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Language guarantees

Implementing MyCiriticalSoftware

7 type safety type safety
' memory safety memory safety
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The PureCake project:

a HOL4-verified compiler for
a lazy, purely functional language which
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The PureCake project:

a HOL4-verified compiler for
a lazy, purely functional language which
is inspired by Haskell and
targets CakeML

CakeML = a verified implementation of a subset of ML [POPL14]
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This talk

Global overview 4+ demands analysis

For more details:

= Read our paper: & cakeml.org/pldi23-purecake.pdf
= Visit our GitHub: ) github.com/cakeml|/pure
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fact :: Integer -> Integer -> Integer

fact an = general recursion
if n < 2 then a

else fact (a * n) (n - 1)

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar

6/28



A realistic functional language

PureLang has standard functional idioms ...

fact
fact a n general recursion
n a
fact (a * n) (n )

map :: (a => b) -> [a] -> [b]
map £ 1 = case 1 of algebraic data types +

0->10 .
hit > £ h : map £ t pattern-matching
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A realistic functional language

PureLang has standard functional idioms ...

fact
fact a n general recursion
n a
fact (a * n) (n )
map (a b) [a] [b]
map f 1 1 algebraic data types +
I pattern-matching
factorials :: [Integer]

higher-order functions

~

factorials = map (fact 1) (numbers O
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. and Haskell extras

numbers :: Integer -> [Integer]

numbers n = 1 : numbers (a + 1) laziness — infinite data
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A realistic subset of Haskell

and Haskell extras

numbers [ 1 . Lo
TS B S m g mnheEs @ - i) laziness — infinite data
main :: I0 O pure by default, monads for:
main = do ]

n <- readInt -- read from stdin = sequencing

let facts = take n factorials 0 stateful con1putations

app (\i -> print $ toString i) facts

= 1/0
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A realistic subset of Haskell

. and Haskell extras

numbers [ ] . o
numbers n = 1 : numbers (n + 1) laziness — infinite data
main pure by default, monads for:
main
n readInt = sequencing
facts take n factorials = stateful computations
app (\i print toString i) facts

= 1/0
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A realistic subset of Haskell

. and Haskell extras

numbers [ ] . o
numbers n = 1 : numbers (n + 1) laziness — infinite data
main pure by default, monads for:
main
n readInt = sequencing
facts take n factorials = stateful computations
app (\i print toString i) facts

= 1/0

Single 10 monad for arrays, exceptions, and 1/O (via FFI calls)

Also: indentation-sensitivity, do notation, mutual recursion, ...
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Formal syntax

A tale of two ASTs... separate implementation and verification

desugar

ce e

compiler expressions semantic expressions

= higher-level
= used in implementation

= includes case
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Formal syntax

A tale of two ASTs... separate implementation and verification

ce desugar e
compiler expressions semantic expressions
= higher-level = ground truth for semantics
= used in implementation = constructor operations:
» includes case test name/arity equality &

argument projection
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Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step
eval’, e = wh
2. Lift to unclocked evaluation

n _
ser | wh for some n, eval, e = wh
eval,, e =

Timeout for all n, eval, e = Timeout
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Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

eval” e = wh

wh
2. Lift to unclocked evaluation

wh for some n, eval” e = wh

def wh

eval,, e =
Timeout for all n, eval!, e = Timeout

3. Stateful interpretation of monadic operations

(— — —):wh—Kx—0—itree EAR
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Semantics — definitions

Operational semantics in layers:

1. Weak-head evaluation: call-by-name, functional big-step

eval” e = wh

wh
2. Lift to unclocked evaluation

wh for some n, eval” e = wh

def wh

eval,, e =

Timeout for all n, eval’,

e = Timeout
3. Stateful interpretation of monadic operations
(—, —, —):wh—Kk—0—itree EAR
Finally, [e] = (eval,, e, &, &)
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Mechanise untyped applicative bisimulation, = [Abramsky, 1990]
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Definitions:
5 def
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= A standard contextual equivalence: e; ~ &

