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Examples
State-of-the-Art

Type-indexed vectors

data Zero : : ∗
data Succ : : ∗ −> ∗

data Vec : : ∗ −> ∗ −> ∗ where
N i l : : f o r a l l a . Vec a Zero
Cons : : f o r a l l a n . a −> Vec a n −> Vec a ( Succ n )

Fixed-length lists without dependent types.
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Examples
State-of-the-Art

Well-typed DSLs

data Expr : : ∗ −> ∗ where
L i f t E x p r : : f o r a l l a . a −> Expr a
LamExpr : : f o r a l l a b . ( a −> Expr b ) −> Expr ( a −> b )
AppExpr : : f o r a l l a b . Expr ( a −> b )

−> Expr a −> Expr b
F i xExp r : : f o r a l l a . Expr ( a −> a ) −> Expr a
. . .

Can be used to embed DSLs, and fallback onto Haskell for typechecking.
E.g., Pugs, Darcs.
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Examples
State-of-the-Art

Existing works on GADTs

31 relevant results on dblp:

8: categorical semantics

23: syntax, type-inference, implementation, usage

Our work can be used by compiler developers, language designers, or
for the verification of data structures.

Moreover, we target feature-rich languages.
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Examples
State-of-the-Art

This work

Calculus for GADTs.

Semantic model for this calculus.

(initial)
syntactic modelprogress +

preservation

allows proving free theorems
or representation independence
of different implementations

semantic model

KEY property: universe
of semantic relations
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Intuition
Definitions
Example programs

Short description

Our calculus:
System Fω
+ recursive types
+ type equalities
+ optional additional type constructors

Can be perceived as an IR used by a compiler.
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Intuition
Definitions
Example programs

Syntax

kinds κ ::= T | κ ⇒ κ
constructors c ::= ∀κ | ∃κ | µκ |→| × | + | unit | void
constraints χ ::= σ≡κ τ
types τ, σ ::= α | λα :: κ. τ | σ τ | c | χ→ τ | χ× τ

values v ::= x | ⟨⟩ | λx . e | ⟨v1, v2⟩ | inj1 v | inj2 v | Λ. e
| pack v | roll v | λ•. e | ⟨•, v⟩

expressions e ::= let x = e1 in e2 | v1 v2 | proj1 v | proj2 v
| case v [x . e1 | y . e2] | v | abort • | v •
| let (•, x) = v in e

eval. contexts E ::= □ | let x = E in e

Type constructors are built-in functions on types.

Constraint types are ‘assert’s and ‘assume’s for type equalities.
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Intuition
Definitions
Example programs

Dynamic semantics

Constraints don’t have any interesting operational semantics, and their
introduction and elimination forms just ‘guide typechecking’.

(λ•. e) • 7→ e

let (•, x) = ⟨•, v⟩ in e 7→ e[v/x ]

Informally, we can consider constraints as singleton types.
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Intuition
Definitions
Example programs

Discriminability

For impossible case elimination it is enough to look at the head symbols.

c1 ̸= c2 (∆ ⊢ ci τ i :: κ)i∈{1,2}

∆ ⊩ c1 τ 1 #κ c2 τ 2

∆ ⊢ τ1 :: T ∆ ⊢ τ2 :: T ∆ ⊢ σ1 :: T ∆ ⊢ σ2 :: T

∆ ⊩ τ1+σ1 #T τ2×σ2
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Intuition
Definitions
Example programs

Provability

The main crux of the system — injectivity. This rule makes it possible to
use GADTs (e.g., in case of well-typed terms) to derive non-trivial
equalities.

c :: (κi ⇒)i κ ∆ | Φ ⊩ c (σi )i ≡κ c (τi )i
(∆ | Φ ⊩ σi ≡κi τi )i

∆ | Φ ⊩ σ1 × τ1 ≡T σ2 × τ2

∆ | Φ ⊩ τ1 ≡T τ2
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Intuition
Definitions
Example programs

Static semantics

We handle constraint passing manually to simplify semantic model.
This is handled by the typechecker in real calculi with GADTs.

