
Modularity, Code Specialization,
and Zero-Cost Abstractions

for Program Verification

Son Ho (Inria)
Aymeric Fromherz (Inria)
Jonathan Protzenko (Microsoft Research)

Verified Crypto Coming to a Python near you

• Python 3.12
• This work: the story of how we

built a layer of high-level APIs
• Technical ingredients:

elaborator reflection, meta-
programming, automated code
rewriting, and high-level
abstractions

1

Background: HACL*

• Integrated in Linux, Firefox, Tezos, and many more
• 140,000+ lines of verified F* code compiling to 80,000+ lines of C
• 30+ algorithms and counting
• Proof engineer productivity is paramount

2

From Verified Crypto to “Real-World” Software

• HACL* is distributed as C code:
non-negotiable, for perf.
• We issue a PR to “land” new HACL*

algorithms into a project
• Project owner reads the generated

code, audits, comments
• Usually, a back-and-forth to reach

mutual satisfaction

3

The Python Challenge
hashlib:
• built-in library of hash functions
• a hodge-podge of implementations, all exposing the same API
• 5 variations of a similar state machine with an internal buffer
• could we factor out this redundancy?

Can we verify this code generically, and compile it to specialized C code?

4

When one thinks of genericity:
• OCaml: functors
• Haskell: typeclasses
• C++: templates
• …

module type EqType = sig
 type t
 val eq: t -> t -> bool end

module MkMap (E : EqType) :
 Map with type k = E.t = struct
 ...
end

module type EqType = sig
 type t
 val eq: t -> t -> bool end

module MkMap (E : EqType) :
 Map with type k = E.t = struct
 type k = E.t
 let find x ls =
 let b = ref true in
 let lsp = ref ls in
 while !b do
 match !lsp with
 | [] -> b := false
 | (x', _) :: tl ->
 if E.eq x x' then b := false
 else lsp := tl done;
 match !lsp with
 | [] -> None
 | (_, y) :: _ -> Some y
end

Encoding Functors: Associative List Example
module type Map = sig
 type k
 val find: k -> (k * 'a) list -> 'a option
end

OCaml:
type map (a : Type) = {
 k: Type;
 find: k -> list (k * a) -> ST (option a) ... }

type eq_type = {
 t: Type;
 eq: t -> t -> bool; }

let mk_map (e : eq_type) (a : Type) :
 m:map a{m.k == e.t} = {
 k = e.t;
 find = (fun x ls ->
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if e.eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y) }

F*:

We want a loop in
the generated code

Type constraint

Refinement

Replace with a linked list

Doesn’t compile to C
(same with typeclasses) Dictionary has runtime cost

⇒ Specialization and partial evaluation? 5

Proofs and
annotations

omitted

Extraction to C?

Zero-Cost Functors: First Attempt (i)

type map (a : Type) = {
 k: Type;
 find: k -> list (k * a) -> ST (option a) ... }

type eq_type = {
 t: Type;
 eq: t -> t -> bool; }

let mk_map (e : eq_type) (a : Type) :
 m:map a{m.k == e.t} = {
 k = e.t;
 find = (fun x ls ->
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if e.eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y) }

Generic code (F*):
let str_eqty : eq_type = { t = string; eq = String.eq; }
let ifind = (mk_map str_eqty int).find

let ifind (x: string) (ls: list (string * int)): option int =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if String.eq x x’
 then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y

Specialization:

After partial evaluation: Types are specialized

e.eq is inlined

What happens if the code has several layers?

6

Zero-Cost Functors: First Attempt (ii)

(* "Module signature" *)
type dv = {
 pid : Type;
 send : pid -> list (pid * ckey) -> bytes -> option bytes;
 recv : pid -> list (pid * ckey) -> bytes -> option bytes; }

Peer device for a secure channel protocol:

(* "Module implementation" *)
type cipher = {
 enc : ckey -> bytes -> bytes;
 dec : ckey -> bytes -> option bytes; }

let mk_dv (m : map ckey) (c : cipher) : d:dv{d.pid == m.k} = {

 pid = m.k;

 send = (fun id dv plain ->
 match m.find id dv with
 | None -> None
 | Some sk -> Some (c.enc sk plain));

 recv = (fun id dv secret ->
 match m.find id dv with
 | None -> None
 | Some sk -> c.dec sk secret)
}

find gets inlined and duplicated

7

(* Inline mk_send *)
let mk_send (pid : Type) (find : pid -> list (pid * ckey) -> option ckey) (enc : ckey -> bytes -> bytes)
 (id : pid) (dv : list (pid * ckey)) (plain : bytes) : option bytes =
 match find id dv with
 | None -> None
 | Some sk -> Some (enc sk plain)

(* Don't inline isend *)
let isend = mk_send string ifind aes_enc

... (* mk_recv and irec *)

(* Don't inline ifind *)
let ifind = mk_find i String.eq

Zero-Cost Functors: Encoding
(* Inline mk_find *)
let mk_find (k v : Type) (eq: k -> k -> bool) (x: k) (ls: list (k * v)) : option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with | [] -> upd b false
 | (x', _) :: tl -> if eq x x' then upd b false else upd lsp tl);
 match !* lsp with | [] -> None | (_, y) :: _ -> Some y)

