
StarMalloc: Verifying a Modern, Hardened
Memory Allocator

Antonin Reitz1, Aymeric Fromherz1, Jonathan Protzenko2

1Inria Paris, Prosecco team
2Microsoft Research

2024-10-04

The state of critical software

Web browsers, messaging applications, etc, can be considered
critical and thus should be:

• secure

• reliable

• fast

In practice, such software remains implemented in low-level,
error-prone languages

Microsoft + Google: 70% of CVEs in their software are
memory-related issues

1

The state of critical software

Web browsers, messaging applications, etc, can be considered
critical and thus should be:

• secure

• reliable

• fast

In practice, such software remains implemented in low-level,
error-prone languages

Microsoft + Google: 70% of CVEs in their software are
memory-related issues

1

Memory issues remain a billion dollar problem

Analyzers, safer languages, ..., already exist.
What can we do better?

“Software needs seatbelts and airbags”1

Security-oriented memory allocators can provide mitigations against
memory corruptions, reducing their impact

1Berger, CACM 2012

2

Memory issues remain a billion dollar problem

Analyzers, safer languages, ..., already exist.
What can we do better?

“Software needs seatbelts and airbags”1

Security-oriented memory allocators can provide mitigations against
memory corruptions, reducing their impact

1Berger, CACM 2012

2

Software stack sketch and memory management

user applications
web browser,

terminal,
etc

⊂

OSsystem calls handling ⊂ kernel mode

C standard library
memory allocator,
malloc, free

⊂

user mode

3

Software stack sketch and memory management

user applications
web browser,

terminal,
etc

⊂

OSsystem calls handling ⊂ kernel mode

C standard library
memory allocator,
malloc, free

⊂

user mode

3

Software stack sketch and memory management

user applications
web browser,

terminal,
etc

⊂

OSsystem calls handling ⊂ kernel mode

C standard library
memory allocator,
malloc, free

⊂

user mode

3

Software stack sketch and memory management

user applications
web browser,

terminal,
etc

⊂

OSsystem calls handling ⊂ kernel mode

C standard library
memory allocator,
malloc, free

⊂

user mode

3

Software stack sketch and memory management

user applications
web browser,

terminal,
etc

⊂

OSsystem calls handling ⊂ kernel mode

C standard library
memory allocator,
malloc, free

⊂

user mode

3

Allocator design space = vast

Allocators can be used in a large diversity of environments

• concurrent allocations

• small available memory space

• need for performance

• need for security

=⇒ security-oriented allocators

There is not one allocator design satisfying all possible constraints

4

Allocator design space = vast

Allocators can be used in a large diversity of environments

• concurrent allocations

• small available memory space

• need for performance

• need for security =⇒ security-oriented allocators

There is not one allocator design satisfying all possible constraints

4

Allocator design space = vast

Allocators can be used in a large diversity of environments

• concurrent allocations

• small available memory space

• need for performance

• need for security =⇒ security-oriented allocators

There is not one allocator design satisfying all possible constraints

4

What about bugs in the allocator?

Multiple implementation bugs in recent years: GNU malloc (glibc
allocator)2, Scudo (Android allocator)3, ...

2CVE-2017-17426, high severity
3CVE-2023-21367, medium severity

5

What about bugs in the allocator?

Multiple implementation bugs in recent years: GNU malloc (glibc
allocator)2, Scudo (Android allocator)3, ...

2CVE-2017-17426, high severity
3CVE-2023-21367, medium severity

5

Security-oriented allocators: constraints

Security-oriented memory allocators:

Ë can provide mitigations against memory corruptions

 can have their own bugs

=⇒ Need for a verified implementation that meets end users
needs, including performance and security

6

Security-oriented allocators: constraints

Security-oriented memory allocators:

Ë can provide mitigations against memory corruptions

 can have their own bugs

=⇒ Need for a verified implementation that meets end users
needs, including performance and security

6

Verifying a security-oriented allocator: challenges

• relating metadata and available memory space

• efficient datastructures without dynamic memory allocation

• interacting with the OS: modelizing syscalls

• modern allocator: concurrency

• proof engineering: result should be easy to extend, e.g. when
implementing new security mechanisms
=⇒ composable abstraction layers, verification
methodology

7

Verifying a security-oriented allocator: challenges

• relating metadata and available memory space

• efficient datastructures without dynamic memory allocation

• interacting with the OS: modelizing syscalls

• modern allocator: concurrency

• proof engineering: result should be easy to extend, e.g. when
implementing new security mechanisms
=⇒ composable abstraction layers, verification
methodology