(equality under all closing contexts)

Derived results:
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Mechanised equational reasoning

Mechanise untyped applicative bisimulation, = [Abramsky, 1990]

Proved congruent via Howe's method [Howe, 1996]

i.e. bisimilar sub-expressions = bisimilarity

Definitions:
= a-equivalence: e =, & & perm_vars e;
= [-equivalence: (Ax.ey) - e =g (freshen,, e1)[e2/x]
= A standard contextual equivalence: e; ~ &

(equality under all closing contexts)

Derived results:
€1 =a €2 €1 =p €

e1= e < e~ = =
€1 = & €1 = €
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Type system

Standard Hindley-Milner rules

Read the paper for more details
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Compiler structure

Concrete syntax

Y

PURELANG
ce from
pure call-by-name
(subst. semantics)

~
Y

THUNKLANG
pure call-by-value
(subst. semantics)

-
( Envlane )
ENVLANG
pure call-by-value

(env. semantics)

( rarel ane )
STATELANG

impure call-by-value

(env. semantics)

CakeML source

) lex, parse, desugar

oXbidineleicupleralvt compiler top to bottom

> inline, specialise loops
D remove dead lets

<« type inference

D simplify

demand analysis
2 annotates with seqs

translate into call-by-value;
introduce delay/force;
avoid delay (force (var_))

lift A-abstractions
) out of delays

) simplify forces

reformulate to simplify
D compilation to STATELANG

compile delay/force and
10 monad to stateful ops
) push _ - unit inwards

make every \-abstraction
2 bind a variable

translate to CakeML;
D attach helper functions
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<« type inference
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translate into call-by-value;

Frontend accepts PurelLang

introduce delay/force;
avoid delay (force (var_))

)

) simplify forces

THUNKLANG

pure call-by-value ft )\-abstracstlons

(subst. semantics)

Three intermediate languages,

D E%f%r‘;n”gltiate tosi each with a SpeCIfIC focus
ENVLANG

pure call-by-value
(env. semantics)

( rarel ane )
STATELANG

)IO

make every \-abstraction
bind a variable

translate to CakeML;
attach helper functions

_ - unit inwards
impure call-by-value

2
Camatomm ) 2
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Compiler structure

Upcoming slides examine the

) lex, parse, desugar
N
nding group analysis compiler top to bottom

se loops

PURELANG
ce from 2 remove dead lets
pure call-by-name < type inference

(subst. semantics) | » simplify

demand analysis
2 annotates with seqs

Frontend accepts PurelLang

~ }
translate into call-by-value;

( \ introduce delay/force;
avoid delay (force (var_))
THUNKLANG

pure call-by-value ft )\-abstracstlons

(subst. semantics)

2 simplify forces Three intermediate languages,

D E%fr?qr‘;n”gltiate tosi each with a SpeCIfIC focus
ENVLANG

pure call-by-value
(env. semantics)

)IO

impure call-by-value make every \-abstraction

M} 2 bind a variable Targets Ca keM |_

translate to Cakabd

P grriunctions
CakeML source e
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Compiler structure

PureLang

i

lexing, binding group

. type demand
) ) — inlining — — i
parsing analysis inference analysis

front end

[ ThunkLang ———— EnvLang ———— Statelang ]

back end J
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Compiler structure

PureLang

i

lexing, binding group

. type demand
) ) — inlining — — i
parsing analysis inference analysis

front end
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Parsing

Indentation-sensitive parsing expression grammar (PEG)
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Parsing

Indentation-sensitive parsing expression grammar (PEG)

= Symbolic sets of possible relations for each non-terminal

= Verified to terminate on all inputs
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Binding group analysis

z = 42
y=x+1
X =w+y
w=20
main
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Binding group analysis

z = 42 let rec z = 42
y=x+1 y=x+1
Parsing x=wty — X =Wty
w=20 w=20
main in main
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Binding group analysis

z let rec z = 42

y X y=x+1
Parsing A — BETPY

w w=20

main in main

Analyse dependencies W @
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Binding group analysis
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main in main

