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Some Catala News, and an Introduction



Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work
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News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)
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Handling Date Computations in Catala



Computing dates

$ date -d "2024-01-31 + 1 month" +%F

2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!
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A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)

I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.
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Semantics



Semantics – Values

values v ::= (y,m,d) | ⊥
date unit δ ::= y | m | d
expressions e ::= v | e +δ n

nb_days(y,m) =


29 if m = 2 ∧ is_leap(y)

28 if m = 2 ∧ ¬is_leap(y)

30 if m ∈ {Apr,Jun,Sep,Nov }
31 otherwise
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Semantics – invalid dates

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥
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Semantics – some cases of month addition

Add-Month
1 ≤ m+ n ≤ 12

(y,m,d) +m n→ (y,m+ n,d)

Add-Month-Over
m+ n > 12

(y,m,d) +m n→ (y + 1,m,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.
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Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here
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Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10



Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10



Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10



Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10



Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values
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Formalized Properties



Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)

(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)
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Formalized properties

All formalized with the F? proof assistant. More in the paper & artefact.
During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

Date addition is monotonic
For any dates d1,d2, period p, r ∈ {↓, ↑}, if d1 < d2, then d1 +r p ≤ d2 +r p

Loose bound in conclusion of monotonicity
(2024, 03, 30) +↓ 1m = (2024, 04, 30) = (2024, 03, 31) +↓ 1m

13
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Formalized properties (II)

Rounding is monotonic
For all date d, period p:
1 d+↓ p ≤ d+↑ p
2 d+⊥ p 6= ⊥ ⇒ d+↓ p = d+↑ p = d+⊥ p

Equivalence of year and month addition
For all date d, for all integer n, d+y n = d+m (12 ∗ n).
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Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that d+m n
∗→ (y,m,day):

nb_days(y,m) < day ⇔ rnd⊥((y,m,day)) ∗→ ⊥

Month addition is ambiguous iff

the resulting day exceeds the number of days of the resulting month

=⇒ core result needed for our static analysis
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Rounding-insensitivity Static Analysis



Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations
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I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e,

E↑JeK = E↓JeK
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Rounding-insensitivity Static Analysis

Abstracting dates in a fixed rounding mode



YMD domain

I Defines addition, accessors, projection, lexicographic comparison

I Translates constraints on dates into numerical constraints

date d1  ghost numerical variables d(d1),m(d1), y(d1)
I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024
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YMD domain – month addition

Goal

Given a rounding mode, compute resulting dates from d# +#
m n, where d#

represents a set of dates.

Soundly derived from the ambiguous addition theorem.

Algorithm: compute resulting month, year, then 4 cases:

I No rounding,
I Rounding, 30-day month,
I Rounding, non-leap years 28 Feb,
I Rounding, leap years, 29 Feb.

Partitioning used in practice.

18
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YMD domain – month addition (II)

1 type case = expr * state
2 type cases = case list
3 let switch abs =
4 List.map (fun (cond : expr, k : state -> case) -> k (assume cond abs))
5

6 let add_months (r: rnd) ((d, m, y): var^3) (nb_m: int) (abs: state): cases =
7 let res_m: expr = 1 + (m - 1 + nb_m) % 12 in
8 let res_y: expr = y + (m - 1 + nb_m) / 12 in
9 switch abs
10 [
11 d > 30 && is_one_of res_m [Apr;Jun;Sep;Nov],
12 round r 30 res_m res_y;
13 d > 28 && res_m = Feb && not (is_leap res_y),
14 round r 28 res_m res_y;
15 d > 29 && res_m = Feb && is_leap res_y,
16 round r 29 res_m res_y;
17 mk_true,
18 mk_date d res_m res_y
19 ] 19



Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20
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Rounding-insensitivity Static Analysis

Lifting to both rounding modes



Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ }  

ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2 ) | (v

↑
1 , v

↓
1 ) = ElJe1Kρ↑,

(v↑2 , v
↓
2 ) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.
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Abstract double semantics

Shallow variable duplication depending on their rounding mode.

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

22
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Implementation into Mopsa

I Open-source static analysis platform

I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

# Sequence

∧ Reduced product

Universal

Double programs

23
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Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y
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Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc

I Scope-level rounding mode configuration
I Connection with static analysis

French Housing Benefits
20,000 Loc of Catala code (including text spec.)
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Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

�

�+ Hints

2 rounding-sensitive cases detected

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
(assuming current_date ≥ 2023)

I Other are real issues
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Conclusion



Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodríguez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024
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Conclusion

I Formal semantics of date computations

I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28
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