Inria, Paris, Oct 2023

The CakeML Project

Verified Compilation, Verified Bootstrapping,
Just-In-Time Compilation, and Applications

Magnus O. Myreen

Chalmers, Sweden

Mentions work by: Ramana Kumar, Scott Owens, Yong Kiam Tan, Andreas Loow,
Oskar Abrahamsson, Michael Norrish, Anthony Fox, Samuel Vivien, ...

University of

@) cnawvers Goiverince [Kent Carnegie Mellon FEEATAWNE

UNSW

SYDNEY

Mentions work by: Ramana Kumar, Scott Owens, YongKiam.Jan,.Andreas Loow,
Oskar Abrahamsson, Michael Norrish, Anthony Fo3, :

University of

& oamsrince Kent Carnegie Mellon UNSW

yi :{7‘? :\\;v

v, CHALMERS

e UNIVERSITY OF TECHNOLOGY i
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA Y

A more accurate list of contributors:

Oskar Abrahamsson, Johannes Aman Pohjola, Rob Arthan, Heiko Becker,
Matthew Brecknell, Fanny Canivet, Connor Cashman, Mauricio Chimento,

Nicholas Coughlin, Gregorio Curello, EBxa.Raculava Hugo Féree, Anthony
Fox, Arve Gengelbach, Sofia Glljegar Rikard Hjort,

Son Ho, Jakob Holmggeax Hunel _FEMX Kam, Hrucvik Kanabar, Stephen
Kell, Ramana Kumar, Theo Laurent, John Lind, Alejandro
Gomez-Londono, Andreas Loow, Alexander Mihajlovic, Nebojsa Mihajlovic,
Dominic Mulligan, Prashanth Mundkur, Michael Norrish, Oskar Nyberg, Stefan
O'Rear, Scott Owens, Christian Persson, Christopher Pulte, Henrik Rostedt,
Adam Sandberg Eriksson, Thomas Sewell, Konrad Slind, Michael Sproul,

Partha Susarla, Hira Syeda, Yong Kiam Tan, Timotej Tomandl, Tran Tién Diing,
Theophile Wallez, Johan Wennerbeck, Freek Wiedijk, James Wood.

2

What is CakeML!?

The name
“CakeML”’

comes from
“Cambridge and
&nt m—”

CakeML is:

—p a functional programming language (SML/OCaml like)

What is CakeML!?

CakeML is:

—p a functional programming language (SML/OCaml like)

—p an ecosystem of proofs and tools built around
the language (including a verified compiler)

— a “‘verified stack” extending down to hardware (Verilog)

CakeML is developed in the HOL4 interactive theorem prover.

4

This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

Research questions

-
s it possible to have a clean high-level
_ programming language formalised?
(\
... with a compiler that generates
code with good performance!?
g J
4)

Can we have everything properly
connected with proofs!
e ;
/
... even transport proved properties down
to actual machine code / hardware!

_

(some goals shared with the DeepSpec project)

6

Going back to 2012 ...

Original motivation

Around 2012: it had become common to use code generators
(e.g. Coqg’s code extraction) to generate code from ITPs.

Example:
Given the logic definition of list append (++),

[] ++ ys = ys A (X::XS) ++ ys = X::(XS ++ ys)
the ITP’s code generator might produce SML code:

fun append [] ysS
| append (x::xs) ys

ysS
X :: append Xs ys

Non-trivial cases

Underspecification:
2 nil case [] is left unspecified j

hd (x::xs) = X
2 underspecification propagates j

. map hd xs ...

Semantic mis%(SMLs = is different from logic = j

if x =y then ... else
how should numbers be translated?

v
fac n = if n < 2 then 1 else fac (n-1) * n

(This is not a good state of affairs. &

4)
WVell, automated translation is better

than manual ad hoc transcription...
a 7

[Yes > ,7;_]
A

A NG Scott O
Magnus Myreen 4 %
However, ITPs should do more!

ITPs should prove that the
generated SML/OCaml/Scala
code is behaviourally equivalent to

the original functions.
g J

wens

| completely agree.)

Result: we formalised subset of SML (i.e. CakeML) and developed
a proof-producing code-generation tool for HOLA4.

10

What exactly is that?

Result: we formalised subset of SML (i.e. CakeML) and developed
a proof-producing code-generation tool for HOLA4.

