
Formalizing Date Arithmetic and Statically
Detecting Ambiguities for the Law

Raphaël Monat, Aymeric Fromherz, Denis Merigoux

Cambium seminar
29 March 2024

Some Catala News, and an Introduction

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws

I providing transparency
I easing maintenance
I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance

I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work

1

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies

I From 1 to 3 research engineers in the coming months (+ Denis)

2

News: Catala is getting closer to the real world

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

I Recognized as a priority program of support to public policies
I From 1 to 3 research engineers in the coming months (+ Denis)

2

Handling Date Computations in Catala

Computing dates

$ date -d "2024-01-31 + 1 month" +%F

2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

3

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02

$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

3

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F

2024-03-01

Non-monotonic behavior?!

3

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

3

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

3

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)

I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

4

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

4

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan

• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

4

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

4

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required!

Focus on Gregorian calendar.

4

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

4

Outline

1 Semantics

2 Formalized Properties

3 Rounding-insensitivity Static Analysis

4 Case Study: French Housing Benefits

5 Conclusion

5

Semantics

Semantics – Values

values v ::= (y,m,d) | ⊥
date unit δ ::= y | m | d
expressions e ::= v | e +δ n

nb_days(y,m) =

29 if m = 2 ∧ is_leap(y)

28 if m = 2 ∧ ¬is_leap(y)

30 if m ∈ {Apr,Jun,Sep,Nov }
31 otherwise

6

Semantics – Values

values v ::= (y,m,d) | ⊥
date unit δ ::= y | m | d
expressions e ::= v | e +δ n

nb_days(y,m) =

29 if m = 2 ∧ is_leap(y)

28 if m = 2 ∧ ¬is_leap(y)

30 if m ∈ {Apr,Jun,Sep,Nov }
31 otherwise

6

Semantics – invalid dates

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥

7

Semantics – invalid dates

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥

7

Semantics – invalid dates

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥

7

Semantics – some cases of month addition

Add-Month
1 ≤ m+ n ≤ 12

(y,m,d) +m n→ (y,m+ n,d)

Add-Month-Over
m+ n > 12

(y,m,d) +m n→ (y + 1,m,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.

8

Semantics – some cases of month addition

Add-Month
1 ≤ m+ n ≤ 12

(y,m,d) +m n→ (y,m+ n,d)

Add-Month-Over
m+ n > 12

(y,m,d) +m n→ (y + 1,m,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.

8

Semantics – some cases of month addition

Add-Month
1 ≤ m+ n ≤ 12

(y,m,d) +m n→ (y,m+ n,d)

Add-Month-Over
m+ n > 12

(y,m,d) +m n→ (y + 1,m,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)

rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)

rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

9

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

10

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

11

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

11

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

11

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

11

Formalized Properties

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)

(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)

12

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)
(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)

12

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)
(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)

12

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)
(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)
(2024, 03, 31) +r 2m = (2024, 05, 31)

12

Formalized properties

All formalized with the F? proof assistant. More in the paper & artefact.
During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

Date addition is monotonic
For any dates d1,d2, period p, r ∈ {↓, ↑}, if d1 < d2, then d1 +r p ≤ d2 +r p

Loose bound in conclusion of monotonicity
(2024, 03, 30) +↓ 1m = (2024, 04, 30) = (2024, 03, 31) +↓ 1m

13

Formalized properties

All formalized with the F? proof assistant. More in the paper & artefact.
During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

Date addition is monotonic
For any dates d1,d2, period p, r ∈ {↓, ↑}, if d1 < d2, then d1 +r p ≤ d2 +r p

Loose bound in conclusion of monotonicity
(2024, 03, 30) +↓ 1m = (2024, 04, 30) = (2024, 03, 31) +↓ 1m

13

Formalized properties

All formalized with the F? proof assistant. More in the paper & artefact.
During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

Date addition is monotonic
For any dates d1,d2, period p, r ∈ {↓, ↑}, if d1 < d2, then d1 +r p ≤ d2 +r p

Loose bound in conclusion of monotonicity
(2024, 03, 30) +↓ 1m = (2024, 04, 30) = (2024, 03, 31) +↓ 1m

