
DisLog: A Separation Logic for Disentanglement

Alexandre Moine1 Sam Westrick2 Stephanie Balzer2

Cambium Seminar - 27/11/2023

1 2

Disentanglement: A Property of Parallel Programs

Concurrently-executing tasks remain oblivious to each other’s allocations

Disentanglement broadly occurs:
• pure programs are disentangled.
• race-free programs are disentangled.

Disentanglement guarantees locality.

1/24

The MaPLe Compiler

https://github.com/MPLLang/mpl

• StandardML with par : (unit -> 'a) * (unit -> 'b) -> ('a * 'b)

• Fast memory management based on disentanglement.

MPL detects and manages entanglement at runtime.

• Detection: Westrick, Arora, and Acar (ICFP’22)
• Management: Arora, Westrick, and Acar (PLDI’23)

2/24

https://github.com/MPLLang/mpl

Contribution: The First Static Analysis for Disentanglement

DisLog: A separation logic for disentanglement, with timestamps and clocks.

DisLog+: A standard 2010-era separation logic for race-free programs.

• No invariants.
• Disentanglement proof for free.
• Extensions for benign races

write-write races and read-write races on previously allocated data.

DisLog ± DisLog+

Theory and examples are fully mechanized in Coq on top of Iris.

3/24

Formal Semantics of Disentanglement

• Tasks are identified by timestamps.

• If ℓ 7→ ℓ′ and a task t dereferences ℓ

then ℓ′ must have been allocated by a
task preceding t.

4/24

DisLog First Steps: Timestamps and Clocks

A new weakest precondition wp ⟨t, e⟩ {λt ′ v . Ψ}

• t is the current timestamp • t ′ is the end-timestamp

The clock assertion ℓ� t
" ℓ was allocated by a task preceding t "

DisLog’s Load rule

ℓ 7→ ℓ′ ℓ′ � t
wp ⟨t, !ℓ⟩ {λt ′ v . ⌜t ′ = t ∧ v = ℓ′⌝ ∗ ℓ 7→ ℓ′}

5/24

Winding Clocks with the Precedence Assertion

ℓ� t ∗ ??? −∗ ℓ� t ′

The precedence assertion t ≼ t ′

" t precedes t ′ "

The clock assertion is monotonic w.r.t. the precedence pre-order.

ℓ� t ∗ t ≼ t ′ −∗ ℓ� t ′

6/24

Time Flies

Precedence and clock assertions can be generated on the fly.

wp ⟨t, e⟩ {λt ′ v . t ≼ t ′ −∗ Ψ t ′v}
wp ⟨t, e⟩ {Ψ}

⌜ℓ ∈ locs(e)⌝ ℓ� t −∗ wp ⟨t, e⟩ {Ψ}
wp ⟨t, e⟩ {Ψ}

The Par rule:

∀t1 t2. t ≼ t1 −∗ wp ⟨t1, e1⟩ {Ψ1} t ≼ t2 −∗ wp ⟨t2, e2⟩ {Ψ2}

wp ⟨t, e1 || e2⟩
{

λt ′ ℓ.
∃t ′

1 v1 t ′
2 v2. Ψ1 t ′

1 v1 ∗ Ψ2 t ′
2 v2

t ′
1 ≼ t ′ ∗ t ′

2 ≼ t ′ ∗ ℓ 7→ (v1, v2)

}

7/24

Simple Programs Should Have Simple Proofs: DisLog+

• Entanglement results from a race.
• To reason about a race in separation logic, one needs an invariant.

• A proof in a 2010-era separation logic, without invariants, yields disentanglement.
• DisLog+ is such a separation logic, but encoded on top of DisLog.

Two benefits:

• Foundational proof of disentanglement for race-free programs.
• The user can switch to DisLog in a DisLog+ proof, and vice-versa.

8/24

Monotonicity to the Rescue

DisLog+ assertions are monotonic DisLog predicates over an ambient timestamp.

The monotonicity trick appeared in prior work on weak-memory models:
iGPS [Kaiser et al., 2017] iRC11 [Dang et al., 2020] Cosmo [Mével et al., 2020]

Key idea: the points-to assertion of DisLog+ guarantees disentanglement

DisLog+ ≜ Timestamp mono−−−→ DisLog
ℓ 7→ v ≜ λt. ℓ 7→ v ∗ v � t

The points-to assertion of DisLog+ cannot occur inside an invariant!

9/24

Conversions Between DisLog+ and DisLog

The weakest precondition of DisLog+

wpm e {Q} ≜ λt. ∀t ′. t ≼ t ′ −∗ wp ⟨t ′, e⟩ {λt ′′ v . (Q v)t ′′}

We can convert between DisLog and DisLog+.(
P ⊢DisLog+ wpm e {Q}

)
⇐⇒

(
∀t. P t ⊢DisLog wp ⟨t, e⟩ {λt ′ v . (Q v) t ′}

)

• We can verify a DisLog+ interface using DisLog.
• During a DisLog proof, we can use a DisLog+ specification.

