DisLog: A Separation Logic for Disentanglement

Alexandre Moine' ~ Sam Westrick?> Stephanie Balzer?

Cambium Seminar - 27/11/2023

Carnegie

s, © Mellon
lreia— University

Disentanglement: A Property of Parallel Programs

Concurrently-executing tasks remain oblivious to each other's allocations

fglclg&%f[Disentanglement broadly occurs:
X = pure programs are disentangled.
= race-free programs are disentangled.
Use { v
Disentanglement guarantees locality.
Use !

1/24

The MaPLe Compiler

® https://github.com/MPLLang/mpl

» StandardML with par : (unit -> 'a) * (unit -> 'b) -> ('a * 'b)

= [Fast memory management based on disentanglement.

MPL detects and manages entanglement at runtime.

= Detection: Westrick, Arora, and Acar (ICFP'22)
= Management: Arora, Westrick, and Acar (PLDI'23)

2/24

https://github.com/MPLLang/mpl

Contribution: The First Static Analysis for Disentanglement

DisLog: A separation logic for disentanglement, with timestamps and clocks.

DisLog+: A standard 2010-era separation logic for race-free programs.

= No invariants.
= Disentanglement proof for free.
= Extensions for benign races
write-write races and read-write races on previously allocated data.

DisLog K& DisLog+

Theory and examples are fully mechanized in Coq on top of lIris.

3/24

Formal Semantics of Disentanglement

= Tasks are identified by timestamps.

= If /+— ¢ and a task t dereferences ¢
then ¢ must have been allocated by a
task preceding t.

4/24

DisLog First Steps: Timestamps and Clocks

A new weakest precondition wp (t, e) {A\t' v. U}
= tis the current timestamp = t'is the end-timestamp
The clock assertion (Ot V
" ¢ was allocated by a task preceding t " A X
Orsigte”

DisLog's LOAD rule
Ot /ot
wp(t,) {AMt'v.Tt =t Av="0T x L ('}

5/24

Winding Clocks with the Precedence Assertion

(Ot « 777 —« (Ot

The precedence assertion t<t V

"t precedes t’ " D
Crsist®

The clock assertion is monotonic w.r.t. the precedence pre-order.

(Ot x t<t - (O

6/24

Precedence and clock assertions can be generated on the fly.

wp(t, e) {At'v.t gt/ «Wiv} "0 € locs(e)T LOt-xwp(t,e){V}
wp (t, e) {V} wp (t,) {W}

The PAR rule:

Vit to. t<tp >« wp(ty, er) {V1} t < th =« wp(t, &) {Vs}

It v th vo. Wit vy x Usth v
wp<t,e1]|e2>{)\t/£. 1 V1% Y2 F1 2272

1<t x th<t x £ (v1,v)

7/24

Simple Programs Should Have Simple Proofs: DisLog+

Entanglement results from a race.

To reason about a race in separation logic, one needs an invariant.

A proof in a 2010-era separation logic, without invariants, yields disentanglement.

DisLog+ is such a separation logic, but encoded on top of DisLog.

Two benefits:

= Foundational proof of disentanglement for race-free programs.

= The user can switch to DisLog in a DisLog+ proof, and vice-versa.

8/24

Monotonicity to the Rescue

DisLog+ assertions are monotonic DisLog predicates over an ambient timestamp.

The monotonicity trick appeared in prior work on weak-memory models:
iGPS [Kaiser et al., 2017] iRC11 [Dang et al., 2020] Cosmo [Mével et al., 2020]

Key idea: the points-to assertion of DisLog+ guarantees disentanglement

DisLog+ £ Timestamp % DisLog
lsv 2 M. Lsv s vOt

The points-to assertion of DisLog-+ cannot occur inside an invariant!

9/24

Conversions Between DisLog+ and DisLog

The weakest precondition of DisLog+

wpme{Q} = At. Vt.t<xt = wp(t, e){\t"v. (QV)t"}

We can convert between DisLog and DisLog+-.

