StarMalloc: Verifying a Modern, Hardened
Memory Allocator

Antonin Reitz!, Aymeric Fromherz!, Jonathan Protzenko?
Ynria Paris, Prosecco team
2Microsoft Research

2024-10-04

The state of critical software

Web browsers, messaging applications, etc, can be considered
critical and thus should be:

e secure
e reliable

e fast

The state of critical software

Web browsers, messaging applications, etc, can be considered
critical and thus should be:

e secure
e reliable
e fast

In practice, such software remains implemented in low-level,
error-prone languages

Microsoft + Google: 70% of CVEs in their software are
memory-related issues

Memory issues remain a billion dollar problem

Analyzers, safer languages, ..., already exist.
What can we do better?

Memory issues remain a billion dollar problem

Analyzers, safer languages, ..., already exist.
What can we do better?

“Software needs seatbelts and airbags!

Security-oriented memory allocators can provide mitigations against
memory corruptions, reducing their impact

!Berger, CACM 2012

Software stack sketch and memory management

web browser,

terminal, C user applications

etc

Software stack sketch and memory management

web browser,

terminal, C user applications

etc

system calls handling C (ON) kernel mode

Software stack sketch and memory management

web browser,

terminal, C user applications
etc

memory allocator, .
/ C C standard library
malloc, free

system calls handling C (ON) kernel mode

Software stack sketch and memory management

web browser,

terminal, C user applications

etc

I user mode

memory allocator, .
/ C C standard library
malloc, free

system calls handling C (ON) kernel mode

Software stack sketch and memory management

web browser,

terminal, C user applications
etc
user mode
memory allocator, .
/ C standard library
malloc, free
system calls handling C (ON) kernel mode

Allocator design space = vast

Allocators can be used in a large diversity of environments

e concurrent allocations

small available memory space

need for performance

need for security

Allocator design space = vast

Allocators can be used in a large diversity of environments

e concurrent allocations

small available memory space

need for performance

need for security = security-oriented allocators

Allocator design space = vast

Allocators can be used in a large diversity of environments

e concurrent allocations

small available memory space

need for performance

need for security = security-oriented allocators

There is not one allocator design satisfying all possible constraints

What about bugs in the allocator?

Multiple implementation bugs in recent years: GNU malloc (glibc
allocator)?, Scudo (Android allocator)3, ...

What about bugs in the allocator?

Multiple implementation bugs in recent years: GNU malloc (glibc
allocator)?, Scudo (Android allocator)3, ...

2CVE-2017-17426, high severity
3CVE-2023-21367, medium severity

Security-oriented allocators: constraints

Security-oriented memory allocators:

+ can provide mitigations against memory corruptions

A can have their own bugs

Security-oriented allocators: constraints

Security-oriented memory allocators:

« can provide mitigations against memory corruptions

A can have their own bugs

— Need for a verified implementation that meets end users
needs, including performance and security

Verifying a security-oriented allocator: challenges

e relating metadata and available memory space
e efficient datastructures without dynamic memory allocation
e interacting with the OS: modelizing syscalls

e modern allocator: concurrency

Verifying a security-oriented allocator: challenges

e relating metadata and available memory space

e efficient datastructures without dynamic memory allocation
e interacting with the OS: modelizing syscalls

e modern allocator: concurrency

e proof engineering: result should be easy to extend, e.g. when
implementing new security mechanisms
— composable abstraction layers, verification
methodology

Contributions

StarMalloc is part of our contributions,
as the first verified general-purpose userspace memory allocator

Verification theorem states that StarMalloc is functionally
correct

A specific verification methodology was used

Contributions

StarMalloc is part of our contributions,

as the first verified general-purpose userspace memory allocator

Verification theorem states that StarMalloc is functionally
correct

A specific verification methodology was used

Out-of-scope:
e memory allocator design

e security theorem

StarMalloc architecture

Security-oriented userspace memory allocator: design choices

StarMalloc is heavily inspired from hardened_malloc?, an
unverified modern security-focused general-purpose memory
allocator