7

Contributions

StarMalloc is part of our contributions,
as the first verified general-purpose userspace memory allocator

Verification theorem states that StarMalloc is functionally
correct

A specific verification methodology was used

Out-of-scope:

• memory allocator design

• security theorem

8

Contributions

StarMalloc is part of our contributions,
as the first verified general-purpose userspace memory allocator

Verification theorem states that StarMalloc is functionally
correct

A specific verification methodology was used

Out-of-scope:

• memory allocator design

• security theorem

8

StarMalloc architecture

Security-oriented userspace memory allocator: design choices

StarMalloc is heavily inspired from hardened_malloc4, an
unverified modern security-focused general-purpose memory
allocator

• most common allocations are small =⇒ they should be fast

• low memory fragmentation

• security by default

=⇒ dedicated architecture/memory layout

9

Security-oriented userspace memory allocator: design choices

StarMalloc is heavily inspired from hardened_malloc4, an
unverified modern security-focused general-purpose memory
allocator

• most common allocations are small =⇒ they should be fast

• low memory fragmentation

• security by default

=⇒ dedicated architecture/memory layout

4https://github.com/GrapheneOS/hardened_malloc

9

https://github.com/GrapheneOS/hardened_malloc

StarMalloc architecture

malloc(size)

size ≤ page_size

small allocator large allocator

today: focus on small allocations

10

StarMalloc architecture

malloc(size)

size ≤ page_size

small allocator large allocator

today: focus on small allocations

10

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...

page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

StarMalloc architecture: small allocations

malloc(24)
size≤ page_size

size class selection 16B size class 32B size class ...

page page page page page page ...page selection

free
slot

free
slot

free
slot

free
slot

...

32B

slot selection

11

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

slots metadata (bitmap)

; ; ;true false false ... free free ...

page

...

size class allocation region

not
full

not
full

pages metadata (varraylist)

Notfull Full Notfull Full ...

12

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

slots metadata (bitmap)

; ; ;true false false ... free free ...

page

...

size class allocation region

not
full

not
full

pages metadata (varraylist)

Notfull Full Notfull Full ...

12

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

slots metadata (bitmap)

; ; ;true false false ... free free ...

page

...

size class allocation region

not
full

not
full

pages metadata (varraylist)

Notfull Full Notfull Full ...

12

Relating memory and metadata: slots and pages

StarMalloc stores metadata about the allocation region in another
disjoint region

slots metadata (bitmap)

; ; ;true false false ... free free ...

page

...

size class allocation region

not
full

not
full

pages metadata (varraylist)

Notfull Full Notfull Full ...

12

Fine-grained locks: size classes

allocation must be thread-safe

size class selection

16B sc 32B sc 64B sc ... 4096B sc

b

b b b bbµ

13

Fine-grained locks: size classes

allocation must be thread-safe

size class selection

16B sc 32B sc 64B sc ... 4096B sc

b

b b b bb

µ

13

Fine-grained locks: size classes

allocation must be thread-safe

size class selection

16B sc 32B sc 64B sc ... 4096B sc

b

b b b b

b

µ

13

Fine-grained locks: arenas

• each thread has an assigned arena

• several threads can share an arena

• threads can free in other arenas

size class selection

arena 1 arena 2 arena n

16B
sc

32B
sc

... 16B
sc

32B
sc

... 16B
sc

32B
sc

...

b b b b b

µ

b b b b

14

Fine-grained locks: arenas

• each thread has an assigned arena

• several threads can share an arena

• threads can free in other arenas

size class selection

arena 1 arena 2 arena n

16B
sc

32B
sc

... 16B
sc

32B
sc

... 16B
sc

32B
sc

...

b b b b

b

µ b b b b

14

Verification methodology

Verification software: F⋆

F⋆= a proof-oriented programming language, used as a verification
framework, that supports:

