How to prove that you need Cake?

Based on PureCake A Verified Compiler for a Lazy
Functional Language

17th Novembre 2023 — Cambium Seminar

Hrutvik Kanabar university of Kent

Samuel Vivien chaimers University of Technology, Ecole Normale Supérieure PSL
Oskar Abrahamsson Chalmers University of Technology

Magnus 0. Myreen Chalmers University of Technology

Michael Norrish Australian National University

Johannes Aman Pohjola University of New South Wales

Riccardo Zanetti chaimers University of Technology

Kacper Korban chaimers University of Technology

Gordon Sau university of New South Wales

Language guarantees

Implementing MyCiriticalSoftware

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 1/28

Language guarantees

Implementing MyCiriticalSoftware

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 1/28

Language guarantees

Implementing MyCiriticalSoftware

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 1/28

Language guarantees

Implementing MyCiriticalSoftware

7 type safety
memory safety

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 1/28

Language guarantees

Implementing MyCiriticalSoftware

7 type safety type safety
' memory safety memory safety
purity vs. 1/0

ref. transparency
laziness
free theorems

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 1/28

Compiler guarantees

Compiling MyCriticalSoftware

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 2/28

Compiler guarantees

Compiling MyCriticalSoftware

2N

Oxalb2c3... Oxbcd456... 0xf9e8d7...

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 2/28

Compiler guarantees

Compiling MyCriticalSoftware

X

Oxalb2c3... Oxbcd456... 0xf9e8d7...
? ? ?

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 2/28

Compiler guarantees

Compiling MyCriticalSoftware

X

CompCert

Oxalb2c3... Oxbcd456... 0xf9e8d7...

© ? ?

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 2/28

Compiler guarantees

Compiling MyCriticalSoftware

X

CompCert CakeML

Oxalb2c3... Oxbcd456... 0xf9e8d7...

9 9 !

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 2/28

Compiler guarantees

Compiling MyCriticalSoftware

X

CompCert CakeML 7

Oxalb2c3... Oxbcd456... 0xf9e8d7...

© @ 777

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 2/28

The PureCake project:

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 3/28

The PureCake project:

a HOL4-verified compiler for

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 3/28

The PureCake project:

a HOL4-verified compiler for

a lazy, purely functional language which

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 3/28

The PureCake project:

a HOL4-verified compiler for
a lazy, purely functional language which

is inspired by Haskell and

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 3/28

The PureCake project:

a HOL4-verified compiler for
a lazy, purely functional language which
is inspired by Haskell and
targets CakeML

CakeML = a verified implementation of a subset of ML [POPL14]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 3/28

Key contributions

Highlights

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 4/28

Key contributions

Highlights

= sound equational reasoning

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 4/28

Key contributions

Highlights

= sound equational reasoning
= parsing expression grammar (PEG) for Haskell-like syntax
= two-phase constraint-based type inference

= demand analysis

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 4/28

Key contributions

Highlights

= sound equational reasoning

= parsing expression grammar (PEG) for Haskell-like syntax
= two-phase constraint-based type inference

= demand analysis

= optimisations for non-strict idioms

= monadic reflection (monadic — imperative)

= CakeML as a back end for end-to-end verified compilation

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 4/28

Key contributions

Highlights

= sound equational reasoning

= parsing expression grammar (PEG) for Haskell-like syntax
= two-phase constraint-based type inference

= demand analysis

= optimisations for non-strict idioms

= monadic reflection® (monadic — imperative)

= CakeML as a back end for end-to-end verified compilation

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 4/28

This talk

Global overview 4+ demands analysis

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 5/28

https://cakeml.org/pldi23-purecake.pdf
https://github.com/cakeml/pure

This talk

Global overview 4+ demands analysis

For more details:

= Read our paper: & cakeml.org/pldi23-purecake.pdf
= Visit our GitHub:) github.com/cakeml|/pure

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 5/28

https://cakeml.org/pldi23-purecake.pdf
https://github.com/cakeml/pure

Source language

A realistic functional language

PureLang has standard functional idioms ...