Interactive theorem provers

Most developments look like this:

Definition fac def: 2 definition)

fac n =
if n = @ then 1 else fac (n-1) * n
End

Definition fac_it_def: 2 definition)

fac_it n acc =
if n = @ then acc else fac_it (n-1) (acc * n)
End

Theorem fac it correct: goal-directed

Vn acc. fac_it n acc = fac n * acc tactic pl"OOf
Proof

Induct

\\ once _rewrite tac [fac def,fac it def]

\\ rw []
QED

12

Interactive theorem provers

Most developments look like this:

\
Theorem fac it correct: goal-directed
Vn acc. fac_it n acc = fac n * acc tactic pI’OOf
A/

Proof

Induct

\\ once _rewrite tac [fac def,fac it def]

\\ rw []
QED

Proved theorems are just
Prover responds: values Of t)'pe “thm” in SML
'

val fac it correct — Vn acc. fac_it n acc = fac n * acc: thm

>

A

HOL4 prover is built on top of HOLA4 is highly
SML read-eval-print loop programmable

13

Proof-producing tool

We developed a tool (called translate) that generates
CakeML AST and automatically proves correspondence:

[User requests translation of fac_def] 4

V

> val v_thm = translate fac_def;
Translating fac

The tool defines a CakeML
value (containing an AST)

~N

J

/

val v_thm = - (NUM --> NUM) fac fac_v: thm

>

A

-

_

... and proves a theorem asserting the
correspondence between fac and fac_v.

~

J

14

Components of toolchain

function in the logic

-
y

75
(3N E

Ramana Kuma |
compiler backend

machine code

. = verified function in logic

lllllll

Components of toolchain

[If we input factorial ... J

V

function in the logic

compiler backend

machlne code

/

_

Can we compile the verified

compiler with itself?

.. then the toolchain produces

machine code and proves

a theorem stating that the code
behaves like the factorial functlon

~N

. = verified function in logic

lllllll

lllllll

= proof-producing tool

[a function in the logic J .
y Scaling up:

concrete syntax Compiler Bootstrapping

'

SML parser function in the logic

e
type inferencer errererrrr e -
N asT /

compiler backend Michael Norrish

machine code

. = verified function in logic

lllllll

Scaling up:
Compiler Bootstrapping

(-)

If we input

\ the CakeML compiler ...
function in the logic

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

~N

e s then generated code behaves like
Ellas s s the CakeML compiler function.)
machine code . = verified function in logic

lllllll

Version |

[POPL 14 j [Compiler Bootstrapping. Everything fit together. j

CakeML: A Verified Implementation of ML

Ramana Kumar * !

Magnus O. Myreen ' !

3

Michael Norrish 2 Scott Owens

! Computer Laboratory, University of Cambridge, UK
? Canberra Research Lab, NICTA, Australia i

% School of Computing, Umversm

Abstract

We have developed and mechanically verified an ML system called
CakeML, which supports a substantial subset of Standard ML.
CakeML is implemented as an interactive read-eval-print loop
(REPL) in x86-64 machine code. Our correctness theorem ensures
that this REPL implementation prints only those results permitted
by the semantics of CakeML. Our verification effort touches on
a breadth of topics including lexing, parsing, type checking, in-
cremental and dynamic compilation, garbage collection, arbitrary-

However, compiler had

very few optimisations.
. J

1. Introduction

The last decade has seen a strong interest in verified compilation;
and there have been significant, high-profile results, many based
on the CompCert compiler for C [1, 14, 16, 29]. This interest is
easy to justify: in the context of program verification, an unverified
compiler forms a large and complex part of the trusted computing
base. However, to our knowledge, none of the existing work on
verified compilers for general-purpose languages has addressed all
aspects of a compiler along two dimensions: one, the compilation

Steps towards realism

How real can
we make the CakeML '
Would like: speed, better /0 etc comprer

Settled on new methodology:
[ESOP’16]

' Big-step Semantics

3 and Yong Kiam Tan®

Scott Owens'
y of Kent, UK

1 gchool of Computing, Universit
chnology, Sweden

2 CSE Department, Chalmers University of Te
3 NICTA, Australia

4 THPC, A*STAR, Singapore

Abstract. When doing an interactive proot about a piece of software,
it 18 important that the underlying programming language’s gsemantics
difficult or unwieldy. Both small-

does not make the ssarily
N and the latter is typi-
20

.