• dependent types

• semi-automated verification using an SMT solver

15

Separation logic 101

• H1 ⋆ H2 means H1 and H2 are heap predicates valid in disjoint
memory regions

• modular reasoning relying on frame rule:
{P } c {Q }

{R ⋆ P } c {Q ⋆ R }

• concurrent separation logic:
{P1 } c1 {Q1 } {P2 } c2 {Q2 }

{P1 ⋆ P2 } c1||c2 {Q1 ⋆ Q2 }

• reference assignment example

{ r 7→ v } r := 42 { r 7→ 42 }

16

Separation logic 101

• H1 ⋆ H2 means H1 and H2 are heap predicates valid in disjoint
memory regions

• modular reasoning relying on frame rule:
{P } c {Q }

{R ⋆ P } c {Q ⋆ R }

• concurrent separation logic:
{P1 } c1 {Q1 } {P2 } c2 {Q2 }

{P1 ⋆ P2 } c1||c2 {Q1 ⋆ Q2 }

• reference assignment example

{ r 7→ v } r := 42 { r 7→ 42 }

16

Separation logic 101

• H1 ⋆ H2 means H1 and H2 are heap predicates valid in disjoint
memory regions

• modular reasoning relying on frame rule:
{P } c {Q }

{R ⋆ P } c {Q ⋆ R }

• concurrent separation logic:
{P1 } c1 {Q1 } {P2 } c2 {Q2 }

{P1 ⋆ P2 } c1||c2 {Q1 ⋆ Q2 }

• reference assignment example

{ r 7→ v } r := 42 { r 7→ 42 }

16

Separation logic 101

• H1 ⋆ H2 means H1 and H2 are heap predicates valid in disjoint
memory regions

• modular reasoning relying on frame rule:
{P } c {Q }

{R ⋆ P } c {Q ⋆ R }

• concurrent separation logic:
{P1 } c1 {Q1 } {P2 } c2 {Q2 }

{P1 ⋆ P2 } c1||c2 {Q1 ⋆ Q2 }

• reference assignment example

{ r 7→ v } r := 42 { r 7→ 42 }

16

Verification software: Steel

Steel: a concurrent separation logic embedded in F⋆

key design feature: memory shape and memory content proof
obligations discharged separately

1 val swap (#a:Type) (r1 r2: ref a)
2 : Steel unit
3 (vptr r1 ⋆ vptr r2)
4 (fun _ -> vptr r1 ⋆ vptr r2)
5 (requires fun _ ->
6 True)
7 (ensures fun h0 _ h1 ->
8 v_ref r2 h1 == v_ref r1 h0 /\
9 v_ref r1 h1 == v_ref r2 h0)

memory shape
(tactic)

memory content
(SMT solver)

17

Combinators: sldep

sldep = dependent star

ind_ptr ptr ...

1 let ind_ref (#a: Type)
2 (ind_ptr: ref (ref a))
3 : slprop
4 =
5 sldep (vptr ind_ptr) (fun ptr -> vptr ptr)

18

Combinators: slrefine

slrefine = refinement over slprop memory content

1 let refined_ref (ptr: ref int)
2 : slprop
3 =
4 slrefine (vptr ptr) (fun v -> v == 42)

19

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_mdv)

; ; ;true false false ... free free ...

page

no ownership on the 1st slotownership on the 2nd slotownership on the 3rd slot

1 let available_slot b slot = if b then emp else slarray slot
2

3 let pred slots_mdv page =
4 available_slot slots_mdv.[0] (ith_slot page 0) ⋆

5 available_slot slots_mdv.[1] (ith_slot page 1) ⋆

6 available_slot slots_mdv.[2] (ith_slot page 2) ⋆ ...

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_mdv)

; ; ;true false false ... free free ...

page

no ownership on the 1st slot

ownership on the 2nd slotownership on the 3rd slot

1 let available_slot b slot = if b then emp else slarray slot
2

3 let pred slots_mdv page =
4 available_slot slots_mdv.[0] (ith_slot page 0) ⋆

5 available_slot slots_mdv.[1] (ith_slot page 1) ⋆

6 available_slot slots_mdv.[2] (ith_slot page 2) ⋆ ...

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_mdv)

; ; ;true false false ... free free ...

page

no ownership on the 1st slot

ownership on the 2nd slot

ownership on the 3rd slot

1 let available_slot b slot = if b then emp else slarray slot
2

3 let pred slots_mdv page =
4 available_slot slots_mdv.[0] (ith_slot page 0) ⋆

5 available_slot slots_mdv.[1] (ith_slot page 1) ⋆

6 available_slot slots_mdv.[2] (ith_slot page 2) ⋆ ...