∆ ⊢ χ constr ∆ | Φ, χ | Γ ⊢ e : τ

∆ | Φ | Γ ⊢ λ•. e : χ→ τ

∆ | Φ ⊩ χ ∆ | Φ | Γ ⊢ v : τ

∆ | Φ | Γ ⊢ ⟨•, v⟩ : χ× τ

∆ | Φ ⊩ σ1 ≡κ σ2 ∆ ⊩ σ1 #κ σ2 ∆ ⊢ τ :: T

∆ | Φ | Γ ⊢ abort • : τ

∆ | Φ ⊩ τ1 ≡T τ2 ∆ | Φ | Γ ⊢ e : τ1

∆ | Φ | Γ ⊢ e : τ2
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Intuition
Definitions
Example programs

Type-indexed vectors

Some classical examples of dependent types can be expressed with just
GADTs, if we use them as ‘tags’.

natvec :: T ⇒ T
natvec ≜

µφ :: T ⇒ T. λα :: T.
((α≡T void)× unit)
+(N×∃β :: T. (α≡T (β+unit))× (φ β))

natvec is either unit (and has void as its index)
or not unit (and the tail has a smaller index).

nenatvec :: T
nenatvec ≜ ∃α :: T. natvec (α+unit)
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Intuition
Definitions
Example programs

Type-indexed vectors

The head function is now total! (We can eliminate the impossible case.)

vhead : nenatvec→N
vhead xs ≜

let (∗, ys) = xs in
case unroll ys
| inj1 (•,w). abort •
| inj2 ⟨y , ⟩. y
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First attempt
Second attempt

Enough about the syntax of our calculus! Can we actually prove
something about it?
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First attempt
Second attempt

Näıve approach

Types are interpreted as sets of values. Constraints are interpreted
as equalities of these sets.

We can’t validate injectivity rules, e.g., consider this instance:

∆ | Φ ⊩ void× τ1 ≡T void× τ2

∆ | Φ ⊩ τ1 ≡T τ2

If ∅ × A = ∅ × B, then it isn’t necessarily true that A = B.
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First attempt
Second attempt

Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

NbE
progress +
preservation

KEY challenge:
conversion rules

semantic model

KEY property: universe
of semantic relations

Known not to work (injectivity)
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First attempt
Second attempt

High-level explanation

Idea: two stages.

Before we compute the actual semantics, we need to do some
equalities house-keeping.

The first stage helps to reason about equalities.

The second stage is for sets of values.
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First attempt
Second attempt

Normal forms

We need an inductively defined universe of ‘codes’ for types.

We can use NbE for types, and their normal forms as codes.
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First attempt
Second attempt

First stage

Normalization by evaluation for types.

Syntax of normal and neutral forms for types.

Normalization is performed by composition of reify and eval.

JTK ≜ NeuT

Jκa ⇒ κr K ≜ JκaK ⇒ Jκr K

J∆K ≜
∏

α::κ∈∆

JκK

reify : JκK ⇒ Nfκ

reflect : Neuκ ⇒ JκK

eval : Ty∆κ → (J∆K ⇒ JκK)
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First attempt
Second attempt

Setup for the second stage

We used step-indexed logic for this version of the calculus.
Language features might require additional gadgets.

τ ::= T | Val | Expr | Prop | 1 | τ + τ | τ × τ | τ → τ

t,P ::= x | v | e | F (t1, . . . , tn) |
() | (t, t) | πi t | λx : τ. t | t(t) |
inl t | inr t | case(t, x .t, y .t) |
False | True | t =τ t | P ⇒ P | P ∧ P | P ∨ P |
∃x : τ.P | ∀x : τ.P | ▷P | µ x : τ. t

Γ, x : τ ⊢ t : τ x is guarded in t

Γ ⊢ µ x : τ. t : τ
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First attempt
Second attempt

Second stage

We can interpret normal forms now, instead of arbitrary types.

Syntactic equality of normal forms for constraints.

(∆ ⊢ τ ≡κ σ constr) true ≜

∀(∆′ : Ctx)(η : J∆K∆
′
).reify(eval(τ)(η)) = reify(eval(σ)(η))

R(χ× ν)(v) ≜ ∃v ′.v = ⟨•, v ′⟩ ∧ χ true ∧R(ν)(v ′)

22



Motivation
Language
Semantics
Conclusion
Appendix

First attempt
Second attempt

But what happens when we want to go under binders in types
(at this point, it’s either forall or recursive types)?