Security-oriented userspace memory allocator: design choices

StarMalloc is heavily inspired from hardened_malloc?, an
unverified modern security-focused general-purpose memory
allocator

e most common allocations are small = they should be fast
e low memory fragmentation

e security by default

— dedicated architecture/memory layout

“https://github. com/Graphene0S/hardened_malloc

https://github.com/GrapheneOS/hardened_malloc

StarMalloc architecture

malloc(size)

l

size < page_size

T~

small allocator large allocator

10

StarMalloc architecture

malloc(size)

l

size < page_size

= R

small allocator large allocator

today: focus on small allocations

10

StarMalloc architecture: small allocations

malloc(24)

size< page_size

StarMalloc architecture: small allocations

malloc(24)

size< page_size

|

size class selection 16B size class 32B size class

StarMalloc architecture: small allocations

malloc(24)

size< page_size

|

size class selection 16B size class 32B size class

StarMalloc architecture: small allocations

malloc(24)

size< page_size

|

size class selection 16B size class 32B size class

_— N

page | page | page | page | page | page

StarMalloc architecture: small allocations

malloc(24)

size< page_size

size class selection 16B size class 32B size class

_— N

page selection page | page | page | page | page | page

StarMalloc architecture: small allocations

malloc(24)

size< page_size

size class selection 16B size class 32B size class

_— N

page selection page | page | page | page | page | page

StarMalloc architecture: small allocations

malloc(24)

size< page_size

size class selection 16B size class 32B size class
page selection page | page | page | page | page | page

/\

free free | free | free
slot slot | slot | slot

StarMalloc architecture: small allocations

malloc(24)

size< page_size

size class selection 16B size class 32B size class
page selection page | page | page | page | page | page

/\

free free | free | free
slot slot | slot | slot
—

32B

StarMalloc architecture: small allocations

malloc(24)

size< page_size

size class selection 16B size class 32B size class
page selection page | page | page | page | page | page
] free free | free | free

slot selection
slot slot | slot | slot

32B

StarMalloc architecture: small allocations

malloc(24)

size< page_size

size class selection 16B size class 32B size class
page selection page | page | page | page | page | page

] free | free
slot selection

slot | slot

11

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

slots metadata (bitmap) page

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

size class allocation region

slots metadata (bitmap)

true ;false ;false ; -

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

size class allocation region

slots metadata (bitmap)

true ;false ;false ; -

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

pages metadata (varraylist) size class allocation region

Notfull | Full Notfull| Full

slots metadata (bitmap)

true ;false ;false ; -

12

Fine-grained locks: size classes

allocation must be thread-safe

size class selection

o
16B sc 32B sc 64B sc 4096B sc

13

Fine-grained locks: size classes

allocation must be thread-safe

size class selection

i o o i i
16B sc 32B sc 64B sc 4096B sc

13

Fine-grained locks: size classes

allocation must be thread-safe

size class selection

i & o i i
16B sc 32B sc 64B sc 4096B sc

13

Fine-grained locks: arenas

e cach thread has an assigned arena
e several threads can share an arena

e threads can free in other arenas

size class selection

arena 1 arena 2 arena n
B B R BN AN R R REmme AEmES R
16B | 32B 16B | 32B 16B | 32B
sc sc sc sc sc sc

14

Fine-grained locks: arenas

e cach thread has an assigned arena
e several threads can share an arena

e threads can free in other arenas

size class selection

arena 1 arena 2 arena n
16B | 32B 16B | 32B 16B | 32B
sc sc sc sc sc sc

14

Verification methodology

Verification software: F*

F*= a proof-oriented programming language, used as a verification
framework, that supports:

e dependent types

e semi-automated verification using an SMT solver

15

Separation logic 101

e Hix H>, means H; and H, are heap predicates valid in disjoint
memory regions

16

Separation logic 101

e Hix H>, means H; and H, are heap predicates valid in disjoint
memory regions

{Prc{Q}
{RxP}c{QxR}

e modular reasoning relying on frame rule:

16

Separation logic 101

e Hix H>, means H; and H, are heap predicates valid in disjoint
memory regions

{P}c{@Q}
{RxP}c{QxR}
{Pita{@} {P}lca{@}
{PixPr}allo{Q+@}

e modular reasoning relying on frame rule:

e concurrent separation logic:

16

Separation logic 101

e Hix H>, means H; and H, are heap predicates valid in disjoint
memory regions

{P}c{@Q}
{RxP}c{QxR}
{Pita{@} {P}lca{@}
{PixPr}allo{Q+@}

e modular reasoning relying on frame rule:

e concurrent separation logic:

e reference assignment example

{r=v}r=42{r—42}

16

Verification software: Steel

Steel: a concurrent separation logic embedded in F*

key design feature: memory shape and memory content proof
obligations discharged separately

1 val swap (#a:Type) (rl r2: ref a)

2 : Steel unit

3 (vptr rl x vptr r2) memory shape
4 (fun _ -> vptr rl * vptr r2) } (tactic)