Analyse dependencies W
Pseudo-topological sort
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Binding group analysis

Parsing

Analyse dependencies

Pseudo-topological sort

Transform code + tidy
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Binding group analysis

z let rec z = 42

y X y=x+1
Parsing X =Wty — X =Wy

w w=20

main in main

Analyse dependencies W
Pseudo-topological sort

let w = 0 in
Transform code + tidy letrecx =w+y;y=x+1
in main

Verified entirely within equational theory
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Methodology — implementation vs. verification
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Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform : e — e

= Verify: wf e = [transform e] =[e]
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eR € compile ce = cé’
syntactic relations code transformation
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Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform: e — e

= Verify: wf e = [transform e] = [e]

This work:
eR € compile ce = cé’
syntactic relations code transformation

= express core transformations

= easy to underspecify and
make domain assumptions
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Methodology — implementation vs. verification

Prior work: (such as CakeML)

= Define implementation function: transform: e — e

= Verify: wf e = [transform e] = [e]

This work:
/ . /
eR e compile ce = ce
syntactic relations code transformation
= express core transformations = must fit in relation envelope:
= easy to underspecify and ce R’ (compile ce) for all ce
make domain assumptions = must satisfy bookkeeping
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Methodology — workflow
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Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics
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Methodology — workflow

1. Define and verify R: e R e = [e] =[¢€]
Three simulation proofs: one per layer of the semantics
2. Define compile : ce — ce

3. Verify wf ce = (desugar ce) R (desugar (compile ce))
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Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics
2. Define compile : ce — ce
3. Verify wf ce = (desugar ce) R (desugar (compile ce))

4. Compose theorems:
wf ce = [desugar ce| = [desugar (compile ce) |

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28



Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics

2. Define compile : ce — ce
3. Verify wf ce = (desugar ce) R (desugar (compile ce))

4. Compose theorems:
wf ce = [desugar ce] = [ desugar (compile ce) |

5. Integrate into compiler, discharge wf ce

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 17/28



Methodology — workflow

1. Define and verify R: e R e = [e] =[€]
Three simulation proofs: one per layer of the semantics
2. Define compile : ce — ce
3. Verify wf ce = (desugar ce) R (desugar (compile ce))

4. Compose theorems:
wf ce = [desugar ce] = [ desugar (compile ce) |

5. Integrate into compiler, discharge wf ce

Separation of concerns for modularity and ease-of-verification
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Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = ifn=20
then acc

else fact (acc * n) (n - 1)
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Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)
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Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

» edemandsx, = e = (x; "seq” ... X, 'seq” €)
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Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

J— def
» edemandsx, = e

=~

(x1 “seq” ... x, “seq €)

= Implement/verify* analysis: e demands (analyse €)
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Demand analysis

Avoid excessive thunks — acc heap-allocated each recursive call!

fact acc n = seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

J— def
» edemandsx, = e

=~

(x1 “seq” ... x, “seq €)
= Implement/verify* analysis: e demands (analyse €)

= Prefix code with seq, including in recursive functions
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Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)
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Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v
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Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

~

if (Seq v x) then y else z = Seq v (if x then y else z)
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Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v
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Demand analysis — definition

fact acc n = seqn § seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

if x then (Seq v y) else (Seq v z)
>~ Seq v (if x then y else z)
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Demand analysis — defi

fact accn = seq n $ seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

if x then (Seq v y) else (Seq v z)
=~ Seq v (if x then y else z)

We have two distinct values for L : Err and Div

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 19/28



Demand analysis — definition

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

= x demands v = (if x then y else z) demands v

= ydemandsv A zdemands v
— (if x then y else z) demands v

= Fixpoint analysis for recursive functions
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Compiler back end



Compiler structure

PureLang

i

lexing, binding group

. type demand
) ) — inlining — — i
parsing analysis inference analysis

front end

[ ThunkLang ———— EnvLang ———— Statelang ]

back end J
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Compiler structure