8

Parameterize with eq

Cumbersome to write and maintain

Zero-Cost Functors: Call-graph Rewriting

9

What we want to write: What we want to get:
let mk_find (k v : Type) (eq: k-> k -> bool)
 (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

let find (k v : Type) (eq: k-> k -> bool)
 (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

let find (k v : Type) (eq: k-> k -> bool)
 (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

val eq (k : Type): k -> k -> bool

let find (k v : Type)
 (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq k x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

assume val eq (k : Type): k -> k -> bool

let find (k v : Type)
 (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq k x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

assume val eq (k : Type): k -> k -> bool

let find (k v : Type)
 (x: k) (ls: list (k * v)): option v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq k x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

type mindex = { k : Type; v : Type }

assume val eq (i : mindex): i.k -> i.k -> bool

let find (i : mindex) (x : i.k)
 (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y

type mindex = { k : Type; v : Type }

assume val eq (i : mindex): i.k -> i.k -> bool

let find (i : mindex) (x : i.k)
 (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () ->
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y

type mindex = { k : Type; v : Type }

let mk_find (i: mindex) (eq: i.k-> i.k -> bool)
 (x: i.k) (ls: list (i.k * i.v)): option i.v =
 let b = alloc true in let lsp = alloc ls in
 while (fun () -> !* b)
 (fun () -> let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl);
 match !* lsp with
 | [] -> None
 | (_, y) :: _ -> Some y

Call-graph rewriting by means
of meta-programming

%splice [mk_find] (specialize (`mindex) [`find])

The code is re-checked

type mindex = { k : Type; v : Type }

assume val eq (i : mindex): i.k -> i.k -> bool

let find (i : mindex) (x : i.k)
 (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (fun () -> !* b)

(fun () ->
let ls = !* lsp in
match ls with
| [] -> upd b false
| (x', _) :: tl ->

if eq x x' then upd b false
else upd lsp tl);

 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y

type mindex = { k : Type; v : Type }

[@ Specialize]
assume val eq (i : mindex): i.k -> i.k -> bool

[@ Eliminate]
let while_cond (b: pointer bool) (_:unit) = !*b

[@ Eliminate]
let while_body (i: mindex) (b: pointer bool)
 (lsp: list (i.k * i.v)) (x:i.k) (_:unit) =
 let ls = !* lsp in
 match ls with
 | [] -> upd b false
 | (x', _) :: tl ->
 if eq x x' then upd b false
 else upd lsp tl

[@ Specialize]
let find (i : mindex) (x : i.k)
 (ls : list (i.k * i.v)) : option i.v =
 let b = alloc true in
 let lsp = alloc ls in
 while (while_cond b) (while_body i b lsp x);
 match !* lsp with
 | [] -> None | (_, y) :: _ -> Some y

Similar (more complex) device used
in the Noise* protocol compiler

Application: algorithms in HACL*

• Type parameter = choice of vectorization level (None, 128-bit, 256-bit)
• Code = crypto algorithm, e.g. Chacha20, Poly1305, etc.
• Deep static call graphs, mixture of [@ Specialize] and [@ Eliminate]

10

Application: algorithms in HACL*

Algorithm Number of specializations Nature of specialization

Chacha20 3 vectorization level

Poly1305 3 vectorization level

Chacha20Poly1305 3 vectorization level

HPKE 15 (> 80 possible options) ciphersuite & implementation

Curve25519 3 (recursive) field arithmetic

Curve25519 has two recursive layers of specialization:
• Field64 can be specialized with Vale (ASM) or HACL (C)
• Curve25519 itself can be specialized with Field64 or Field51

11

All those implementations: > 20k lines of C code

Application: Streaming APIs

Consider a block API, such
as a hash function:
- tricky state machine
- must feed data in entire

blocks (unrealistic)
- computing the hash

invalidates the state
- precise sequence of

operations

12

Application: Streaming APIs

Instead, people use Streaming APIs:
• Long-lived state carries internal

buffer
• Incremental “update” operation

accumulates arbitrary-sized data
• Intermediary digests do not

invalidate the state
• Internal details such as update_last

are hidden
• Tricky to implement correctly

state *s = hash_new(SHA2_256);
hash_update(s, “hello”, 5);
hash_update(s, “ “, 1);
char hash1[32];
hash_digest(s, hash1);
char hash2[32];
hash_update(s, “world”, 5);
hash_digest(s, hash2);
hash_delete(s);

13

Application: Streaming APIs

14

Application: Streaming APIs

• Flagship application of our techniques!
• Use the rewriting tactic and earlier code patterns to write one

streaming API that is generic over the choice of block algorithm
• Enormous code savings:

• 15 applications of the generic code
• really common API! (though many tweaks: key/ no key, runtime key, etc.)
• proof-to-code ratio of 0.51: every line of F* yields two lines of C code (total: 8k)
• in relative terms: massive improvement compared to earlier versions of HACL

15

Application: Streaming APIs

16

Types

Constants

Spec (spec defs + theorems)

Extract from one of the “index” types:

Application: Streaming APIs

• Excellent engagement with the Python team
• Replaced all of their built-in hash implementations with our verified code
• Released in Python 3.12 (blake2 is coming)
• Good confirmation that our work has practical impact
• Forced us to polish, attain a high level of quality, and do serious packaging

work

17

Modularity, Code Specialization, and Zero-Cost Abstractions
for Program Verification

Son Ho (INRIA), Aymeric Fromherz (INRIA), Jonathan Protzenko (Microsoft Research)

• An arsenal of PL techniques to reconcile high-level, generic programming with low-
level code specialization and verification (“best of both worlds”)

• Added an extra compiler stage that automatically rewrites the user’s code in userland
• Wide variety of applications in HACL, significant boost on productivity, maintenance
• One flagship application: streaming functor, an “API transformer” that goes from

unsafe API to safe API, integrated into Python