5 (requires fun _ ->

6 True)

memory content
(SMT solver)

7 (ensures fun hO _ hl ->
8 v_ref r2 hl == v_ref rl h0O /\
9 v_ref rl hl == v_ref r2 hO)

17

Combinators: sldep

sldep = dependent star

1 let ind_ref (#a: Type)
> (ind_ptr: ref (ref a))
3 : slprop

4 =]

5 sldep (vptr ind_ptr) (fun ptr -> vptr ptr)

18

Combinators: slrefine

slrefine = refinement over slprop memory content

1 let refined_ref (ptr: ref int)
2 : slprop

3 =]

4 slrefine (vptr ptr) (fun v -> v == 42)

19

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_md,) page

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_md,) page

true ;false ;false ; - —

no ownership on the 1st slot

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_md,) page

true ;false ;false ; - —

ownersh|p on the 2nd slot

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_md,) page

true ;false ;false ; - —

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_md,) page

true ;false ;false ; - —

1 let available_slot b slot = if b then emp else slarray slot

3 let pred slots_md, page =
4 available_slot slots_md,.[0] (ith_slot page 0) x
5 available_slot slots_md,.[1] (ith_slot page 1) %

¢ available_slot slots_md,.[2] (ith_slot page 2) x ... 20

Combinators: starseq

e relating two disjoint arrays
e higher-order
e user-defined

1 type idx (#a: Type) (s: seq a) = i:nat{i <= length s}

2

3 let starseq' (p: a -> nat -> slprop) (s: seq a) (i: idx s) -
4 1if 1 = length s

5 then emp

¢ else starseq' p s.[i] i “star” starseq' p s (i+1)

7

8 let starseq p s : slprop = starseq' p s O

21

Combinators: starseq

e relating two disjoint arrays
e higher-order
e user-defined

1 type idx (#a: Type) (s: seq a) = i:nat{i <= length s}

3 let starseq' (p: a -> nat -> slprop) (s: seq a) (i: idx s) -
4 1if 1 = length s
5 then emp

¢ else starseq' p s.[i] i “star” starseq' p s (i+1)

8 let starseq p s : slprop = starseq' p s O

used to relate slots and slots metadata + pages and pages metadata
21

Pages metadata: the varraylist datastructure

size class allocation region

Pages metadata: the varraylist datastructure
Full Notfull | Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

Pages metadata: the varraylist datastructure

|

Full Notfull| Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

Pages metadata: the varraylist datastructure

J/—\

Full Notfull| Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

Pages metadata: the varraylist datastructure

J/—\

Full Notfull| Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

1 val is_list (#a:Type)

2 (hd:nat) (s:Seq.seq (cell a)) : prop

3

4 let varraylist_refine (#a:Type)

5 (hd:nat) (s:Seq.seq (cell a)) : prop =
6 1is_list hd s

s let varraylist (#a:Type) (r:A.array (cell a))
o (hd:nat) : slprop
10 = A.varray r “slrefine’

11 (fun s -> varraylist_refine hd s)

Pages metadata: the varraylist datastructure

J/—\

Full Notfull| Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

1 val is_list (#a:Type) (pred: a -> prop)

2 (hd:nat) (s:Seq.seq (cell a)) : prop

3

4 let varraylist_refine (#a:Type) (predl: a -> prop)
5 (hdl:nat) (s:Seq.seq (cell a)) : prop =

6 1s_list predl hdl s

s let varraylist (#a:Type) (r:A.array (cell a))
o (predl: a -> prop) (hdl:nat) : slprop
10 = A.varray r “slrefine’

11 (fun s -> varraylist_refine predl hdl s)

Pages metadata: the varraylist datastructure

Lt

Full Notfull| Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

1 val is_list (#a:Type) (pred: a -> prop)

2 (hd:nat) (s:Seq.seq (cell a)) : prop

3

4 let varraylist_refine (#a:Type) (predl pred2: a -> prop)
5 (hdl hd2:nat) (s:Seq.seq (cell a)) : prop =

6 is_list predl hdl s /\ is_list pred2 hd2 s

s let varraylist (#a:Type) (r:A.array (cell a))
o (predl pred2: a -> prop) (hdl hd2:nat) : slprop
10 = A.varray r “slrefine’

11 (fun s -> varraylist_refine predl pred2 hdl hd2 s) 22

Pages metadata: the varraylist datastructure

Lt

Full Notfull| Full Notfull| --- — _:

pages metadata (varraylist) size class allocation region

1 val is_dlist (#a:Type) (pred: a -> prop)