e antice are CommO
S . we consider

Functional big-step

Sample: eval env (Const n) = return (Num n)

eval env (Var n) =

case env n of None = fail | Some v = return v
def

eval env (Op f zs) =

do vs « evals env xs; eval_op f vs od

def
eval env (Let vname x y) =

do v « eval env z;
eval env{vname — Some v) y od

def
where: return v s = (Res v,s)
def

fail s = (Err Crash,s)

monad_bind f g s =

case f s of (Res v,51) = g v s1 | (Err e,51) = (Err e,51)

Sample:

where:

Functional big-step

. def
eval env (Call fname xs) =
do vs « evals env zs;

(fenv,body) < get_env_and_body fname vs;
eval fenv body od /\

[decrements a clock (“uses fuel”) ...]

[... that is passed around in state.]

|

def
return v s = (Res v,s)
def

fail s = (Err Crash,s)

monad_bind f g s =

case f s of (Res v,51) = g v s1 | (Err e,51) = (Err e,51)

22

Values Languages Transformations

source syntax

Parse concrete syntax

abstract values incl. closures and ref pointers

' source AST
)

FlatLang:

a language for
compiling away
high-level
lang. features

J{

ClosLang:
last language
with closures
(has multi-arg

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Global dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Encode program as
concrete machine code

<
<
o
&
<
&
<
<
P .
| e New compiler backend:
<> Annotate closure creations p .
ﬁ > Perform closure conv.
BVL: > Inline small functions . .
rctensl | > £ e 8 intermediate languages (ILs)
without > Split over-sized functions
closures into many small functions
. . [] [] ° [) [)
1 d T G o o and many within-IL optimisations
G E BVI:) Optimise Let-expressions
£ 5 one global Make some functions tail-
§ 3 variable > recursive using an acc. M "
12| D oo each IL at the right level of abstraction
*g ; Datalang: > Reduce caller-saved vars
5 imperative Combine adjacent
é“@ language > memory allocations
‘ /;/) Remove data abstraction
) Simplify program
mogg;a:;:/%:) ielc.fect target ir?structions. (\
language with) erform SSA-like renaming f h b f\ f
mricer:%er W:rl]’g&) Force two-reg code (if req.) 0 r t e e n e It O
aGC priymitive) Remove deadcode R
. <> Allocate register names P ro Ofs an d CO m P I I e r
9 N—) Concretise stack
8 Introduce (raw) calls past g I 5
S StackLang: > function preambles I m P e m e ntatl O n
8 imperative | .= Implement GC primitive _ J
g language .
S| [with amay ke | o> Turn stack accesses nto
§ stack and R y sters & ch
S| | optional GC | > R Care/comvantions
2 — > Flatten code
S LabLang: . i -
é ass:mbi/ngng. > Delete no-ops (Tick, Skip)

Next slide zooms in

§ g | CARMVB) Cx86-64) (MlPs-szD (RISC-V) Yon g Kiam Tan

23

s
Values used by
the semantics

_

\

J

V

Values

ybstract values incl. closures and ref pointers

Languages

Csource syntax)

[sou rce AST

FlatLang:

a language for
compiling away
high-level
lang. features

.
-

J

AN

\VAAVARVAVERRVAVAV

-

_/
N

ClosLang:
last language
with closures
(has multi-arg

closures)

VYRV

Transformations

Parse concrete syntax

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Global dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
iIndexed local variables

Fuse function calls/apps
iInto multi-arg calls/apps

Both proved sound
and complete.

V

Track v_vh_ere closure vaI_ues
flow & inline small functions

Introduce C-style fast
calls wherever possible

Remove deadcode

Annotate closure creations

4)
Parser and type
inferencer as before
- J
(")
Early phases reduce
the number of
language features
_ J
4)
Language with multi-
argument closures
- J

abstract values incl.

ref and code pointers

ClosLang:
last language
with closures
(has multi-arg

closures)

/

abstract values incl.

4)

BVL:
functional
language

without
closures

. _/

4)
BVI:

one global
variable

. _/

(")
Datal.ang:

imperative
language

.