(P Fpistog+ wpme{Q}) <= (Vt. Pt FpisLog wp(t, e) {\t'v. (Qv)t'})

= We can verify a DisLog+ interface using DislLog.

= During a DisLog proof, we can use a DisLog+ specification.

10/24

DisLog+ is a Standard Separation Logic

LOAD does not require a clock assertion: it is bundled inside the points-to.

{— v

wpm (1) {\W. TV = v % £ v}

Thanks to monotonicity, the PAR rule is standard!

wpmer {Q1} wpmer {Qo}
wpm (e1 || &) {\. Fvy vo. L= (vi,v2) * Q1 vi x Qo va}

11/24

Read the Paper for Details

Extensions to DisLog+ for benign races:

= Write-only points-to assertions for write-write races.
= Objectivity lemmas for reasoning on races on previously allocated data.

The soundness proof and the mechanization.

Case studies:

= Spin-lock.

= Parallel lookup in a lazy collection.

= A fast lock-free hash-set for previously allocated data.
= A slow lock-free hash-set for arbitrary data.

12/24

Conclusion & Future Work

We present:

= DisLog, the first program logic for disentanglement.

= DisLog+, a high-level logic for race-free programs.

https://gitlab.inria.fr/amoine/dislog

Future work:

= A type system in between DisLog and DisLog+, proved sound with semantic typing.
= Arora et al. [2024] add futures to disentanglement. How to adapt DisLog?

13/24

https://gitlab.inria.fr/amoine/dislog

Cambium’s Special

= DisLog+ extensions and case studies.
= A bit of semantics.

= The soundness theorem.

14/24

Write-Only Points-to Assertions

Trivially disentangled: write-write races

We introduce assertions to reason about write-write races within DisLog+-.

The write-only points-to £ =9 X (pe(0;1], X € p(V))

= "/ perhaps stores a value of X ".
» If p=1and X # (), then ¢ stores a value of X.

The orig assertion orig® v (vev)
= " The location originally stored v ".

15/24

Write-Only Points-to API

WOBEGIN WOFRrAC
Csv = Boog’v « =30 LB, ., (X1UX) 4= () X1 x (20, X,
WOSTORE
00 X

wpm (£:=v) {A_. =) {v}}

WOCANCEL VOIEAE)

orig’ v x L0 = L v

X #0
(23X = v.TveX x by

16/24

Case Study: Parallel Lookup in a Lazy Collection

= Problem: find an element inside a lazy collection.
= Solution: in parallel, search for the element, and write it inside a shared location.

= Entanglement hazard: the shared location must not be read!

let lookup (p:'a -> bool) (k:int -> 'a) (n:int) : 'a option =
let r = ref Nome in
let £ i =

let x =k i in
if p x then r := (Some x) else () in
parfor O n f; !r

17/24

Objectivity Lemmas — The Easy Part

Trivially disentangled: read-write races on non-location values

Supported out-of-the-box by DisLog—+.

If v is not a location: {— v
4= At.l— v x vOt
4= A_l—=v

= /> v is objective: it does not depend on the ambient timestamp.
= We can install invariants for objective assertions!
= Typical example: a spin-lock.

18/24

Objectivity Lemmas — Races on Previously Allocated Data

Trivially disentangled: read-write races on previously allocated data

Idea: unveil "just enough" DisLog in DisLog+.

(1>
>
©

= The witness 1t = At t <t/ » The embedding [®] _.

The SPLITSUBJECTIVEOBJECTIVE rule of Cosmo [Mével et al., 2020].

P —- 3t. 1t x [Pt]

C—v = 3t. Tt * [({— v)t]
4= 3t 1t x L= vxvOt]

19/24

Clocks in DisLog+

Clocks can appear in DisLog+ (®now = A\t. fOt

¢ € locs(e) £® now - wpm e {Q}
wpme {Q}

The general recipe for read-write race on previously allocated data:

= Generate clocks of the values that will be involved.
= Use the SPLITSUBJECTIVEOBJECTIVE rule on the points-to and clocks.