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 6/28

A realistic functional language

PureLang has standard functional idioms ...

fact :: Integer -> Integer -> Integer

fact an = general recursion
if n < 2 then a

else fact (a * n) (n - 1)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

6/28

A realistic functional language

PureLang has standard functional idioms ...

fact
fact a n general recursion
n a
fact (a * n) (n)

map :: (a => b) -> [a] -> [b]
map £ 1 = case 1 of algebraic data types +

0->10 .
hit > £ h : map £ t pattern-matching

6/28

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

A realistic functional language

PureLang has standard functional idioms ...

fact
fact a n general recursion
n a
fact (a * n) (n)
map (a b) [a] [b]
map f 1 1 algebraic data types +
I pattern-matching
factorials :: [Integer]

higher-order functions

~

factorials = map (fact 1) (numbers O

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 6/28

A realistic subset of Haskell

. and Haskell extras

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 7/28

A realistic subset of Haskell

. and Haskell extras

numbers :: Integer -> [Integer]

numbers n = 1 : numbers (a + 1) laziness — infinite data

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 7/28

A realistic subset of Haskell

and Haskell extras

numbers [1 . Lo
TS B S m g mnheEs @ - i) laziness — infinite data
main :: I0 O pure by default, monads for:
main = do]

n <- readInt -- read from stdin = sequencing

let facts = take n factorials 0 stateful con1putations

app (\i -> print $ toString i) facts

= 1/0

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 7/28

A realistic subset of Haskell

. and Haskell extras

numbers [] . o
numbers n = 1 : numbers (n + 1) laziness — infinite data
main pure by default, monads for:
main
n readInt = sequencing
facts take n factorials = stateful computations
app (\i print toString i) facts

= 1/0

Single 10 monad for arrays, exceptions, and 1/O (via FFI calls)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 7/28

A realistic subset of Haskell

. and Haskell extras

numbers [] . o
numbers n = 1 : numbers (n + 1) laziness — infinite data
main pure by default, monads for:
main
n readInt = sequencing
facts take n factorials = stateful computations
app (\i print toString i) facts

= 1/0

Single 10 monad for arrays, exceptions, and 1/O (via FFI calls)

Also: indentation-sensitivity, do notation, mutual recursion, ...

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 7/28

Formal syntax

A tale of two ASTs... separate implementation and verification

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 8/28

Formal syntax

A tale of two ASTs... separate implementation and verification

ce e

compiler expressions semantic expressions

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 8/28

Formal syntax

A tale of two ASTs... separate implementation and verification

desugar

ce e

compiler expressions semantic expressions

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 8/28

Formal syntax

A tale of two ASTs... separate implementation and verification

desugar

ce e

compiler expressions semantic expressions

= higher-level
= used in implementation

= includes case

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 8/28

Formal syntax

A tale of two ASTs... separate implementation and verification

ce desugar e
compiler expressions semantic expressions
= higher-level = ground truth for semantics
= used in implementation = constructor operations:
» includes case test name/arity equality &

argument projection

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 8/28

Semantics — definitions

Operational semantics in layers:

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 9/28

Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

n —
eval, e = wh

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 9/28

Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step
eval’, e = wh
2. Lift to unclocked evaluation

n _
ser | wh for some n, eval, e = wh
eval,, e =

Timeout for all n, eval, e = Timeout

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 9/28

Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

eval” e = wh

wh
2. Lift to unclocked evaluation

wh for some n, eval” e = wh

def wh

eval,, e =
Timeout for all n, eval!, e = Timeout

3. Stateful interpretation of monadic operations

(— — —):wh—Kx—0—itree EAR

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 9/28

Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

eval” e = wh

wh
2. Lift to unclocked evaluation

wh for some n, eval” e = wh

def wh

eval,, e =

Timeout for all n, eval’,

e = Timeout
3. Stateful interpretation of monadic operations
(—, —, —):wh—Kk—0—itree EAR
Finally, [e] = (eval,, e, &, &)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 9/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]
i.e. bisimilar sub-expressions = bisimilarity

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:

a def
» a-equivalence: e; =, e = perm_vars €] &

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]
Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:
5 def
» a-equivalence: e; =, e = perm_vars €] &

= [-equivalence: (Ax.ey) - e =g (freshen,, e1)[e2/x]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:
= a-equivalence: e =, & & perm_vars e;
= [-equivalence: (Ax.ey) - e =g (freshen,, e1)[e2/x]
= A standard contextual equivalence: e; ~ &