PurelLang
|
lexing, binding group o type demand
T — ) — inlining — — )
parsing analysis inference analysis
front end

[ ThunkLang ———— EnvLang ———— Statelang ]

back end J
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Compiler structure

PurelLang
|
lexing, binding group o type demand
T — ) — inlining — — )
parsing analysis inference analysis
front end

[ ThunkLang ———— EnvLang ———— Statelang ]

back end J
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ThunkLang

Call-by-value semantics

PureCake: PureCake A Verified Compiler for a Lazy Functional Language — Kanabar et al. — Cambium Seminar 21/28



ThunkLang

Call-by-value semantics

Syntax: e u= ... | delay e | force e introduce thunks
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ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

Semantics: eval e = thunk €’

eval & = v

eval (delay e€) = thunk e
eval (force e) = v
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ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

Semantics: eval e = thunk €’

eval € = v

eval (delay e) = thunk e
eval (force e) = v

NB thunks are pure, value-sharing comes later
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ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

. eval e = thunk €
Semantics:

eval € = v

eval (delay e) = thunk e
eval (force e) = v

NB thunks are pure, value-sharing comes later

Optimisation:  reduce force (delay e); two forms of restricted CSE;
lift lambdas out of delay
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ThunkLang

Call-by-value semantics

Syntax: e = ... |delay e | force e introduce thunks

eval e = thunk €

Semantics:
eval ¢ = v
eval (delay e) = thunk e
eval (force e) = v
NB thunks are pure, value-sharing comes later
Optimisation: reduce force (delay e); two forms of restricted CSE;
lift lambdas out of delay
Verification: ~ seven syntactic relations in total
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Pure to Thunk

fact accn = seq n $ seq acc $ if n = 0
then acc

else fact (acc * n) (n - 1)
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Pure to Thunk

fact accn = seq n $ seq acc $ if n = 0
then acc
else fact (acc * n) (n - 1)

fact = Delay (\acc n. Force n $ Force acc $
if Force n = 0
then Force acc
else (Force fact) (Delay (Force acc * Force n))
(Delay (Force n - 1)))
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EnvLang

Environment-based semantics + minor reformulations
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EnvLang

Environment-based semantics + minor reformulations

Syntax:  essentially unchanged
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EnvLang

Environment-based semantics + minor reformulations

Syntax: essentially unchanged

Semantics:  substitutions environments
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EnvLang

Environment-based semantics + minor reformulations

Syntax: essentially unchanged
Semantics: substitutions  environments
Verification:  focuses on the change in semantic style
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StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully
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StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...
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StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce] ... remove return/bind/ ...

Semantics: stateful CESK machine
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StatelLang

IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...
Semantics: stateful CESK machine
Compilation: returne — let x = €' in \_. x
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IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...
Semantics:  stateful CESK machine
[true, v] or
Compilation: return e — let x = €' in \_. x [false, \_. €]

forcee — let x =€’ in
if x[0] then x[1]
else ... x[0] := true; x[1] :=v ...
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IO monad compiled to stateful and 1/O primitives,
thunks shared statefully

Syntax: e == ... |alloce]| ... remove return/bind/ ...

Semantics:  stateful CESK machine P
[true, v] or

Compilation: [false, \_. €]

Optimisation:  simplify A_. e and unit
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Connection with CakeML



Oracles vs. ITrees

Reconciling differing semantic styles
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Oracles vs. ITrees

Reconciling differing semantic styles

A(Ol) A(Oz)
01 02

linear oracles: semanticsp e = tr
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Oracles vs. ITrees

Reconciling differing semantic styles

Vis o1 k1 ...
o L) B Vlsok<vls I

linear oracles: semanticsp e = tr  branching ITrees: [e]=Vis ...
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Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...

= Verified I Tree semantics: [ e]
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Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...