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_mdv)

; ; ;true false false ... free free ...

page

no ownership on the 1st slotownership on the 2nd slot

ownership on the 3rd slot

1 let available_slot b slot = if b then emp else slarray slot
2

3 let pred slots_mdv page =
4 available_slot slots_mdv.[0] (ith_slot page 0) ⋆

5 available_slot slots_mdv.[1] (ith_slot page 1) ⋆

6 available_slot slots_mdv.[2] (ith_slot page 2) ⋆ ...

20

A reusable user-defined, higher-order combinator: starseq

slots metadata
(bitmap exposed as array slots_mdv)

; ; ;true false false ... free free ...

page

no ownership on the 1st slotownership on the 2nd slot

ownership on the 3rd slot

1 let available_slot b slot = if b then emp else slarray slot
2

3 let pred slots_mdv page =
4 available_slot slots_mdv.[0] (ith_slot page 0) ⋆

5 available_slot slots_mdv.[1] (ith_slot page 1) ⋆

6 available_slot slots_mdv.[2] (ith_slot page 2) ⋆ ... 20

Combinators: starseq

• relating two disjoint arrays
• higher-order
• user-defined

1 type idx (#a: Type) (s: seq a) = i:nat{i <= length s}
2

3 let starseq' (p: a -> nat -> slprop) (s: seq a) (i: idx s) =
4 if i = length s
5 then emp
6 else starseq' p s.[i] i `star` starseq' p s (i+1)
7

8 let starseq p s : slprop = starseq' p s 0

used to relate slots and slots metadata + pages and pages metadata

21

Combinators: starseq

• relating two disjoint arrays
• higher-order
• user-defined

1 type idx (#a: Type) (s: seq a) = i:nat{i <= length s}
2

3 let starseq' (p: a -> nat -> slprop) (s: seq a) (i: idx s) =
4 if i = length s
5 then emp
6 else starseq' p s.[i] i `star` starseq' p s (i+1)
7

8 let starseq p s : slprop = starseq' p s 0

used to relate slots and slots metadata + pages and pages metadata
21

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation region

pages metadata (varraylist)

Full Notfull Full Notfull ...

22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

1 val is_list (#a:Type)
2 (hd:nat) (s:Seq.seq (cell a)) : prop
3

4 let varraylist_refine (#a:Type)
5 (hd:nat) (s:Seq.seq (cell a)) : prop =
6 is_list hd s
7

8 let varraylist (#a:Type) (r:A.array (cell a))
9 (hd:nat) : slprop

10 = A.varray r `slrefine`
11 (fun s -> varraylist_refine hd s)

22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

1 val is_list (#a:Type) (pred: a -> prop)
2 (hd:nat) (s:Seq.seq (cell a)) : prop
3

4 let varraylist_refine (#a:Type) (pred1: a -> prop)
5 (hd1:nat) (s:Seq.seq (cell a)) : prop =
6 is_list pred1 hd1 s
7

8 let varraylist (#a:Type) (r:A.array (cell a))
9 (pred1: a -> prop) (hd1:nat) : slprop

10 = A.varray r `slrefine`
11 (fun s -> varraylist_refine pred1 hd1 s)

22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

1 val is_list (#a:Type) (pred: a -> prop)
2 (hd:nat) (s:Seq.seq (cell a)) : prop
3

4 let varraylist_refine (#a:Type) (pred1 pred2: a -> prop)
5 (hd1 hd2:nat) (s:Seq.seq (cell a)) : prop =
6 is_list pred1 hd1 s /\ is_list pred2 hd2 s
7

8 let varraylist (#a:Type) (r:A.array (cell a))
9 (pred1 pred2: a -> prop) (hd1 hd2:nat) : slprop

10 = A.varray r `slrefine`
11 (fun s -> varraylist_refine pred1 pred2 hd1 hd2 s) 22

Pages metadata: the varraylist datastructure

not
full

not
full

...

size class allocation regionpages metadata (varraylist)

Full Notfull Full Notfull ...

