
The CakeML Project

Magnus O. Myreen

Chalmers, Sweden

Inria, Paris, Oct 2023

1

Verified Compilation, Verified Bootstrapping,
Just-In-Time Compilation, and Applications

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Mentions work by: Ramana Kumar, Scott Owens, Yong Kiam Tan, Andreas Lööw,
Oskar Abrahamsson, Michael Norrish, Anthony Fox, Samuel Vivien, …

A more accurate list of contributors:

Oskar Abrahamsson, Johannes Åman Pohjola, Rob Arthan, Heiko Becker,
Matthew Brecknell, Fanny Canivet, Connor Cashman, Mauricio Chimento,
Nicholas Coughlin, Gregorio Curello, Eva Darulova, Hugo Férée, Anthony
Fox, Arve Gengelbach, Sofia Giljegård, Armaël Guéneau, Rikard Hjort,
Son Ho, Jakob Holmgren, Lars Hupel, Felix Kam, Hrutvik Kanabar, Stephen
Kell, Ramana Kumar, Quentin Ladeveze, Théo Laurent, John Lind, Alejandro
Gómez-Londoño, Andreas Lööw, Alexander Mihajlovic, Nebojsa Mihajlovic,
Dominic Mulligan, Prashanth Mundkur, Michael Norrish, Oskar Nyberg, Stefan
O'Rear, Scott Owens, Christian Persson, Christopher Pulte, Henrik Rostedt,
Adam Sandberg Eriksson, Thomas Sewell, Konrad Slind, Michael Sproul,
Partha Susarla, Hira Syeda, Yong Kiam Tan, Timotej Tomandl, Trần Tiến Dũng,
Théophile Wallez, Johan Wennerbeck, Freek Wiedijk, James Wood.

2

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Mentions work by: Ramana Kumar, Scott Owens, Yong Kiam Tan, Andreas Lööw,
Oskar Abrahamsson, Michael Norrish, Anthony Fox, Samuel Vivien, …

What is CakeML?

3

The name
“CakeML”
comes from
“Cambridge and
 Kent ML”

CakeML is:

a functional programming language (SML/OCaml like)

CakeML is:

What is CakeML?

an ecosystem of proofs and tools built around
the language (including a verified compiler)

a “verified stack” extending down to hardware (Verilog)

a functional programming language (SML/OCaml like)

CakeML is developed in the HOL4 interactive theorem prover.

4

Part 1: The core of the CakeML project

This talk

research questions, main ideas,

5

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

… with a compiler that generates
code with good performance?

Research questions

Is it possible to have a clean high-level
programming language formalised?

Can we have everything properly
connected with proofs?

… even transport proved properties down
to actual machine code / hardware?

(some goals shared with the DeepSpec project)

6

Going back to 2012 …

7

Original motivation
Around 2012: it had become common to use code generators
(e.g. Coq’s code extraction) to generate code from ITPs.

Example:

		[]	++	ys	=	ys		∧		(x::xs)	++	ys	=	x::(xs	++	ys)	

Given the logic definition of list append (++),

the ITP’s code generator might produce SML code:

		fun	append	[]						ys	=	ys	
				|	append	(x::xs)	ys	=	x	::	append	xs	ys	

8

Non-trivial cases
Underspecification:

		hd	(x::xs)	=	x

		...	map	hd	xs	...

Semantic mismatches:

		if	x	=	y	then	...	else	...

		fac	n	=	if	n	<	2	then	1	else	fac	(n-1)	*	n

nil case [] is left unspecified

underspecification propagates

SML’s = is different from logic =

how should numbers be translated?

9

Magnus Myreen
Scott Owens

This is not a good state of affairs.

Well, automated translation is better
than manual ad hoc transcription…

Yes

I completely agree.

However, ITPs should do more!
ITPs should prove that the

generated SML/OCaml/Scala
code is behaviourally equivalent to

the original functions.

Result: we formalised subset of SML (i.e. CakeML) and developed
 a proof-producing code-generation tool for HOL4.

10

11

Result: we formalised subset of SML (i.e. CakeML) and developed
 a proof-producing code-generation tool for HOL4.

What exactly is that?

Definition	fac_def:	
		fac	n	=	
				if	n	=	0	then	1	else	fac	(n-1)	*	n	
End	

Definition	fac_it_def:	
		fac_it	n	acc	=	
				if	n	=	0	then	acc	else	fac_it	(n-1)	(acc	*	n)	
End	

Theorem	fac_it_correct:	
		∀n	acc.	fac_it	n	acc	=	fac	n	*	acc	
Proof	
		Induct	
		\\	once_rewrite_tac	[fac_def,fac_it_def]	
		\\	rw	[]	
QED	

definition

definition

goal-directed
tactic proof

Interactive theorem provers

12

Most developments look like this:

Definition	fac_def:	
		fac	n	=	
				if	n	=	0	then	1	else	fac	(n-1)	*	n	
End	

Definition	fac_it_def:	
		fac_it	n	acc	=	
				if	n	=	0	then	acc	else	fac_it	(n-1)	(acc	*	n)	
End	

Theorem	fac_it_correct:	
		∀n	acc.	fac_it	n	acc	=	fac	n	*	acc	
Proof	
		Induct	
		\\	once_rewrite_tac	[fac_def,fac_it_def]	
		\\	rw	[]	
QED	

definition

definition

goal-directed
tactic proof

Interactive theorem provers

13

Most developments look like this:

Prover responds:

val	fac_it_correct	=	⊢	∀n	acc.	fac_it	n	acc	=	fac	n	*	acc:	thm	
>																		

HOL4 prover is built on top of
SML read-eval-print loop

Proved theorems are just
values of type “thm” in SML.

HOL4 is highly
programmable

Proof-producing tool

14

We developed a tool (called translate) that generates
CakeML AST and automatically proves correspondence:

>	val	v_thm	=	translate	fac_def;	
Translating	fac	
val	v_thm	=	⊢	(NUM	-->	NUM)	fac	fac_v:	thm	
>	

User requests translation of fac_def
The tool defines a CakeML
value (containing an AST)

… and proves a theorem asserting the
correspondence between fac and fac_v.

Components of toolchain

AST

compiler backend

machine code = verified function in logic

= proof-producing tool

synthesise AST

function in the logic

Ramana Kumar

15

compiler backend

AST

machine code = verified function in logic

= proof-producing tool

If we input factorial …

… then the toolchain produces
machine code and proves

a theorem stating that the code
behaves like the factorial function.

Components of toolchain

AST

synthesise AST

function in the logic

16

Can we compile the verified
compiler with itself?

Scaling up:
Compiler Bootstrapping

compiler backend

AST

machine code = verified function in logic

= proof-producing tool

type inferencer

SML parser

concrete syntax

a function in the logic

synthesise AST

function in the logic

17

Michael Norrish

compiler backend

AST

machine code = verified function in logic

= proof-producing tool

 If we input
 the CakeML compiler …

then generated code behaves like
the CakeML compiler function.

