
Wasm_of_ocaml
Jérôme Vouillon

Tarides

WebAssembly

WebAssembly (Wasm)

Widely implemented in web browsers

Low level language

● Compact binary format
● Only scalar values: i32, i64, f32, f64
● Linear memory

+ Good target for C/C++/Rust
– Not so suitable for a GC-based language
– Hard to use Web APIs from Wasm

Wasm example

(module
 (func $fibonacci (param $n i32) (result i32)
 (if (i32.lt_u (local.get $n) (i32.const 2))
 (then
 (return (local.get $n)))
 (else
 (return
 (i32.add
 (call $fibonacci (i32.sub (local.get $n) (i32.const 1)))
 (call $fibonacci (i32.sub (local.get $n) (i32.const 2))))))))
 (export "fibonacci" (func $fibonacci)))

Wasm GC

Extension of Wasm with reference types

● No need to reimplement a GC
● Can manipulate JavaScript values

eq

any

i31array struct

Wasm_of_ocaml

Js_of_ocaml

Industrial-strength compiler

Compile OCaml bytecode to JavaScript

● Easy to maintain (fairly stable API)
● Easy to use (no need to recompile libraries)

Wasm_of_ocaml

Retarget Js_of_ocaml to generate WebAssembly code

Hope: better and more consistent performances

Goal: minimize user changes

Comparison with Wasocaml

Wasocaml (Léo Andrès, Pierre Chambard): direct modification of the OCaml
compiler

● Better generated code, but probably harder to use and maintain
● Expect to share a common runtime environment

Demos

Implementation

Compilation process

Existing Js_of_ocaml code

● Bytecode parsing
● Optimization passes on SSA intermediate code

New

● Closure conversion
● Generate structured code (reimplemented)

Beyond Relooper, Norman Ramsey
● Generate Wasm instructions

Binaryen

Really useful tools

● wasm-opt: generate binary format + code optimizations
● wasm-merge: linker
● wasm-metadce: inter-language linking / deadcode elimination

Value representation: basic types

Uniform representation of values: (ref eq)

Integers: (ref i31)

Blocks: arrays (first field is an integer tag)

 (type $block (array (mut (ref eq))))

Other types:

 (type $string (array (mut i8)))

 (type $float (struct (field f64)))

Function calls

Need to deal with currying (functions can be overapplied or underapplied)

Most of the time, the number of parameters and arguments match

● call (a given function) when the function is known
● call_ref when the function arity is known
● use intermediate function otherwise

Value representation: closures

 (type $function_1 (func (param (ref eq) (ref eq)) (result (ref eq))))

 (type $closure (sub (struct (field (ref $function_1)))))

 (type $env_1_2
 (sub final $closure
 (struct (field (ref $function_1))
 (field (ref eq)) (field (ref eq)))))

● Cast at the beginning of the function to recover the closure’s type
● Need to experiment with more precise environment fields

Value representation: closures

 (type $function_1 (func (param (ref eq) (ref eq)) (result (ref eq))))

 (type $closure (sub (struct (field (ref $function_1)))))

 (type $function_2
 (func (param (ref eq) (ref eq) (ref eq)) (result (ref eq))))

 (type $closure_2
 (sub $closure (struct (field (ref $function_1)) (field (ref $function_2)))))

 (type $env_2_2
 (sub final $closure_2
 (struct (field (ref $function_1)) (field (ref $function_2))
 (field (ref eq)) (field (ref eq)))))

Function application

Apply arguments 1 by 1

Check arity

Direct call

Get code
pointer

(func $apply_2 (param $x (ref eq)) (param $y (ref eq)) (param $f (ref eq)) (result (ref eq))
 (local $g (ref eq))
 (drop
 (block $not_exact (result (ref eq))
 (return_call_ref $function_2
 (local.get $x) (local.get $y) (local.get $f)
 (struct.get $closure_2 1
 (br_on_cast_fail $not_exact (ref eq) (ref $closure_2) (local.get $f)))))
 (local.set $g
 (call_ref $function_1 (local.get $x) (local.get $f)
 (struct.get $closure 0
 (ref.cast (ref $closure) (local.get $f)))))
 (return_call_ref $function_1 (local.get $y) (local.get $g)
 (struct.get $closure 0 (ref.cast (ref $closure) (local.get $g)))))

Effect handlers

● JS Promise API

Pierre Chambard:

“I was asked [...] whether promise-integration would allow implementing
OCaml effects handler. [...] it seems that this would be sufficient.”

No cost when not performing effects, slow otherwise

● Partial CPS transformation

Inherited from Js_of_ocaml

Tail calls!

Interfacing with JavaScript

How it works

● Enough to provide just a rather small number of primitives
○ Property access: x[y]
○ Function call: x.apply(null, args)
○ Conversions between JavaScript and OCaml strings

● The compiler actually generates inline JavaScript code
○ Avoid string conversions for constant strings, property and method names
○ More efficient code for property access / method call

Example: function calls

JavaScript

 fun_call:(f,args)=>f.apply(null,args)

Wasm

 (import "bindings" "fun_call" (func $fun_call (param anyref) (param anyref) (result anyref)))

 (func (export "caml_js_fun_call") (param $f (ref eq)) (param $args (ref eq)) (result (ref eq))
 (return_call $wrap (call $fun_call (call $unwrap (local.get $f))
 (call $unwrap (call $caml_js_from_array (local.get $args))))))

OCaml (Js_of_ocaml library)
 external fun_call : 'f -> any array -> 'res = "caml_js_fun_call"

Differences between Js_of_ocaml and Wasm_of_ocaml

Js_of_ocaml

● JavaScript objects manipulated directly
● OCaml integers and floats all mapped to JavaScript numbers