2 (hd:nat) (s:Seq.seq (cell a)) : prop

3

4 let varraylist_refine (#a:Type) (predl pred2: a -> prop)
5 (hdl hd2:nat) (s:Seq.seq (cell a)) : prop =

6 is_dlist predl hdl s /\ is_dlist pred2 hd2 s

s let varraylist (#a:Type) (r:A.array (cell a))
o (predl pred2: a -> prop) (hdl hd2:nat) : slprop
10 = A.varray r “slrefine’

11 (fun s -> varraylist_refine predl pred2 hdl hd2 s) 22

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)

2 (hdl hd2 hd3 hd4 hd5 last5 sizeb:nat)

s (s:Seq.seq (cell a)) : prop

L =

5 is_dlist is_partial hdl s /\

6 is_dlist is_full hd2 s /\

7 is_dlist is_empty hd3 s /\

s is_dlist is_guard hd4 s /\

9 is_queue is_quarantined hd5 last5 s /\
10 cardinality (ptrs_in hd5 s) == sizeb /\
11 sizeb <= SizeT.v Config.quarantine_queue_length /\
12 disjointb5 s hdl hd2 hd3 hd4 hdb5

5 doubly-linked lists:

e not full (partial), full, ...
23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)

2 (hdl hd2 hd3 hd4 hd5 last5 sizeb:nat)

s (s:Seq.seq (cell a)) : prop

L =

5 is_dlist is_partial hdl s /\

6 is_dlist is_full hd2 s /\

7 is_dlist is_empty hd3 s /\

s is_dlist is_guard hd4 s /\

9 is_queue is_quarantined hd5 last5 s /\
10 cardinality (ptrs_in hd5 s) == sizeb /\
11 sizeb <= SizeT.v Config.quarantine_queue_length /\
12 disjointb5 s hdl hd2 hd3 hd4 hdb

5 doubly-linked lists:

e not full (partial), full, ...
23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)

2 (hdl hd2 hd3 hd4 hd5 last5 sizeb:nat)

s (s:Seq.seq (cell a)) : prop

L =

5 is_dlist is_partial hdl s /\

6 is_dlist is_full hd2 s /\

7 is_dlist is_empty hd3 s /\

s is_dlist is_guard hd4 s /\

9 is_queue is_quarantined hd5 last5 s /\
10 cardinality (ptrs_in hd5 s) == sizeb /\
11 sizeb <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hdl hd2 hd3 hd4 hdb5

5 doubly-linked lists:
e not full (partial), full, empty (# partial, fragmentation)
O ooc 23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)

2 (hdl hd2 hd3 hd4 hd5 last5 sizeb:nat)

s (s:Seq.seq (cell a)) : prop

L =

5 is_dlist is_partial hdl s /\

6 is_dlist is_full hd2 s /\

7 is_dlist is_empty hd3 s /\

s is_dlist is_guard hd4 s /\

9 is_queue is_quarantined hd5 last5 s /\
10 cardinality (ptrs_in hd5 s) == sizeb /\
11 sizeb <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hdl hd2 hd3 hd4 hdb5

5 doubly-linked lists:
e not full (partial), full, empty (# partial, fragmentation)
e security: guard pages + ... 23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)

2 (hdl hd2 hd3 hd4 hd5 last5 sizeb:nat)

s (s:Seq.seq (cell a)) : prop

L =

5 is_dlist is_partial hdl s /\

6 is_dlist is_full hd2 s /\

7 is_dlist is_empty hd3 s /\

s is_dlist is_guard hd4 s /\

9 is_queue is_quarantined hd5 last5 s /\
10 cardinality (ptrs_in hd5 s) == sizeb5 /\
11 sizeb <= SizeT.v Config.quarantine_queue_length /\
12 disjointb5 s hdl hd2 hd3 hd4 hdb

5 doubly-linked lists:
e not full (partial), full, empty (# partial, fragmentation)
e security: guard pages + quarantined pages (forming a queue) 23

Other challenges

So far, we focused on verification reasoning

24

Other challenges

So far, we focused on verification reasoning
Actually, our code also requires:

e genericity: easily-configurable allocator

e concurrency with the number of arenas
e security with the set of enabled security mechanisms
e different data put into memory: different set of sizeclasses

24

Other challenges

So far, we focused on verification reasoning
Actually, our code also requires:

e genericity: easily-configurable allocator

e concurrency with the number of arenas
e security with the set of enabled security mechanisms
e different data put into memory: different set of sizeclasses

e mutexes: thread-safety

24

IIiHEHEiiHH!II

we want to write:

1 let sc_list = [16; 32; 64; 80; ...]