synthesise AST

function in the logic

Scaling up:
Compiler Bootstrapping

18

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK
2 Canberra Research Lab, NICTA, Australia ‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called
CakeML, which supports a substantial subset of Standard ML.
CakeML is implemented as an interactive read-eval-print loop
(REPL) in x86-64 machine code. Our correctness theorem ensures
that this REPL implementation prints only those results permitted
by the semantics of CakeML. Our verification effort touches on
a breadth of topics including lexing, parsing, type checking, in-
cremental and dynamic compilation, garbage collection, arbitrary-
precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-
ing a system that is end-to-end verified, demonstrating that each
piece of such a verification effort can in practice be composed
with the others, and ensuring that none of the pieces rely on any
over-simplifying assumptions. The second is developing novel ap-
proaches to some of the more challenging aspects of the veri-
fication. In particular, our formally verified compiler can boot-
strap itself: we apply the verified compiler to itself to produce a
verified machine-code implementation of the compiler. Addition-
ally, our compiler proof handles diverging input programs with a
lightweight approach based on logical timeout exceptions. The en-
tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, Formal
methods; F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical veri-
fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;
machine code verification; read-eval-print loop; verified parsing;
verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust
† supported by the Royal Society, UK
‡ NICTA is funded by the Australian Government through the Department
of Communications and the Australian Research Council through the ICT
Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;
and there have been significant, high-profile results, many based
on the CompCert compiler for C [1, 14, 16, 29]. This interest is
easy to justify: in the context of program verification, an unverified
compiler forms a large and complex part of the trusted computing
base. However, to our knowledge, none of the existing work on
verified compilers for general-purpose languages has addressed all
aspects of a compiler along two dimensions: one, the compilation
algorithm for converting a program from a source string to a list of
numbers representing machine code, and two, the execution of that
algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified
a compiler along the full scope of both of these dimensions for a
practical, general-purpose programming language. Our language is
called CakeML, and it is a strongly typed, impure, strict functional
language based on Standard ML and OCaml. By verified, we mean
that the CakeML system is ultimately x86-64 machine code along-
side a mechanically checked theorem in higher-order logic saying
that running that machine code causes an input program to yield
output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in
machine code. Instead we write it in higher-order logic and synthe-
sise CakeML from that using our previous technique [22], which
puts the compiler on equal footing with other CakeML programs.
We then apply the compiler to itself, i.e., we bootstrap it. This
avoids a tedious manual refinement proof relating the compilation
algorithm to its implementation, as well as providing a moderately
large example program. More specifically,
• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler
inside the logic;

• we bootstrap the compiler to get a machine-code implementa-
tion inside the logic; and

• the compiler correctness theorem thereby applies to the
machine-code implementation of the compiler.
Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an
interactive read-eval-print loop (REPL). A verified REPL enables
high-assurance applications that provide interactivity, an important
feature for interactive theorem provers in the LCF tradition, which
were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-
porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-
inally from logic to ML, now to machine code (via verified
compilation). (Sections 4–6, 10)

Version 1
POPL’14 Compiler Bootstrapping. Everything fit together.

However, compiler had
very few optimisations.

Steps towards realism

20

How real can we make the CakeML compiler?
Would like: speed, better I/O etc.

Settled on new methodology:

Functional B
ig-step Semantics

Scott Owens
1, Magnus O. Myreen

2, Ramana Kumar3, and Yong Kiam Tan4

1 School of Com
puting, University of Kent, UK

2 CSE Department, Chalmers University of Technology
, Sweden

3 NICTA, Australia

4 IHPC, A*STAR, Singapore

Abstract. When doing an interactive proof about a piece of software,

it is important that the underlying programming language’s semantics

does not make the proof unneces
sarily di�cult or unwiel

dy. Both small-

step and big-step semantics are commonly used, and the latter is typi-

cally given by an inductively defined relation. In this paper, we
consider

an alternative: us
ing a recursive function akin to an interpreter for the

language. The
advantages include a better induction theorem, less du-

plication, acce
ssibility to ordinary functional pro

grammers, and the ease

of doing symbolic simulation in proofs via rewriting. We believe that

this style of semantics is well suited for compiler verification, in
cluding

proofs of dive
rgence preservation.

We do not claim the invention of this

style of semantics: our contribution here is to clarify its value, and to

explain how it supports several langua
ge features that might appear to

require a relational or small-step approach. We illustrate the technique

on a simple imperative language with C-like for-loops and
a break state-

ment, and compare it to a variety of other approaches. W
e also provide

ML and lambda-calculus b
ased examples to illustrate its generality.

1 Introduction

In the setting of mechanised proof about programming languages, it is often

unclear what k
ind of operational

semantics to use for formalising the language:

common big-step and small-step approaches ea
ch have their own strengths and

weaknesses. T
he choice depends on the size, complexity, and nature of the pro-

gramming language, a
s well as what

is being proved
about it. As a

rule-of-thumb,

the more complex the language’s
features, or th

e more semantically intricate the

desired theorem, the more likely it is that small-step semantics will be needed.

This is becaus
e small-step semantics enable p

owerful proof t
echniques, incl

uding

syntactic preservation/p
rogress and step-indexed logical relation

s, by allowing

close observation not only of the result of a program, but also how it got there.

In contrast, big-s
tep’s advantag

es arise from following the syntactic structure of

the programming language. This
means that they

can mesh nicely with similarly

structured compilers, type systems, etc. that on
e is trying to verify, and reduce

the overhead of mechanised proof.

For large proje
cts, a hybrid approach can be adopted. T

he CompCert [16,17]

verified C compiler uses big-
step for some parts of its sem

antics and small-step

ESOP’16

Functional big-step

21

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

eval env (Const n) def
= return (Num n)

eval env (Var n) def
=

case env n of None) fail | Some v) return v

eval env (Op f xs) def
=

do vs evals env xs ; eval_op f vs od
eval env (Let vname x y) def

=
do v eval env x ;

eval env hvname 7! Some vi y od
eval env (If test xs y z) def

=
do vs evals env xs ;

b take_branch test vs;
eval env (if b then y else z) od

eval env (Call fname xs) def
=

do vs evals env xs ;
(fenv ,body) get_env_and_body fname vs;
eval fenv body od

evals env [] def
= return []

evals env (x ::xs) def
=

do v eval env x ;
vs evals env xs ;
return (v ::vs) od

return v s
def
= (Res v ,s)

fail s def
= (Err Crash,s)

monad_bind f g s
def
=

case f s of (Res v ,s1)) g v s1 | (Err e ,s1)) (Err e ,s1)

Figure 3. A functional big-step semantics for source expres-
sions. This is used for our proof of divergence preservation.

Using eval_from, we de�ne a function that checks for time-
out and one that returns the output for a given initial clock.

prog_timesout k input prog
def
=

9 s . eval_from k input prog = (Err TimeOut,s)

prog_output k input prog
def
=

let (res ,s) = eval_from k input prog in s .output

A source program diverges if the program times out for every
initial clock value k . The output is captured by the least upper
bound (LUB) of all partial outputs.

(input ,prog) *prog output
def
=

(8 k . prog_timesout k input prog) ^
output = LUB { prog_output k input prog | k 2 N }

Modi�cations to the veri�cation of the code genera-
tor. Only a few minor adjustments need to be made to code
generator proofs to also make them support a �nal theo-
rem about divergence preservation. In the theorem shown

in Figure 1, we swap lines 1, 7 and 11 to the following.

1 eval env e x = (res ,s1) ^ res , Err Crash ^
· · ·
7 steps (State t , s .clock) (outcome, s1.clock) ^

· · ·
11 8 v . res = Res v) 9w .

Here steps (t1,n1) (t2,n2)
def
= 9n . stepn t1 t2 ^ n1 n+n2.

We use steps to ensure that su�ciently many execution
steps are taken by the assembly program. Note that when
eval returns res = Err TimeOut, then s1.clock is always 0. In
that case, line 7 states that the assembly program has taken
at least s .clock steps, i.e. as many steps as the number of
times Call was evaluated as part of eval on line 1. This loose
relationship between the number of execution steps between
source and assembly is su�cient for our proof.

As part of the top-level divergence preservation proof, we
encounter the following proof goal:

init_state_ok t input (codegen prog) ^ . . .)
LUB { t 0.output | step⇤ (State t) (State t 0) } =
LUB { prog_output k input prog | k 2 N }

We prove this goal with the help of the following lemma.

` total s1 ^ total s2 ^ s1 within s2 ^ s2 within s1)
LUB s1 = LUB s2

Here total requires that any two elements of the given set
must be related by the pre�x 4 relation; and within requires
each element of the �rst set to be a pre�x4 of some element
of the second set.

total s def
= 8 l1 l2. l1 2 s ^ l2 2 s) l1 4 l2 _ l2 4 l1

s1 within s2
def
= 8 l1. l1 2 s1) 9 l2. l2 2 s2 ^ l1 4 l2

8 Bootstrapping Results and Proof Scripts
This section concludes our description of the bootstrapping
work by recapping the top-level results, showing some of
the generated artifacts and presenting some numbers.