10/24

DisLog+ is a Standard Separation Logic

Load does not require a clock assertion: it is bundled inside the points-to.

ℓ 7→ v
wpm (!ℓ) {λv ′. ⌜v ′ = v⌝ ∗ ℓ 7→ v}

Thanks to monotonicity, the Par rule is standard!

wpm e1 {Q1} wpm e2 {Q2}
wpm (e1 || e2) {λℓ. ∃v1 v2. ℓ 7→ (v1, v2) ∗ Q1 v1 ∗ Q2 v2}

11/24

Read the Paper for Details

Extensions to DisLog+ for benign races:

• Write-only points-to assertions for write-write races.
• Objectivity lemmas for reasoning on races on previously allocated data.

The soundness proof and the mechanization.

Case studies:

• Spin-lock.
• Parallel lookup in a lazy collection.
• A fast lock-free hash-set for previously allocated data.
• A slow lock-free hash-set for arbitrary data.

12/24

Conclusion & Future Work

We present:

• DisLog, the first program logic for disentanglement.
• DisLog+, a high-level logic for race-free programs.

https://gitlab.inria.fr/amoine/dislog

Future work:

• A type system in between DisLog and DisLog+, proved sound with semantic typing.
• Arora et al. [2024] add futures to disentanglement. How to adapt DisLog?

13/24

https://gitlab.inria.fr/amoine/dislog

Cambium’s Special

• DisLog+ extensions and case studies.
• A bit of semantics.
• The soundness theorem.

14/24

Write-Only Points-to Assertions

Trivially disentangled: write-write races

We introduce assertions to reason about write-write races within DisLog+.

The write-only points-to ℓ Z⇒δ
p X

(
p ∈ (0; 1], X ∈ ℘(V)

)
• " ℓ perhaps stores a value of X ".
• If p = 1 and X ̸= ∅, then ℓ stores a value of X .

The orig assertion origδ v (v ∈ V)

• " The location originally stored v ".

15/24

Write-Only Points-to API

WOBegin
ℓ 7→ v ⇛ ∃δ. origδ v ∗ ℓ Z⇒δ

1 ∅
WOFrac
ℓ Z⇒δ

(p1+p2) (X1 ∪ X2) ⊣⊢ ℓ Z⇒δ
p1 X1 ∗ ℓ Z⇒δ

p2 X2

WOStore
ℓ Z⇒δ

p X
wpm (ℓ := v) {λ_. ℓ Z⇒δ

p {v}}

WOCancel
origδ v ∗ ℓ Z⇒δ

1 ∅ ⇛ ℓ 7→ v

WOEnd
X ̸= ∅

ℓ Z⇒δ
1 X ⇛ ∃v . ⌜v ∈ X⌝ ∗ ℓ 7→ v

16/24

Case Study: Parallel Lookup in a Lazy Collection

• Problem: find an element inside a lazy collection.
• Solution: in parallel, search for the element, and write it inside a shared location.
• Entanglement hazard: the shared location must not be read!

let lookup (p:'a -> bool) (k:int -> 'a) (n:int) : 'a option =
let r = ref None in
let f i =

let x = k i in
if p x then r := (Some x) else () in

parfor 0 n f; !r

17/24

Objectivity Lemmas — The Easy Part

Trivially disentangled: read-write races on non-location values

Supported out-of-the-box by DisLog+.

If v is not a location: ℓ 7→ v
⊣⊢ λt. ℓ 7→ v ∗ v � t
⊣⊢ λ_. ℓ 7→ v

• ℓ 7→ v is objective: it does not depend on the ambient timestamp.
• We can install invariants for objective assertions!
• Typical example: a spin-lock.

18/24

Objectivity Lemmas — Races on Previously Allocated Data

Trivially disentangled: read-write races on previously allocated data

Idea: unveil "just enough" DisLog in DisLog+.

• The witness ↑t ≜ λt ′. t ≼ t ′ • The embedding ⌈Φ⌉ ≜ λ_. Φ

The SplitSubjectiveObjective rule of Cosmo [Mével et al., 2020].

