Raphaél Monat, Aymeric Fromherz, Denis Merigoux

Cambium seminar E s, L Université
29 March 2024 &Z’Zta/- LL de Lille

Some Catala News, and an Introduction

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

DGFiP

CNAF

Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

DGFiP

CNAF

Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

» Recognized as a priority program of support to public policies

Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

» Recognized as a priority program of support to public policies
» From 1to 3 research engineers in the coming months (+ Denis)

Handling Date Computations in Catala

$ date -d "2024-01-31 + 1 month" +%F

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

$ date -d "2024-01-31 + 1 month" +%F

2024-03-02
$ date -d "2024-02-01 + 1 month" +%F

2024-03-01

» 1 month =30 days (Council of European Communities)

» 1 month =30 days (Council of European Communities)
» When do leapers become adults?

» 1 month =30 days (Council of European Communities)
» When do leapers become adults?
e 28 February in New Zealand, Taiwan

» 1 month =30 days (Council of European Communities)
» When do leapers become adults?

e 28 February in New Zealand, Taiwan
e 1 March in France, Germany, Hong-Kong

» 1 month =30 days (Council of European Communities)
» When do leapers become adults?

e 28 February in New Zealand, Taiwan
e 1 March in France, Germany, Hong-Kong

— Formal, flexible semantics required!

» 1 month =30 days (Council of European Communities)
» When do leapers become adults?

e 28 February in New Zealand, Taiwan
e 1 March in France, Germany, Hong-Kong

— Formal, flexible semantics required! Focus on Gregorian calendar.

[l semantics

2] Formalized Properties
3] Rounding-insensitivity Static Analysis
[4] Case Study: French Housing Benefits

51 Conclusion

Semantics

values v o= (y,md)| L
date unit 0 == y|m|d
expressions e = v|e 45 n

values v o= (y,md)| L
date unit 0 == y|m|d
expressions e = v|e 45 n

29 if m =2 Ais_leap(y)

28 if m =2 A —is_leap(y)

30 ifm e {Apr, Jun,Sep,Nov }
31 otherwise

nb_days(y, m) =

ADD-DAYS-ERR1
day <1

(v,m,day) +4n — L

ADD-DAYS-ERR1 ADD-DAYS-ERR2
day <1 day > nb_days(y, m)

(v,m,day) +4n — L (v,m,day) +4n — L

ADD-MONTH
1T<m+n<12

(y7m7d)+mn_>(yam+nad)

ADD-MONTH ADD-MONTH-OVER
1T<m+n<12 m+n>12

(yvmad)+mn_>(yam+nad) (yam:d)+mn_>(y+1:m7d)+m (n_12)

ADD-MONTH ADD-MONTH-OVER
1T<m+n<12 m+n>12

(y7mad)+mn_>(yam+nad) (yam:d)+mn_>(y+1:mad)+m (n_12)

Similar cases for ADD-MONTH-UNDER, year, day addition.

(2024,01,31) 4+ 1 — (2024, 02,31)

(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

roundingmode r == 1T|||L
expressions e == vl]e +yn|rnd,e

(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

roundingmode r == 1T|||L
expressions e == vl]e +yn|rnd,e

rnd; (2024, 02,31) = (2024, 03,01)

(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

roundingmode r == 1T|||L
expressions e == vl]e +yn|rnd,e

rnd; (2024, 02,31) = (2024, 03,01)
rnd, (2024, 02,31) = (2024, 02, 29)

(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

roundingmode r == 1T|||L
expressions e == vl]e +yn|rnd,e

rnd; (2024, 02,31) = (2024, 03,01)
rnd, (2024, 02,31) = (2024, 02, 29)
rnd, (2024,02,31) = L

(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

roundingmode r == 1T|||L
expressions e == vl]e +yn|rnd,e

rnd; (2024, 02,31) = (2024, 03,01)
rnd, (2024, 02,31) = (2024, 02, 29)
rnd, (2024,02,31) = L

ROUND-NooOP
1< d < nb_days(y,m)

rndr(yam,d) — (y7m7d)

10

ROUND-NoOP ROUND-DOWN
1< d < nb_days(y,m) d > nb_days(y,m)
rnd,(y,m,d) — (y,m,d) rmd(y,m,d) — (v, m,nb_days(y, m))

10

ROUND-NoOP ROUND-DOWN

1< d < nb_days(y,m) d > nb_days(y,m)
rnd,(y,m,d) — (y,m,d) rmd(y,m,d) — (v, m,nb_days(y, m))
ROUND-UP

d > nb_daYS(y,m) (yam’d) +m 1 _*) (ylam,ad,)
rndT(ya m, d) - (yla ml7 1)