Theorems. The two most important top-level theorems
of this paper are the following. The �rst is a theorem which
states that the compiler_asm assembly program correctly
implements the abstract compiler function:

` (input ,compiler_asm) +asm output)
output = compiler input

The second theorem is an evaluation of the application of
the asm2str function to the compiler_asm assembly program
(where compiler_asm def

= codegen compiler_prog).

` asm2str compiler_asm = “. . . ”

Here “. . . ” is a concrete string that can be printed into a text
�le. Figure 4 shows the initial and �nal part of that string.

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

eval env (Const n) def
= return (Num n)

eval env (Var n) def
=

case env n of None) fail | Some v) return v

eval env (Op f xs) def
=

do vs evals env xs ; eval_op f vs od
eval env (Let vname x y) def

=
do v eval env x ;

eval env hvname 7! Some vi y od
eval env (If test xs y z) def

=
do vs evals env xs ;

b take_branch test vs;
eval env (if b then y else z) od

eval env (Call fname xs) def
=

do vs evals env xs ;
(fenv ,body) get_env_and_body fname vs;
eval fenv body od

evals env [] def
= return []

evals env (x ::xs) def
=

do v eval env x ;
vs evals env xs ;
return (v ::vs) od

return v s
def
= (Res v ,s)

fail s def
= (Err Crash,s)

monad_bind f g s
def
=

case f s of (Res v ,s1)) g v s1 | (Err e ,s1)) (Err e ,s1)

Figure 3. A functional big-step semantics for source expres-
sions. This is used for our proof of divergence preservation.

Using eval_from, we de�ne a function that checks for time-
out and one that returns the output for a given initial clock.

prog_timesout k input prog
def
=

9 s . eval_from k input prog = (Err TimeOut,s)

prog_output k input prog
def
=

let (res ,s) = eval_from k input prog in s .output

A source program diverges if the program times out for every
initial clock value k . The output is captured by the least upper
bound (LUB) of all partial outputs.

(input ,prog) *prog output
def
=

(8 k . prog_timesout k input prog) ^
output = LUB { prog_output k input prog | k 2 N }

Modi�cations to the veri�cation of the code genera-
tor. Only a few minor adjustments need to be made to code
generator proofs to also make them support a �nal theo-
rem about divergence preservation. In the theorem shown

in Figure 1, we swap lines 1, 7 and 11 to the following.

1 eval env e x = (res ,s1) ^ res , Err Crash ^
· · ·
7 steps (State t , s .clock) (outcome, s1.clock) ^

· · ·
11 8 v . res = Res v) 9w .

Here steps (t1,n1) (t2,n2)
def
= 9n . stepn t1 t2 ^ n1 n+n2.

We use steps to ensure that su�ciently many execution
steps are taken by the assembly program. Note that when
eval returns res = Err TimeOut, then s1.clock is always 0. In
that case, line 7 states that the assembly program has taken
at least s .clock steps, i.e. as many steps as the number of
times Call was evaluated as part of eval on line 1. This loose
relationship between the number of execution steps between
source and assembly is su�cient for our proof.

As part of the top-level divergence preservation proof, we
encounter the following proof goal:

init_state_ok t input (codegen prog) ^ . . .)
LUB { t 0.output | step⇤ (State t) (State t 0) } =
LUB { prog_output k input prog | k 2 N }

We prove this goal with the help of the following lemma.

` total s1 ^ total s2 ^ s1 within s2 ^ s2 within s1)
LUB s1 = LUB s2

Here total requires that any two elements of the given set
must be related by the pre�x 4 relation; and within requires
each element of the �rst set to be a pre�x4 of some element
of the second set.

total s def
= 8 l1 l2. l1 2 s ^ l2 2 s) l1 4 l2 _ l2 4 l1

s1 within s2
def
= 8 l1. l1 2 s1) 9 l2. l2 2 s2 ^ l1 4 l2

8 Bootstrapping Results and Proof Scripts
This section concludes our description of the bootstrapping
work by recapping the top-level results, showing some of
the generated artifacts and presenting some numbers.

Theorems. The two most important top-level theorems
of this paper are the following. The �rst is a theorem which
states that the compiler_asm assembly program correctly
implements the abstract compiler function:

` (input ,compiler_asm) +asm output)
output = compiler input

The second theorem is an evaluation of the application of
the asm2str function to the compiler_asm assembly program
(where compiler_asm def

= codegen compiler_prog).

` asm2str compiler_asm = “. . . ”

Here “. . . ” is a concrete string that can be printed into a text
�le. Figure 4 shows the initial and �nal part of that string.

Sample:

where:

Functional big-step

22

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

eval env (Const n) def
= return (Num n)

eval env (Var n) def
=

case env n of None) fail | Some v) return v

eval env (Op f xs) def
=

do vs evals env xs ; eval_op f vs od
eval env (Let vname x y) def

=
do v eval env x ;

eval env hvname 7! Some vi y od
eval env (If test xs y z) def

=
do vs evals env xs ;

b take_branch test vs;
eval env (if b then y else z) od

eval env (Call fname xs) def
=

do vs evals env xs ;
(fenv ,body) get_env_and_body fname vs;
eval fenv body od

evals env [] def
= return []

evals env (x ::xs) def
=

do v eval env x ;
vs evals env xs ;
return (v ::vs) od

return v s
def
= (Res v ,s)

fail s def
= (Err Crash,s)

monad_bind f g s
def
=

case f s of (Res v ,s1)) g v s1 | (Err e ,s1)) (Err e ,s1)

Figure 3. A functional big-step semantics for source expres-
sions. This is used for our proof of divergence preservation.

Using eval_from, we de�ne a function that checks for time-
out and one that returns the output for a given initial clock.

prog_timesout k input prog
def
=

9 s . eval_from k input prog = (Err TimeOut,s)

prog_output k input prog
def
=

let (res ,s) = eval_from k input prog in s .output

A source program diverges if the program times out for every
initial clock value k . The output is captured by the least upper
bound (LUB) of all partial outputs.

(input ,prog) *prog output
def
=

(8 k . prog_timesout k input prog) ^
output = LUB { prog_output k input prog | k 2 N }

Modi�cations to the veri�cation of the code genera-
tor. Only a few minor adjustments need to be made to code
generator proofs to also make them support a �nal theo-
rem about divergence preservation. In the theorem shown

in Figure 1, we swap lines 1, 7 and 11 to the following.

1 eval env e x = (res ,s1) ^ res , Err Crash ^
· · ·
7 steps (State t , s .clock) (outcome, s1.clock) ^

· · ·
11 8 v . res = Res v) 9w .

Here steps (t1,n1) (t2,n2)
def
= 9n . stepn t1 t2 ^ n1 n+n2.

We use steps to ensure that su�ciently many execution
steps are taken by the assembly program. Note that when
eval returns res = Err TimeOut, then s1.clock is always 0. In
that case, line 7 states that the assembly program has taken
at least s .clock steps, i.e. as many steps as the number of
times Call was evaluated as part of eval on line 1. This loose
relationship between the number of execution steps between
source and assembly is su�cient for our proof.

As part of the top-level divergence preservation proof, we
encounter the following proof goal:

init_state_ok t input (codegen prog) ^ . . .)
LUB { t 0.output | step⇤ (State t) (State t 0) } =
LUB { prog_output k input prog | k 2 N }

We prove this goal with the help of the following lemma.

` total s1 ^ total s2 ^ s1 within s2 ^ s2 within s1)
LUB s1 = LUB s2

Here total requires that any two elements of the given set
must be related by the pre�x 4 relation; and within requires
each element of the �rst set to be a pre�x4 of some element
of the second set.

total s def
= 8 l1 l2. l1 2 s ^ l2 2 s) l1 4 l2 _ l2 4 l1

s1 within s2
def
= 8 l1. l1 2 s1) 9 l2. l2 2 s2 ^ l1 4 l2

8 Bootstrapping Results and Proof Scripts
This section concludes our description of the bootstrapping
work by recapping the top-level results, showing some of
the generated artifacts and presenting some numbers.