Y,
WordLanq:)

\

into multi-arg calls/apps

JV‘\/V‘\/\/\/\/\/ \VAAVAVAVAVAVAAVARV

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Remove deadcode

Annotate closure creations

Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
iInto many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Make some functions tail-
recursive using an acc.

Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select tarqget instructions

Language with multi-
argument closures

Simple first-order

functional language
- J

[Imperative language]

Machine-like types]

et
0
I
()
™M
et
0
1
v
O

machine words and code labels

| CARMVG)
CARMVB) CX86-64) (MIPS-&D (RISC-V)

0N
O
e
O
=
2
O
e
O
=

a)

WordLang:
iImperative
language with
machine words,

- W,
a)
StackLang:
Imperative
language

with array-like

optional GC

.

LablLang:
assembly lang.

\VAVAVAAVAVAVAVAVAVAVAVAVAVAL

Simplify program Machine-like types

NCcITIOvVe Uadla dDsliaClorl s]

_

Select target instructions

Perform SSA-like renaming . .
Imperative compiler

with an FP twist:
garbage collector,
live-var annotations,
fast exception

Introduce (raw) calls past mechanisms (for M|_)
function preambles

Force two-reg code (if req.)
Remove deadcode

Allocate register names

Concretise stack

4)

- J

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)
Encode program as

Targets 5 architectures

_

concrete machine code - N

J

Performance numbers

4)
CakeML defaults to

arbitrary precision ints -

_ PN
3 L
higher-order inlining would help)
execution time [V g
relativeto , | - _
native-code
compiled 15 .
OCaml (red) 1
0.5 F -
0 S, % Y 2 X x 9 o
S > (A O, "0y 2, s,
G/)® 0)20 (Y &Q
ocamlopt 4.02.3 sminjv110.78 s cakem| =
miton 20100608 m— polyc v5.6

27

Verified checking of LRAT

\

! \

Verified cake Ipr implementation is near
highly optimised ACL2-generated checker

/

4

100 \/ —
-8 acl2-1rat
—é 30 - cake_lpr N
e cog-lrat
o 60 [1 .
G
o)
O
o 40 [—
E
— 20 | —
A O | = ! ! ! ! L L

10" 101 102 103

Time limit (seconds, logarithmic scale) /\

(—‘Percent of SAT Race 2019 proofs checked ...]

Tan et al. TACAS’2 | -

-

_

... within (per instance)
time limit.

~

J

Demo of cake |pr checker

Other developments

How to verify manually written CakeML code?

Background:

Arthur Chargueraud developed CFML for reasoning
about OCaml code in Coq

A verified programming logic for CakeML:

Armael Gueneau adapted CFML for reasoning about
CakeML code (including state, exceptions and |/O)

Son Ho implemented significant proof automation
for Armaél’s program logic for CakeML

30

Infinite runs and liveness

Infinite runs:
Compiler proofs talk about infinite runs.
— Program logic should be able to!

— CakeML CF adapted to reasoning about
infinite runs and liveness properties.

Johannes Aman Pohjola

31

Problem with liveness

Problem: Compiler correctness allows any CakeML program
to exit early with an out-of-memory (OOM) error.
A

Thus: non-terminating CakeML programs
might terminate once compiled...

Shape of compiler correctness theorem:

machine_sem ffi (compile ¢ prog) C
extend_with_resource_limit (source_sem ffi prog)

A
source behaviours extended
with early OOM termination

32

Proving absence of OOM

Solution: A verified space cost semantics for CakeML that
allows liveness properties to transfer to machine code.

Shape of new alternative theorem: if space cost semantics
says prog is safe ...

is_safe_for_space ffi ¢ prog ... =
machine_sem ffi (compile ¢ prog) = source_sem ffi prog

A

C ... then semantics is preserved exactly)

C and liveness properties proved at source carry to machine code!)

33

This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

34

This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

OL light, other compilers,

proof checkers, collaborations

35

Verified stack

A verified stack is a computer system that is demonstrably
correct. Specifically, it is a system with a formal proof of
correctness that covers all layers of the implementation,
from the hardware through to the application code.

Examples: CLI stack
Verisoft
CakeML+Silver [PLDI’ 19]
Erbsen et al. [PLDI'21]

36

CakeML

compiler work produced end-to-end verification
that ended at the software-hardware interface (ISA).