R(∀α :: κ. τ)(v) ≜ ∃e. v = Λ. e ∧ ∀µ ∈ ?.wp(R(τ + something about µ and α))(e)

What if we want to validate an equality in τ that involves α?

If we try to use predicates, we end up with a function from an
interpretation of N to some arbitrary interpretation of α and a syntactic
constraint.

R(∀α :: T. ∀β :: T. (α×β≡T N×β)→N→α)
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First attempt
Second attempt

Second stage*

We cannot directly use predicates for ∀.
Guarded recursion not only in the case of recursive types, but also in
the case of ∀ (syntactic substitution strikes back).

We can interpret normal forms now, instead of arbitrary types.

Syntactic equality of normal forms for constraints.

R(∀α :: κ. τ)(v) ≜ ∃e. v = Λ. e ∧ ∀µ ∈ JκK(·).▷wp(R(eval(τ)([α 7→ µ])))(e)

R(χ× ν)(v) ≜ ∃v ′.v = ⟨•, v ′⟩ ∧ χ true ∧R(ν)(v ′)
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First attempt
Second attempt

Dealing with equalities

(∆ ⊢ τ ≡κ σ constr) true ≜

∀(∆′ : Ctx)(η : J∆K∆
′
).reify(eval(τ)(η)) = reify(eval(σ)(η))

To validate the conversion rule we need reification to be injective.

That’s what good stands for.

Lemma (Injectivity of reify)

For any types τ1, τ2 of kind κ, well-formed in ∆
and any good environment η : J∆K∆

′
,

if reify(eval(τ1)(η)) = reify(eval(τ2)(η)), then eval(τ1)(η) = eval(τ2)(η).
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First attempt
Second attempt

Second stage**

We need to maintain a good environment.

We cannot use purely semantic predicates in ∀.
Guarded recursion not only in case of recursive types, but also in ∀
(syntactic substitution strikes back).

We can interpret normal forms now, instead of arbitrary types.

Syntactic equality of normal forms for constraints.

R(∀α :: κ. τ)(v) ≜ ∃e. v = Λ. e ∧ ∀µ ∈ JκK(·). good(µ) → ▷wp(R(eval(τ)([α 7→ µ])))(e)

R(χ× ν)(v) ≜ ∃v ′.v = ⟨•, v ′⟩ ∧ χ true ∧R(ν)(v ′)
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First attempt
Second attempt

Logical relation

We avoided a few problems so far:

If the interpretation of equalities is too semantical, we cannot
validate injectivity rules.

If we use equalities of normal forms to interpret equalities, but do
not use good environments, we cannot validate the conversion rules.

After that, we can actually validate all the rules, given a good
environment for types, and valid contexts for constraints and term
variables.
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First attempt
Second attempt

You might have a question: it’s good, but is it usable for anything apart
from proving safety in a semantical way?

No!

But we can cook up something.

28
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First attempt
Second attempt

We can extend the syntax with arbitrary stuff at the base kind
(remember, that reify and reflect are ‘inert’ for the base kind).

φ : X

φ : Neu∆T

If X is instantiated with predicates (or relations), we can verify
syntactically not well-typed programs (or prove interesting binary
properties).
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First attempt
Second attempt

To evaluate the model we prove representation independence of
type-indexed vectors and lists.

Moreover, we don’t break anything in the process
(e.g., we still can prove free theorems).
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Contributions and future

Limitations

The model is not robust enough to ensure termination of the
sub-calculus with restricted injectivity and no recursive types.

Relational reasoning is limited to types at the base kind
(well, in any case, programmers don’t use types at higher kinds).
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Contributions and future

Contributions:

Calculus for studies of GADTs.

Novel approach to study semantics of feature-rich languages with
syntactic constraints for types.

Semantical models of a language that allows us to express GADTs:

Unary model that validates potential extensions for languages
with GADTs.
Binary model that allows reasoning about representation
independence (and (sic!) doesn’t break anything from
System F ).

and future:

Extensions (general effects).