Theorems. The two most important top-level theorems
of this paper are the following. The �rst is a theorem which
states that the compiler_asm assembly program correctly
implements the abstract compiler function:

` (input ,compiler_asm) +asm output)
output = compiler input

The second theorem is an evaluation of the application of
the asm2str function to the compiler_asm assembly program
(where compiler_asm def

= codegen compiler_prog).

` asm2str compiler_asm = “. . . ”

Here “. . . ” is a concrete string that can be printed into a text
�le. Figure 4 shows the initial and �nal part of that string.

Sample:

where:

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

eval env (Const n) def
= return (Num n)

eval env (Var n) def
=

case env n of None) fail | Some v) return v

eval env (Op f xs) def
=

do vs evals env xs ; eval_op f vs od
eval env (Let vname x y) def

=
do v eval env x ;

eval env hvname 7! Some vi y od
eval env (If test xs y z) def

=
do vs evals env xs ;

b take_branch test vs;
eval env (if b then y else z) od

eval env (Call fname xs) def
=

do vs evals env xs ;
(fenv ,body) get_env_and_body fname vs;
eval fenv body od

evals env [] def
= return []

evals env (x ::xs) def
=

do v eval env x ;
vs evals env xs ;
return (v ::vs) od

return v s
def
= (Res v ,s)

fail s def
= (Err Crash,s)

monad_bind f g s
def
=

case f s of (Res v ,s1)) g v s1 | (Err e ,s1)) (Err e ,s1)

Figure 3. A functional big-step semantics for source expres-
sions. This is used for our proof of divergence preservation.

Using eval_from, we de�ne a function that checks for time-
out and one that returns the output for a given initial clock.

prog_timesout k input prog
def
=

9 s . eval_from k input prog = (Err TimeOut,s)

prog_output k input prog
def
=

let (res ,s) = eval_from k input prog in s .output

A source program diverges if the program times out for every
initial clock value k . The output is captured by the least upper
bound (LUB) of all partial outputs.

(input ,prog) *prog output
def
=

(8 k . prog_timesout k input prog) ^
output = LUB { prog_output k input prog | k 2 N }

Modi�cations to the veri�cation of the code genera-
tor. Only a few minor adjustments need to be made to code
generator proofs to also make them support a �nal theo-
rem about divergence preservation. In the theorem shown

in Figure 1, we swap lines 1, 7 and 11 to the following.

1 eval env e x = (res ,s1) ^ res , Err Crash ^
· · ·
7 steps (State t , s .clock) (outcome, s1.clock) ^

· · ·
11 8 v . res = Res v) 9w .

Here steps (t1,n1) (t2,n2)
def
= 9n . stepn t1 t2 ^ n1 n+n2.

We use steps to ensure that su�ciently many execution
steps are taken by the assembly program. Note that when
eval returns res = Err TimeOut, then s1.clock is always 0. In
that case, line 7 states that the assembly program has taken
at least s .clock steps, i.e. as many steps as the number of
times Call was evaluated as part of eval on line 1. This loose
relationship between the number of execution steps between
source and assembly is su�cient for our proof.

As part of the top-level divergence preservation proof, we
encounter the following proof goal:

init_state_ok t input (codegen prog) ^ . . .)
LUB { t 0.output | step⇤ (State t) (State t 0) } =
LUB { prog_output k input prog | k 2 N }

We prove this goal with the help of the following lemma.

` total s1 ^ total s2 ^ s1 within s2 ^ s2 within s1)
LUB s1 = LUB s2

Here total requires that any two elements of the given set
must be related by the pre�x 4 relation; and within requires
each element of the �rst set to be a pre�x4 of some element
of the second set.

total s def
= 8 l1 l2. l1 2 s ^ l2 2 s) l1 4 l2 _ l2 4 l1

s1 within s2
def
= 8 l1. l1 2 s1) 9 l2. l2 2 s2 ^ l1 4 l2

8 Bootstrapping Results and Proof Scripts
This section concludes our description of the bootstrapping
work by recapping the top-level results, showing some of
the generated artifacts and presenting some numbers.

Theorems. The two most important top-level theorems
of this paper are the following. The �rst is a theorem which
states that the compiler_asm assembly program correctly
implements the abstract compiler function:

` (input ,compiler_asm) +asm output)
output = compiler input

The second theorem is an evaluation of the application of
the asm2str function to the compiler_asm assembly program
(where compiler_asm def

= codegen compiler_prog).

` asm2str compiler_asm = “. . . ”

Here “. . . ” is a concrete string that can be printed into a text
�le. Figure 4 shows the initial and �nal part of that string.

decrements a clock (“uses fuel”) …

… that is passed around in state.

Next slide zooms in

New compiler backend:
8 intermediate languages (ILs)
and many within-IL optimisations

each IL at the right level of abstraction

for the benefit of
proofs and compiler

implementation

23
Yong Kiam Tan

Transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

ab
st

ra
ct

 v
al

ue
s

in
cl

.
cl

os
ur

es
 a

nd
 r

ef
 p

oi
nt

er
s

ab
st

ra
ct

 v
al

ue
s

in
cl

.
re

f
an

d
co

de
 p

oi
nt

er
s

m

ac
hi

ne
 w

or
ds

 a
nd

 c
od

e
la

be
ls

64
-b

it

 w
or

ds

32
-b

it
 w

or
ds

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Switch to de Bruijn
indexed local variables

Track where closure values
flow & inline small functions

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Annotate closure creations

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack

Implement GC primitive
Turn stack accesses into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language

without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

Turn pattern matches into
if-then-else decision trees

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Introduce (raw) calls past
function preambles

Values used by
the semantics

Parser and type
inferencer as before

Early phases reduce
the number of

language features

Language with multi-
argument closures

Both proved sound
and complete.

Transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

ab
st

ra
ct

 v
al

ue
s

in
cl

.
cl

os
ur

es
 a

nd
 r

ef
 p

oi
nt

er
s

ab
st

ra
ct

 v
al

ue
s

in
cl

.
re

f
an

d
co

de
 p

oi
nt

er
s

m

ac
hi

ne
 w

or
ds

 a
nd

 c
od

e
la

be
ls

64
-b

it

 w
or

ds

32
-b

it
 w

or
ds

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Switch to de Bruijn
indexed local variables

Track where closure values
flow & inline small functions

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Annotate closure creations

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack

Implement GC primitive
Turn stack accesses into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language

without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

Turn pattern matches into
if-then-else decision trees

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Introduce (raw) calls past
function preambles

Language with multi-
argument closures

 Simple first-order
functional language

Imperative language

Machine-like types

Transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

ab
st

ra
ct

 v
al

ue
s

in
cl

.
cl

os
ur

es
 a

nd
 r

ef
 p

oi
nt

er
s

ab
st

ra
ct

 v
al

ue
s

in
cl

.
re

f
an

d
co

de
 p

oi
nt

er
s

m

ac
hi

ne
 w

or
ds

 a
nd

 c
od

e
la

be
ls

64
-b

it

 w
or

ds

32
-b

it
 w

or
ds

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Switch to de Bruijn
indexed local variables

Track where closure values
flow & inline small functions

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Annotate closure creations

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack

Implement GC primitive
Turn stack accesses into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language

without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

Turn pattern matches into
if-then-else decision trees

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Introduce (raw) calls past
function preambles

Machine-like types

Transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

ab

st
ra

ct
 v

al
ue

s
in

cl
.

cl
os

ur
es

 a
nd

 r
ef

 p
oi

nt
er

s

ab
st

ra
ct

 v
al

ue
s

in
cl

.
re

f
an

d
co

de
 p

oi
nt

er
s

m

ac
hi

ne
 w

or
ds

 a
nd

 c
od

e
la

be
ls

64
-b

it

 w
or

ds

32
-b

it
 w

or
ds

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Switch to de Bruijn
indexed local variables

Track where closure values
flow & inline small functions

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Annotate closure creations

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack

Implement GC primitive
Turn stack accesses into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language

without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

Turn pattern matches into
if-then-else decision trees

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Introduce (raw) calls past
function preambles

Imperative compiler
with an FP twist:
garbage collector,

live-var annotations,
fast exception

mechanisms (for ML)

Targets 5 architectures

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

btree
fib foldl

nqueens

qsortimp

qsort
queue

reverse

ocamlopt 4.02.3
mlton 20100608

smlnj v110.78
polyc v5.6

cakeml

execution time
relative to

native-code
compiled

OCaml (red)

CakeML defaults to
arbitrary precision ints

CakeML defaults to
arbitrary precision ints

CakeML defaults to
arbitrary precision ints

higher-order inlining would help

Performance numbers

27

Verified checking of LRAT

28

cake_lpr: Verified Propagation Redundancy Checking in CakeML 13

Table 4. A summary of the SAT Race 2019 benchmark results. The N/A row counts
problems that timed out or failed in an earlier step of the respective toolchains.