= |nstall an invariant storing everything.

20/24

Case Study: Deduplication with The World’s Simplest Lock-Free Hash Set

= Problem: remove duplicates from an array.

= Solution: in parallel, insert elements in a hash-set (without duplicates).
Then retrieve the elements.

The hash-set is inspired by the 3rd problem of Verify This [2022].

= Implemented as an array, uses open addressing and linear probing for collision.
= Insertion proceeds by a CAS loop.

= Entanglement hazard: the CAS must not see concurrently-allocated data.

We restrict the insertion to previously allocated data.

21/24

Some Semantics

At runtime, the semantics maintains a task tree T 2 t | T ® T.

FoRKk JOIN
t1 and t, fresh tand £ fresh o' = [0 := (v1,v2)]o
t/el||62/0'—>t1®t2/61‘|62/0 t1®t2/V1||V2/O‘—>t/f/O‘l
PARL

Th/e/o—=T /e /o
ioT/eallee/c>TI@T/€l|le/d

PArRR
Tz/ez/a—)Té/eé/O

heoT/ealle/c=TioT,/elle/d

22/24

The Truth About WP

= DisLog's WP is defined in terms of a more general WP wpg.
= wpg is parameterized by a task-tree.
= Generalization needed for various induction to succeed.

= At the end, we define wp as a specialization of wpg on leaves.

~> reasoning is only needed happens at leaves!

23/24

The Soundness Theorem

= We encode disentanglement to a safety condition.
= The semantics detects and prevents entanglement.

An expression is stuck if one of its tasks cannot reduce.

Soundness Theorem

If Vt. wpg (t, e) {\

. " True™} holds, then e cannot reach a stuck configuration.

Corollaries:

= If Vt. wp (t, e) {A__." True} holds, then e cannot reach a stuck configuration.
= If wpme{A_. " True} holds, then e cannot reach a stuck configuration.

24/24

Thank you for your attention!

alexandre.moine [at] inria.fr
swestric [at] cs.cmu.edu
balzers [at] cs.cmu.edu

References i

Jatin Arora, Sam Westrick, and Umut A. Acar. Efficient parallel functional programming
with effects. Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi: 10.1145/3591284.
URL https://doi.org/10.1145/3591284.

Jatin Arora, Stephen K. Muller, and Umut A. Acar. Disentanglement with futures, state,
and interaction. Proc. ACM Program. Lang., 8(POPL), 2024. URL
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/jatina/www/public_html/
_site/assets/docs/POPL24.pdf.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. RustBelt
meets relaxed memory. Proceedings of the ACM on Programming Languages, 4
(POPL):34:1-34:29, 2020. URL https://hal.inria.fr/hal-02351793/.

https://doi.org/10.1145/3591284
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/jatina/www/public_html/_site/assets/docs/POPL24.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/user/jatina/www/public_html/_site/assets/docs/POPL24.pdf
https://hal.inria.fr/hal-02351793/

References ii

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis.
Strong logic for weak memory: Reasoning about release-acquire consistency in lIris. In
European Conference on Object-Oriented Programming (ECOOP), pages 17:1-17:29,
June 2017. URL
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf.

Glen Mével, Jacques-Henri Jourdan, and Francois Pottier. Cosmo: A concurrent
separation logic for Multicore OCaml. Proceedings of the ACM on Programming
Languages, 4(ICFP), June 2020. URL http://cambium.inria.fr/~fpottier/
publis/mevel-jourdan-pottier-cosmo-2020.pdf.

https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf

References ii

VerifyThis. Challenge 3 - the world's simplest lock-free hash set, 2022. URL
https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify’20This/Challenges2022/
verifyThis2022-challenge3.pdf.

Sam Westrick, Jatin Arora, and Umut A. Acar. Entanglement detection with near-zero
cost. Proc. ACM Program. Lang., 6(ICFP), aug 2022. doi: 10.1145/3547646. URL
https://doi.org/10.1145/3547646.

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://doi.org/10.1145/3547646

	Appendix
	References