13

Formalized properties

All formalized with the F? proof assistant. More in the paper & artefact.
During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

Date addition is monotonic
For any dates d1,d2, period p, r ∈ {↓, ↑}, if d1 < d2, then d1 +r p ≤ d2 +r p

Loose bound in conclusion of monotonicity
(2024, 03, 30) +↓ 1m = (2024, 04, 30) = (2024, 03, 31) +↓ 1m

13

Formalized properties (II)

Rounding is monotonic
For all date d, period p:
1 d+↓ p ≤ d+↑ p
2 d+⊥ p 6= ⊥ ⇒ d+↓ p = d+↑ p = d+⊥ p

Equivalence of year and month addition
For all date d, for all integer n, d+y n = d+m (12 ∗ n).

14

Formalized properties (II)

Rounding is monotonic
For all date d, period p:
1 d+↓ p ≤ d+↑ p
2 d+⊥ p 6= ⊥ ⇒ d+↓ p = d+↑ p = d+⊥ p

Equivalence of year and month addition
For all date d, for all integer n, d+y n = d+m (12 ∗ n).

14

Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that d+m n
∗→ (y,m,day):

nb_days(y,m) < day ⇔ rnd⊥((y,m,day)) ∗→ ⊥

Month addition is ambiguous iff

the resulting day exceeds the number of days of the resulting month

=⇒ core result needed for our static analysis

15

Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that d+m n
∗→ (y,m,day):

nb_days(y,m) < day ⇔ rnd⊥((y,m,day)) ∗→ ⊥

Month addition is ambiguous iff

the resulting day exceeds the number of days of the resulting month

=⇒ core result needed for our static analysis

15

Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that d+m n
∗→ (y,m,day):

nb_days(y,m) < day ⇔ rnd⊥((y,m,day)) ∗→ ⊥

Month addition is ambiguous iff

the resulting day exceeds the number of days of the resulting month

=⇒ core result needed for our static analysis

15

Rounding-insensitivity Static Analysis

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe

I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e,

E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations

16

Meaningful ambiguities

When rounding up or down doesn’t change a computation

d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

Rounding choice can change comparisons

d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

=⇒ Prove rounding-insensitivity of an expression e, E↑JeK = E↓JeK

To reduce the need for costly legal interpretations 16

Rounding-insensitivity Static Analysis

Abstracting dates in a fixed rounding mode

YMD domain

I Defines addition, accessors, projection, lexicographic comparison

I Translates constraints on dates into numerical constraints

date d1 ghost numerical variables d(d1),m(d1), y(d1)
I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

17

YMD domain

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints

date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

17

YMD domain

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

17

YMD domain

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

17

YMD domain

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

17

YMD domain – month addition

Goal

Given a rounding mode, compute resulting dates from d# +#
m n, where d#

represents a set of dates.

Soundly derived from the ambiguous addition theorem.

Algorithm: compute resulting month, year, then 4 cases:

I No rounding,
I Rounding, 30-day month,
I Rounding, non-leap years 28 Feb,
I Rounding, leap years, 29 Feb.

Partitioning used in practice.

18

YMD domain – month addition

Goal

Given a rounding mode, compute resulting dates from d# +#
m n, where d#

represents a set of dates.

Soundly derived from the ambiguous addition theorem.

Algorithm: compute resulting month, year, then 4 cases:

I No rounding,
I Rounding, 30-day month,
I Rounding, non-leap years 28 Feb,
I Rounding, leap years, 29 Feb.

Partitioning used in practice.