1 val is_dlist (#a:Type) (pred: a -> prop)
2 (hd:nat) (s:Seq.seq (cell a)) : prop
3

4 let varraylist_refine (#a:Type) (pred1 pred2: a -> prop)
5 (hd1 hd2:nat) (s:Seq.seq (cell a)) : prop =
6 is_dlist pred1 hd1 s /\ is_dlist pred2 hd2 s
7

8 let varraylist (#a:Type) (r:A.array (cell a))
9 (pred1 pred2: a -> prop) (hd1 hd2:nat) : slprop

10 = A.varray r `slrefine`
11 (fun s -> varraylist_refine pred1 pred2 hd1 hd2 s) 22

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)
2 (hd1 hd2 hd3 hd4 hd5 last5 size5:nat)
3 (s:Seq.seq (cell a)) : prop
4 =
5 is_dlist is_partial hd1 s /\
6 is_dlist is_full hd2 s /\
7 is_dlist is_empty hd3 s /\
8 is_dlist is_guard hd4 s /\
9 is_queue is_quarantined hd5 last5 s /\

10 cardinality (ptrs_in hd5 s) == size5 /\
11 size5 <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hd1 hd2 hd3 hd4 hd5

5 doubly-linked lists:
• not full (partial), full, ...

23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)
2 (hd1 hd2 hd3 hd4 hd5 last5 size5:nat)
3 (s:Seq.seq (cell a)) : prop
4 =
5 is_dlist is_partial hd1 s /\
6 is_dlist is_full hd2 s /\
7 is_dlist is_empty hd3 s /\
8 is_dlist is_guard hd4 s /\
9 is_queue is_quarantined hd5 last5 s /\

10 cardinality (ptrs_in hd5 s) == size5 /\
11 size5 <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hd1 hd2 hd3 hd4 hd5

5 doubly-linked lists:
• not full (partial), full, ...

23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)
2 (hd1 hd2 hd3 hd4 hd5 last5 size5:nat)
3 (s:Seq.seq (cell a)) : prop
4 =
5 is_dlist is_partial hd1 s /\
6 is_dlist is_full hd2 s /\
7 is_dlist is_empty hd3 s /\
8 is_dlist is_guard hd4 s /\
9 is_queue is_quarantined hd5 last5 s /\

10 cardinality (ptrs_in hd5 s) == size5 /\
11 size5 <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hd1 hd2 hd3 hd4 hd5

5 doubly-linked lists:
• not full (partial), full, empty (̸= partial, fragmentation)
• ... 23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)
2 (hd1 hd2 hd3 hd4 hd5 last5 size5:nat)
3 (s:Seq.seq (cell a)) : prop
4 =
5 is_dlist is_partial hd1 s /\
6 is_dlist is_full hd2 s /\
7 is_dlist is_empty hd3 s /\
8 is_dlist is_guard hd4 s /\
9 is_queue is_quarantined hd5 last5 s /\

10 cardinality (ptrs_in hd5 s) == size5 /\
11 size5 <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hd1 hd2 hd3 hd4 hd5

5 doubly-linked lists:
• not full (partial), full, empty (̸= partial, fragmentation)
• security: guard pages + ... 23

Pages metadata: the varraylist datastructure

1 let varraylist_refine (#a:Type)
2 (hd1 hd2 hd3 hd4 hd5 last5 size5:nat)
3 (s:Seq.seq (cell a)) : prop
4 =
5 is_dlist is_partial hd1 s /\
6 is_dlist is_full hd2 s /\
7 is_dlist is_empty hd3 s /\
8 is_dlist is_guard hd4 s /\
9 is_queue is_quarantined hd5 last5 s /\

10 cardinality (ptrs_in hd5 s) == size5 /\
11 size5 <= SizeT.v Config.quarantine_queue_length /\
12 disjoint5 s hd1 hd2 hd3 hd4 hd5

5 doubly-linked lists:
• not full (partial), full, empty (̸= partial, fragmentation)
• security: guard pages + quarantined pages (forming a queue) 23

Other challenges

So far, we focused on verification reasoning

Actually, our code also requires:

• genericity: easily-configurable allocator
• concurrency with the number of arenas
• security with the set of enabled security mechanisms
• different data put into memory: different set of sizeclasses

• mutexes: thread-safety

24

Other challenges

So far, we focused on verification reasoning

Actually, our code also requires:

• genericity: easily-configurable allocator
• concurrency with the number of arenas
• security with the set of enabled security mechanisms
• different data put into memory: different set of sizeclasses

• mutexes: thread-safety

24

Other challenges

So far, we focused on verification reasoning

Actually, our code also requires:

• genericity: easily-configurable allocator
• concurrency with the number of arenas
• security with the set of enabled security mechanisms
• different data put into memory: different set of sizeclasses

• mutexes: thread-safety

24

Genericity

we want to write:

1 let sc_list = [16; 32; 64; 80; ...]
2

3 let rec init_size_classes memory sizes i = match sizes with
4 | [] -> ()
5 | hd::tl -> init_size_class memory hd i;
6 init_size_classes memory tl (i+1)

after extraction, through normalization and partial evaluation:

1 size_class* size_classes = [...];
2 init_size_class(memory, size_classes[0U], 16ul);
3 init_size_class(memory, size_classes[1U], 32ul);
4 init_size_class(memory, size_classes[2U], 64ul);
5 init_size_class(memory, size_classes[3U], 80ul);
6 [...]