Status CaDiCaL DRAT-trim acl2-lrat cake_lpr coq-lrat GRATgen GRATchk

Success 102 97 96 97 36 100 100
Timeout 15 5 0 0 61 0 0
Failure 0 0 1 0 0 2 0
N/A 0 15 20 20 20 15 17

100 101 102 103
0

20

40

60

80

100

Time limit (seconds, logarithmic scale)

T
ot

al
pr

oo
fs

ch
ec

ke
d acl2-lrat

cake_lpr
coq-lrat

100 101 102 103 104
0

20

40

60

80

100

Time limit (seconds, logarithmic scale)

T
ot

al
pr

oo
fs

ch
ec

ke
d GRATgen + GRATchk

DRAT-trim + acl2-lrat
DRAT-trim + cake_lpr

Fig. 5. (Top) Total SAT Race 2019 proofs checked within a given (per instance) time
limit for the LRAT proof checkers. (Bottom) Total SAT Race 2019 proofs generated and
checked within a given (per instance) time limit for the LRAT and GRAT toolchains.

suite rarely require RAT (or PR) steps, so the checkers are stress-tested on their
implementation of file I/O, parsing, and Step 3.1 from Fig. 3; cake_lpr is the
only tool with a formally verified implementation of the former two steps. All
tools were ran with the SAT competition standard timeout of 5000 seconds.

A summary of the results is given in Table 4. All proofs generated by CaDiCaL

were checked by at least one checker. The acl2-lrat checker fails with a parse
error on one problem even though none of the other checkers reported such an
error; GRATgen aborted on two problems for an unknown reason. Plots com-
paring LRAT proof checking time and overall proof generation and checking
time (LRAT and GRAT) are shown in Fig. 5. From Fig. 5 (top), the relative
order of LRAT checking speeds remains the same, where cake_lpr is on av-
erage 1.2x slower than acl2-lrat, although cake_lpr is faster on 28 bench-

Percent of SAT Race 2019 proofs checked …

Verified cake_lpr implementation is near
highly optimised ACL2-generated checker

… within (per instance)
time limit.

Tan et al. TACAS’21

Demo of cake_lpr checker

29

Other developments

30

Arthur Charguéraud developed CFML for reasoning
about OCaml code in Coq

Background:

Armaël Guéneau adapted CFML for reasoning about
CakeML code (including state, exceptions and I/O)

Son Ho implemented significant proof automation
for Armaël’s program logic for CakeML

A verified programming logic for CakeML:

How to verify manually written CakeML code?

Infinite runs and liveness

31

Johannes Åman Pohjola

Infinite runs:

Compiler proofs talk about infinite runs.

Program logic should be able to!

CakeML CF adapted to reasoning about
infinite runs and liveness properties.

Problem with liveness

32

204:2 A. Gomez-Londoño, J. Åman Pohjola, H. Taqdees Syeda, M. O. Myreen, Y. K. Tan

Well-written source-level programs stay clear of this partiality by making sure that the live data
used by the program stays within some reasonable bound. For such programs, the GC can always
reclaim enough memory to provide space for new allocations, even if there are an unbounded
number of allocations during program execution.

For certain applications, programmers are keen to make sure that they stay clear of this partiality.
In such circumstances, one has to �nd a way to answer the question: what is a su�cient amount
of memory for my machine code executable to never reach an out-of-memory error? The answer
clearly depends on the exact compilation strategy used. In this paper, we provide a proof-based
approach for answering such questions in the context of the CakeML compiler.
The CakeML compiler [Tan et al. 2019] is a formally veri�ed compiler for a high-level source

language that has no bounds on memory and no bounds on integer size. However, the CakeML
compiler targets real machine languages (x86-64, ARMv8, RISC-V, etc.) where memory and integers
have hard bounds. The CakeML compiler inserts a veri�ed GC and bignum library into the code
that it produces in order to make it seem as if memory and integers are unbounded. However, these
libraries can not always stop the machine code from hitting a hard resource bound—the machine
code might, as a result, have to terminate with an out-of-memory error.
The partiality mentioned above is clearly visible in the top-level compiler correctness theorem

for the CakeML compiler. This correctness theorem relates the set of behaviours allowed by the
source semantics source_sem and the machine semantics machine_sem along the following lines:

machine_sem � (compile c prog) ✓
extend_with_resource_limit (source_sem � prog)

Here extend_with_resource_limit is a function that augments a set of behaviours with the option to
exit early with an out-of-memory error, c is a compiler con�guration and � is a model of the
outside world.
The partiality that is expressed using extend_with_resource_limit means that liveness properties

proved at the source level do not transfer to liveness properties at the machine code level. For
example, suppose one proves a liveness property that a source program will forever print "y" using a
program logic [Åman Pohjola et al. 2019]. It does not follow from the compiler correctness theorem
that the generated machine code will forever do the same: the partiality means that only safety
properties carry over. The safety property in our example is that, if the machine code produces
output, then the output consists of only “y”s.
In this paper, we de�ne a predicate is_safe_for_space that is su�cient to rule out this partiality

and extend the CakeML compiler proofs to give stronger guarantees for when is_safe_for_space
holds. The is_safe_for_space predicate de�nes a space cost semantics for CakeML programs, and the
new compiler correctness theorem states that the cost semantics rules out all potential for early
termination. The new top-level theorem has the following shape:

is_safe_for_space � c prog . . .)
machine_sem � (compile c prog) = source_sem � prog

Note that the new relationship between source and target semantics here is equality, not re�ne-
ment: the (deterministic) source semantics de�nes exactly one permitted behaviour, and the machine
semantics implements precisely that behaviour. This equality means that liveness properties proved
for the source level carry over directly to liveness properties of the machine code.

Contributions. This paper’s contributions are:
• We de�ne a formal space cost semantics for the CakeML programming language. The de�ni-
tion is stated in terms of one of the intermediate languages used by the CakeML compiler.
This intermediate language is at a high enough level to avoid reasoning about data pointers

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 204. Publication date: November 2020.

Problem: Compiler correctness allows any CakeML program
 to exit early with an out-of-memory (OOM) error.

Shape of compiler correctness theorem:

source behaviours extended
with early OOM termination

Thus: non-terminating CakeML programs
might terminate once compiled…

Proving absence of OOM

33

Solution: A verified space cost semantics for CakeML that
 allows liveness properties to transfer to machine code.

204:2 A. Gomez-Londoño, J. Åman Pohjola, H. Taqdees Syeda, M. O. Myreen, Y. K. Tan

Well-written source-level programs stay clear of this partiality by making sure that the live data
used by the program stays within some reasonable bound. For such programs, the GC can always
reclaim enough memory to provide space for new allocations, even if there are an unbounded
number of allocations during program execution.