(equality under all closing contexts)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity
Definitions:

= a-equivalence: e; =, & £ perm_vars e; e

= [-equivalence: (Ax.ey) - e =g (freshen,, e1)[e2/x]

= A standard contextual equivalence: e; ~ &

(equality under all closing contexts)

Derived results:

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:
= a-equivalence: e =, & & perm_vars e;
= [-equivalence: (Ax.ey) - e =g (freshen,, e1)[e2/x]
= A standard contextual equivalence: e; ~ &

(equality under all closing contexts)

Derived results:

e1= e < €6~ &

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:
= a-equivalence: e =, & & perm_vars e;
= [-equivalence: (Ax.ey) - e =g (freshen,, e1)[e2/x]
= A standard contextual equivalence: e; ~ &

(equality under all closing contexts)

Derived results:
€1 =a €2 €1 =p €

e1= e < e~ = =
€1 = & €1 = €

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 10/28

Type system

Standard Hindley-Milner rules

Read the paper for more details

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 11/28

Compiler front end

Compiler structure

Concrete syntax

Y

PURELANG
ce from
pure call-by-name
(subst. semantics)

~
Y

THUNKLANG
pure call-by-value
(subst. semantics)

-
(Envlane)
ENVLANG
pure call-by-value

(env. semantics)

(rarel ane)
STATELANG

impure call-by-value

(env. semantics)

CakeML source

) lex, parse, desugar

oXbidineleicupleralvt compiler top to bottom

> inline, specialise loops
D remove dead lets

<« type inference

D simplify

demand analysis
2 annotates with seqs

translate into call-by-value;
introduce delay/force;
avoid delay (force (var_))

lift A-abstractions
) out of delays

) simplify forces

reformulate to simplify
D compilation to STATELANG

compile delay/force and
10 monad to stateful ops
) push _ - unit inwards

make every \-abstraction
2 bind a variable

translate to CakeML;
D attach helper functions

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Upcoming slides examine the

12/28

Compiler structure

Concrete syntax

Y

PURELANG
ce from
pure call-by-name
(subst. semantics)

~
Y

THUNKLANG
pure call-by-value
(subst. semantics)

-
(Envlane)
ENVLANG
pure call-by-value

(env. semantics)

(rarel ane)
STATELANG

impure call-by-value

(env. semantics)

CakeML source

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

5 i Upcoming slides examine the

nding group analysis compiler top to bottom

se loops

D remove dead lets
<« type inference

D simplify
demand analysis
2 annotates with seqs

translate into call-by-value;
introduce delay/force;
) simplify forces

avoid delay (force (var_))
compile delay/force and
10 monad to stateful ops

) push _ - unit inwards

2
2

Frontend accepts PurelLang

lift A-abstractions
out of delays

reformulate to simplify
compilation to STATELANG

make every \-abstraction
bind a variable

translate to CakeML;
attach helper functions

12/28

Compiler structure

Concrete syntax

Y

PURELANG
ce from
pure call-by-name
(subst. semantics)

~
Y

5 i Upcoming slides examine the

judielercrlanalyzs compiler top to bottom
alise loops
D remove dead lets
<« type inference
D simplify
demand analysis
annotates with seqs
2 ith

translate into call-by-value;

Frontend accepts PurelLang

introduce delay/force;
avoid delay (force (var_))

)

) simplify forces

THUNKLANG

pure call-by-value ft)\-abstracstlons

(subst. semantics)

Three intermediate languages,

D E%f%r‘;n”gltiate tosi each with a SpeCIfIC focus
ENVLANG

pure call-by-value
(env. semantics)

(rarel ane)
STATELANG

)IO

make every \-abstraction
bind a variable

translate to CakeML;
attach helper functions

_ - unit inwards
impure call-by-value

2
Camatomm) 2

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

(env. semantics)

12/28

Compiler structure

Upcoming slides examine the

) lex, parse, desugar
N
nding group analysis compiler top to bottom

se loops

PURELANG
ce from 2 remove dead lets
pure call-by-name < type inference

(subst. semantics) | » simplify

demand analysis
2 annotates with seqs

Frontend accepts PurelLang

~ }
translate into call-by-value;