25

Genericity

we want to write:

1 let sc_list = [16; 32; 64; 80; ...]
2

3 let rec init_size_classes memory sizes i = match sizes with
4 | [] -> ()
5 | hd::tl -> init_size_class memory hd i;
6 init_size_classes memory tl (i+1)

after extraction, through normalization and partial evaluation:

1 size_class* size_classes = [...];
2 init_size_class(memory, size_classes[0U], 16ul);
3 init_size_class(memory, size_classes[1U], 32ul);
4 init_size_class(memory, size_classes[2U], 64ul);
5 init_size_class(memory, size_classes[3U], 80ul);
6 [...] 25

Ensuring thread-safety

1 val acquire (#p: slprop) (l:lock p)
2 : Steel unit
3 emp (fun _ -> p)
4

5 let f [...] =
6 [...] L.acquire l; [...]

1 void f(...) =
2 [...] pthread_lock(&l); [...]

Mismatch:

• Steel: uses mutex as a value
• C: uses mutex’s address

=⇒ relies on already existing, conservative trusted compilation
passes 26

Verification guarantees

Theorems about user-facing APIs

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
• ptr can be null

• if not null
• of at least the requested size
• client program has total ownership on the corresponding array
• 16-bytes aligned
• if the zeroing security mechanism is enabled, contains zeroes

Security properties are out-of-scope

27

Theorems about user-facing APIs

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
• ptr can be null

• if not null
• of at least the requested size
• client program has total ownership on the corresponding array
• 16-bytes aligned
• if the zeroing security mechanism is enabled, contains zeroes

Security properties are out-of-scope

27

Theorems about user-facing APIs

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
• ptr can be null

• if not null
• of at least the requested size
• client program has total ownership on the corresponding array
• 16-bytes aligned
• if the zeroing security mechanism is enabled, contains zeroes

Security properties are out-of-scope

27

Theorems about user-facing APIs

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
• ptr can be null

• if not null
• of at least the requested size
• client program has total ownership on the corresponding array
• 16-bytes aligned
• if the zeroing security mechanism is enabled, contains zeroes

Security properties are out-of-scope

27

Theorems about user-facing APIs

user-facing APIs = library defined symbols such as malloc or free

Theorem: StarMalloc is functionally correct with respect to
our translation to Steel of the C standard requirements.

Corollary: StarMalloc is memory safe.

malloc case, ptr being the returned pointer:
• ptr can be null

• if not null
• of at least the requested size
• client program has total ownership on the corresponding array
• 16-bytes aligned
• if the zeroing security mechanism is enabled, contains zeroes

Security properties are out-of-scope

27

What is the TCB?

F⋆

files
verified
F⋆ files

extracted
C files

shared
library

F⋆ + Steel KaRaMeL C compiler

• F⋆, Steel, KaRaMeL

• a C compiler
• our specifications and axiomatizations:

• specifications: user-facing APIs, e.g. malloc, free, ...
• axiomatizations: OS modeling, e.g. the mmap syscall

• C glue code (300 LoC)

StarMalloc:
• 42k LoC for verified code (≥ 30% libraries)
• 6k LoC for extracted C

28

What is the TCB?

F⋆

files
verified
F⋆ files

extracted
C files

shared
library

F⋆ + Steel KaRaMeL C compiler

• F⋆, Steel, KaRaMeL
• a C compiler

• our specifications and axiomatizations:
• specifications: user-facing APIs, e.g. malloc, free, ...
• axiomatizations: OS modeling, e.g. the mmap syscall

• C glue code (300 LoC)

StarMalloc:
• 42k LoC for verified code (≥ 30% libraries)
• 6k LoC for extracted C

28

What is the TCB?

