
Slotted E-Graphs
E-Graphs with built-in Name Binding

Rudi Schneider, Thomas Kœhler, Michel Steuwer

E-Graphs

● Equivalence-Graph
● represents equivalence classes of terms (congruence closure)

2

{a, b}

{f(a), c, f(b)}
E-Graph

a = b

f(a) = c

● useful for equality of uninterpreted functions in SMT solvers (eg. Z3)
● compiler optimization (i.e. find equivalent but better term)

E-Graphs

3

a

f

b c

a=b ∧ f(a)=c

E-Graphs

4

a

f

b c

{f(a), f(b)}

a=b ∧ f(a)=c

E-Graphs

5

a

f

b c

a=b ∧ f(a)=c

E-Graphs

6

a

f

b

c

{a, b}

{f(a), f(b), c}

a=b ∧ f(a)=c

E-Graphs - Terminology

term ::= c | f(term...)

e-node ::= c | f(id...)

e-class ::= {e-node, ...}

7

E-Graphs - Data Structure

classes :: Map id e-class

- maps an E-Class id to their e-node set

unionfind :: Map id id

- unionfind[x] is the “representative” from
the equivalence class of x

hashcons :: Map e-node id

- maps an e-node to the e-class containing it
- allows fast lookup of e-nodes and terms

8

Equality Saturation

9

Equality Saturation

We want to simplify (a * 2) / 2 using a set of rewrite rules.

(?x * ?y) / ?z → ?x * (?y / ?z) ?x * 2 → ?x << 1

?x / ?x → 1 ?x * ?y → ?y * ?x

?x*1 → ?x ?x → ?x*1

useful not so useful

Equality Saturation

Add

Add

Add

Optimization

Input Term E-Graph Better TermExtract

 Rewrites

Equality Checking

Input Term 1 E-Graph Proof for Equalityin same
e-class?

 Rewrites

Input Term 2

Name Binding

13

Name Binding

14

E-Graphs are bad at Name Binding

- Consider the terms f(x,y) and f(x’,y’)
- Perfect use-case for sharing!

● Renaming variables breaks sharing!
15

Why don’t just use DeBruijn Indices?

λ. (λ. f(%1) %0) arg

16

- Again, no sharing between f(%0) and f(%1)

● Adding/removing binders also breaks sharing!

beta-reduction

λ. f(%0) arg

Why don’t just use DeBruijn Indices?

λ. (λ. f(%1) %0) arg

17

- Again, no sharing between f(%0) and f(%1)

● Adding/removing binders also breaks sharing!

beta-reduction

λ. f(%0) arg

Slotted E-Graphs

18

Slotted E-Graphs

Key idea: Unify e-nodes that are equivalent up to renaming of variables,

into an e-class which is parameterized by its variable names.

19

Slotted E-Graphs

Key idea: Unify e-nodes that are equivalent up to renaming of variables,

into an e-class which is parameterized by its variable names.

These are slots!
(= variable names)

20

Slotted E-Graphs

Key idea: Unify e-nodes that are equivalent up to renaming of variables,

into an e-class which is parameterized by its variable names.

calling with (x, y)
returns {f(x, y)}● Conventional E-Class: Set of

equivalent terms

● Slotted E-Class: Function from
variable names to set of
equivalent terms

calling with (x’, y’)
returns {f(x’, y’)}

21

Slotted E-Graphs - Binders

● Example: λx. x

calling with () returns
{λx. x, λy. y, λz. z, …}

22

Slotted E-Graphs

term ::= c | f(term...)

e-node ::= c | f(id...)

e-class ::= {e-node, ...}

23

Slotted E-Graphs

term ::= c | f(term...) | λslot. term | slot

e-node ::= c | f(id...)

e-class ::= {e-node, ...}

24

Slotted E-Graphs

term ::= c | f(term...) | λslot. term | slot

e-node ::= c | f(id...) | λslot. id | slot

e-class ::= {e-node, ...}

25

Slotted E-Graphs

term ::= c | f(term...) | λslot. term | slot

e-node ::= c | f(id...) | λslot. id | slot

e-class ::= {e-node, ...}

invocation ::= id[slot...]

26

Slotted E-Graphs

term ::= c | f(term...) | λslot. term | slot

e-node ::= c | f(invocation...)

 | λslot. invocation | slot

e-class ::= {e-node, ...}

invocation ::= id[slot...]

27

Challenges

28

Union just got complicated!

29

x ≥ y = ¬(y > x)

Union just got complicated!

30

x ≥ y = ¬(y > x)

conventional union:
id1 = id2

slotted union:
id1[x, y, z] = id2[z, x, y]

Challenge I: Parameter Mismatch

x*0 = 0

calling with () returns
 { 0, x*0, y*0, z*0, …

calling with () returns
 { 0, x*0, y*0, z*0, …,
 x*(y*0), … }

31

Challenge II: Symmetry

a+b = b+a

32

Challenge II: Symmetry

a+b = b+a

Permutation Group

calling with (x, y)
returns {x+y, y+x}

33

Data Structure

classes :: Map id e-class

unionfind :: Map id id

hashcons :: Map e-node id

34

conventional unionfind:
id1 → id2

slotted unionfind:
id1[x, y, z] → id2[z, x, y]

modulo slot names:
id1[0, 1, 2] → id2[2, 0, 1]

Data Structure

classes :: Map id e-class

unionfind :: Map id id

hashcons :: Map e-node id

35

conventional hashcons:
f(id1, id2) → id3

slotted hashcons:
f(id1[x, y], id2[z, y]) → id3[y, z, x]

modulo slot names:
f(id1[0, 1], id2[2, 1]) → id3[1, 2, 0]

Data Structure

classes :: Map id e-class

unionfind :: Map invocation invocation

hashcons :: Map e-node invocation

36

Data Structure

classes :: Map id e-class

unionfind :: Map invocation invocation

hashcons :: Map e-node invocation

symmetries :: Map id perm-group

37

Evaluation

38

Evaluation

● Task: Optimize RISE term using equality saturation

● RISE is a functional data-parallel language [ICFP 2020]

● We compared against the Named and De-Bruijn
implementations from Thomas Kœhlers PhD thesis

39

Evaluation

40

≥ x100

Evaluation

41

Map-fission:

map (λx. ?f ?gx) → λy. map ?f (map (λx. ?gx) y),
if x not free in ?f.

≥ x100

Map-fusion:

map ?f (map ?g ?arg) → map (λx. ?f (?g x)) ?arg

Evaluation

42

≥ x100

Eta-Expansion:

?f → λx. ?f x

Evaluation - with Eta-Expansion

43

State of the Implementation

̣✅ Specify your own Language

✅ E-Matching / Rewrite Rules

̣✅ Extraction (tree-only!)

✅ Challenge I: Parameter Mismatch

✅ Challenge II: Symmetry

🚧 No EGraph-Analysis yet

🚧 No fancy optimizations

🚧 Work-in-progress

https://github.com/memoryleak47/egraph-sandbox/tree/main/3-miniegg-with-slots
44

https://github.com/memoryleak47/egraph-sandbox/tree/main/3-miniegg-with-slots