10

ROUND-NoOP ROUND-DOWN
1< d < nb_days(y,m) d > nb_days(y,m)
rnd,(y,m,d) — (y,m,d) rmd(y,m,d) — (v, m,nb_days(y, m))
ROUND-UP ROUND-ERR2
d > nb_days(y,m) (v,m,d)+m 1> (/,m’ d) d > nb_days(y, m)
rndy(y, m,d) = (v, m’,1) rnd; (y,m,d) — L

10

Given a period (ys, ms, ds):

e+ (ys,ms,ds) == rnd,((e +y, ys) +m ms) +4 ds

1

Given a period (ys, ms, ds):

e+ (ys,ms,ds) == rnd,((e +y, ys) +m ms) +4 ds

Avoids double rounding

1

Given a period (ys, ms, ds):

e+ (ys,ms,ds) == rnd,((e +y, ys) +m ms) +4 ds

Avoids double rounding

A date expression e is ambiguous iff rnd (e) = L

11

Given a period (ys, ms, ds):

e+ (ys,ms,ds) == rnd,((e +y, ys) +m ms) +4 ds

Avoids double rounding

A date expression e is ambiguous iff rnd (e) = L
iff roundings e yield different values

11

Formalized Properties

12

12

During our study, we used QCheck to test our intuition.

13

During our study, we used QCheck to test our intuition.

13

During our study, we used QCheck to test our intuition.

During our study, we used QCheck to test our intuition.

14

= core result needed for our static analysis

Rounding-insensitivity Static Analysis

16

16

16

= Prove rounding-insensitivity of an expression e,

= Prove rounding-insensitivity of an expression e, E+[e] = E,[e]

= Prove rounding-insensitivity of an expression e, E+[e] = E,[e]

To reduce the need for costly legal interpretations

Rounding-insensitivity Static Analysis

Abstracting dates in a fixed rounding mode

» Defines addition, accessors, projection, lexicographic comparison

17

» Defines addition, accessors, projection, lexicographic comparison

» Translates constraints on dates into numerical constraints

17

» Defines addition, accessors, projection, lexicographic comparison

» Translates constraints on dates into numerical constraints
date dqi ~» ghost numerical variables d(d+), m(d1), y(d1)

17

» Defines addition, accessors, projection, lexicographic comparison

» Translates constraints on dates into numerical constraints
date dqi ~» ghost numerical variables d(d+), m(d1), y(d1)

» Acts as a functor lifting a numerical abstract domain

17

» Defines addition, accessors, projection, lexicographic comparison

» Translates constraints on dates into numerical constraints
date dqi ~» ghost numerical variables d(d+), m(d1), y(d1)

» Acts as a functor lifting a numerical abstract domain

d(d) € [1,31] Am(dr) € [1,12] Ay(dq) = 2024: all valid dates of 2024

17

Given a rounding mode, compute resulting dates from d# +7: n, where d#
represents a set of dates.

Soundly derived from the ambiguous addition theorem.

18

Given a rounding mode, compute resulting dates from d# +7: n, where d#
represents a set of dates.

Soundly derived from the ambiguous addition theorem.
Algorithm: compute resulting month, year, then 4 cases:

» No rounding,

» Rounding, 30-day month,

» Rounding, non-leap years 28 Feb,
» Rounding, leap years, 29 Feb.

Partitioning used in practice.

18

type case = expr * state
type cases = case list
let switch abs =
List.map (fun (cond : expr, k : state -> case) -> k (assume cond abs))

let add_months (r: rnd) ((d, m, y): var"3) (nb_m: int) (abs: state): cases =
let res_m: expr =1 + (m - 1 + nb_m) % 12 in
let res_y: expr =y + (m - 1 + nb_m) / 12 in
switch abs
[
d > 30 &5 is_one_of res_m [Apr;Jun;Sep;Nov],
round r 30 res_m res_y;
d > 28 &5 res_m = Feb &5 not (is_leap res_y),
round r 28 res_m res_y;
d > 29 &5 res_m = Feb && is_leap res_y,
round r 29 res_m res_y;
mk_true,
mk_date d res_m res_y 19

0 1 -~

20

20

4 cases apply, including:

20

4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) + 1,y(d2) = y(d1)

20

4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) + 1,y(d2) = y(d1)

Bounded set of ints

20

4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) +1,y(d2) = y(d1)

Bounded set of ints Polyhedra

20

4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) +1,y(d2) = y(d1)

Bounded set of ints Polyhedra

» No rounding d(d1) =d(d2), m(d2) =, m(d1) +1,y(d1) < y(d2) <y(d1) +1'

20

4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) +1,y(d2) = y(d1)

Bounded set of ints Polyhedra

» No rounding d(d1) =d(d2), m(d2) =, m(d1) +1,y(d1) < y(d2) <y(d1) +1'

~
Linear congruence domain

20

4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) +1,y(d2) = y(d1)

Bounded set of ints Polyhedra

» No rounding d(d1) =d(d2), m(d2) =, m(d1) +1,y(d1) < y(d2) <y(d1) +1'

Linear congr?ﬂence domain
"Actually, 12y(d1) + m(d1) < 12y(d2) + 11 A 12y(d2) < 12y(d1) + m(d1) + 1 20

Rounding-insensitivity Static Analysis

Lifting to both rounding modes

» Semantics on product programs with both rounding modes.