For certain applications, programmers are keen to make sure that they stay clear of this partiality.
In such circumstances, one has to �nd a way to answer the question: what is a su�cient amount
of memory for my machine code executable to never reach an out-of-memory error? The answer
clearly depends on the exact compilation strategy used. In this paper, we provide a proof-based
approach for answering such questions in the context of the CakeML compiler.
The CakeML compiler [Tan et al. 2019] is a formally veri�ed compiler for a high-level source

language that has no bounds on memory and no bounds on integer size. However, the CakeML
compiler targets real machine languages (x86-64, ARMv8, RISC-V, etc.) where memory and integers
have hard bounds. The CakeML compiler inserts a veri�ed GC and bignum library into the code
that it produces in order to make it seem as if memory and integers are unbounded. However, these
libraries can not always stop the machine code from hitting a hard resource bound—the machine
code might, as a result, have to terminate with an out-of-memory error.
The partiality mentioned above is clearly visible in the top-level compiler correctness theorem

for the CakeML compiler. This correctness theorem relates the set of behaviours allowed by the
source semantics source_sem and the machine semantics machine_sem along the following lines:

machine_sem � (compile c prog) ✓
extend_with_resource_limit (source_sem � prog)

Here extend_with_resource_limit is a function that augments a set of behaviours with the option to
exit early with an out-of-memory error, c is a compiler con�guration and � is a model of the
outside world.
The partiality that is expressed using extend_with_resource_limit means that liveness properties

proved at the source level do not transfer to liveness properties at the machine code level. For
example, suppose one proves a liveness property that a source program will forever print "y" using a
program logic [Åman Pohjola et al. 2019]. It does not follow from the compiler correctness theorem
that the generated machine code will forever do the same: the partiality means that only safety
properties carry over. The safety property in our example is that, if the machine code produces
output, then the output consists of only “y”s.
In this paper, we de�ne a predicate is_safe_for_space that is su�cient to rule out this partiality

and extend the CakeML compiler proofs to give stronger guarantees for when is_safe_for_space
holds. The is_safe_for_space predicate de�nes a space cost semantics for CakeML programs, and the
new compiler correctness theorem states that the cost semantics rules out all potential for early
termination. The new top-level theorem has the following shape:

is_safe_for_space � c prog . . .)
machine_sem � (compile c prog) = source_sem � prog

Note that the new relationship between source and target semantics here is equality, not re�ne-
ment: the (deterministic) source semantics de�nes exactly one permitted behaviour, and the machine
semantics implements precisely that behaviour. This equality means that liveness properties proved
for the source level carry over directly to liveness properties of the machine code.

Contributions. This paper’s contributions are:
• We de�ne a formal space cost semantics for the CakeML programming language. The de�ni-
tion is stated in terms of one of the intermediate languages used by the CakeML compiler.
This intermediate language is at a high enough level to avoid reasoning about data pointers

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 204. Publication date: November 2020.

Shape of new alternative theorem: if space cost semantics
says prog is safe …

… then semantics is preserved exactly

… and liveness properties proved at source carry to machine code!

Part 1: The core of the CakeML project

This talk

research questions, main ideas,

34

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

Part 1: The core of the CakeML project

This talk

research questions, main ideas,

35

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

Verified stack

A verified stack is a computer system that is demonstrably
correct. Specifically, it is a system with a formal proof of
correctness that covers all layers of the implementation,
from the hardware through to the application code.

Examples: CLI stack
 Verisoft
 CakeML+Silver [PLDI’19]
 Erbsen et al. [PLDI’21]

36

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n
d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4
-b

it

w
o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2
-b

it
w

o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

CakeML
compiler work produced end-to-end verification
that ended at the software-hardware interface (ISA).

37

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n
d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4
-b

it

w
o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2
-b

it
w

o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Extending into hardware

Silver ISA

Silver CPU shallow embedding

manual proof

Silver CPU in Verilog (deep emb.)

automatic proof

verified implementation of
in-memory file system

manual proof

Valuable: shows that assumptions made in
compiler proofs and file system can be realised!

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n
d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n
d
 c

o
d
e
 p

o
in

te
rs

m
a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4
-b

it

w
o
rd

s

no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2
-b

it
w

o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL:
functional
language
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Silver ISA

Silver CPU shallow embedding

manual proof

Silver CPU in Verilog (deep emb.)

automatic proof

verified implementation of
in-memory file system

manual proof

Valuable: shows that assumptions made in
compiler proofs and file system can be realised!

FPGA-technology mapped netlists

verified compilation (CPP’21)

Verilog almost the same…

Andreas Lööw

The hardware work is all by:

How real is it?

The verified CPU can
run non-trivial programs,
including the entire
CakeML compiler.

40

Part 1: The core of the CakeML project

This talk

research questions, main ideas,

41

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

HOL light

42

• Shares the lead in Freek Wiedijk's 100 Theorems challenge
with Isabelle/HOL (86/100)

• Major formalizations of various branches of mathematics:
(multivariate-) real analysis, complex analysis, …

• Proof of the Kepler conjecture (Flyspeck project)

Is an ITP by John Harrison for higher-order logic (HOL):

https://www.cs.ru.nl/~freek/100/

Candle

43

Candle is a verified clone of HOL light.

proved to be sound

it really looks and feels like HOL light

I can show a demo if we have time…

Candle

44

OS, hardware, etc.

CakeML compiler +
read-eval-print loop

(REPL)

Logical kernel

Derived code: tactics,
proofs, definitions,

provers, etc.

we proved an end-to-end
soundness theorem:

… machine code running
prover will only output
theorems that are true

according to semantics of
higher-order logic.

Candle has an LCF-style
design (logical kernel):

45

Candle: A Verified Implementation of HOL Light
Oskar Abrahamsson �

Chalmers University of Technology, Gothenburg, Sweden

Magnus O. Myreen �

Chalmers University of Technology, Gothenburg, Sweden

Ramana Kumar �

London, UK

Thomas Sewell �

University of Cambridge, UK

Abstract
This paper presents a fully verified interactive theorem prover for higher-order logic, more specifically:
a fully verified clone of HOL Light. Our verification proof of this new system results in an end-to-end
correctness theorem that guarantees the soundness of the entire system down to the machine code
that executes at runtime. Our theorem states that every exported fact produced by this machine-code
program is valid in higher-order logic. Our implementation consists of a read-eval-print loop (REPL)
that executes the CakeML compiler internally. Throughout this work, we have strived to make the
REPL of the new system provide a user experience as close to HOL Light’s as possible. To this end,
we have, e.g., made the new system parse the same variant of OCaml syntax as HOL Light. All of
the work described in this paper has been carried out in the HOL4 theorem prover.

2012 ACM Subject Classification Software and its engineering æ Software verification

Keywords and phrases Prover soundness, Higher-order logic, Interactive theorem proving

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.3

Supplementary Material Software (Proofs and Prebuilt Binaries): https://cakeml.org/candle

Funding Oskar Abrahamsson: Swedish Foundation for Strategic Research.
Magnus O. Myreen: Swedish Foundation for Strategic Research.

Acknowledgements We want to thank Freek Wiedijk and Yong Kiam Tan. We are grateful for
Freek Wiedijk’s question at ITP’11. Following a presentation about the verification of a runtime for
Milawa [10] at ITP’11, Wiedijk asked: “Can you do the same for HOL Light, please?” Wiedijk’s
question can be seen as the seed that set us thinking about the possibility of a verified HOL Light
implementation and eventually lead us to construct the verified Candle ITP, presented in this paper.
We want to thank Yong Kiam Tan for helping with some proofs involving the the CakeML type
inferencer. These proofs were part of the proof of safety of CakeML’s new read-eval-print loop.

1 Introduction

Interactive theorem provers (ITPs) for higher-order logic, such as HOL4, HOL Light, Isa-
belle/HOL and ProofPower, are designed to be as sound as possible. Their implementations
follow an LCF-style architecture, which means that each prover has a small kernel that
implements the inference rules of the hosted logic (higher-order logic) and the rest of the
system is set up in such a way that all soundness-critical inferences must be performed by
the functions inside the small kernel. The beauty of this approach is that there is not much
soundness-critical source code, which means that this code can quite easily be manually
inspected (or even verified). As a result, soundness bugs in these ITPs are very rare.

© Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas Sewell;

licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).

Editors: June Andronick and Leonardo de Moura; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ITP 2022

builds on
these results

PLDI 2023

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Cakes that Bake Cakes: Dynamic Computation in CakeML

ANONYMOUS AUTHOR(S)

We have extended the CakeML veri�ed compiler with the new Eval language primitive which permits
evaluation of new CakeML syntax at run time. This new implementation supports an ambitious form of
just-in-time compilation, where the original and dynamically added code can share values and recursively call
each other. This is, to our knowledge, the �rst veri�ed runtime environment capable of supporting a standard
LCF-style theorem prover design.

