
A Translation of OCaml
GADTs into Coq
Pedro da Costa Abreu Junior
Purdue University
September 24, 2024

September 24, 2024 1

Nomadic Labs

September 24, 2024 2

Tezos

September 24, 2024 3

Michelson

September 24, 2024 4

Coq-Of-Ocaml

September 24, 2024 5

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

GADTs
Inductive Types (with dependent types)
Compiler Correctness

September 24, 2024 6

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

GADTs

Inductive Types (with dependent types)
Compiler Correctness

September 24, 2024 6

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

GADTs
Inductive Types (with dependent types)

Compiler Correctness

September 24, 2024 6

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

GADTs
Inductive Types (with dependent types)
Compiler Correctness

September 24, 2024 6

Example of an ADT

type term =
| T_Int : nat -> term
| T_Bool : bool -> term
| T_Add : term * term -> term

let get_bool (bexp : term) : bool option = function
match bexp with
| T_Bool b -> Some b
| _ -> None

September 24, 2024 7

Example of an ADT

type term =
| T_Int : nat -> term
| T_Bool : bool -> term
| T_Add : term * term -> term

let get_bool (bexp : term) : bool option = function
match bexp with
| T_Bool b -> Some b
| _ -> None

September 24, 2024 7

Example of GADT

type _ term =
| T_Int : nat -> nat term
| T_Bool : bool -> bool term
| T_Add : nat term * nat term -> nat term

let get_bool (bexp : bool term) : bool = function
match bexp with
| T_Bool b -> b

September 24, 2024 8

Example of GADT

type _ term =
| T_Int : nat -> nat term
| T_Bool : bool -> bool term
| T_Add : nat term * nat term -> nat term

let get_bool (bexp : bool term) : bool = function
match bexp with
| T_Bool b -> b

September 24, 2024 8

Example of GADT

type _ term =
| T_Int : nat -> nat term
| T_Bool : bool -> bool term
| T_Add : nat term * nat term -> nat term

let rec eval (type a) (t : a term) : a =
match t with
| T_Int n -> n
| T_Bool b -> b
| T_Add (x, y) -> (eval x) + (eval y)

September 24, 2024 9

Example of GADT

type _ term =
| T_Int : nat -> nat term
| T_Bool : bool -> bool term
| T_Add : nat term * nat term -> nat term

let rec eval (type a) (t : a term) : a =
match t with
| T_Int n -> n
| T_Bool b -> b
| T_Add (x, y) -> (eval x) + (eval y)

September 24, 2024 9

Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
end.

September 24, 2024 10

Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
end.

September 24, 2024 10

Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
end.

Error: Non exhaustive pattern-matching: no clause found for pattern
T_int _

September 24, 2024 10

Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Axiom unreachable_gadt_branch : forall (A : Type), A.

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
| _ ⇒ unreachable_gadt_branch
end.

September 24, 2024 11

Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Axiom unreachable_gadt_branch : forall (A : Type), A.

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
| _ ⇒ unreachable_gadt_branch
end.

September 24, 2024 11

Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
...
end eq_refl.

September 24, 2024 12

Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun (h : bool = bool) ⇒ b
...
end. eq_refl.

September 24, 2024 13

Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun _ ⇒ b
| _ ⇒ fun (h : nat = bool) ⇒

Principle of Explosion
end eq_refl.

September 24, 2024 14

Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Lemma bnat_neq : nat <> bool. Proof. ... Qed.

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun _ ⇒ b
| _ ⇒ fun (h : nat = bool) ⇒
ltac:(apply False_ind; apply (bnat_neq h))

end eq_refl.

September 24, 2024 15

Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Lemma bnat_neq : nat <> bool. Proof. ... Qed.

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun _ ⇒ b
| _ ⇒ fun (h : nat = bool) ⇒
ltac:(apply False_ind; apply (bnat_neq h))

end eq_refl.

September 24, 2024 15

GADTs 6= Inductive Types

type _ udu =
| Unit : unit udu
| Double_unit : (unit * unit) udu

let unit_twelve (x : unit udu) =
match x with
| Unit -> 12

September 24, 2024 16

GADTs 6= Inductive Types

Inductive udu : Set → Type :=
| Unit : udu unit
| Double_unit : udu (unit ∗ unit).

