursion in OCaml > Generalised `let rec` 15

Compilation scheme: Outline

● Bind the recursive variables to uninitialised values
● Use the definitions to produce a value for each variable
● Copy the contents of the new values back into the uninitialised blocks

let cycle = caml_alloc_dummy(2)
let cycle' = 0 :: cycle
let () = caml_update_dummy(cycle, cycle')

Compiling recursion in OCaml > Generalised `let rec` 16

What can be pre-allocated

Obvious candidates:
● Records, tuples
● Non-constant variant constructors (a :: b, Some x, …)

Less obvious cases:
● Lazy blocks
● Boxed numbers (float, int32, …)
● Constant-size arrays
● First-class modules

Complex cases:
● Closures
● Constant variant constructors and integers

Compiling recursion in OCaml > Generalised `let rec` 17

What cannot be pre-allocated

● Function applications
● Branching expressions
● Objects

let b : bool = ...
let rec l = b :: l (* Ok *)
let rec l = List.cons b l (* Rejected *)
let rec l = if b then true :: l else false :: l (* Rejected *)

Compiling recursion in OCaml > Generalised `let rec` 18

Complex case 1: integers

let rec not_rec = 42
let rec not_really_rec = let _ = not_really_rec in 53

● Integers cannot be pre-allocated
● The final value is an integer, so cannot contain occurrences of anything else.
● The definition cannot inspect the values of any recursive variable (second rule)

Solution: replace recursive variables with dummy values

let dummy = Obj.magic 0
let not_really_rec = let _ = dummy in 53

Compiling recursion in OCaml > Generalised `let rec` 19

Complex case 2: closures

● Size of closures is hard to compute:

let x = Some 0
(* Which are the free variables of [f] ? *)
let f () = Option.map succ x

● A function may even be defined as one of a set of recursive functions:

let rec f =
 let rec g () = f ()
 and h () = g ()
 in h

Compiling recursion in OCaml > Generalised `let rec` 20

Closures: the old way

● Wait until functions have been compiled to explicit closures
● Use the same scheme as for blocks

Pros:
● Can easily mix blocks and functions
● Handles non-syntactic functions too (let rec f = let () = () in fun x -> f x)

Cons:
● Less efficient than the normal function scheme
● Code duplication (one for each backend)
● Distance between the check and the compilation

Compiling recursion in OCaml > Generalised `let rec` 21

Closures: the new way

● Split functions from other recursive definitions
● Compile in order:
○ Non-recursive definitions
○ Pre-allocation of non-function definitions
○ Functions definitions (mutually recursive)
○ Computation of non-function definitions
○ Backpatching of non-function definitions

Compiling recursion in OCaml > Generalised `let rec` 22

Handling non-syntactic functions

● The recursive check only allows two other cases:
○ Sequential code ending with a syntactic function
○ Sequential code ending in a variable (known to be bound to a function)

● By 𝜂-expanding the second case we reduce to the first case only
● We handle the first case by a partial closure conversion

Compiling recursion in OCaml > Generalised `let rec` 23

Partial closure conversion

● An extra recursive variable is added for the function’s local environment
● The original variable is bound to just the original syntactic function, with local variables

replaced by accesses from the environment variable
● The environment variable is bound to the original definition, with the function replaced

by a block allocation containing all local variables used by the function
● The environment variable can then be pre-allocated and back-patched

Compiling recursion in OCaml > Generalised `let rec` 24

Partial closure conversion: example

let rec f =
 let rec g () = f () and h () = g () in
 h
(* Eta-expand *)
let rec f =
 let rec g () = f () and h () = g () in
 fun x −> h x
(* Partial closure *)
let rec f = fun x −> f_env.h x
and f_env =
 let rec g () = f () and h () = g () in
 { h }

Compiling recursion in OCaml > Generalised `let rec` 25

Recursive modules

Using the previous scheme

● Regular modules are blocks of known size
● Functors are functions

-> The algorithm for recursive values should “just work”

Compiling recursion in OCaml > Recursive modules 27

A typical example

module rec Tree : sig ... end = struct
 type t = TreeSet.t
 let compare = TreeSet.compare
end
and TreeSet : sig ... end =
 Set.Make(Tree)

Inspects recursively bound variables: rejected by the recursive value check

Compiling recursion in OCaml > Recursive modules 28

Design choices

● Allow referencing module fields in definitions
● Allow using the recursive modules as functor arguments
● Allow definitions that are not obviously well-founded
● Fail at runtime for actually problematic definitions

Compiling recursion in OCaml > Recursive modules 29

More examples

module type S = sig val f : unit −> unit end
module rec M1 : S = M1
module rec M2 : S = struct
 let f = M2.f
end
module rec M3 : S = struct
 let f () = M3.f ()
end
module Id(X : S) : S = X
module rec M4 : S = Id(M4)

Compiling recursion in OCaml > Recursive modules 30

Semantics

● Conservative model:
○ Similar to let rec, but dynamic
○ The module itself exists, and can be stored in blocks and closures
○ Any other use of the module throws an exception at runtime

● Problem: hard to implement
● Current version: more permissive (reading module fields is allowed, using the fields may

throw a runtime exception or not)
● Some definitions are rejected at compile time

Compiling recursion in OCaml > Recursive modules 31

Compilation scheme: outline

● Pre-allocate each module with a block full of type-safe dummy values
● Compute the actual definitions
● Patch each module field using the fields of the new computed module