21

» Semantics on product programs with both rounding modes.

E/[e] : P() = P(Val),re {1, 1} ~

21

» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

21

» Semantics on product programs with both rounding modes.
Ecfe] : P(E) — P(Val),r e {t,4} ~ Eie]: P(E?) — P(Val®)
Efer+el() = |J {(d+vivi+v) | (v.v) =Egledor,

(p1.p1)ED
T (v3,v3) = Eq[e]lpy }

21

» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Egfler+e(0) = |J {1 +vw+v) | (v, v)=Egledpr,

(p1.p1)ED
T (v3,v3) = Eq[e]lpy }

Eq[rand_date(](D) = { (d.d) | d € Z°, valid(d) }

21

» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Egfer+e](0) = |J {4 +va.vi+v3) | (v.v)) =Eq[elor,

(p1.p1)ED
T (v3,v3) = Eq[e]lpy }

Eq[rand_date(](D) = { (d.d) | d € Z°, valid(d) }

» sync(e) holds iff e is rounding-insensitive.

21

» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Eq[er +e2] (D) = U {07+ vi+v3) | (v, vy) = Egenl oy,

(p1.p1)ED
T (v3,v3) = Eq[e]lpy }

Eq[rand_date(](D) = { (d.d) | d € Z°, valid(d) }

» sync(e) holds iff e is rounding-insensitive.
E[sync(e)](D) = |J {(bu== bg,by == by) | (bu,bg) = Eq[e](py,py) }

(p1,p1)ED

21

» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Eer + (D)= |J {0 +vi,vi+vh) | (], vh) = Eqllerdor,

(pt:pL)ED
T (v3,v3) = Eq[e]lpy }

Eq[rand_date(](D) = { (d.d) | d € Z°, valid(d) }

» sync(e) holds iff e is rounding-insensitive.
Eqfsync(e)[(D)= |J {(bu==bg,bu == bg) | (bu,ba) = Ex[e](py,p1) }
(p1,p,)ED

» Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian

Portability by Abstract Interpretation”. SAS 2021. 1

22

22

» No rounding

d(d1) =d(d2) m(d2) =1, m(d1) 41 y(d1) <y(d2) <y(d1) +1

22

» No rounding
d(d1) = d(d2) m(d2) =, m(d1) +1 y(d1) <y(d2) < y(d1)+1
» 30-day month
d(d1) = 31,m(d1) € {Mar,May, Aug, Sep }
1d(d2) =30, Im(d2) € { Apr, Jun, Sep,Nov }, Im(d2) = m(d1) +1
1d(d2) =1,1tm(d2) € {May, Jul,0ct,Dec }, tm(d2) = m(d1) + 2
Jy(d2) =1y(d2) = y(d1)

22

» Open-source static analysis platform

23

gitlab.com/mopsa/mopsa-analyzer

» Open-source static analysis platform
» C, Python, C+Python programs

23

gitlab.com/mopsa/mopsa-analyzer

» Open-source static analysis platform
» C, Python, C+Python programs
» gitlab.com/mopsa/mopsa-analyzer

23

gitlab.com/mopsa/mopsa-analyzer

@bidaes) () UFEERR) () @inwapreg) () @ymd)
» Open-source static analysis platform ®/®\®
> C, Python, C+Python programs () (bowerse) (U) (relere)
» gitlab.com/mopsa/mopsa-analyzer () sequence Ouniversal

ODouble programs
@ Reduced product

23

gitlab.com/mopsa/mopsa-analyzer

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

24

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current < limit));

Desynchronization detected: (current < limit). Hints:

tmonth(limit) = 3, ftday(limit) = 1, [month(limit) = 2, |day(limit) = 1,
tmonth(intermediate) = 3, tday(intermediate) = 1, [month(intermediate) = 2,
lday(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = tyear(intermediate) = fyear(limit)

= Jyear(intermediate) = |year(limit) = year(birthday) + 2

24

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current <

ANNAANANANNNANAN

Desynchronization detect
tmonth(limit) = 3, fday(
tmonth(intermediate) = 3
lday(intermediate) = 28,
year(birthday) =[4] 0, m
year(current) = tyear(in
= |lyear(intermediate) =