Definition unit_twelve (x : udu unit) : nat.
refine(match x in udu T return T = unit → nat with
| Unit ⇒ fun h ⇒ 12
| Double_unit ⇒ fun (h : unit ∗ unit = unit) ⇒ _
end eq_refl).

September 24, 2024 17

GADTs 6= Inductive Types

Inductive udu : Set → Type :=
| Unit : udu unit
| Double_unit : udu (unit ∗ unit).

Definition unit_twelve (x : udu unit) : nat.
refine(match x in udu T return T = unit → nat with
| Unit ⇒ fun h ⇒ 12
| Double_unit ⇒ fun (h : unit ∗ unit = unit) ⇒ _
end eq_refl).

September 24, 2024 17

GADTs 6= Inductive Types

However, unit∗unit = unit in Homotopy Type Theory. Since we know
that HTT is consistent with CIC, we cannot discharge this impossible
branch.

September 24, 2024 18

GADTs 6= Inductive Types

The heart of the problem is that in OCaml, if two types have
different declarations, they’re automatically considered different from
each other.

September 24, 2024 19

GADTs 6= Inductive Types

The heart of the problem is that in OCaml, if two types have
different declarations, they’re automatically considered different from
each other.
. . .

September 24, 2024 19

GADTs 6= Inductive Types

The heart of the problem is that in OCaml, if two types have
different declarations, they’re automatically considered different from
each other.
. . .
But that’s not necessarily true in Coq.

September 24, 2024 19

GADTs 6= Inductive Types

The heart of the problem is that in OCaml, if two types have
different declarations, they’re automatically considered different from
each other.
. . .
But that’s not necessarily true in Coq.

The main goal of my MSc Thesis is to bridge this gap!

September 24, 2024 19

A Universe for GADTs
We begin by embedding every type constructor used by a GADT into
a new type GSet.

Inductive GSet : Set :=
| G_arrow : GSet → GSet → GSet
| G_tuple : GSet → GSet → GSet
| G_tconstr : nat → Set → GSet.

Fixpoint decodeG (s : GSet) : Set :=
match s with
| G_tconstr s t ⇒ t
| G_arrow t1 t2 ⇒ decodeG t1 → decodeG t2
| G_tuple t1 t2 ⇒ (decodeG t1) ∗ (decodeG t2)
end.

September 24, 2024 20

A Universe for GADTs
We begin by embedding every type constructor used by a GADT into
a new type GSet.

Inductive GSet : Set :=
| G_arrow : GSet → GSet → GSet
| G_tuple : GSet → GSet → GSet
| G_tconstr : nat → Set → GSet.

Fixpoint decodeG (s : GSet) : Set :=
match s with
| G_tconstr s t ⇒ t
| G_arrow t1 t2 ⇒ decodeG t1 → decodeG t2
| G_tuple t1 t2 ⇒ (decodeG t1) ∗ (decodeG t2)
end.

September 24, 2024 20

A Universe for GADTs
We begin by embedding every type constructor used by a GADT into
a new type GSet.

Inductive GSet : Set :=
| G_arrow : GSet → GSet → GSet
| G_tuple : GSet → GSet → GSet
| G_tconstr : nat → Set → GSet.

Fixpoint decodeG (s : GSet) : Set :=
match s with
| G_tconstr s t ⇒ t
| G_arrow t1 t2 ⇒ decodeG t1 → decodeG t2
| G_tuple t1 t2 ⇒ (decodeG t1) ∗ (decodeG t2)
end.

September 24, 2024 20

A Universe for GADTs

Definition G_unit := G_tconstr 0 unit.

Inductive udu : GSet → Set :=
| Unit : udu G_unit
| Double_unit : udu (G_tuple G_unit G_unit).

Definition unit_twelve (x : udu G_unit) : nat :=
match x in udu s0 return s0 = G_unit → nat with
| Unit ⇒ fun eq0 ⇒ 12
| _ ⇒ fun (neq : G_tuple G_unit G_unit = G_unit) ⇒
ltac:(discriminate)

end eq_refl.

September 24, 2024 21

A Universe for GADTs

Definition G_unit := G_tconstr 0 unit.

Inductive udu : GSet → Set :=
| Unit : udu G_unit
| Double_unit : udu (G_tuple G_unit G_unit).