64-bit 32-bit

q

lyTang. J*~
assembly lang.] Encode program as

concrete machine code

(ARMV6)‘ \

words words

: (ARMVS) (X86-64) (MIPS-64) (RISC-V)

All languages communicate with the external world
via a byte-array-based foreign-function interface.

37

Extending into hardware

4)
Valuable: shows that assumptions made in
compiler proofs and file system can be realised! L .
N) verified implementation of
iIn-memory file system
~ ly |]
S kassemb y ang) Encode program as
- concrete machine code manual proof
+—~ 0N
P < >
< 5 | ((ARMvG) \ (Silver ISA)
m =]
2 u1 A
< £ (ARMV8) (x86-64) (MIPS-64) (RISC-V)
o = |

. . manual proof
All languages communicate with the external world P

via a byte-array-based foreign-function interface.

v

(Silver CPU shallow embedding)

I automatic proof

(Silver CPU in Verilog (deep emb.))

Lcompiler proofs and file system can be realised! [v

erified implementation of
iIn-memory file system

U P’
S kassembly Iangj Encode program as
- concrete machine code manual proof
— W0
o P < >
A O (ARMv6) \ (Silver ISA)
m = |
2 uni A
< £ (ARMVS) (x86-64) (MIPS-64) (RISC-V)
© 5. manual proof
All languages communicate with the external world P
via a byte-array-based foreign-function interface.
v
(Silver CPU shallow embedding)
The hardware work is all by: I automatic proof

Silver CPU in Verilog (deep emb.))

O\)

Verilog).._x'almost the same...

l verified compilation (CPP’21)

Andreas Loow (FPGA-technology mapped netlists J

How real is it!

The verified CPU can

run non-trivial programs,
including the entire
CakeML compiler.

40

This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardwarel HOL light,fother compilers,

proof checkers, collaborations

4]

HOL light

Is an ITP by John Harrison for higher-order logic (HOL):

e Shares the lead in Freek Wiedijk's 100 Theorems challenge
with Isabelle/HOL (86/100)

* Major formalizations of various branches of mathematics:
(multivariate-) real analysis, complex analysis, ...

* Proof of the Kepler conjecture (Flyspeck project)

42

https://www.cs.ru.nl/~freek/100/

Candle

[proved to be sound]

\/

Candle is a verified clone of HOL light.

A

[it really looks and feels like HOL light |

A

[| can show a demo if we have time... J

43

Candle

Candle has an LCF-style :

Derived code: tactics,

design (logical kernel):

proofs, definitions,
provers, etc.

g
we proved an end-to-end Logical kernel
soundness theorem:

.
- : CakeML compiler +
... machine code running 2 read-eval-print loop
prover will only output (REPL)

theorems that are true = — &,
according to semantics of
higher-order logic.

44

Candle: A Verified Implementation of HOL Light
Oskar Abrahamsson & [ITP 2022]

Chalmers University of Technology, Gothenburg, Sweden

Magnus O. Myreen &
Chalmers University of Technology, Gothenburg, Sweden

Ramana Kumar &

London, UK builds on

Thomas Sewell &

University of Cambridge, UK th e€se resu Its

Cakes that Bake Cakes: Dynamic Computation in CakeML

[PLDI 2023]

A major effort to insert the CakeML compiler into
the CakeML runtime (enables dynamic compilation)

Thomas Sewell
45

This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light

proof checkers, collaborations

46

Raskell-like language

PureCake: A Verified Compiler for a Lazy Functional

Language

Some code PureCake can compile:

O 0 I N g ks W DN =

_ =
N = O

numbers :: [Integer]

numbers =
let numn=n: num (n + 1)
in num 0

factA :: Integer -> Integer -> Integer
factA a n =

if n < 2 then a

else factA (a *x n) (n - 1)

factorials :: [Integer]
factorials = map (factA 1) numbers

14
15
16
17
18
19
20
21
22
23
24
25

47

[PLDI 2023]

app :: (a => I0 b) -> [a] -> I0 ()
app f 1 = case 1 of

[1] -> return ()

h:t =>do fh; app f t

main :: I0 ()
main = do
argl <- read_argl
-- fromString == @ on malformed input
let 1 = fromString arg
facts = take 1 factorials
app (\i -> print $ toString 1) facts

