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Some Catala News, and an Introduction
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Partnerships with government agencies

DGFiP Since June 2023, re-implementing income tax with a real tax
inspector. First results encouraging, asking for more ressources.

CNAF Technical feasibility of Catala at CNAF (alongside COBOL and Oracle)
confirmed, next step is launching an experimentation on a particular
benefit.

Industrialization ongoing at Inria

» Recognized as a priority program of support to public policies
» From 1to 3 research engineers in the coming months (+ Denis)



Handling Date Computations in Catala
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$ date -d "2024-01-31 + 1 month" +%F

2024-03-02
$ date -d "2024-02-01 + 1 month" +%F

2024-03-01
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» 1 month =30 days (Council of European Communities)
» When do leapers become adults?

e 28 February in New Zealand, Taiwan
e 1 March in France, Germany, Hong-Kong

— Formal, flexible semantics required! Focus on Gregorian calendar.
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Semantics
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values v o= (y,md)| L
date unit 0 == y|m|d
expressions e = v|e 45 n

29 if m =2 Ais_leap(y)

28 if m =2 A —is_leap(y)

30 ifm e {Apr, Jun,Sep,Nov }
31 otherwise

nb_days(y, m) =






ADD-DAYS-ERR1
day <1

(v,m,day) +4n — L



ADD-DAYS-ERR1 ADD-DAYS-ERR2
day <1 day > nb_days(y, m)

(v,m,day) +4n — L (v,m,day) +4n — L



ADD-MONTH
1T<m+n<12

(y7m7d)+mn_>(yam+nad)



ADD-MONTH ADD-MONTH-OVER
1T<m+n<12 m+n>12

(yvmad)+mn_>(yam+nad) (yam:d)+mn_>(y+1:m7d)+m (n_12)



ADD-MONTH ADD-MONTH-OVER
1T<m+n<12 m+n>12

(y7mad)+mn_>(yam+nad) (yam:d)+mn_>(y+1:mad)+m (n_12)

Similar cases for ADD-MONTH-UNDER, year, day addition.
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(2024,01,31) 4+ 1 — (2024, 02,31)

Rounding to valid dates required!

roundingmode r == 1T|||L
expressions e == vl]e +yn|rnd,e

rnd; (2024, 02,31) = (2024, 03,01)
rnd, (2024, 02,31) = (2024, 02, 29)
rnd, (2024,02,31) = L



ROUND-NooOP
1< d < nb_days(y,m)

rndr(yam,d) — (y7m7d)
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ROUND-NoOP ROUND-DOWN
1< d < nb_days(y,m) d > nb_days(y,m)
rnd,(y,m,d) — (y,m,d) rmd(y,m,d) — (v, m,nb_days(y, m))
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ROUND-NoOP ROUND-DOWN

1< d < nb_days(y,m) d > nb_days(y,m)
rnd,(y,m,d) — (y,m,d) rmd(y,m,d) — (v, m,nb_days(y, m))
ROUND-UP

d > nb_daYS(y,m) (yam’d) +m 1 _*) (ylam,ad,)
rndT(ya m, d) - (yla ml7 1)
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ROUND-NoOP ROUND-DOWN
1< d < nb_days(y,m) d > nb_days(y,m)
rnd,(y,m,d) — (y,m,d) rmd(y,m,d) — (v, m,nb_days(y, m))
ROUND-UP ROUND-ERR2
d > nb_days(y,m)  (v,m,d)+m 1> (/,m’ d) d > nb_days(y, m)
rndy(y, m,d) = (v, m’,1) rnd; (y,m,d) — L

10
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Given a period (ys, ms, ds):

e+ (ys,ms,ds) == rnd,((e +y, ys) +m ms) +4 ds

Avoids double rounding

A date expression e is ambiguous iff rnd (e) = L
iff roundings e yield different values

11



Formalized Properties
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= core result needed for our static analysis




Rounding-insensitivity Static Analysis
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= Prove rounding-insensitivity of an expression e,
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= Prove rounding-insensitivity of an expression e, E+[e] = E,[e]

To reduce the need for costly legal interpretations




Rounding-insensitivity Static Analysis

Abstracting dates in a fixed rounding mode
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» Defines addition, accessors, projection, lexicographic comparison

» Translates constraints on dates into numerical constraints
date dqi ~» ghost numerical variables d(d+), m(d1), y(d1)

» Acts as a functor lifting a numerical abstract domain

d(d) € [1,31] Am(dr) € [1,12] Ay(dq) = 2024: all valid dates of 2024

17



Given a rounding mode, compute resulting dates from d# +7: n, where d#
represents a set of dates.

Soundly derived from the ambiguous addition theorem.
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Given a rounding mode, compute resulting dates from d# +7: n, where d#
represents a set of dates.

Soundly derived from the ambiguous addition theorem.
Algorithm: compute resulting month, year, then 4 cases:

» No rounding,

» Rounding, 30-day month,

» Rounding, non-leap years 28 Feb,
» Rounding, leap years, 29 Feb.

