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Example of an ADT

type term =
| T_Int : nat -> term
| T_Bool : bool -> term
| T_Add : term * term -> term

let get_bool (bexp : term) : bool option = function
match bexp with
| T_Bool b -> Some b
| _ -> None
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Example of GADT

type _ term =
| T_Int : nat -> nat term
| T_Bool : bool -> bool term
| T_Add : nat term * nat term -> nat term

let get_bool (bexp : bool term) : bool = function
match bexp with
| T_Bool b -> b
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Example of GADT

type _ term =
| T_Int : nat -> nat term
| T_Bool : bool -> bool term
| T_Add : nat term * nat term -> nat term

let rec eval (type a) (t : a term) : a =
match t with
| T_Int n -> n
| T_Bool b -> b
| T_Add (x, y) -> (eval x) + (eval y)
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Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
end.

September 24, 2024 10



Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
end.

September 24, 2024 10



Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
end.

Error: Non exhaustive pattern-matching: no clause found for pattern
T_int _
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Impossible Branches in Coq

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Axiom unreachable_gadt_branch : forall (A : Type), A.

Definition get_bool (t : term bool) : bool :=
match t with
| T_bool b ⇒ b
| _ ⇒ unreachable_gadt_branch
end.
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Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
...
end eq_refl.

September 24, 2024 12



Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun (h : bool = bool) ⇒ b
...
end. eq_refl.
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Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun _ ⇒ b
| _ ⇒ fun (h : nat = bool) ⇒

Principle of Explosion
end eq_refl.
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Dependent Pattern Matching

Inductive term : Set → Type :=
| T_int : nat → term nat
| T_bool: bool → term bool
| T_add : term nat → term nat → term nat .

Lemma bnat_neq : nat <> bool. Proof. ... Qed.

Definition get_bool (t : term bool) : bool :=
match t in term A return A = bool → bool with
| T_bool b ⇒ fun _ ⇒ b
| _ ⇒ fun (h : nat = bool) ⇒
ltac:(apply False_ind; apply (bnat_neq h))

end eq_refl.
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GADTs 6= Inductive Types

type _ udu =
| Unit : unit udu
| Double_unit : (unit * unit) udu

let unit_twelve (x : unit udu) =
match x with
| Unit -> 12
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GADTs 6= Inductive Types

Inductive udu : Set → Type :=
| Unit : udu unit
| Double_unit : udu (unit ∗ unit).

Definition unit_twelve (x : udu unit) : nat.
refine(match x in udu T return T = unit → nat with
| Unit ⇒ fun h ⇒ 12
| Double_unit ⇒ fun (h : unit ∗ unit = unit) ⇒ _
end eq_refl).
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GADTs 6= Inductive Types

However, unit∗unit = unit in Homotopy Type Theory. Since we know
that HTT is consistent with CIC, we cannot discharge this impossible
branch.
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GADTs 6= Inductive Types

The heart of the problem is that in OCaml, if two types have
different declarations, they’re automatically considered different from
each other.
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GADTs 6= Inductive Types

The heart of the problem is that in OCaml, if two types have
different declarations, they’re automatically considered different from
each other.
. . .
But that’s not necessarily true in Coq.

The main goal of my MSc Thesis is to bridge this gap!
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A Universe for GADTs
We begin by embedding every type constructor used by a GADT into
a new type GSet.

Inductive GSet : Set :=
| G_arrow : GSet → GSet → GSet
| G_tuple : GSet → GSet → GSet
| G_tconstr : nat → Set → GSet.

Fixpoint decodeG (s : GSet) : Set :=
match s with
| G_tconstr s t ⇒ t
| G_arrow t1 t2 ⇒ decodeG t1 → decodeG t2
| G_tuple t1 t2 ⇒ (decodeG t1) ∗ (decodeG t2)
end.
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A Universe for GADTs

Definition G_unit := G_tconstr 0 unit.

Inductive udu : GSet → Set :=
| Unit : udu G_unit
| Double_unit : udu (G_tuple G_unit G_unit).