(\ introduce delay/force;
avoid delay (force (var_))
THUNKLANG

pure call-by-value ft)\-abstracstlons

(subst. semantics)

2 simplify forces Three intermediate languages,

D E%fr?qr‘;n”gltiate tosi each with a SpeCIfIC focus
ENVLANG

pure call-by-value
(env. semantics)

)IO

impure call-by-value make every \-abstraction

M} 2 bind a variable Targets Ca keM |_

translate to Cakabd

P grriunctions
CakeML source e

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 12/28

(" QT anee) n
STATELANG _ - unit inwards

Compiler structure

PureLang

i

lexing, binding group

. type demand
)) — inlining — — i
parsing analysis inference analysis

front end

[ThunkLang ———— EnvLang ———— Statelang]

back end J

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 13/28

Compiler structure

PureLang

i

lexing, binding group

. type demand
)) — inlining — — i
parsing analysis inference analysis

front end

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 13/28

Parsing

Indentation-sensitive parsing expression grammar (PEG)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 14/28

Parsing

Indentation-sensitive parsing expression grammar (PEG)

= Symbolic sets of possible relations for each non-terminal

= Verified to terminate on all inputs

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 14/28

Binding group analysis

z = 42
y=x+1
X =w+y
w=20
main

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 15/28

Binding group analysis

z = 42 let rec z = 42
y=x+1 y=x+1
Parsing x=wty — X =Wty
w=20 w=20
main in main

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 15/28

Binding group analysis

z let rec z = 42

y X y=x+1
Parsing A — BETPY

w w=20

main in main

Analyse dependencies W @

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 15/28

Binding group analysis

z let rec z = 42

y X y=x+1
Parsing 2 S Wy — REQ®Y

w w=20

main in main

Analyse dependencies W
Pseudo-topological sort

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 15/28

Binding group analysis

Parsing

Analyse dependencies

Pseudo-topological sort

Transform code + tidy

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

z let rec z = 42
y X y=x+1
X=w+y — Xx=w+y
w w=20
main in main

15/28

Binding group analysis

z let rec z = 42

y X y=x+1
Parsing X =Wty — X =Wy

w w=20

main in main

Analyse dependencies W
Pseudo-topological sort

let w = 0 in
Transform code + tidy letrecx =w+y;y=x+1
in main

Verified entirely within equational theory

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 15/28

Methodology — implementation vs. verification

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 16/28

Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform : e — e

= Verify: wf e = [transform e] =[e]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 16/28

Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform: e — e

= Verify: wf e = [transform e] = [e]

This work:
eR € compile ce = cé’
syntactic relations code transformation

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 16/28

Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform: e — e

= Verify: wf e = [transform e] = [e]

This work:
eR € compile ce = cé’
syntactic relations code transformation

= express core transformations

= easy to underspecify and
make domain assumptions

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

16/28

Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform: e — e

= Verify: wf e = [transform e] = [e]

This work:
/ . /
eR e compile ce = ce
syntactic relations code transformation
= express core transformations = must fit in relation envelope:
= easy to underspecify and ce R’ (compile ce) for all ce
make domain assumptions = must satisfy bookkeeping

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 16/28

Methodology — workflow

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28

Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28

Methodology — workflow

1. Define and verify R: e R e = [e] =[¢€]
Three simulation proofs: one per layer of the semantics

2. Define compile : ce — ce

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28

Methodology — workflow

1. Define and verify R: e R e = [e] =[¢€]
Three simulation proofs: one per layer of the semantics
2. Define compile : ce — ce

3. Verify wf ce = (desugar ce) R (desugar (compile ce))

17/28

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics
2. Define compile : ce — ce
3. Verify wf ce = (desugar ce) R (desugar (compile ce))

4. Compose theorems:
wf ce = [desugar ce| = [desugar (compile ce) |

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28

Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics

2. Define compile : ce — ce
3. Verify wf ce = (desugar ce) R (desugar (compile ce))

4. Compose theorems:
wf ce = [desugar ce] = [desugar (compile ce) |

5. Integrate into compiler, discharge wf ce

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28

Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics
2. Define compile : ce — ce
3. Verify wf ce = (desugar ce) R (desugar (compile ce))