F⋆

files
verified
F⋆ files

extracted
C files

shared
library

F⋆ + Steel KaRaMeL C compiler

• F⋆, Steel, KaRaMeL
• a C compiler
• our specifications and axiomatizations:

• specifications: user-facing APIs, e.g. malloc, free, ...
• axiomatizations: OS modeling, e.g. the mmap syscall

• C glue code (300 LoC)

StarMalloc:
• 42k LoC for verified code (≥ 30% libraries)
• 6k LoC for extracted C

28

What is the TCB?

F⋆

files
verified
F⋆ files

extracted
C files

shared
library

F⋆ + Steel KaRaMeL C compiler

• F⋆, Steel, KaRaMeL
• a C compiler
• our specifications and axiomatizations:

• specifications: user-facing APIs, e.g. malloc, free, ...
• axiomatizations: OS modeling, e.g. the mmap syscall

• C glue code (300 LoC)

StarMalloc:
• 42k LoC for verified code (≥ 30% libraries)
• 6k LoC for extracted C

28

Specifications part of the TCB: user-facing APIs

user-facing APIs
= symbols defined in our library (malloc, free, ...)

1 val malloc (size: SizeT.t)
2 : Steel (array uint8)
3 emp
4 (fun r -> null_or_slarray r)
5 (requires fun _ -> True)
6 (ensures fun _ r h1 ->
7 let s : seq uint8 = v_null_or_slarray r h1 in
8 not (is_null r) ==> (
9 length r >= SizeT.v size /\

10 [...]
11))

29

Axiomatizations part of the TCB: modeling external C code

among used syscalls: mmap, munmap

1 assume val mmap_u8_init (len: SizeT.t)
2 : Steel (array uint8)
3 emp
4 (fun r -> A.varray r)
5 (requires fun _ -> SizeT.v len > 0)
6 (ensures fun _ r h1 ->
7 A.length r == SizeT.v len /\
8 A.asel r h1 == Seq.create (SizeT.v len) 0u /\
9 array_u8_alignment r page_size

10)

30

Axiomatizations part of the TCB: modeling external C code

among used syscalls: mmap, munmap

1 assume val mmap_u8_init (len: SizeT.t)
2 : Steel (array uint8)
3 emp
4 (fun r -> A.varray r)
5 (requires fun _ -> SizeT.v len > 0)
6 (ensures fun _ r h1 ->
7 A.length r == SizeT.v len /\
8 A.asel r h1 == Seq.create (SizeT.v len) 0u /\
9 array_u8_alignment r page_size

10)

used at initialization: additional check: if mmap fails, fatal error

30

Axiomatizations part of the TCB: modeling external C code

among used syscalls: mmap, munmap

1 assume val mmap_u8_init (len: SizeT.t)
2 : Steel (array uint8)
3 emp
4 (fun r -> A.varray r)
5 (requires fun _ -> SizeT.v len > 0)
6 (ensures fun _ r h1 ->
7 A.length r == page_rounding (SizeT.v len) /\
8 A.asel r h1 == Seq.create (SizeT.v len) 0u /\
9 array_u8_alignment r page_size

10)

additional refinement: mmap returns pages

30

Experimental evaluation

Experimental evaluation

Assuming a functionally correct implementation, what should be
measured?

StarMalloc = a verified implementation whose design is heavily
inspired by hardened_malloc’s design

Measuring the cost of verification: hardened_malloc = baseline

31

Experimental evaluation

Assuming a functionally correct implementation, what should be
measured?

StarMalloc = a verified implementation whose design is heavily
inspired by hardened_malloc’s design

Measuring the cost of verification: hardened_malloc = baseline

31

Experimental evaluation

Assuming a functionally correct implementation, what should be
measured?

StarMalloc = a verified implementation whose design is heavily
inspired by hardened_malloc’s design

Measuring the cost of verification: hardened_malloc = baseline

31

mimalloc-bench results

mimalloc-bench5: framework for userspace allocator evaluation

• StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

• not all implementations work on all benchmarks! (FreeGuard6,
Guarder7)

• security-oriented allocators are slower than
performance-oriented ones

• high variance among results: no allocator outperforming others
on all benchmarks

5https://github.com/daanx/mimalloc-bench

6CCS’17
7USENIX’18

32

mimalloc-bench results

mimalloc-bench5: framework for userspace allocator evaluation

• StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

• not all implementations work on all benchmarks! (FreeGuard6,
Guarder7)

• security-oriented allocators are slower than
performance-oriented ones

• high variance among results: no allocator outperforming others
on all benchmarks

