Wasm of ocaml

Jérdme Vouillon

Tarides

WebAssembly

WebAssembly (Wasm)

Widely implemented in web browsers

Low level language

Compact binary format
Only scalar values: i32, i64, f32, 64
Linear memory

Good target for C/C++/Rust
Not so suitable for a GC-based language
Hard to use Web APIs from Wasm

Wasm example

(module
(func $fibonacci (param $n i32) (result i32)
(if (132.It_u (local.get $n) (i32.const 2))
(then
(return (local.get $n)))
(else
(return
(i32.add
(call $fibonacci (i32.sub (local.get $n) (i32.const 1)))
(call $fibonacci (i32.sub (local.get $n) (i32.const 2))))))))
(export "fibonacci" (func $fibonacci)))

Wasm GC

Extension of Wasm with reference types

ar|1y
/elq\
array struct 131

e No need to reimplement a GC
e (Can manipulate JavaScript values

Wasm of ocaml

Js_of ocaml

Industrial-strength compiler
Compile OCaml bytecode to JavaScript

e Easy to maintain (fairly stable API)
e Easy to use (no need to recompile libraries)

Wasm_of ocaml

Retarget Js_of ocaml to generate WebAssembly code
Hope: better and more consistent performances

Goal: minimize user changes

Comparison with Wasocaml

Wasocaml (Léo Andrés, Pierre Chambard): direct modification of the OCaml
compiler

Js_of ocaml JavaScript
Bytecode Wasm_of ocaml
Wasocaml Wasm
Source Lambda Flambda
CMM Native code

e Better generated code, but probably harder to use and maintain
e EXxpect to share a common runtime environment

Demos

Implementation

Compilation process

Existing Js_of ocaml code

e Bytecode parsing
e Optimization passes on SSA intermediate code

New

e Closure conversion

e Generate structured code (reimplemented)
Beyond Relooper, Norman Ramsey

e Generate Wasm instructions

Binaryen

Really useful tools

e wasm-opt: generate binary format + code optimizations
e wasm-merge: linker
e wasm-metadce: inter-language linking / deadcode elimination

Value representation: basic types

Uniform representation of values: (ref eq)

Integers: (ref i31)
Blocks: arrays (first field is an integer tag)
(type $block (array (mut (ref eq))))
Other types:
(type $string (array (mut i8)))
(type $float (struct (field f64)))

Function calls

Need to deal with currying (functions can be overapplied or underapplied)
Most of the time, the number of parameters and arguments match

e call (a given function) when the function is known
e call_ref when the function arity is known
e use intermediate function otherwise

Value representation: closures

(type $function 1 (func (param (ref eq) (ref eq)) (result (ref eq))))
(type $closure (sub (struct (field (ref $function 1)))))

(type $env_1 2
(sub final $closure
(struct (field (ref $function 1))
(field (ref eq)) (field (ref eq)))))

e Cast at the beginning of the function to recover the closure’s type
e Need to experiment with more precise environment fields

Value representation: closures

(type $function_1 (func (param (ref eq) (ref eq)) (result (ref eq))))
(type $closure (sub (struct (field (ref $function_1)))))

(type $function 2
(func (param (ref eq) (ref eq) (ref eq)) (result (ref eq))))

(type $closure 2
(sub $closure (struct (field (ref $function 1)) (field (ref $function_2)))))

(type $env 2 2
(sub final $closure 2
(struct (field (ref $function 1)) (field (ref $function_2))
(field (ref eq)) (field (ref eq)))))

Function application

(func $apply 2 (param $x (ref eq)) (param Sy (ref eq)) (param $f (ref eq)) (result (ref eq))
(local $g (ref eq))
(drop
(block $not_exact (result (ref eq))
(return_call_ref $function 2
(local.get $x) (local.get $y) (local.get $f)
(struct.get $closure 2 1
(br_on_cast_fail $not_exact (ref eq) (ref $closure_2) (local.get $f))))) \ _
(local.set $g Direct call
(call_ref $function 1 (local.get $x) (local.get $f)
(struct.get $closure 0
(ref.cast (ref $closure) (local.get $f)))))
(return_call_ref $function 1 (local.get $y) (local.get $g)
(struct.get $closure 0 (ref.cast (ref $closure) (local.get $g)))))

Check arity

Get code
pointer

“—— Apply arguments 1 by 1

Effect handlers

e JS Promise API
Pierre Chambard;

“I was asked [...] whether promise-integration would allow implementing
OCaml effects handler. [...] it seems that this would be sufficient.”