= Verified ITree semantics: [e]. % tr
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Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is 0 k KC), Vis o k..
01 1>02 = Ul . ""ViSOQkZ...

linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr
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linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...
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= New compiler correctness:
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Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:
cakeml e = Some code
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Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:
cakeml e = Some code

code in memory of machine
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Oracles vs. ITrees

Reconciling differing semantic styles

A(or) A(o2) is o k /k(a@w Vis o1 kg ...
o1 ! > 02 = v Ul . — Vis 02 kg 000

linear oracles: semanticsp e = tr  branching ITrees: [e] = Vis ...

= Verified | Tree semantics: [e]. % tr < semanticsa e = tr

= New compiler correctness:
cakeml e = Some code

code in memory of machine

[ machine ] prunes [e]
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Compiler correctness
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Compiler correctness

purecake str = Some ast
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Compiler correctness

purecake str = Some ast

exists ce such that
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Compiler correctness

purecake str = Some ast

exists ce such that

frontend str = Some (ce, -)
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Compiler correctness

purecake str = Some ast

exists ce such that
frontend str = Some (ce, -)

ce is type safe
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Compiler correctness

purecake str = Some ast

exists ce such that
frontend str = Some (ce, -)
ce is type safe

[ desugar ce]pure > [ ast. |
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End-to-end correctness
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End-to-end correctness

purecake str = Some ast
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End-to-end correctness

purecake str = Some ast

cakeml ast. = Some code
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End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine
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End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that
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End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that

frontend str = Some (ce, _)
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End-to-end correctness

purecake str = Some ast
cakeml ast. = Some code

code in memory of machine

exists ce such that
frontend str = Some (ce, _)

[ machine ]\ prunes [desugar ce [oure
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Summary

PureCake

a verified compiler for a Haskell-like language
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Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning
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Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax
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Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning
= Haskell-like syntax

= two-phase constraint-based sound type inference
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Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning
= Haskell-like syntax
= two-phase constraint-based sound type inference

= verified demand analysis
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Summary

PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

= two-phase constraint-based sound type inference
= verified demand analysis

= optimisations to handle non-strict code realistically
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PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

= two-phase constraint-based sound type inference

= verified demand analysis

= optimisations to handle non-strict code realistically

= end-to-end guarantees by targeting CakeML
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PureCake

a verified compiler for a Haskell-like language

= sound equational reasoning

= Haskell-like syntax

= two-phase constraint-based sound type inference

= verified demand analysis

= optimisations to handle non-strict code realistically

= end-to-end guarantees by targeting CakeML

Questions?
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Backup slides



Only a first version! Many possible extensions, for example:

= Increasing source expressivity (e.g. for case)
= More Haskell 98 types, e.g. typeclasses
= More effective demand analysis

= Back end optimisations

A verified REPL for PureCake [Sewell et. al., PLDI23]
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Evaluation — setup

Measure execution time and memory allocations
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Evaluation — setup

Measure execution time and memory allocations

= Turn off individual optimisations to highlight their effect
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Evaluation — setup

Measure execution time and memory allocations

= Turn off individual optimisations to highlight their effect
= pure: binding group analysis
= demands: demand analysis
= thunk: some force (delay e) reduction and CSE in ThunkLang

= state: \_. e/unit optimisations in StateLang
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Evaluation — setup

Measure execution time and memory allocations

= Turn off individual optimisations to highlight their effect
= pure: binding group analysis
= demands: demand analysis
= thunk: some force (delay e) reduction and CSE in ThunkLang
= state: \_. e/unit optimisations in StateLang

= Five benchmarks, each accepting integer n input
= primes: nth prime calculation
= collatz: longest Collatz sequence for a number less than n
= life: Conway's Game of Life for n generations
= queens: solutions for the n-queens problem
= gsort: imperative quicksort for an array of length n
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Alternative compiler correctness

frontend str = Some (ce, _)
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Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe
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Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe

exists ast. such that
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Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe
exists ast. such that

purecake str = Some ast
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Alternative compiler correctness

frontend str = Some (ce, _)

ce is type safe
exists ast. such that
purecake str = Some ast

[ desugar ce]lpure = [ ast- |
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