Language Compiler implementation Comments on verification

CPureCake sourcej
~ ~ > lexing, parsing, desugaring can reject input; this pass is not verified
> split letrecs and simplify proved to preserve = (Sec 3.4)
cepfgéi_?:?é;: 5 <«— run type inferencer rejects ill-typed programs, proved sound
pure call-by-name > demands analysis proved to preserve = (Sec 4.4)
(subst. semantics) annotates with seqs
front end <+— run type inferencer (again) rejects ill-typed programs, proved sound
backend {_) translate into call-by-value; proof was broken down to five relations;
~ ~ introduce delay & force; implementation stays within their composition
avoid delay (force (var _))
ThunkLang: _
oure call-by-value lift lambdas out of lets implementation stays within the transitive closure of a
(subst. semantics) and letrecs, and simplify syntactic relation that preserves semantics

some force expressions
_ _J

reformulate to make step
into StateLang simpler

proof uses the composition of three relations:
1. expands the 10 monad into stateful operations
2. replaces Delay, Box, Force with stateful operations
3. tidies up the result

EnvLang:
pure call-by-value

L (env. semantics) compile delay, box, force
_J

and IO monads to stateful ops

StateLang:
impure call-by-value
(env. semantics)

push _ - unit inwards implementation stays within the transitive closure

make every lambda bind a of a syntactic relation that preserves semantics

variable to align with CakeML

(R .
CakeML source translate into CakeML and

_ N p attach helper functions

/\
[CakeML as target language]

ViV VAV

48

... and another compiler:

Pancake

[PLOS 2023]

Verified Systems Programming Made Sweeter

Johannes Aman Pohjola
j.amanpohjola@unsw.edu.au

UNSW Sydney
Australia

Krishnan Winter
k.winter@student.unsw.edu.au

UNSW Sydney
Australia

Tiana Tsang Ung
t.tsangung@student.unsw.edu.au
UNSW Sydney
Australia

Magnus O. Myreen
myreen@chalmers.se
Chalmers University of Technology
Gothenburg, Sweden

Hira Taqdees Syeda”
syedahir@amazon.com
Chalmers University of Technology
Gothenburg, Sweden

Tsun Wang Sau
t.sau@student.unsw.edu.au

UNSW Sydney
Australia

Craig McLaughlin
c.mclaughlin@unsw.edu.au
UNSW Sydney
Australia

Michael Norrish

michael.norrish@anu.edu.au
Australian National University
Canberra, Australia

Miki Tanaka

miki.tanaka@unsw.edu.au
UNSW Sydney
Australia

Benjamin Nott
b.nott@student.unsw.edu.au

UNSW Sydney
Australia

Remy Seassau’
remy.seassau@cs.ox.ac.uk

UNSW Sydney
Australia

Gernot Heiser

gernot@unsw.edu.au
UNSW Sydney
Australia

This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

50

Applications

Some tools generate proof traces / files / logs.

A
[e.g. SAT solvers generate DRAT proofs of UNSAT]

Verified checkers = Good applications for CakeML tools!

Great opportunities for collaborations!) cake_lpr demo]

Marijn Heule — checker for DRAT / LPR proofs

Jakob Nordstrom et al. — pseudo boolean checker / VeriPB
Ambros Gleixner — verifier for integer programming results

Eva Darulova — floating-point error bounds

51

Questions?

Summary

The —— CakeML project has developed:

— a formal semantics for an SML/OCaml-style language
— a bootstrapped verified compiler

— scalable proof-producing code generation

— separation logic for non-terminating code (liveness)

— a verified space cost semantics (proves absence of OOM)

— efficient verified applications (e.g. UNSAT proof checker)

Current work: using CakeML to implement other languages

Let’s work together! Get in touch myreen@chalmers.se

52

Size of the effort

465 204 lines of definition & tactic proofs
23 918 lines of code for proof automation

| 630 lines of Makefiles and Holmakefiles

21 545 git commits (https://code.cakeml.org/)

53

https://code.cakeml.org/

Candle demo

54

Demo of CakeML compiler

myreen@oven2:~/demo/latest-version$

Demo by Andreas Loow

&~ - '. J__ I IR 7

ooooooooooooooooooooooooo

at pldi-papers.txt |}