No cost when not performing effects, slow otherwise
e Partial CPS transformation
Inherited from Js_of ocaml

Tail calls!

Interfacing with JavaScript

How it works

e Enough to provide just a rather small number of primitives

o Property access: x[y]
o Function call: x.apply(null, args)
o Conversions between JavaScript and OCaml strings

e The compiler actually generates inline JavaScript code

o Avoid string conversions for constant strings, property and method names
o More efficient code for property access / method call

Example: function calls

JavaScript
fun_call:(f,args)=>f.apply(null,args)
Wasm

(import "bindings" "fun_call" (func $fun_call (param anyref) (param anyref) (result anyref)))

(func (export "caml_js_fun_call") (param $f (ref eq)) (param $args (ref eq)) (result (ref eq))

(return_call $wrap (call $fun_call (call $unwrap (local.get $f))
(call $unwrap (call $caml_js from_array (local.get $args))))))

OCaml (Js_of ocaml library)
external fun_call : 'f -> any array -> 'res = "caml_js_fun_call"

Differences between Js of ocaml and Wasm_of ocaml

Js of ocaml

e JavaScript objects manipulated directly
e (OCaml integers and floats all mapped to JavaScript numbers

Wasm_of ocaml

e JavaScript objects (including floats) are boxed (do not belong to (ref eq))
e JavaScript integers still mapped to OCaml integers (ref i31)

JavaScript object wrapping

(type $js (struct (field anyref)))

(func $wrap (param $v anyref) (result (ref eq))
(block $is_eq (result (ref eq))

(return (struct.new $js (br_on_cast $is_eq anyref (ref eq) (local.get $v))))))

(func Sunwrap (param $v (ref eq)) (result anyref)
(block $not_js (result anyref)
(return

(struct.get $js O (br_on_cast_fail $not_js (ref eq) (ref $js) (local.get $v))))))

Needed changes in user code

e Explicit float conversions
e Physical equality no longer works on JavaScript values
e Typed array (typing / performance)

Be Sport web app

e About 100 000 lines of code
e About 100 lines changed (mostly float conversions)

Taking advantage of JavaScript

Floats

Math operations

e Many function from the Math object (cos, exp, ...)
e Remainder operator x % vy (for floats)

Conversions between floats and strings

Using maps and weak pointers

Weak arrays and ephemerons
e Weak, WeakMap
Marshalling

e Map object, to deal with sharing

Big integers (zarith)

Use binaryen’s wasm-metadce + Js_of ocaml linker

JavaScript

//Provides: wasm_z add
//Requires: wasm_z_ normalize
function wasm_z_add(z1, z2) { return wasm_z_normalize(BigInt(z1) + BigInt(z2)) }

WebAssembly

(import "js" "wasm_z_add" (func $add (param (ref any)) (param (ref any)) (result (ref any))))

(func (export "ml_z_add")
(param $z1 (ref eq)) (param $z2 (ref eq)) (result (ref eq))
(return_call $wrap_bigint
(call $add (call Sunwrap_bigint (local.get $z1)) (call Sunwrap_bigint (local.get $z2)))))

Performance results

Microbenchmarks

e ocamlopt I JavaScript s Wasm

1.2

Execution time

e Two third of the JavaScript running time
e Twice slower than native code

Exceptions

Zero-cost exceptions are slow...