24

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current <

ANNAANANANNNANAN

Desynchronization detect
tmonth(limit) = 3, fday(
tmonth(intermediate) = 3
lday(intermediate) = 28,
year(birthday) =[4] 0, m
year(current) = tyear(in
= |lyear(intermediate) =

24

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current <

ANNAANANANNNANAN

Desynchronization detect
tmonth(limit) = 3, fday(
tmonth(intermediate) = 3
lday(intermediate) = 28,
year(birthday) =[4] 0, m
year(current) = tyear(in
= |lyear(intermediate) =

24

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current <

ANNAANANANNNANAN

Desynchronization detect
tmonth(limit) = 3, fday(
tmonth(intermediate) = 3
lday(intermediate) = 28,
year(birthday) =[4] 0, m
year(current) = tyear(in
= |lyear(intermediate) =

24

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current <

ANNAANANANNNANAN

Desynchronization detect
tmonth(limit) = 3, fday(
tmonth(intermediate) = 3
lday(intermediate) = 28,
year(birthday) =[4] 0, m
year(current) = tyear(in
= |lyear(intermediate) =

24

Case Study: French Housing Benefits

» Date-rounding library dates-calc

25

» Date-rounding library dates-calc

» Scope-level rounding mode configuration

25

» Date-rounding library dates-calc

» Scope-level rounding mode configuration
» Connection with static analysis

25

» Date-rounding library dates-calc

» Scope-level rounding mode configuration
» Connection with static analysis

20,000 Loc of Catala code (including text spec.)

25

©

- — date-sensitive
[flle.catalaH Slicing \ Prog. gen. }—»[progs.uH Mopsa

A+ Hints

26

©

- — date-sensitive
[f11e] catalaH Slicing \ Prog. gen. Hprogs.uH Mopsa

A+ Hints

26

©

- — date-sensitive
[f11e] catalaH Slicing \ Prog. gen. Hprogs.uH Mopsa

A+ Hints

26

©

- — date-sensitive
[flle.catalaH Slicing \ Prog. gen. }—»[progs.uH Mopsa <

A+ Hints

16 additional cases:
_ » 10 can be proved safe

(assuming current_date > 2023)

» Other are real issues

26

Conclusion

» Java, boost round down
» Python stdlib: no month addition
» Inconsistency in spreadsheets

27

» Java, boost round down
» Python stdlib: no month addition
» Inconsistency in spreadsheets

Recent Rocq formalization: Ana, Bedmar, Rodriguez, Reyes, Bunuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

27

» Java, boost round down » FP widely used & more complex!

» Python stdlib: no month addition » Different rounding modes
» Inconsistency in spreadsheets » No analysis of rounding-sensitivity?

Recent Rocq formalization: Ana, Bedmar, Rodriguez, Reyes, Bunuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

27

» Formal semantics of date computations

28

https://rmonat.fr/publication/24_esop/

» Formal semantics of date computations
» OCaml library implementing our semantics (also in Python now!)

28

https://rmonat.fr/publication/24_esop/

» Formal semantics of date computations
» OCaml library implementing our semantics (also in Python now!)
» Theorems verified in F*

28

https://rmonat.fr/publication/24_esop/

» Formal semantics of date computations

» OCaml library implementing our semantics (also in Python now!)
» Theorems verified in F*

» Ambiguity-detection static analysis using Mopsa @

28

https://rmonat.fr/publication/24_esop/

» Formal semantics of date computations

» OCaml library implementing our semantics (also in Python now!)
» Theorems verified in F*

» Ambiguity-detection static analysis using Mopsa @

» Case study on Catala encoding of French housing benefits

28

https://rmonat.fr/publication/24_esop/

Formal semantics of date computations

OCaml library implementing our semantics (also in Python now!)
Theorems verified in F*

Ambiguity-detection static analysis using Mopsa @

Case study on Catala encoding of French housing benefits
Comparison with mainstream implementations

28

https://rmonat.fr/publication/24_esop/

» Formal semantics of date computations
» OCaml library implementing our semantics (also in Python now!)
» Theorems verified in F*

» Ambiguity-detection static analysis using Mopsa @

» Case study on Catala encoding of French housing benefits

» Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

28

https://rmonat.fr/publication/24_esop/

» Formal semantics of date computations
» OCaml library implementing our semantics (also in Python now!)
» Theorems verified in F*

» Ambiguity-detection static analysis using Mopsa @

» Case study on Catala encoding of French housing benefits

» Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project)8

https://rmonat.fr/publication/24_esop/

	Some Catala News, and an Introduction
	Handling Date Computations in Catala
	Semantics
	Formalized Properties
	Rounding-insensitivity Static Analysis
	Abstracting dates in a fixed rounding mode
	Lifting to both rounding modes

	Case Study: French Housing Benefits
	Conclusion