Partitioning used in practice.
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type case = expr * state
type cases = case list
let switch abs =
List.map (fun (cond : expr, k : state -> case) -> k (assume cond abs))

let add_months (r: rnd) ((d, m, y): var"3) (nb_m: int) (abs: state): cases =
let res_m: expr =1 + (m - 1 + nb_m) % 12 in
let res_y: expr =y + (m - 1 + nb_m) / 12 in
switch abs
[
d > 30 &5 is_one_of res_m [Apr;Jun;Sep;Nov],
round r 30 res_m res_y;
d > 28 &5 res_m = Feb &5 not (is_leap res_y),
round r 28 res_m res_y;
d > 29 &5 res_m = Feb && is_leap res_y,
round r 29 res_m res_y;
mk_true,
mk_date d res_m res_y 19

0 1 -~
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4 cases apply, including:

» 30-day month
d(d1) =31, m(d1) € {Mar,May,Aug,0ct }, m(d2) = m(d1) +1,y(d2) = y(d1)

Bounded set of ints Polyhedra

» No rounding d(d1) =d(d2), m(d2) =, m(d1) +1,y(d1) < y(d2) <y(d1) +1'

Linear congr?ﬂence domain
"Actually, 12y(d1) + m(d1) < 12y(d2) + 11 A 12y(d2) < 12y(d1) + m(d1) + 1 20




Rounding-insensitivity Static Analysis

Lifting to both rounding modes



» Semantics on product programs with both rounding modes.
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» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Egfer+e](0) = |J {4 +va.vi+v3) | (v.v)) =Eq[elor,

(p1.p1)ED
T (v3,v3) = Eq[e]lpy }
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» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Eq[er +e2] (D) = U {07+ vi+v3) | (v, vy) = Egenl oy,

(p1.p1)ED
T (v3,v3) = Eq[e]lpy }

Eq[rand_date(](D) = { (d.d) | d € Z°, valid(d) }

» sync(e) holds iff e is rounding-insensitive.
E[sync(e)](D) = |J {(bu== bg,by == by) | (bu,bg) = Eq[e](py,py) }

(p1,p1)ED

21



» Semantics on product programs with both rounding modes.

Ecfe] : P(€) » P(Val),r e {1,.4} ~ Eqle] : P(E?) — P(val’)

Eer + (D)= |J {0 +vi,vi+vh) | (], vh) = Eqllerdor,

(pt:pL)ED
T (v3,v3) = Eq[e]lpy }

Eq[rand_date(](D) = { (d.d) | d € Z°, valid(d) }

» sync(e) holds iff e is rounding-insensitive.
Eqfsync(e)[(D)= |J {(bu==bg,bu == bg) | (bu,ba) = Ex[e](py,p1) }
(p1,p,)ED

» Inspired by Delmas, Ouadjaout, and Miné. “Static Analysis of Endian

Portability by Abstract Interpretation”. SAS 2021. 1
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» No rounding

d(d1) =d(d2) m(d2) =1, m(d1) 41 y(d1) <y(d2) <y(d1) +1
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» No rounding
d(d1) = d(d2) m(d2) =, m(d1) +1 y(d1) <y(d2) < y(d1)+1
» 30-day month
d(d1) = 31,m(d1) € {Mar,May, Aug, Sep }
1d(d2) =30, Im(d2) € { Apr, Jun, Sep,Nov }, Im(d2) = m(d1) +1
1d(d2) =1,1tm(d2) € {May, Jul,0ct,Dec }, tm(d2) = m(d1) + 2
Jy(d2) =1y(d2) = y(d1)
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» Open-source static analysis platform
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gitlab.com/mopsa/mopsa-analyzer

@bidaes) () UFEERR) () @inwapreg) () @ymd)
» Open-source static analysis platform ®/®\®
> C, Python, C+Python programs () (bowerse) (U ) (relere)
» gitlab.com/mopsa/mopsa-analyzer () sequence Ouniversal

ODouble programs
@ Reduced product
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gitlab.com/mopsa/mopsa-analyzer

date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N
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date current = rand_date();

date birthday = rand_date();

date intermediate = birthday + [2 years, 0 months, 0 days];
date 1limit = first_day_of(intermediate);
assert(sync(current < limit));

o s W N

5: assert(sync(current < limit));

Desynchronization detected: (current < limit). Hints:

tmonth(limit) = 3, ftday(limit) = 1, [month(limit) = 2, |day(limit) = 1,
tmonth(intermediate) = 3, tday(intermediate) = 1, [month(intermediate) = 2,
lday(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = tyear(intermediate) = fyear(limit)

= Jyear(intermediate) = |year(limit) = year(birthday) + 2
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» Date-rounding library dates-calc
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» Date-rounding library dates-calc

» Scope-level rounding mode configuration
» Connection with static analysis

20,000 Loc of Catala code (including text spec.)
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©

- — date-sensitive
[flle.catalaH Slicing \ Prog. gen. }—»[progs.uH Mopsa <

A+ Hints

16 additional cases:
_ » 10 can be proved safe

(assuming current_date > 2023)

» Other are real issues

26
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Recent Rocq formalization: Ana, Bedmar, Rodriguez, Reyes, Bunuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024
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» Java, boost round down » FP widely used & more complex!

» Python stdlib: no month addition » Different rounding modes
» Inconsistency in spreadsheets » No analysis of rounding-sensitivity?

Recent Rocq formalization: Ana, Bedmar, Rodriguez, Reyes, Bunuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024
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Ambiguity-detection static analysis using Mopsa @

Case study on Catala encoding of French housing benefits
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» Formal semantics of date computations
» OCaml library implementing our semantics (also in Python now!)
» Theorems verified in F*

» Ambiguity-detection static analysis using Mopsa @

» Case study on Catala encoding of French housing benefits

» Comparison with mainstream implementations

Artefact & paper available! https://rmonat.fr/publication/24_esop/

“Automatic Verification of Catala programs” (AVoCAT) project )8


https://rmonat.fr/publication/24_esop/
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