Definition unit_twelve (x : udu G_unit) : nat :=
match x in udu s0 return s0 = G_unit → nat with
| Unit ⇒ fun eq0 ⇒ 12
| _ ⇒ fun (neq : G_tuple G_unit G_unit = G_unit) ⇒
ltac:(discriminate)

end eq_refl.

September 24, 2024 21

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

X GADTs
X Inductive Types (with dependent types)

Compiler Correctness

Specification of the Syntaxes
Specification of the Type Systems
Specification of the Translation
Proof of Type-Preservation

September 24, 2024 22

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

X GADTs
X Inductive Types (with dependent types)

Compiler Correctness
Specification of the Syntaxes
Specification of the Type Systems
Specification of the Translation
Proof of Type-Preservation

September 24, 2024 22

GADTml Syntax

s ::= ∀a.s | t Types
t, u ::= a | t → t | t ∗ t | T t Monotype
e ::= x | λx : t.e | e e Expression

| Λa.e | e[t] | (e, e)
| match e with | K x → e′

dcl ::= type T a := | K : ∀ab. t → T a ADT Declaration
| gadt G a := | K : ∀b. t → G v GADT Declaration

p ::= dcl ; e Program

Figure: GADTml Syntax

September 24, 2024 23

GADTml Typing

Σ;Γ ` e : T u Σ;Γ ` t : ∗
type T a := | K : ∀ab. t → T a ∈ Σ{

Σ;Γ, a, b, xi : ti ` e′i : t
}

Ki

Σ;Γ ` match e with | Ki xi → e′ : t
(TyMatch)

Σ;Γ ` e : G u Σ;Γ ` t : ∗
gadt G a := | K : ∀b. t → G v ∈ Σ{

Σ;σi(Γ, b, xi : ti) ` e′i : σi(t)
σi ≡ unifies(u, vi) 6≡ ⊥

}
Ki

Σ;Γ ` match e with | Ki xi → e′ : t
(TyGMatch)

September 24, 2024 24

GADTml Unification

unifies([], []) , []

unifies(x ; t, s; s) , [s/x]; unifies(t[s/x], s[s/x])
unifies(t; t, x ; s) , [t/x]; unifies(t[t/x], s[t/x])
unifies(T u; t, T v ; s) , unifies(u; t, v ; s)
unifies(t1 → t2; t, s1 → s2; s) , unifies(t1; t2; t, s1; s2; s)
unifies(_,_) , ⊥

September 24, 2024 25

gCIC Syntax

T , e ::= x | λx : A.e | e e | T v Expressions
| ∀(a : A), t | Set
| let (x : t) = e in e
| match e in T a return t with

| K x ⇒ e′ end
decl ::= Inductive T Ξ : ∆ → Set := Inductive Types

| K : ∆ → T v
prog ::= decl ; e Program

September 24, 2024 26

gCIC Typing

Inductive T Ξ : ∆ → Set := | K : ∆ → T v ∈ Σ
Σ;Γ ` u : Ξ Σ; Γ ` v : ∆

Σ; Γ ` T u v : Set
(CTyTyFam)

Σ;Γ ` e : T u
Σ;Γ, a : ∆ ` t : s

Inductive T Ξ : ∆ → Set := | K : ∆ → T v ∈ Σ
{ Σ;Γ, xi : ∆i ` e′i : t[ui/a] }Ki

Σ;Γ ` match e in T a return t with | K x ⇒ e′ end : t[u/a]
(CTyMatch)

September 24, 2024 27

Translation

The translation process is divided in three phases:

1. Transpilation

First translation into gCIC
Gathers information about GSet variables into a mapping ξ

2. Embedding

Moves necessary variables and declarations into GSet

3. Repair

Builds proof terms for casts and impossible branches

September 24, 2024 28

Translation

The translation process is divided in three phases:
1. Transpilation

First translation into gCIC
Gathers information about GSet variables into a mapping ξ

2. Embedding

Moves necessary variables and declarations into GSet

3. Repair

Builds proof terms for casts and impossible branches

September 24, 2024 28

Translation

The translation process is divided in three phases:
1. Transpilation

First translation into gCIC
Gathers information about GSet variables into a mapping ξ