Definition unit_twelve (x : udu G_unit) : nat :=
match x in udu s0 return s0 = G_unit → nat with
| Unit ⇒ fun eq0 ⇒ 12
| _ ⇒ fun (neq : G_tuple G_unit G_unit = G_unit) ⇒
ltac:(discriminate)

end eq_refl.
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Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

X GADTs
X Inductive Types (with dependent types)

Compiler Correctness

Specification of the Syntaxes
Specification of the Type Systems
Specification of the Translation
Proof of Type-Preservation
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GADTml Syntax

s ::= ∀a.s | t Types
t, u ::= a | t → t | t ∗ t | T t Monotype
e ::= x | λx : t.e | e e Expression

| Λa.e | e[t] | (e, e)
| match e with | K x → e′

dcl ::= type T a := | K : ∀ab. t → T a ADT Declaration
| gadt G a := | K : ∀b. t → G v GADT Declaration

p ::= dcl ; e Program

Figure: GADTml Syntax
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GADTml Typing

Σ;Γ ` e : T u Σ;Γ ` t : ∗
type T a := | K : ∀ab. t → T a ∈ Σ{

Σ;Γ, a, b, xi : ti ` e′i : t
}

Ki

Σ;Γ ` match e with | Ki xi → e′ : t
(TyMatch)

Σ;Γ ` e : G u Σ;Γ ` t : ∗
gadt G a := | K : ∀b. t → G v ∈ Σ{

Σ;σi(Γ, b, xi : ti) ` e′i : σi(t)
σi ≡ unifies(u, vi) 6≡ ⊥

}
Ki

Σ;Γ ` match e with | Ki xi → e′ : t
(TyGMatch)
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GADTml Unification

unifies([ ], [ ]) , [ ]

unifies(x ; t, s; s) , [s/x]; unifies(t[s/x ], s[s/x ])
unifies(t; t, x ; s) , [t/x]; unifies(t[t/x ], s[t/x ])
unifies(T u; t, T v ; s) , unifies(u; t, v ; s)
unifies(t1 → t2; t, s1 → s2; s) , unifies(t1; t2; t, s1; s2; s)
unifies(_,_) , ⊥
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gCIC Syntax

T , e ::= x | λx : A.e | e e | T v Expressions
| ∀(a : A), t | Set
| let (x : t) = e in e
| match e in T a return t with

| K x ⇒ e′ end
decl ::= Inductive T Ξ : ∆ → Set := Inductive Types

| K : ∆ → T v
prog ::= decl ; e Program
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gCIC Typing

Inductive T Ξ : ∆ → Set := | K : ∆ → T v ∈ Σ
Σ;Γ ` u : Ξ Σ; Γ ` v : ∆

Σ; Γ ` T u v : Set
(CTyTyFam)

Σ;Γ ` e : T u
Σ;Γ, a : ∆ ` t : s

Inductive T Ξ : ∆ → Set := | K : ∆ → T v ∈ Σ
{ Σ;Γ, xi : ∆i ` e′i : t[ui/a] }Ki

Σ;Γ ` match e in T a return t with | K x ⇒ e′ end : t[u/a]
(CTyMatch)
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Translation

The translation process is divided in three phases:

1. Transpilation

First translation into gCIC
Gathers information about GSet variables into a mapping ξ

2. Embedding

Moves necessary variables and declarations into GSet

3. Repair

Builds proof terms for casts and impossible branches
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Transpilation Rules

Datatype Tranpilation
` Σ Σ | ξΣ

Variable Context Transpilation
Σ;∆ ` Γ Γ

Type Transpilation
Σ;Γ ` t : ∗ g t | ξ

Expression Transpilation
Σ;Γ ` e : t  e | ξ
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Type Transpilation

Type Transpilation
Σ;Γ ` t : ∗ g t | ξ
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Type Transpilation

Σ;Γ ` t : ∗ g t | ξ
Σ Map of datatype declarations
Γ Map of variable types
t Well-Kinded type being translated into t
 g Points under which context the translation is happening.

∆ if GSet
∗ otherwise

ξ GSet Context
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Type Variable Transpilation

Σ;Γ ` a : ∗
Σ;Γ ` a : ∗ ∗ a | {a : ∗}

Σ;Γ ` a : ∗
Σ;Γ ` a : ∗ ∆ a | {a : ∆}
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GADT Pattern Matching Transpilation
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Running Example - Transpilation

gadt term a =
| T_Int : int -> term int
| T_Bool : bool -> term bool
| T_Pair : forall l r.

term l * term r -> term (l * r)

λ (e : term nat) =>
match e with
| T_Int n -> n
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Running Example - Transpilation

Inductive term : GSet → Set :=
| T_Int : nat → term nat
| T_Bool : bool → term bool
| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)

λ (e : term nat).
match e in term c return c = nat → nat with
| T_Int n → λ (nat = nat). n
| T_Bool b → λ (bool = nat). False
| T_Pair l r p → λ (l ∗ r = nat). False
end eq_refl
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Running Example - Transpilation