Execution time

mmm Native code
=== Bytecode

——= JavaScript

s \Wasm

8.7

10.2

Larger benchmarks

mmmm Native code == JavaScript
m=== Bytecode s Wasm

35

ocamlc

31
25}
21

15}

Execution time

1L

05 ¢

0

CAMLBOY
Headless benchmarking mode: from 1200 fps to 1850 fps (50% faster)
The framebuffer (typed array) is the bottleneck

Bonsal

Library for building interactive browser-based Ul

Table benchmark: 100 small benchmarks
Arithmetic mean:

Javascript: 1.76ms
Wasm (current implementation): 0.95ms
Wasm (with stringref proposal): 0.84ms

Execution time

1.8

16 }
14t
1.2

1 L
0.8 t
0.6
04 ¢
0.2 ¢t

0

JavaScript == Wasm (stringref)
=== Wasm (current)

Cost of casts and bound checks

V8 makes it possible to skip checks
ocamic

e 8% cast and null checks
e 3.5% bound checks
o 10% total

bonsai

o 20% total

File size

ocamlc
JavaScript WebAssembly
uncompressed 1937 055 2 441 862 (+26%)
bzip2 466 632 516 703 (+10%)
Be Sport Web app
JavaScript WebAssembly
uncompressed 3 827 108 6 846 836 (+80%)
bzip2 989 089 1251 620 (+25%)

Effects: CPS impact on size

Javascript Wasm
Direct CPS Direct CPS
uncompressed 1936871 2303918 (+19%) | 2424187 3379356 (+40%)
ccamie bzip2 466637 472691 (+1.3%) | 540223 727373 (+35%)
_ uncompressed 1196757 1425899 (+19%) | 1729955 2943621 (+70%)
ponsal bzip2 356138 363080 (+1.9%) | 368088 555212 (+50%)

Explicit closure allocation vs rather regular transformation

Effects: CPS performance

Javascript Wasm
Direct CPS Direct CPS
Camlboy 1300fps 750fps (-42%) 1750fps 1480fps (-15%)
bonsai 1.76s 12.4s (X7) 0.95s 1.63s (+70%)

Less overhead in Wasm

Effect benchmarks

JavaScript (CPS) Wasm (CPS) Wasm (JSPI)
Chameneos 2.6s 1.15s 6.6s
Generator 16s 6.8s 80s

JS Promise Integration API

e Not well optimized yet
e Lot of overhead going through JavaScript event loop

Rough edges

Efficient conversion between JS and OCaml strings

e Ocaml strings are array of bytes (UTF-8)
e Initial implementation based on the stringref proposal

e Now going through the Wasm linear memory

o Copy to a shared buffer on one side
o Read from the buffer on the other side
o Conversions from/to UTF-8 on the JavaScript side

e JS String Builtins: does not provide the right functions yet

String conversion through a buffer

Fixed 64 kB buffer (linear memory)
Conversion to JavaScript

const decoder = new TextDecoder('utf-8', {ignoreBOM: 1});
decoder.decode(new Uint8Array(buffer, 0, len), {stream})

Conversion to WebAssembly

const encoder = new TextEncoder;
var out_buffer = new Uint8Array(buffer,0,buffer.length)
{read,written} = encoder.encodelnto(s.slice(start), out_buffer);

Efficient manipulation of typed arrays and array buffers

Use cases

e Camlboy: writing to a framebuffer
e |/O buffers
e WebGL

At the moment, one JavaScript call per access

Concluding

Implementation status

e Full language supported
e Large part of the runtime support implemented
e Adapted libraries (brr, gen_js_api, zarith, ...) and build system (dune)

Future work

Documentation / release

Separate compilation / dynamic linking

Performance optimizations: try to avoid some casts, unnecessary boxing, ...
Make it easier to debug generated code (sourcemap, keep variable names)

Conclusion

Wasm_of ocaml source code: https://github.com/ocaml-wasm/wasm_of ocaml

Wasm GC

e \ery well designed
e \ery encouraging performances
e Available now in Chrome / Firefox

https://github.com/ocaml-wasm/wasm_of_ocaml