18

YMD domain – month addition (II)

1 type case = expr * state
2 type cases = case list
3 let switch abs =
4 List.map (fun (cond : expr, k : state -> case) -> k (assume cond abs))
5

6 let add_months (r: rnd) ((d, m, y): var^3) (nb_m: int) (abs: state): cases =
7 let res_m: expr = 1 + (m - 1 + nb_m) % 12 in
8 let res_y: expr = y + (m - 1 + nb_m) / 12 in
9 switch abs
10 [
11 d > 30 && is_one_of res_m [Apr;Jun;Sep;Nov],
12 round r 30 res_m res_y;
13 d > 28 && res_m = Feb && not (is_leap res_y),
14 round r 28 res_m res_y;
15 d > 29 && res_m = Feb && is_leap res_y,
16 round r 29 res_m res_y;
17 mk_true,
18 mk_date d res_m res_y
19] 19

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1

20

Choosing the right numerical abstract domains

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete values on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!
4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 11

1Actually, 12 y(d1) + m(d1) ≤ 12 y(d2) + 11 ∧ 12 y(d2) ≤ 12 y(d1) + m(d1) + 1 20

Rounding-insensitivity Static Analysis

Lifting to both rounding modes

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ }

ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ }

ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ } ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ } ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ } ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ } ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ } ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021.

21

Back to rounding-insensitivity detection

I Semantics on product programs with both rounding modes.

ErJeK : P(E) → P(Val), r ∈ { ↑, ↓ } ElJeK : P(E2) → P(Val2)

ElJe1 + e2K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (v↑1 + v↑2 , v
↓
1 + v↓2) | (v

↑
1 , v

↓
1) = ElJe1Kρ↑,

(v↑2 , v
↓
2) = ElJe2Kρ↓ }

ElJrand_date()K(D) = { (d,d) | d ∈ Z3, valid(d) }

I sync(e) holds iff e is rounding-insensitive.

ElJsync(e)K(D) =
⋃

(ρ↑,ρ↓)∈D

{ (bu == bd,bu == bd) | (bu,bd) = ElJeK(ρ↑, ρ↓) }

I Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian
Portability by Abstract Interpretation”. SAS 2021. 21

Abstract double semantics

Shallow variable duplication depending on their rounding mode.

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

22

Abstract double semantics

Shallow variable duplication depending on their rounding mode.

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

22

Abstract double semantics

Shallow variable duplication depending on their rounding mode.

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

22

Abstract double semantics

Shallow variable duplication depending on their rounding mode.

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

22

Implementation into Mopsa

I Open-source static analysis platform

I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

23

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs

I gitlab.com/mopsa/mopsa-analyzer

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

23

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

23

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

23

gitlab.com/mopsa/mopsa-analyzer

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

24

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

24

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

24

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y

I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

24

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2

I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

24

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y

I limit is either 1 Feb. or 1 March of y

24

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

24

Case Study: French Housing Benefits

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc

I Scope-level rounding mode configuration
I Connection with static analysis

French Housing Benefits
20,000 Loc of Catala code (including text spec.)

25

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc
I Scope-level rounding mode configuration

I Connection with static analysis

French Housing Benefits
20,000 Loc of Catala code (including text spec.)

25

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc
I Scope-level rounding mode configuration
I Connection with static analysis

French Housing Benefits
20,000 Loc of Catala code (including text spec.)

25

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc
I Scope-level rounding mode configuration
I Connection with static analysis

French Housing Benefits
20,000 Loc of Catala code (including text spec.)

25

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

�

�+ Hints

2 rounding-sensitive cases detected

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
(assuming current_date ≥ 2023)

I Other are real issues

26

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

�

�+ Hints

2 rounding-sensitive cases detected

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
(assuming current_date ≥ 2023)

I Other are real issues

26

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

�

�+ Hints

2 rounding-sensitive cases detected

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
(assuming current_date ≥ 2023)

I Other are real issues

26

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

�

�+ Hints

2 rounding-sensitive cases detected

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
(assuming current_date ≥ 2023)

I Other are real issues

26

Conclusion

Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodríguez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

27

Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodríguez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

27

Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodríguez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

27

Conclusion

I Formal semantics of date computations

I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)

I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa

I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits

I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project

28

https://rmonat.fr/publication/24_esop/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project 28

https://rmonat.fr/publication/24_esop/

	Some Catala News, and an Introduction
	Handling Date Computations in Catala
	Semantics
	Formalized Properties
	Rounding-insensitivity Static Analysis
	Abstracting dates in a fixed rounding mode
	Lifting to both rounding modes

	Case Study: French Housing Benefits
	Conclusion