2

3 let rec init_size_classes memory sizes i = match sizes with
« |01 >0

5 | hd::tl -> init_size_class memory hd i;

6 init_size_classes memory tl (i+1)

25

IIHHHHIEIIEIH!II

we want to write:

1 let sc_list = [16; 32; 64; 80; ...]

3 let rec init_size_classes memory sizes i = match sizes with
« |01 >0
5 | hd::tl -> init_size_class memory hd i;

6 init_size_classes memory tl (i+1)

after extraction, through normalization and partial evaluation:

1 size_class* size_classes = [...];

2 init_size_class(memory, size_classes[0U], 16ul);
3 init_size_class(memory, size_classes[1U], 32ul);
4 init_size_class(memory, size_classes[2U], 64ul);
5 init_size_class(memory, size_classes[3U], 80ul);

6 [] 25

Ensuring thread-safety

1 val acquire (#p: slprop) (1l:lock p)

2 : Steel unit

s emp (fun _ -> p)

4

s let £ [...] =

6 [...] L.acquire 1; [...]

1 void £(...) =
2 [...] pthread_lock(&l); [...]

Mismatch:

e Steel: uses mutex as a value
o C: uses mutex's address

= relies on already existing, conservative trusted compilation

passes e

Verification guarantees

Theorems about user-facing APls

user-facing APIs = library defined symbols such as malloc or free

27

Theorems about user-facing APls

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

27

Theorems about user-facing APls

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

27

Theorems about user-facing APls

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
e ptr can be null
e if not null

e of at least the requested size

e client program has total ownership on the corresponding array
16-bytes aligned

if the zeroing security mechanism is enabled, contains zeroes

27

Theorems about user-facing APls

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
e ptr can be null
e if not null

e of at least the requested size

e client program has total ownership on the corresponding array
16-bytes aligned

if the zeroing security mechanism is enabled, contains zeroes

Security properties are out-of-scope

27

What is the TCB?

F* F* 4+ Steel verified KaRaMeL extracted C compiler shared
. % . % . 4) -
files F* files C files library

e F* Steel, KaRaMeL

28

What is the TCB?

F* F* 4+ Steel verified KaRaMeL extracted C compiler shared
. % . % . 4) -
files F* files C files library

e F* Steel, KaRaMeL

e a C compiler

28

What is the TCB?

F* F* 4+ Steel verified KaRaMeL extracted C compiler shared
. % . % . 4) -
files F* files C files library

F*, Steel, KaRaMeL

a C compiler
our specifications and axiomatizations:

e specifications: user-facing APls, e.g. malloc, free, ...
e axiomatizations: OS modeling, e.g. the mmap syscall

C glue code (300 LoC)

28

What is the TCB?

F* F* 4+ Steel verified KaRaMeL extracted C compiler shared
. % . % . 4) -
files F* files C files library

F*, Steel, KaRaMeL

a C compiler
our specifications and axiomatizations:

e specifications: user-facing APls, e.g. malloc, free, ...
e axiomatizations: OS modeling, e.g. the mmap syscall

C glue code (300 LoC)

StarMalloc:
o 42k LoC for verified code (> 30% libraries)
o 6k LoC for extracted C
28

Specifications part of the TCB: user-facing APIs

user-facing APls

= symbols defined in our library (malloc, free, ...)

1 val malloc (size: SizeT.t)

2 : Steel (array uint8)

3 emp

4 (fun r -> null_or_slarray r)
-> True)

6 (ensures fun r hi ->

5 (requires fun

7 let s : seq uint8 = v_null_or_slarray r hl in
8 not (is_null r) ==> (

9 length r >= SizeT.v size /\

10 [...]

un))

29

Axiomatizations part of the TCB: modeling external C code

among used syscalls: mmap, munmap

1 assume val mmap_u8_init (len: SizeT.t)
2 : Steel (array uint8)

3 emp

4 (fun r -> A.varray r)

-> SizeT.v len > 0)

6 (ensures fun _ r hl ->

5 (requires fun

7 A.length r == SizeT.v len /\

8 A.asel r hl == Seq.create (SizeT.v len) Ou /\
9 array_u8_alignment r page_size

10)

30

Axiomatizations part of the TCB: modeling external C code

among used syscalls: mmap, munmap

1 assume val mmap_u8_init (len: SizeT.t)
2 : Steel (array uint8)