Wasm_of_ocaml

● JavaScript objects (including floats) are boxed (do not belong to (ref eq))
● JavaScript integers still mapped to OCaml integers (ref i31)

JavaScript object wrapping

(type $js (struct (field anyref)))

(func $wrap (param $v anyref) (result (ref eq))
 (block $is_eq (result (ref eq))
 (return (struct.new $js (br_on_cast $is_eq anyref (ref eq) (local.get $v))))))

(func $unwrap (param $v (ref eq)) (result anyref)
 (block $not_js (result anyref)
 (return
 (struct.get $js 0 (br_on_cast_fail $not_js (ref eq) (ref $js) (local.get $v))))))

Needed changes in user code

● Explicit float conversions
● Physical equality no longer works on JavaScript values
● Typed array (typing / performance)

Be Sport web app

● About 100 000 lines of code
● About 100 lines changed (mostly float conversions)

Taking advantage of JavaScript

Floats

Math operations

● Many function from the Math object (cos, exp, …)
● Remainder operator x % y (for floats)

Conversions between floats and strings

Using maps and weak pointers

Weak arrays and ephemerons

● Weak, WeakMap

Marshalling

● Map object, to deal with sharing

Big integers (zarith)

Use binaryen’s wasm-metadce + Js_of_ocaml linker

JavaScript

//Provides: wasm_z_add
//Requires: wasm_z_normalize
function wasm_z_add(z1, z2) { return wasm_z_normalize(BigInt(z1) + BigInt(z2)) }

WebAssembly

(import "js" "wasm_z_add" (func $add (param (ref any)) (param (ref any)) (result (ref any))))

(func (export "ml_z_add")
 (param $z1 (ref eq)) (param $z2 (ref eq)) (result (ref eq))
 (return_call $wrap_bigint
 (call $add (call $unwrap_bigint (local.get $z1)) (call $unwrap_bigint (local.get $z2)))))

Performance results

Microbenchmarks

● Two third of the JavaScript running time
● Twice slower than native code

Exceptions

Zero-cost exceptions are slow…

Larger benchmarks

ocamlc

CAMLBOY

Headless benchmarking mode: from 1200 fps to 1850 fps (50% faster)

The framebuffer (typed array) is the bottleneck

Bonsai

Library for building interactive browser-based UI

Table benchmark: 100 small benchmarks

Arithmetic mean:

 Javascript: 1.76ms
 Wasm (current implementation): 0.95ms
 Wasm (with stringref proposal): 0.84ms

Cost of casts and bound checks

V8 makes it possible to skip checks

ocamlc

● 8% cast and null checks
● 3.5% bound checks
● 10% total

bonsai

● 20% total

File size

ocamlc

Be Sport Web app

JavaScript WebAssembly

uncompressed 1 937 055 2 441 862 (+26%)

bzip2 466 632 516 703 (+10%)

JavaScript WebAssembly

uncompressed 3 827 108 6 846 836 (+80%)

bzip2 989 089 1 251 620 (+25%)

Effects: CPS impact on size

Explicit closure allocation vs rather regular transformation

Javascript Wasm

Direct CPS Direct CPS

ocamlc
uncompressed 1936871 2303918 (+19%) 2424187 3379356 (+40%)

bzip2 466637 472691 (+1.3%) 540223 727373 (+35%)

bonsai
uncompressed 1196757 1425899 (+19%) 1729955 2943621 (+70%)

bzip2 356138 363080 (+1.9%) 368088 555212 (+50%)

Effects: CPS performance

Less overhead in Wasm

Javascript Wasm

Direct CPS Direct CPS

Camlboy 1300fps 750fps (-42%) 1750fps 1480fps (-15%)

bonsai 1.76s 12.4s (x7) 0.95s 1.63s (+70%)

JS Promise Integration API

● Not well optimized yet
● Lot of overhead going through JavaScript event loop

Effect benchmarks

JavaScript (CPS) Wasm (CPS) Wasm (JSPI)

Chameneos 2.6s 1.15s 6.6s

Generator 16s 6.8s 80s

Rough edges

Efficient conversion between JS and OCaml strings

● Ocaml strings are array of bytes (UTF-8)
● Initial implementation based on the stringref proposal
● Now going through the Wasm linear memory

○ Copy to a shared buffer on one side
○ Read from the buffer on the other side
○ Conversions from/to UTF-8 on the JavaScript side

● JS String Builtins: does not provide the right functions yet

String conversion through a buffer

Fixed 64 kB buffer (linear memory)

Conversion to JavaScript

const decoder = new TextDecoder('utf-8', {ignoreBOM: 1});
decoder.decode(new Uint8Array(buffer, 0, len), {stream})

Conversion to WebAssembly

const encoder = new TextEncoder;
var out_buffer = new Uint8Array(buffer,0,buffer.length)
{read,written} = encoder.encodeInto(s.slice(start), out_buffer);

Efficient manipulation of typed arrays and array buffers

Use cases

● Camlboy: writing to a framebuffer
● I/O buffers
● WebGL

At the moment, one JavaScript call per access

Concluding

Implementation status

● Full language supported
● Large part of the runtime support implemented
● Adapted libraries (brr, gen_js_api, zarith, …) and build system (dune)

Future work

● Documentation / release
● Separate compilation / dynamic linking
● Performance optimizations: try to avoid some casts, unnecessary boxing, …
● Make it easier to debug generated code (sourcemap, keep variable names)

Conclusion

Wasm_of_ocaml source code: https://github.com/ocaml-wasm/wasm_of_ocaml

Wasm GC

● Very well designed
● Very encouraging performances
● Available now in Chrome / Firefox

https://github.com/ocaml-wasm/wasm_of_ocaml