4. Compose theorems:
wf ce = [desugar ce] = [desugar (compile ce) |

5. Integrate into compiler, discharge wf ce

Separation of concerns for modularity and ease-of-verification

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = ifn=20
then acc

else fact (acc * n) (n - 1)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 18/28

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 18/28

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

» edemandsx, = e = (x; "seq” ... X, 'seq” €)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 18/28

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

J— def
» edemandsx, = e

=~

(x1 “seq” ... x, “seq €)

= Implement/verify* analysis: e demands (analyse €)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 18/28

Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

J— def
» edemandsx, = e

=~

(x1 “seq” ... x, “seq €)
= Implement/verify* analysis: e demands (analyse €)

= Prefix code with seq, including in recursive functions

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 18/28

Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

~

if (Seq v x) then y else z = Seq v (if x then y else z)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Demand analysis — definition

fact acc n = seqn § seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

if x then (Seq v y) else (Seq v z)
>~ Seq v (if x then y else z)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Demand analysis — defi

fact accn = seq n $ seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

if x then (Seq v y) else (Seq v z)
=~ Seq v (if x then y else z)

We have two distinct values for L : Err and Div

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

= Fixpoint analysis for recursive functions

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28

Compiler back end

Compiler structure

PureLang

i

lexing, binding group

. type demand
)) — inlining — — i
parsing analysis inference analysis

front end

[ThunkLang ———— EnvLang ———— Statelang]

back end J

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 20/28

Compiler structure

PurelLang
|
lexing, binding group o type demand
T —) — inlining — —)
parsing analysis inference analysis
front end

[ThunkLang ———— EnvLang ———— Statelang]

back end J

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 20/28

Compiler structure

PurelLang
|
lexing, binding group o type demand
T —) — inlining — —)
parsing analysis inference analysis
front end

[ThunkLang ———— EnvLang ———— Statelang]

back end J

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 20/28

ThunkLang

Call-by-value semantics

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28

ThunkLang

Call-by-value semantics

Syntax: e u= ... | delay e | force e introduce thunks

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28

ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

Semantics: eval e = thunk €’

eval & = v

eval (delay e€) = thunk e
eval (force e) = v

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28

ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

Semantics: eval e = thunk €’

eval € = v

eval (delay e) = thunk e
eval (force e) = v

NB thunks are pure, value-sharing comes later

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28

ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

. eval e = thunk €
Semantics:

eval € = v

eval (delay e) = thunk e
eval (force e) = v

NB thunks are pure, value-sharing comes later

Optimisation: reduce force (delay e); two forms of restricted CSE;
lift lambdas out of delay

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28

ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

eval e = thunk €

Semantics:
eval ¢ = v
eval (delay e) = thunk e
eval (force e) = v
NB thunks are pure, value-sharing comes later
Optimisation: reduce force (delay e); two forms of restricted CSE;
lift lambdas out of delay
Verification: ~ seven syntactic relations in total

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28

Pure to Thunk

fact accn = seq n $ seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 22/28

Pure to Thunk

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

fact = Delay (\acc n. Force n $ Force acc $
if Force n = 0
then Force acc
else (Force fact) (Delay (Force acc * Force n))
(Delay (Force n - 1)))

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 22/28

EnvLang

Environment-based semantics + minor reformulations

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 23/28

EnvLang

Environment-based semantics + minor reformulations

Syntax: essentially unchanged

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 23/28

EnvLang

Environment-based semantics + minor reformulations

Syntax: essentially unchanged

Semantics: substitutions environments

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 23/28

EnvLang

Environment-based semantics + minor reformulations

Syntax: essentially unchanged
Semantics: substitutions environments
Verification: focuses on the change in semantic style

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 23/28

StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 24/28

StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 24/28

StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce] ... remove return/bind/ ...

Semantics: stateful CESK machine

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 24/28

StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...
Semantics: stateful CESK machine
Compilation: returne — let x = €' in _. x

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 24/28

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...
Semantics: stateful CESK machine
[true, v] or
Compilation: return e — let x = €' in _. x [false, _. €]

forcee — let x =€’ in
if x[0] then x[1]
else ... x[0] := true; x[1] :=v ...