Inductive term : GSet → Set :=
| T_Int : nat → term nat
| T_Bool : bool → term bool
| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)

ξΣ = [(T_Int, ∅);
(T_Bool, ∅);
(T_Pair, {(l : ∆), (r : ∆)})]
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Running Example - Transpilation

λ (e : term nat).
match e in term c return c = nat → nat with
| T_Int n → λ (nat = nat). n
| T_Bool b → λ (bool = nat). False
| T_Pair l r p → λ (l ∗ r = nat). False
end eq_refl

ξ = {(l : ∆), (r : ∆)}

September 24, 2024 36



ξ is a join-semilattice

We define a join operation ξ1 t ξ2
{a : ∗} t {a : ∆} = {a : ∆}, and therefore {a : ∗} ≤ {a : ∆}.

For different variables it behaves as regular set union
{a : ∗} t {b : ∆} = {(a : ∗), (b : ∆)}
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Transpilation Lemma

Transpilation of expressions subsumes context of types

Lemma
If Σ;Γ ` t : ∗ g t | ξt and Σ;Γ ` e : t  e | ξe then ξt ≤ ξe
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Translation

1. Transpilation X
2. Embedding

Moves necessary variables and declarations into GSet
3. Repair
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Embedding Phase

g [−]Γξ
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Embedding Function

∗[Set]Γξ = Set
∆[Set]Γξ = GSet

∗[a]Γξ =

{
decodeG a if (a : ∆) ∈ ξ

a otherwise
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Embedding Phase

∗[T u]Γξ = T ∗[u]Γξ
∆[T u]Γξ = G_tconstr (#Σ(T )) (T ∗[u]Γξ )

∗[G u]Γξ = G ∆[u]Γξ
∆[G u]Γξ = G_tconstr (#Σ(G)) (G ∆[u]Γξ ])
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Running Example - Embedding

∗


Inductive term : GSet → Set :=

| T_Int : nat → term nat
| T_Bool : bool → term bool
| T_Pair : ∀ (l : Set),
forall (r : Set), term l ∗ term r → term (l ∗ r)


Γ

ξ

=

Inductive term : GSet → Set :=
| T_Int : nat → term (G_tconstr 0 nat)
| T_Bool : bool → term (G_tconstr 1 bool)
| T_Pair : ∀ (l : GSet), ∀ (r : GSet),

term l ∗ term r → term (G_tuple l r)
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Running Example - Embedding

∗


λ (e : term nat).
match e in term c return c = nat → nat with
| T_Int n → λ (nat = nat). n
| T_Bool b → λ (bool = nat). False
| T_Pair l r p → λ (l ∗ r = nat). False
end eq_refl



Γ

ξ

=

λ (e : term (G_tconstr 0 nat)).
match e in term c return c = G_tconstr 0 nat → nat with
| T_Int n → λ (h : G_tconstr 0 nat = G_tconstr 0 nat). n
| T_Bool b → λ (h : G_tconstr 1 bool = G_tconstr 0 nat). False
| T_Pair l r p → λ (h : G_tuple l r = G_tconstr 0 nat). False
end eq_refl
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Translation

1. Transpilation X
2. Embedding X
3. Repair

Builds proof terms for casts and impossible branches
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Repair
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Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.

Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)
Implemented by the discriminate tactic in Coq

September 24, 2024 47



Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.
Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)
Implemented by the discriminate tactic in Coq

September 24, 2024 47



Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.
Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)

Implemented by the discriminate tactic in Coq

September 24, 2024 47



Injective and Conflict Properties

Constructors are injective
Kinj : K e1 = K e2 → e1 = e2.
Implemented by the inversion tactic in Coq

Constructors are disjoint
conflict : Ki e1 = Kj e2 → False (where Ki 6= Kj)
Implemented by the discriminate tactic in Coq

September 24, 2024 47



Repair Function

Γ, h : K x = K y `s e : t , let (h : x = y) := Kinj h in
Γ, (h : x = y) `s e : t

Γ, h : K1 x = K2 y `s e : t , if K1 6= K2,
False_ind (conflict h)
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Running Example - Repair

λ (e : term nat).
match e in term c return c = G_tconstr 0 nat → nat with
| T_Int n → λ (h : G_tconstr 0 nat = G_tconstr 0 nat). n
| T_Bool b → λ (h : G_tconstr 1 bool = G_tconstr 0 nat).
let (h1 : 1 = 0); (h2 : bool = nat) := K_inj h
in False_ind (conflict h1)

| T_Pair l r p → λ (h : G_tuple l r = G_tconstr 0 nat).
False_ind (conflict h)

end eq_refl
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Kinding Preservation