2. Embedding
Moves necessary variables and declarations into GSet

3. Repair

Builds proof terms for casts and impossible branches

September 24, 2024 28

Translation

The translation process is divided in three phases:
1. Transpilation

First translation into gCIC
Gathers information about GSet variables into a mapping ξ

2. Embedding
Moves necessary variables and declarations into GSet

3. Repair
Builds proof terms for casts and impossible branches

September 24, 2024 28

Transpilation Rules

Datatype Tranpilation
` Σ Σ | ξΣ

Variable Context Transpilation
Σ;∆ ` Γ Γ

Type Transpilation
Σ;Γ ` t : ∗ g t | ξ

Expression Transpilation
Σ;Γ ` e : t e | ξ

September 24, 2024 29

Type Transpilation

Type Transpilation
Σ;Γ ` t : ∗ g t | ξ

September 24, 2024 30

Type Transpilation

Σ;Γ ` t : ∗ g t | ξ
Σ Map of datatype declarations
Γ Map of variable types
t Well-Kinded type being translated into t
 g Points under which context the translation is happening.

∆ if GSet
∗ otherwise

ξ GSet Context

September 24, 2024 30

Type Variable Transpilation

Σ;Γ ` a : ∗
Σ;Γ ` a : ∗ ∗ a | {a : ∗}

Σ;Γ ` a : ∗
Σ;Γ ` a : ∗ ∆ a | {a : ∆}

September 24, 2024 31

GADT Pattern Matching Transpilation

September 24, 2024 32

Running Example - Transpilation

gadt term a =
| T_Int : int -> term int
| T_Bool : bool -> term bool
| T_Pair : forall l r.

term l * term r -> term (l * r)

λ (e : term nat) =>
match e with
| T_Int n -> n

September 24, 2024 33

Running Example - Transpilation

Inductive term : GSet → Set :=
| T_Int : nat → term nat
| T_Bool : bool → term bool
| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)

λ (e : term nat).
match e in term c return c = nat → nat with
| T_Int n → λ (nat = nat). n
| T_Bool b → λ (bool = nat). False
| T_Pair l r p → λ (l ∗ r = nat). False
end eq_refl

September 24, 2024 34

Running Example - Transpilation

Inductive term : GSet → Set :=
| T_Int : nat → term nat
| T_Bool : bool → term bool
| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)

ξΣ = [(T_Int, ∅);
(T_Bool, ∅);
(T_Pair, {(l : ∆), (r : ∆)})]

September 24, 2024 35

Running Example - Transpilation

λ (e : term nat).
match e in term c return c = nat → nat with
| T_Int n → λ (nat = nat). n
| T_Bool b → λ (bool = nat). False
| T_Pair l r p → λ (l ∗ r = nat). False
end eq_refl

ξ = {(l : ∆), (r : ∆)}

September 24, 2024 36

ξ is a join-semilattice

We define a join operation ξ1 t ξ2
{a : ∗} t {a : ∆} = {a : ∆}, and therefore {a : ∗} ≤ {a : ∆}.

For different variables it behaves as regular set union
{a : ∗} t {b : ∆} = {(a : ∗), (b : ∆)}

September 24, 2024 37

Transpilation Lemma

Transpilation of expressions subsumes context of types

Lemma
If Σ;Γ ` t : ∗ g t | ξt and Σ;Γ ` e : t e | ξe then ξt ≤ ξe

September 24, 2024 38

Translation

1. Transpilation X
2. Embedding

Moves necessary variables and declarations into GSet
3. Repair

September 24, 2024 39

Embedding Phase

g [−]Γξ

September 24, 2024 40

Embedding Function

∗[Set]Γξ = Set
∆[Set]Γξ = GSet

∗[a]Γξ =

{
decodeG a if (a : ∆) ∈ ξ

a otherwise

September 24, 2024 41

Embedding Phase

∗[T u]Γξ = T ∗[u]Γξ
∆[T u]Γξ = G_tconstr (#Σ(T)) (T ∗[u]Γξ)

∗[G u]Γξ = G ∆[u]Γξ
∆[G u]Γξ = G_tconstr (#Σ(G)) (G ∆[u]Γξ])

September 24, 2024 42

Running Example - Embedding

∗

Inductive term : GSet → Set :=

| T_Int : nat → term nat
| T_Bool : bool → term bool
| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)