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 24/28

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...

Semantics: stateful CESK machine P
[true, v] or

Compilation: [false, _. €]

Optimisation: simplify A_. e and unit

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 24/28

Connection with CakeML

Oracles vs. ITrees

Reconciling differing semantic styles

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(Ol) A(Oz)
01 02

linear oracles: semanticsp e = tr

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

Vis o1 k1 ...
o L) B Vlsok<vls I

linear oracles: semanticsp e = tr branching ITrees: [e]=Vis ...

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified I Tree semantics: [e]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified ITree semantics: [e]. % tr

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is 0 k KC), Vis o k..
01 1>02 = Ul . ""ViSOQkZ...

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:
cakeml e = Some code

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:
cakeml e = Some code

code in memory of machine

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:
cakeml e = Some code

code in memory of machine

[machine] prunes [e]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 25/28

Compiler correctness

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 26/28

Compiler correctness

purecake str = Some ast

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 26/28

Compiler correctness

purecake str = Some ast

exists ce such that

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 26/28

Compiler correctness

purecake str = Some ast

exists ce such that

frontend str = Some (ce, -)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 26/28

Compiler correctness

purecake str = Some ast

exists ce such that
frontend str = Some (ce, -)

ce is type safe

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 26/28

Compiler correctness

purecake str = Some ast

exists ce such that
frontend str = Some (ce, -)
ce is type safe

[desugar ce]pure > [ast. |

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 26/28

End-to-end correctness

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

End-to-end correctness

purecake str = Some ast

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

End-to-end correctness

purecake str = Some ast

cakeml ast. = Some code

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that

frontend str = Some (ce, _)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that
frontend str = Some (ce, _)

[machine]\ prunes [desugar ce [oure

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 27/28

Summary

PureCake

a verified compiler for a Haskell-like language

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 28/28

Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 28/28

Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

28/28

Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning
= Haskell-like syntax

= two-phase constraint-based sound type inference

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

28/28

Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning
= Haskell-like syntax
= two-phase constraint-based sound type inference

= verified demand analysis

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 28/28

Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

= two-phase constraint-based sound type inference
= verified demand analysis

= optimisations to handle non-strict code realistically

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

28/28

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

= two-phase constraint-based sound type inference

= verified demand analysis

= optimisations to handle non-strict code realistically

= end-to-end guarantees by targeting CakeML

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 28/28

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

= two-phase constraint-based sound type inference

= verified demand analysis

= optimisations to handle non-strict code realistically

= end-to-end guarantees by targeting CakeML

Questions?

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 28/28

Backup slides

Only a first version! Many possible extensions, for example:

= Increasing source expressivity (e.g. for case)
= More Haskell 98 types, e.g. typeclasses
= More effective demand analysis

= Back end optimisations

A verified REPL for PureCake [Sewell et. al., PLDI23]

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Evaluation — setup

Measure execution time and memory allocations

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Evaluation — setup

Measure execution time and memory allocations

= Turn off individual optimisations to highlight their effect

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Evaluation — setup

Measure execution time and memory allocations

= Turn off individual optimisations to highlight their effect
= pure: binding group analysis
= demands: demand analysis
= thunk: some force (delay e) reduction and CSE in ThunkLang

= state: _. e/unit optimisations in StateLang

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Evaluation — setup

Measure execution time and memory allocations

= Turn off individual optimisations to highlight their effect
= pure: binding group analysis
= demands: demand analysis
= thunk: some force (delay e) reduction and CSE in ThunkLang
= state: _. e/unit optimisations in StateLang

= Five benchmarks, each accepting integer n input
= primes: nth prime calculation
= collatz: longest Collatz sequence for a number less than n
= life: Conway's Game of Life for n generations
= queens: solutions for the n-queens problem
= gsort: imperative quicksort for an array of length n

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Alternative compiler correctness

frontend str = Some (ce, _)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe

exists ast. such that

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe
exists ast. such that

purecake str = Some ast

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe
exists ast. such that
purecake str = Some ast

[desugar ce]lpure = [ast- |

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

	Introduction
	Source language
	Compiler front end
	Compiler back end
	Connection with CakeML
	Appendix
	Backup slides