Modifying the modern CakeML compiler pipeline and proofs to support the dynamic evaluation semantics
was an extensive project. We review the design decisions, proof techniques, and proof engineering lessons
from the project, and highlight some unexpected complications.

1 INTRODUCTION
The CakeML project [Myreen 2021] consists of a formally speci�ed language (CakeML) in the ML
family, and a suite of formally veri�ed tools for that language. The central component is the CakeML
compiler [Kumar et al. 2014; Tan et al. 2019], which is veri�ed to correctly compile CakeML source
programs down to various machine code targets. Notably, CakeML supports veri�ed bootstrapping,
i.e., veri�ed compilation of the CakeML compiler’s own implementation in CakeML.

The Eval primitive operator, which is now part of the language, enables a CakeML program to
dynamically compile and execute new CakeML syntax created at runtime. This mechanism can
be used to write a REPL (a read-evaluate-print loop) as a CakeML program. Such a REPL has, in
turn, been veri�ed safe and used to build Candle [Abrahamsson et al. 2022], a veri�ed interactive
theorem prover. This paper summarises the long-running project that added the Eval mechanism
to the CakeML compiler and its veri�cation.
Prior to this work, the CakeML compiler had developed into an ahead-of-time compiler with

many optimisation passes and several intermediate languages (an earlier version had supported a
REPL, to which we will compare later). The question which motivates this project is, can we simply
convert an ahead-of-time self-hosting compiler into a just-in-time compilation environment by
including the compiler? For instance, can we simply rewrite Eval as follows?

Eval ctxt prog =) let binary = compile ctxt prog in ExecBinary binary

The actual process of calling the compiler from a REPL is a little more complex than the above
snippet suggests. However, it does illustrate the substantial question we must answer. In a veri�ed
compiler which assigns semantics to every intermediate language, what does it mean to try to
execute a machine-code binary? What implications does this operation have for the substantial
existing body of compiler proofs?
As we will see, we can answer these questions and update the proof. This evolved into a long-

running project, one that passed between various contributors, and one that concludes with a
version of CakeML that supports Eval, can compile a proven-safe REPL, and can compile a proven-
correct interactive theorem prover.

1.1 A Verified LCF Successor
Why put this much e�ort into evolving CakeML from an ahead-of-time compiler to one with a
just-in-time capacity? CakeML is an ML-family language, and thus a successor of the �rst ML
“meta-language” [Gordon et al. 1978] which was co-developed with the LCF interactive theorem
prover [Gordon et al. 1979]. LCF introduced a novel theorem prover design where the user could

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

A major effort to insert the CakeML compiler into
the CakeML runtime (enables dynamic compilation)

Thomas Sewell

Part 1: The core of the CakeML project

This talk

research questions, main ideas,

46

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

Haskell-like language

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

PureCake: A Verified Compiler for a Lazy Functional
Language
ANONYMOUS AUTHOR(S)

We present PureCake, a veri�ed compiler for a pure, lazy, functional programming language with monadic
e�ects. At its front-end, PureCake supports a Haskell-like, indentation-sensitive syntax. Its Hindley-Milner
type-system guarantees safe execution, and we have mechanically veri�ed the soundness of its constraint-
based type inference. The dynamic semantics of PureCake is de�ned operationally, and we have also derived
an equational presentation of the semantics that dramatically simpli�es a number of our mechanised proofs.
The PureCake compiler produces CakeML code, and this compilation is proved correct. Composition with
CakeML’s existing compiler-correctness theorem provides end-to-end assurance for the chain from PureCake
source to machine-code, the �rst such guarantee for any implementation of a lazy language. PureCake is
implemented with multiple compiler passes, including those critical for generation of e�cient code from
call-by-name idioms. For example, demand analysis �nds demands for higher-order functions via a �xed-point
analysis, and monadic re�ection turns monadic expressions into e�cient imperative code. The work described
in this paper has been developed within the HOL4 theorem prover.

1 INTRODUCTION
High-level languages often claim to provide strong guarantees for the programmer. For example:
Haskell’s strong typing demarcates stateful and pure computations, and its lazy evaluation reduces
unnecessary computation; Rust’s borrow-checker prevents use-after-free bugs and thread-unsafe
behaviour. Compilers for these languages reject programs which are semantically ill-de�ned,
removing the burden of safety from the programmer. By contrast, it is non-trivial to avoid unde�ned
behaviour in more low-level languages such as C++. However, high-level languages require longer
compilation paths to generate e�cient code, providing greater scope for miscompilations which
could compromise intended guarantees.
End-to-end veri�cation prevents such miscompilations: any bugs in a compiled binary must

come from the input source code. CompCert [Leroy 2009] �rst showed that this was feasible for
featureful, optimising compilers by veri�ably compiling a subset of C99. Inspired by CompCert, the
veri�ed CakeML [Kumar et al. 2014] compiler compiles a subset of a Standard ML-like language.
Note that CakeML is a functional programming language in which memory safety is guaranteed
by type safety at the source and veri�ed garbage collection.

Haskell-like languages are particularly challenging targets. These languages are pure: computa-
tions are free of side-e�ects e by default, leading to referential transparency. That is, functions can
soundly be replaced by their de�nitions, corresponding to the programmer model of equational rea-
soning. This permits lazy evaluation: expressions are computed on demand only when �rst needed,
and never re-computed on re-use. However, programmers can still access stateful features and
interact with the surrounding execution environment using monads. Compiling these languages,
with even a modicum of realism, requires at least:

• e�cient call-by-need implementation of non-strict evaluation without compromising equa-
tional reasoning;

• demand analysis to compute expressions ahead of time rather than on-the-�y when their
values are unconditionally required; and

• monadic re�ection to generate idiomatic imperative code for stateful monadic operations.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

PLDI 2023

Some code PureCake can compile:
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

PureCake: A Verified Compiler for a Lazy Functional Language 1:3

1 numbers :: [Integer]
2 numbers =

3 let num n = n : num (n + 1)
4 in num 0
5

6 factA :: Integer -> Integer -> Integer

7 factA a n =

8 if n < 2 then a
9 else factA (a * n) (n - 1)
10

11 factorials :: [Integer]
12 factorials = map (factA 1) numbers

14 app :: (a -> IO b) -> [a] -> IO ()
15 app f l = case l of

16 [] -> return ()
17 h:t -> do f h ; app f t
18

19 main :: IO ()
20 main = do

21 arg1 <- read_arg1
22 -- fromString == 0 on malformed input
23 let i = fromString arg1
24 facts = take i factorials
25 app (\i -> print $ toString i) facts

Fig. 1. A small P���L��� program printing a user-specified prefix of the factorial sequence. We have removed
boilerplate definitions for brevity.

Compiler front end (§ 4). Our indentation-sensitive parsing expression grammar (PEG) is inspired
by Adams [2013] and the CakeML parser, and parses concrete syntax that is largely a subset of
Haskell’s. Before compilation, top-level functions are sorted to minimise mutual recursion (§ 4.2).

We implement and verify non-standard, two-phase type inference (§ 4.3) inspired by the Helium
teaching compiler [Heeren et al. 2003]: typing constraints are separately generated then solved.
Our approach is open to the addition of language features and high-quality error messages.
Demand analysis (§ 4.4) uses seq to precompute expressions whose values are unconditionally

required. These passes are veri�ed entirely within our equational theory.

Compiler back end (§ 5). We de�ne three intermediate languages: T����L���, E��L���, and
S����L��� (§§ 5.2 to 5.4 respectively). Like P���L���, each has two ASTs: compiler and semantic ex-
pressions. Compilation to the call-by-value T����L��� introduces thunks, and optimisation passes
minimise their use in key locations. In E��L���, semantic de�nitions start using environments
rather than substitutions. S����L��� implements both thunks and monadic operations as stateful
primitives; the latter is monadic re�ection [Filinski 1994, 2010]. Therefore, its semantics does not
require separate stages for pure evaluation and stateful interpretation.