Γ

ξ

=

Inductive term : GSet → Set :=
| T_Int : nat → term (G_tconstr 0 nat)
| T_Bool : bool → term (G_tconstr 1 bool)
| T_Pair : ∀ (l : GSet), ∀ (r : GSet),

term l ∗ term r → term (G_tuple l r)

September 24, 2024 43

Running Example - Embedding

∗

λ (e : term nat).
match e in term c return c = nat → nat with
| T_Int n → λ (nat = nat). n
| T_Bool b → λ (bool = nat). False
| T_Pair l r p → λ (l ∗ r = nat). False
end eq_refl

Γ

ξ

=

λ (e : term (G_tconstr 0 nat)).
match e in term c return c = G_tconstr 0 nat → nat with
| T_Int n → λ (h : G_tconstr 0 nat = G_tconstr 0 nat). n
| T_Bool b → λ (h : G_tconstr 1 bool = G_tconstr 0 nat). False
| T_Pair l r p → λ (h : G_tuple l r = G_tconstr 0 nat). False
end eq_refl

September 24, 2024 44

Translation

1. Transpilation X
2. Embedding X
3. Repair

Builds proof terms for casts and impossible branches

September 24, 2024 45

Repair

September 24, 2024 46

Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.

Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)
Implemented by the discriminate tactic in Coq

September 24, 2024 47

Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.
Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)
Implemented by the discriminate tactic in Coq

September 24, 2024 47

Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.
Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)

Implemented by the discriminate tactic in Coq

September 24, 2024 47

Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.
Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)
Implemented by the discriminate tactic in Coq

September 24, 2024 47

Repair Function

Γ, h : K x = K y `s e : t , let (h : x = y) := Kinj h in
Γ, (h : x = y) `s e : t

Γ, h : K1 x = K2 y `s e : t , if K1 6= K2,
False_ind (conflict h)

September 24, 2024 48

Running Example - Repair

λ (e : term nat).
match e in term c return c = G_tconstr 0 nat → nat with
| T_Int n → λ (h : G_tconstr 0 nat = G_tconstr 0 nat). n
| T_Bool b → λ (h : G_tconstr 1 bool = G_tconstr 0 nat).
let (h1 : 1 = 0); (h2 : bool = nat) := K_inj h
in False_ind (conflict h1)

| T_Pair l r p → λ (h : G_tuple l r = G_tconstr 0 nat).
False_ind (conflict h)

end eq_refl

September 24, 2024 49

Kinding Preservation

Theorem (Type Translation Preserves Kinding)
If Σ;Γ ` t : ∗ g t | ξ and ` Σ Σ | ξΣ and Σ ` Γ Γ then
[Σ]ξΣ ; [Γ]ξ `

g [t]Γξ : g [Set]Γξ

Proof.
By induction on the derivation of the type transpilation
Σ;Γ ` t : ∗ g t | ξ.

September 24, 2024 50

Type Preservation

Theorem (Expression Translation Preserves Typing)
If Σ;Γ ` e : t e | ξ and Σ;Γ ` t : ∗ ∗ t | ξt and ` Σ Σ | ξΣ
and Σ ` Γ Γ then [Σ]ξΣ ; [Γ]ξ `

∗[e]Γξ : ∗[t]Γξ .
Assuming that e doesn’t have pattern matchings over datatypes that
uses other GADTs as indices

September 24, 2024 51

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

X GADTs
X Inductive Types (with dependent types)

Compiler Correctness

X Specification of the Syntaxes
X Specification of the Type Systems
X Specification of the Translation
X Proof of Type-Preservation

September 24, 2024 52

Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

X GADTs
X Inductive Types (with dependent types)

Compiler Correctness
X Specification of the Syntaxes
X Specification of the Type Systems
X Specification of the Translation
X Proof of Type-Preservation

September 24, 2024 52

Results

In order to evaluate our implementation, we picked a representative
GADT from the Michelson interpreter, namely manager_operation.

This datatype is responsible for managing some operations performed
by the nodes and smart contracts of the Tezos protocol, and its

definition can be found in operation_repr.ml.