Theorem (Type Translation Preserves Kinding)
If Σ;Γ ` t : ∗ g t | ξ and ` Σ Σ | ξΣ and Σ ` Γ Γ then
[Σ]ξΣ ; [Γ]ξ `

g [t]Γξ : g [Set]Γξ

Proof.
By induction on the derivation of the type transpilation
Σ;Γ ` t : ∗ g t | ξ.
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Type Preservation

Theorem (Expression Translation Preserves Typing)
If Σ;Γ ` e : t  e | ξ and Σ;Γ ` t : ∗ ∗ t | ξt and ` Σ Σ | ξΣ
and Σ ` Γ Γ then [Σ]ξΣ ; [Γ]ξ `

∗[e]Γξ : ∗[t]Γξ .
Assuming that e doesn’t have pattern matchings over datatypes that
uses other GADTs as indices
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Problem

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

X GADTs
X Inductive Types (with dependent types)

Compiler Correctness

X Specification of the Syntaxes
X Specification of the Type Systems
X Specification of the Translation
X Proof of Type-Preservation
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Results

In order to evaluate our implementation, we picked a representative
GADT from the Michelson interpreter, namely manager_operation.

This datatype is responsible for managing some operations performed
by the nodes and smart contracts of the Tezos protocol, and its

definition can be found in operation_repr.ml.
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Implementation Caveats

We had to also implement how this translation interacts with other
OCaml features, such as parametrized records and existentials
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GADTs meets Records

type _ exp =
| E_Int : nat -> nat exp

type 'a my_record = {
x : 'a exp;
y : nat

}

September 24, 2024 55



GADTs meets Records

Inductive exp : GSet → Set :=
| E_Int : int → exp (t_constr 1 nat).

Record my_record {a : GSet} : Set := Build {
x : exp a;
y : int

}.
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Future Work

How to Correctly Translate OCaml GADTs as Coq Inductive
Datatypes?

Compiler Correctness
X Specification of the Syntaxes
X Specification of the Type Systems
X Specification of the Translation
X Proof of Type-Preservation

Specification of the Semantics
Specification of the cross-language relation
Proof of Semantics Preservation
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Review

We have implemented a translation of GADTs to Inductive
Datatypes in Coq

We have formalized a type system for a subset of OCaml
(GADTml) and Coq (gCIC)
We proved that the translation of well typed expression in
GADTml remains well typed in gCIC
We used our translation to remove all GADT-related axioms of a
GADT datatype in the Michelson interpreter
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Review
Problem Presentation

ADTs vs GADTs

Inductive Types

GADT != Inductive Types

GSet

Translation
Transpilation
Embedding
Repair
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Injective TCs + EM → ⊥

https://lists.chalmers.se/pipermail/agda/2010/001530.html
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Repair Rule for Type Cast

Γ, h : τ = x `s e : t ,
take all (z : u) ∈ Γ, s.t x ∈ u,
eq_rec A τ (λ (y : A). (u → t)[x/y ])

(λ (z0 : u[τ/x ]). Γ[z0/z]− {x} `s e[z0/z] : t[τ/x ])
x h z
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Compiled Example with Typecast

gadt term a =
| T_Lift : forall a. a -> term a
| T_Int : int -> term int
| T_Bool : bool -> term bool
| T_Pair : forall l r.

term l * term r -> term (l * r)

λ (e : term nat) =>
match e with
| T_Lift x -> x
| T_Int n -> n
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Example with Type Cast

λ (e : term nat).
match e in term c return c = G_tconstr 0 nat → nat with
| T_Lift a x → λ (h : a = G_tconstr 0 nat).
eq_rec A (G_tconstr 0 nat) (λ y ⇒ decodeG y → nat)
(λ (z : decodeG (G_tconstr 0 nat)) ⇒ z) a (eq_sym h) x

| T_Int n → λ (h : G_tconstr 0 nat = G_tconstr 0 nat). n
| T_Bool b → λ (h : G_tconstr 1 bool = G_tconstr 0 nat).
let (h1 : 1 = 0); (h2 : bool = nat) := K_inj h
in False_ind (conflict h1)

| T_Pair l r p → λ (h : G_tuple l r = G_tconstr 0 nat).
False_ind (conflict h)

end eq_refl
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