Dummy values are constructed so that examining one leads to a runtime error

Compiling recursion in OCaml > Recursive modules 32

Safe modules

● Not all types allow constructing safe dummy values
● Dummy values can be constructed for function types
● Plus a few other cases (lazy, sub-modules, classes)
● A module where all the runtime fields allow dummy values is called safe
● Safety only depends on the module type

Compiling recursion in OCaml > Recursive modules 33

Compiling unsafe modules

● Definitions containing unsafe modules can be allowed
● Each cycle in the runtime module dependency graph must contain at least one safe

module
● Initialisation can then proceed in topological order
● Dependencies include all references in the compiled definition (no types)

Compiling recursion in OCaml > Recursive modules 34

Tree example again

module rec Tree : sig ... end = struct
 type t = TreeSet.t
 let compare = TreeSet.compare
end
and TreeSet : sig ... end =
 Set.Make(Tree)
● Tree is safe (compare is a function)
● TreeSet is unsafe (empty is not a function)
● TreeSet doesn’t depend directly on TreeSet, so the definition is accepted

Compiling recursion in OCaml > Recursive modules 35

Tree example, compiled

(* initialisation of safe modules *)
module Tree = struct
 let compare = (fun _ −> raise Undefined_recursive_module)
end
(* computation of modules in topological order *)
module TreeSet = Set.Make(Tree)
module Tree_new = struct
 let compare = TreeSet.compare
end
(* back-patching *)
CamlinternalMod.update_mod Tree Tree_new

Compiling recursion in OCaml > Recursive modules 36

Additional things

● A functor is not a safe module
○ Makes it harder to define recursive functors
○ Makes it more likely that a recursive definition including functors and regular modules

initialises properly
● Support for non-function constants in safe modules was considered but never finalised
● The dummy safe functions actually check at runtime if their module has been initialised,

and call the new function in that case

Compiling recursion in OCaml > Recursive modules 37

Recursive modules vs. recursive values

● Modules:
○ Support focused on modules full of functions
○ No well-foundedness requirement, can fail at runtime
○ Topological sort can re-order definitions

● Values:
○ Large support for many language constructs
○ Strict well-foundedness check, no runtime failures
○ Minimal re-ordering (non-recursive definitions can be lifted out)

Compiling recursion in OCaml > Recursive modules 38

Classes

Objects are not recursive

● Object structures can specify a self variable
● Methods can use this variable to refer to the current object
● Very similar to closure conversion
● This removes the need for recursive object bindings

Compiling recursion in OCaml > Classes 40

Recursion in classes

● All classes are recursive
● Recursion can take two forms:
○ Recursion in class expressions
○ Recursion through new

class type ct = object method x : int end
class c : ct = c
class c : ct = object method x =
 let module M = struct class d : ct = c end in (new M.d).x
 end
class c : ct = object method x = (new c)#x end
class c : ct = let o = new c in object method x = o#x end
class c : ct = let o () = new c in object method x = (o ())#x end

Compiling recursion in OCaml > Classes 41

Class expressions

● In class expressions, only classes defined strictly earlier are allowed

class c : ct = c (* Bad *)
class c : ct = object method x = 0 end
and d : ct = c (* Good *)
class d : ct = c
and c : ct = object method x = 0 end (* Bad *)

Compiling recursion in OCaml > Classes 42

Use through new

● new c expressions are allowed in any context that will end up under a function after
class compilation.

● In practice, only toplevel let-bindings are not allowed to use the class except under a
function

class c : ct = let o = new c in object method x = o#x end (* Bad *)
class c : ct = let o () = new c in object method x = (o())#x end (* Good *)
class c : ct = (fun () −> let o = new c in object method x = o#x end) () (* Good *)

Compiling recursion in OCaml > Classes 43

Compilation scheme

● The runtime representation of a class is a record of functions
● The compiler first translates class expressions to normal expressions producing such

records
● This definition is then compiled using the scheme for recursive values:
○ The restriction on the use of new ensures that uninitialised classes are not used to

create objects
○ The restriction on class expressions ensures that the definition order is compatible

with the topological order

Compiling recursion in OCaml > Classes 44

Bibliography

[1]
A. Reynaud, G. Scherer, and J. Yallop, “A practical mode system for recursive
definitions,” Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–
29, 2021.

[2]
X. Leroy et al., “The OCaml system release 5.2: Documentation and user's manual.”
2024.

[3]
X. Leroy et al., “The OCaml system release 5.2: Documentation and user's manual.”
2024.

[4]
X. Leroy et al., “The OCaml system release 5.2: Documentation and user's manual.”
2024.

[5] V. Laviron and L. Ayanides, “Compile recursive bindings in Lambda.” 2023.

Compiling recursion in OCaml > Classes 45

Bibliography

[6]
X. Leroy, “A proposal for recursive modules in Objective Caml,” Available from the
author’s website, 2003.

[7]
D. Rémy and J. Vouillon, “Objective ML: An effective object-oriented extension to ML,”
Theory and practice of object systems, vol. 4, no. 1, pp. 27–50, 1998.

[8]
J. Vouillon, “Conception et réalisation d'une extension du langage ML avec des objets,”
2000.

Compiling recursion in OCaml > Classes 45