September 24, 2024 53

Implementation Caveats

We had to also implement how this translation interacts with other
OCaml features, such as parametrized records and existentials

September 24, 2024 54

GADTs meets Records

type _ exp =
| E_Int : nat -> nat exp

type 'a my_record = {
x : 'a exp;
y : nat

}

September 24, 2024 55

GADTs meets Records

Inductive exp : GSet → Set :=
| E_Int : int → exp (t_constr 1 nat).

Record my_record {a : GSet} : Set := Build {
x : exp a;
y : int

}.

September 24, 2024 56

Future Work

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

Compiler Correctness
X Specification of the Syntaxes
X Specification of the Type Systems
X Specification of the Translation
X Proof of Type-Preservation

Specification of the Semantics
Specification of the cross-language relation
Proof of Semantics Preservation

September 24, 2024 57

Review

We have implemented a translation of GADTs to Inductive
Datatypes in Coq

We have formalized a type system for a subset of OCaml
(GADTml) and Coq (gCIC)
We proved that the translation of well typed expression in
GADTml remains well typed in gCIC
We used our translation to remove all GADT-related axioms of a
GADT datatype in the Michelson interpreter

September 24, 2024 58

Review

We have implemented a translation of GADTs to Inductive
Datatypes in Coq
We have formalized a type system for a subset of OCaml
(GADTml) and Coq (gCIC)

We proved that the translation of well typed expression in
GADTml remains well typed in gCIC
We used our translation to remove all GADT-related axioms of a
GADT datatype in the Michelson interpreter

September 24, 2024 58

Review

We have implemented a translation of GADTs to Inductive
Datatypes in Coq
We have formalized a type system for a subset of OCaml
(GADTml) and Coq (gCIC)
We proved that the translation of well typed expression in
GADTml remains well typed in gCIC

We used our translation to remove all GADT-related axioms of a
GADT datatype in the Michelson interpreter

September 24, 2024 58

Review

We have implemented a translation of GADTs to Inductive
Datatypes in Coq
We have formalized a type system for a subset of OCaml
(GADTml) and Coq (gCIC)
We proved that the translation of well typed expression in
GADTml remains well typed in gCIC
We used our translation to remove all GADT-related axioms of a
GADT datatype in the Michelson interpreter

September 24, 2024 58

Review
Problem Presentation

ADTs vs GADTs

Inductive Types

GADT != Inductive Types

GSet

Translation
Transpilation
Embedding
Repair

Results

September 24, 2024 59

Injective TCs + EM → ⊥

https://lists.chalmers.se/pipermail/agda/2010/001530.html

September 24, 2024 60

https://lists.chalmers.se/pipermail/agda/2010/001530.html

Repair Rule for Type Cast

Γ, h : τ = x `s e : t ,
take all (z : u) ∈ Γ, s.t x ∈ u,
eq_rec A τ (λ (y : A). (u → t)[x/y])

(λ (z0 : u[τ/x]). Γ[z0/z]− {x} `s e[z0/z] : t[τ/x])
x h z

September 24, 2024 61

Compiled Example with Typecast

gadt term a =
| T_Lift : forall a. a -> term a
| T_Int : int -> term int
| T_Bool : bool -> term bool
| T_Pair : forall l r.

term l * term r -> term (l * r)

λ (e : term nat) =>
match e with
| T_Lift x -> x
| T_Int n -> n

September 24, 2024 62

Example with Type Cast

λ (e : term nat).
match e in term c return c = G_tconstr 0 nat → nat with
| T_Lift a x → λ (h : a = G_tconstr 0 nat).
eq_rec A (G_tconstr 0 nat) (λ y ⇒ decodeG y → nat)
(λ (z : decodeG (G_tconstr 0 nat)) ⇒ z) a (eq_sym h) x

| T_Int n → λ (h : G_tconstr 0 nat = G_tconstr 0 nat). n
| T_Bool b → λ (h : G_tconstr 1 bool = G_tconstr 0 nat).
let (h1 : 1 = 0); (h2 : bool = nat) := K_inj h
in False_ind (conflict h1)

| T_Pair l r p → λ (h : G_tuple l r = G_tconstr 0 nat).
False_ind (conflict h)

end eq_refl

September 24, 2024 63

	Problem Presentation
	ADTs vs GADTs
	Inductive Types
	GADT != Inductive Types
	GSet
	Translation
	Transpilation
	Embedding
	Repair

	Results