P ⊣⊢ ∃t. ↑t ∗ ⌈P t⌉

ℓ 7→ v ⊣⊢ ∃t. ↑t ∗ ⌈(ℓ 7→ v) t⌉
⊣⊢ ∃t. ↑t ∗ ⌈ℓ 7→ v ∗ v � t⌉

19/24

Clocks in DisLog+

Clocks can appear in DisLog+ ℓ� now ≜ λt. ℓ� t

ℓ ∈ locs(e) ℓ� now −∗ wpm e {Q}
wpm e {Q}

The general recipe for read-write race on previously allocated data:

• Generate clocks of the values that will be involved.
• Use the SplitSubjectiveObjective rule on the points-to and clocks.
• Install an invariant storing everything.

20/24

Case Study: Deduplication with The World’s Simplest Lock-Free Hash Set

• Problem: remove duplicates from an array.
• Solution: in parallel, insert elements in a hash-set (without duplicates).

Then retrieve the elements.

The hash-set is inspired by the 3rd problem of VerifyThis [2022].

• Implemented as an array, uses open addressing and linear probing for collision.
• Insertion proceeds by a CAS loop.
• Entanglement hazard: the CAS must not see concurrently-allocated data.

We restrict the insertion to previously allocated data.

21/24

Some Semantics

At runtime, the semantics maintains a task tree T ≜ t | T ⊗ T .

Fork
t1 and t2 fresh

t / e1 || e2 / σ → t1 ⊗ t2 / e1 || e2 / σ

Join
t and ℓ fresh σ′ = [ℓ := (v1, v2)]σ

t1 ⊗ t2 / v1 || v2 / σ → t / ℓ / σ′

ParL
T1 / e1 / σ → T ′

1 / e′
1 / σ

T1 ⊗ T2 / e1 || e2 / σ → T ′
1 ⊗ T2 / e′

1 || e2 / σ′

ParR
T2 / e2 / σ → T ′

2 / e′
2 / σ

T1 ⊗ T2 / e1 || e2 / σ → T1 ⊗ T ′
2 / e1 || e′

2 / σ′

22/24

The Truth About WP

• DisLog’s WP is defined in terms of a more general WP wpg.
• wpg is parameterized by a task-tree.
• Generalization needed for various induction to succeed.
• At the end, we define wp as a specialization of wpg on leaves.
⇝ reasoning is only needed happens at leaves!

23/24

The Soundness Theorem

• We encode disentanglement to a safety condition.
• The semantics detects and prevents entanglement.

An expression is stuck if one of its tasks cannot reduce.

Soundness Theorem

If ∀t. wpg ⟨t, e⟩ {λ_ _. ⌜True⌝} holds, then e cannot reach a stuck configuration.

Corollaries:

• If ∀t. wp ⟨t, e⟩ {λ_ _. ⌜True⌝} holds, then e cannot reach a stuck configuration.
• If wpm e {λ_. ⌜True⌝} holds, then e cannot reach a stuck configuration.

24/24

Thank you for your attention!

alexandre.moine [at] inria.fr
swestric [at] cs.cmu.edu
balzers [at] cs.cmu.edu

References i

Jatin Arora, Sam Westrick, and Umut A. Acar. Efficient parallel functional programming
with effects. Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi: 10.1145/3591284.
URL https://doi.org/10.1145/3591284.

Jatin Arora, Stephen K. Muller, and Umut A. Acar. Disentanglement with futures, state,
and interaction. Proc. ACM Program. Lang., 8(POPL), 2024. URL
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/jatina/www/public_html/
_site/assets/docs/POPL24.pdf.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. RustBelt
meets relaxed memory. Proceedings of the ACM on Programming Languages, 4
(POPL):34:1–34:29, 2020. URL https://hal.inria.fr/hal-02351793/.

https://doi.org/10.1145/3591284
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/jatina/www/public_html/_site/assets/docs/POPL24.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/jatina/www/public_html/_site/assets/docs/POPL24.pdf
https://hal.inria.fr/hal-02351793/

References ii

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis.
Strong logic for weak memory: Reasoning about release-acquire consistency in Iris. In
European Conference on Object-Oriented Programming (ECOOP), pages 17:1–17:29,
June 2017. URL
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf.

Glen Mével, Jacques-Henri Jourdan, and François Pottier. Cosmo: A concurrent
separation logic for Multicore OCaml. Proceedings of the ACM on Programming
Languages, 4(ICFP), June 2020. URL http://cambium.inria.fr/~fpottier/
publis/mevel-jourdan-pottier-cosmo-2020.pdf.

https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf

References iii

VerifyThis. Challenge 3 - the world’s simplest lock-free hash set, 2022. URL
https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify%20This/Challenges2022/
verifyThis2022-challenge3.pdf.

Sam Westrick, Jatin Arora, and Umut A. Acar. Entanglement detection with near-zero
cost. Proc. ACM Program. Lang., 6(ICFP), aug 2022. doi: 10.1145/3547646. URL
https://doi.org/10.1145/3547646.

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://doi.org/10.1145/3547646

	Appendix
	References