5https://github.com/daanx/mimalloc-bench
6CCS’17
7USENIX’18

32

mimalloc-bench results

mimalloc-bench5: framework for userspace allocator evaluation

• StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

• not all implementations work on all benchmarks! (FreeGuard6,
Guarder7)

• security-oriented allocators are slower than
performance-oriented ones

• high variance among results: no allocator outperforming others
on all benchmarks

5https://github.com/daanx/mimalloc-bench
6CCS’17
7USENIX’18

32

mimalloc-bench results

mimalloc-bench5: framework for userspace allocator evaluation

• StarMalloc execution time: within 0.70x-1.30x range of that
of hardened_malloc (geomean on all 31 benches = 0.97x)

• not all implementations work on all benchmarks! (FreeGuard6,
Guarder7)

• security-oriented allocators are slower than
performance-oriented ones

• high variance among results: no allocator outperforming others
on all benchmarks

5https://github.com/daanx/mimalloc-bench
6CCS’17
7USENIX’18

32

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc

Firefox• = specific build of Firefox using the environment allocator8

Firefox• with StarMalloc as environment allocator
with respect to

Firefox• with hardened_malloc as environment allocator:
0.98x on JetStream29

JetStream2 does not specifically test allocator performance, this
mostly tells us that StarMalloc is a realistic allocator.

8disable-jemalloc build flag
9https://browserbench.org/JetStream

33

https://browserbench.org/JetStream

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc

Firefox• = specific build of Firefox using the environment allocator8

Firefox• with StarMalloc as environment allocator
with respect to

Firefox• with hardened_malloc as environment allocator:
0.98x on JetStream29

JetStream2 does not specifically test allocator performance, this
mostly tells us that StarMalloc is a realistic allocator.

8disable-jemalloc build flag

9https://browserbench.org/JetStream

33

https://browserbench.org/JetStream

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc

Firefox• = specific build of Firefox using the environment allocator8

Firefox• with StarMalloc as environment allocator
with respect to

Firefox• with hardened_malloc as environment allocator:
0.98x on JetStream29

JetStream2 does not specifically test allocator performance, this
mostly tells us that StarMalloc is a realistic allocator.

8disable-jemalloc build flag
9https://browserbench.org/JetStream

33

https://browserbench.org/JetStream

Further testing real-world workloads

Firefox ships its own memory allocator: mozjemalloc

Firefox• = specific build of Firefox using the environment allocator8

Firefox• with StarMalloc as environment allocator
with respect to

Firefox• with hardened_malloc as environment allocator:
0.98x on JetStream29

JetStream2 does not specifically test allocator performance, this
mostly tells us that StarMalloc is a realistic allocator.

8disable-jemalloc build flag
9https://browserbench.org/JetStream

33

https://browserbench.org/JetStream

Conclusion

Our contributions:

• StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

• a verification methodology that enabled this work,
building upon Steel’s methodology

• StarMalloc’s performance is comparable to that of
hardened_malloc, whose design was used as a basis

Antonin Reitz antonin.reitz@inria.fr

Aymeric Fromherz aymeric.fromherz@inria.fr

Jonathan Protzenko protz@microsoft.com

34

Conclusion

Our contributions:

• StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

• a verification methodology that enabled this work,
building upon Steel’s methodology

• StarMalloc’s performance is comparable to that of
hardened_malloc, whose design was used as a basis

Antonin Reitz antonin.reitz@inria.fr

Aymeric Fromherz aymeric.fromherz@inria.fr

Jonathan Protzenko protz@microsoft.com

34

Conclusion

Our contributions:

• StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

• a verification methodology that enabled this work,
building upon Steel’s methodology

• StarMalloc’s performance is comparable to that of
hardened_malloc, whose design was used as a basis

Antonin Reitz antonin.reitz@inria.fr

Aymeric Fromherz aymeric.fromherz@inria.fr

Jonathan Protzenko protz@microsoft.com

34

Conclusion

Our contributions:

• StarMalloc = first verified general-purpose hardened
userspace memory allocator, usable on real-world workloads

• a verification methodology that enabled this work,
building upon Steel’s methodology

• StarMalloc’s performance is comparable to that of
hardened_malloc, whose design was used as a basis

Antonin Reitz antonin.reitz@inria.fr

Aymeric Fromherz aymeric.fromherz@inria.fr

Jonathan Protzenko protz@microsoft.com

34

	Introduction
	Contributions
	StarMalloc architecture
	Verification methodology
	Verification guarantees
	Experimental evaluation