Relational interpretation of ∀ quantified at higher kinds. (Less
restrictive interpretation of ∀?)
The end goal is to provide a setup that can be used for designing a
language that supports GADTs.
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Placeholder before backup slides

33



Logical relation

JΦKη true ≜ ∀φ ∈ Φ. JφKη true

JΓKη ≜ {γ ∈ dom(Γ) → Val | ∀x ∈ dom(Γ). R(eval(Γ(x))(η))(γ(x))}
∆ | Φ | Γ |= e : τ ≜ ∀η ∈ J∆K(·). good(η) → JΦKη true → ∀γ ∈ JΓKη → wp(R(eval(τ)(η)))(e)

34



Injectivity and Cantor’s paradox

Injectivity of some constructors implies false. It’s a known fact, but can
come up as a surprise.

For any injective constructor c :: (T ⇒ T) ⇒ T and type α :: T it is
possible to derive a value of type void in System F=i

ω .

35



Non-termination

For any injective constructor c :: (T ⇒ T) ⇒ T and type α :: T it is
possible to derive a value of type void in System F=i

ω .

τ loopc ≜ ∃β :: T ⇒ T. (c β≡T α)× (β α→ void)

v loop ≜ λx . let (∗, (•, y)) = x in y (pack ⟨•, y⟩)
⊢ v loop : τ loopc [(c (λα :: T. τ loopc ))/α]→ void,

⊢ v loop (pack ⟨•, v loop⟩) : void

36



Syntactic type-safety via NbE

Lemma (Consistency)

A discriminable constraint is not provable in an empty context: in other
words, ∅ | ∅ ⊩ τ1 ≡κ τ2 and ∅ ⊩ τ1 #κ τ2 are contradictory.

Consequence of the injectivity of reify.

Allows to discharge impossible cases.

Lemma (Canonical form for arrows)

If v is a closed value of type τ and τ is provably equal to some arrow
type in an empty context, then v is a lambda-abstraction with a
well-typed body.

(∅ | ∅ ⊩ τ ≡T (τ1 → τ2)) ∧ (∅ | ∅ | Γ ⊢ v : τ)

=⇒ (∃xe. v = λx . e ∧ ∅ | ∅ | Γ, x : τ1 ⊢ e : τ2)

37



Orthogonal extensions

References and concurrency.
constructors c ::= · · · | ref
references ℓ ::= N
values v ::= · · · | ℓ
expressions e ::= · · · | fork e | alloc v | v := v | ! v

The first stage stays the same, and the rest depends only on the logic
used for defining R.

The only requirements are that new effects should be expressed by type
constructors, and that the ambient logic can express them.

38



Type-safe red-black trees

data Red
data Black
data Tree a where

Tree : : Node Black n a −> Tree a

data Node t n a where
N i l : : Node Black Zero a
BlackNode : : NodeH t0 t1 n a −> Node Black ( Succ n ) a
RedNode : : NodeH Black Black n a −> Node Red n a

data NodeH l r n a = NodeH (Node l n a ) a (Node r n a )

Stronger type invariants.

39



Well-typed lambda terms

Tm :: T ⇒ T
Tm ≜

µφ :: T ⇒ T. λα :: T.
α+ (∃β, γ :: T. (α≡T (β→ γ))× (β→φ γ))
+ (∃β :: T. φ (β→α)×φ β)

40



Well-typed lambda terms

eval : ∀α :: T. Tm α→α
eval ≜

fixλf . Λ. λx .
case unroll x
| inj1 y . y
| inj2 y . case y

| inj1 (∗, (∗, (•, g))). λz . f ∗ (g z)
| inj2 (∗, ⟨g , x⟩). (f ∗ g) (f ∗ x)

41



Logical relation for denotations

For any two bigger related contexts and arguments in this extended
contexts, results are related after extension.

η | ν1 ≈T ν2 ≜ Jν1Kη = ν2

η | φ1 ≈κa⇒κr φ2 ≜ ∀∆′
1,∆

′
2, (δ1 : homK(∆

′
1,∆1), δ2 : homK(∆

′
2,∆2)), (η

′ : J∆′
1K

∆′
2), µ1, µ2.(

δ∗2η = λx . η′(δ1(x))
)
→

(
η′ | µ1 ≈κa µ2

)
→

(
η′ | φ1(δ1, µ1) ≈κr φ2(δ2, µ2)

)
Lemma

If η | µ1 ≈ µ2, then Jreify(µ1)Kη = µ2.
If η | η1 ≈ η2, then η | JτKη1 ≈ JτKη2 .

ı | ν ≈κ ν
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