3 emp

4+ (fun r -> A.varray r)

5 (requires fun _ -> SizeT.v len > 0)

6 (ensures fun _ r hl ->

7 A.length r == SizeT.v len /\

8 A.asel r hl == Seq.create (SizeT.v len) Ou /\
9 array_u8_alignment r page_size

10)

used at initialization: additional check: if mmap fails, fatal error

30

Axiomatizations part of the TCB: modeling external C code

among used syscalls: mmap, munmap

1 assume val mmap_u8_init (len: SizeT.t)
2 : Steel (array uint8)

3 emp

4 (fun r -> A.varray r)

5 (requires fun _ -> SizeT.v len > 0)

6 (ensures fun _ r hl ->

7 A.length r == page_rounding (SizeT.v len) /\
8 A.asel r hl == Seq.create (SizeT.v len) Ou /\
9 array_u8_alignment r page_size

10)

additional refinement: mmap returns pages

30

Experimental evaluation

Experimental evaluation

Assuming a functionally correct implementation, what should be
measured?

31

Experimental evaluation

Assuming a functionally correct implementation, what should be
measured?

StarMalloc = a verified implementation whose design is heavily
inspired by hardened_malloc's design

31

Experimental evaluation

Assuming a functionally correct implementation, what should be
measured?

StarMalloc = a verified implementation whose design is heavily
inspired by hardened_malloc's design

Measuring the cost of verification: hardened_malloc = baseline

31

mimalloc-bench results

mimalloc-bench®: framework for userspace allocator evaluation

e StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

Shttps://github.com/daanx/mimalloc-bench

32

mimalloc-bench results

mimalloc-bench®: framework for userspace allocator evaluation

e StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

e not all implementations work on all benchmarks! (FreeGuard®,
Guarder”)

Shttps://github.com/daanx/mimalloc-bench
éccs'r
TUSENIX'18

32

mimalloc-bench results

mimalloc-bench®: framework for userspace allocator evaluation

e StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

e not all implementations work on all benchmarks! (FreeGuard®,
Guarder”)

e security-oriented allocators are slower than
performance-oriented ones

Shttps://github.com/daanx/mimalloc-bench
éccs'r
TUSENIX'18

32

mimalloc-bench results

mimalloc-bench®: framework for userspace allocator evaluation

e StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

e not all implementations work on all benchmarks! (FreeGuard®,
Guarder”)

e security-oriented allocators are slower than
performance-oriented ones

e high variance among results: no allocator outperforming others
on all benchmarks

Shttps://github.com/daanx/mimalloc-bench
éccs'r
TUSENIX'18

32

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc

33

https://browserbench.org/JetStream

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc

Firefox® = specific build of Firefox using the environment allocator®

8disable-jemalloc build flag

33

https://browserbench.org/JetStream

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc
Firefox® = specific build of Firefox using the environment allocator®

Firefox® with StarMalloc as environment allocator
with respect to

Firefox® with hardened_malloc as environment allocator:
0.98x on JetStream?2°

8disable-jemalloc build flag
*https://browserbench.org/JetStream

33

https://browserbench.org/JetStream

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc
Firefox® = specific build of Firefox using the environment allocator®

Firefox® with StarMalloc as environment allocator
with respect to

Firefox® with hardened_malloc as environment allocator:
0.98x on JetStream?2°

JetStream?2 does not specifically test allocator performance, this
mostly tells us that StarMalloc is a realistic allocator.

8disable-jemalloc build flag
*https://browserbench.org/JetStream

33

https://browserbench.org/JetStream

Conclusion

Our contributions:

e StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

34

Conclusion

Our contributions:

e StarMalloc = first verified general-purpose hardened

userspace memory allocator, usable on real-world workloads

e a verification methodology that enabled this work,
building upon Steel's methodology

34

Conclusion

Our contributions:

e StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

e a verification methodology that enabled this work,
building upon Steel's methodology

e StarMalloc's performance is comparable to that of
hardened_malloc, whose design was used as a basis

34

Conclusion

Our contributions:

e StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

e a verification methodology that enabled this work,
building upon Steel's methodology

e StarMalloc's performance is comparable to that of
hardened_malloc, whose design was used as a basis

Antonin Reitz antonin.reitz@inria.fr
Aymeric Fromherz aymeric.fromherz@inria.fr

Jonathan Protzenko protz@microsoft.com

34

	Introduction
	Contributions
	StarMalloc architecture
	Verification methodology
	Verification guarantees
	Experimental evaluation