Targeting CakeML (§ 6). Compilation targets CakeML, but CakeML’s functional big-step seman-
tics [Owens et al. 2016] uses an oracle to model FFI behaviour where P���L���’s interaction tree
semantics models all possible FFI behaviours. We verify an interaction tree semantics for CakeML,
deriving the corresponding novel compiler correctness theorem. Veri�ably bootstrapping [Myreen
2021b] PureCake produces an end-to-end correctness theorem for its compiler binary.

3 PURELANG
3.1 Features
Figure 1 showcases a small P���L��� program accepting an integer = on the command line and
printing the �rst = factorial numbers. P���L��� syntax is indentation-sensitive and inspired by
Haskell; GHC accepts this program with minimal tweaks. Features common to functional languages
are supported: �rst-class functions (map on line 12), general recursion (factA on lines 6-9), algebraic
data types and pattern matching ([]/h:t on lines 16-17).

P���L��� borrows several other features from Haskell. Top-level declarations are mutually
recursive and can be reordered freely. Evaluation is call-by-need: expressions are computed only as

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

48

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

PureCake: A Verified Compiler for a Lazy Functional Language 1:13

PureLang:
ce from Fig. 2

pure call-by-name
(subst. semantics)

Compiler implementationLanguage Comments on verification

PureCake source
lexing, parsing, desugaring

split letrecs and simplify

can reject input; this pass is not verified

run type inferencer

demands analysis
annotates with seqs

run type inferencer (again)

translate into call-by-value;
introduce delay & force;
avoid delay (force (var _))

rejects ill-typed programs, proved sound

proved to preserve ≅ (Sec 3.4)

proved to preserve ≈ (Sec 4.4)

ThunkLang:
pure call-by-value
(subst. semantics)

lift lambdas out of lets
and letrecs, and simplify
some force expressions

front end

back end

EnvLang:
pure call-by-value
(env. semantics)

reformulate to make step
into StateLang simpler

StateLang:
impure call-by-value

(env. semantics)

compile delay, box, force
and IO monads to stateful ops

push _· unit inwards

make every lambda bind a
variable to align with CakeML

CakeML source translate into CakeML and
attach helper functions

rejects ill-typed programs, proved sound

proof was broken down to five relations;
implementation stays within their composition

implementation stays within the transitive closure of a
syntactic relation that preserves semantics

proof uses the composition of three relations:
 1. expands the IO monad into stateful operations
 2. replaces Delay, Box, Force with stateful operations
 3. tidies up the result

implementation stays within the transitive closure
of a syntactic relation that preserves semantics

Fig. 8. High-level summary of the compiler’s intermediate languages and compilation passes. Back end proofs
adopt a recurring approach: syntactic relations characterise code transformations, the relations are proven to
preserve semantics, and the compiler is verified to stay within the relation (§ 5.1).

5.1 Method: verify compiler relations, not functions
We separate veri�cation of compiler passes from their implementations to keep the PureCake
compiler extensible: veri�cation of new passes should be minimally impacted by the design choices
of previous ones. Therefore, instead of verifying semantics-preservation of concrete compiler
functions, we verify syntactic relations encapsulating each pass. It then su�ces to de�ne concrete
functions and prove they inhabit the relations. This two-phase approach has several bene�ts:

• Relations can easily impose syntactic restrictions on input code by narrowing their domains.
By contrast, similarly restricting total functions requires cumbersome invariants which must
be carried between proofs. Now, each relation can be veri�ed orthogonally instead.

• Unlike functions, relations can remain high-level, avoiding concrete details such as free/bound
variables, inventing fresh names, etc.

• Complicated passes can be composed of several simpler relations while requiring only a
single implementation function, reducing proof complexity without sacri�cing performance.

• Compiler functions can be optimised without redoing their core veri�cation.
This can be viewed as a simple separation of concerns: relation veri�cation focuses on code
transformations, and function veri�cation focuses on bookkeeping between compiler passes (that
is, ensuring each function produces code satisfying the restrictions of its successor).

5.2 T����L���
The �rst intermediate language of the PureCake compiler is called T����L���. This language is
essentially a copy of P���L���, except T����L��� has call-by-value evaluation and new primitives

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

CakeML as target language

… and another compiler:

Pancake
Veri�ed Systems Programming Made Sweeter

Johannes Åman Pohjola
j.amanpohjola@unsw.edu.au

UNSW Sydney
Australia

Hira Taqdees Syeda∗
syedahir@amazon.com

Chalmers University of Technology
Gothenburg, Sweden

Miki Tanaka
miki.tanaka@unsw.edu.au

UNSW Sydney
Australia

Krishnan Winter
k.winter@student.unsw.edu.au

UNSW Sydney
Australia

Tsun Wang Sau
t.sau@student.unsw.edu.au

UNSW Sydney
Australia

Benjamin Nott
b.no�@student.unsw.edu.au

UNSW Sydney
Australia

Tiana Tsang Ung
t.tsangung@student.unsw.edu.au

UNSW Sydney
Australia

Craig McLaughlin
c.mclaughlin@unsw.edu.au

UNSW Sydney
Australia

Remy Seassau†
remy.seassau@cs.ox.ac.uk

UNSW Sydney
Australia

Magnus O. Myreen
myreen@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Michael Norrish
michael.norrish@anu.edu.au
Australian National University

Canberra, Australia

Gernot Heiser
gernot@unsw.edu.au

UNSW Sydney
Australia

Abstract
We introduce Pancake, a new language for veri�able, low-
level systems programming, especially device drivers. Pan-
cake eschews complex type systems to make the language
attractive to systems programmers, while at the same time
aiming to ease the formal veri�cation of code. We describe
the design of the language and its veri�ed compiler, and
examine its usability, performance and current limitations
through case studies of device drivers and related systems
components for an seL4-based operating system.
ACM Reference Format:
Johannes Åman Pohjola, Hira Taqdees Syeda, Miki Tanaka, Krish-
nanWinter, TsunWang Sau, BenjaminNott, Tiana TsangUng, Craig
McLaughlin, Remy Seassau, Magnus O. Myreen, Michael Norrish,
and Gernot Heiser. 2023. Pancake: Veri�ed Systems Programming
Made Sweeter. In 12th Workshop on Programming Languages and

∗Now with Amazon Web Services.
†Now at University of Oxford.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0404-8/23/10. . . $15.00
h�ps://doi.org/10.1145/3623759.3624544

Operating Systems (PLOS ’23), October 23, 2023, Koblenz, Germany.
ACM, New York, NY, USA, 9 pages. h�ps://doi.org/10.1145/3623759.
3624544

1 Introduction
Low-level systems programming is notoriously error-prone.
While widespread use of the C programming language is
not the only culprit, its unsafety and complicated semantics
certainly do not help. A signi�cant amount of programming
language research has therefore been invested in the creating
programming languages for safe systems programming.
In this paper, we introduce a new systems programming

language, Pancake, aimed at enabling formal veri�cation of
real-world device drivers. Unlike previous languages, the de-
sign of Pancake emphasises ease of veri�cation over achiev-
ing safety via, e.g., type safety or language restrictions.

Why device drivers? Driver bugs are the leading cause
of OS compromise, accounting for the majority of the 1,057
CVEs reported for Linux in the period 2018–22 [MITRE Cor-
poration 2023]—clearly they should be the #1 targets of OS
veri�cation e�orts.

Furthermore, when starting with the formally veri�ed
seL4 microkernel [Klein et al. 2014], all the remaining
OS code that directly interfaces to hardware is in device
drivers. Hardware interfaces require dealing with hardware-
speci�ed data layouts and access protocols, something not
possible in most high-level languages. Making a language
suitable for drivers ensures that it can be used for all OS code.

PLOS 2023

Part 1: The core of the CakeML project

This talk

research questions, main ideas,

50

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations

Some tools generate proof traces / files / logs.

Applications

51

e.g. SAT solvers generate DRAT proofs of UNSAT

Verified checkers = Good applications for CakeML tools!

Marijn Heule — checker for DRAT / LPR proofs

Great opportunities for collaborations!

Jakob Nordström et al. — pseudo boolean checker / VeriPB
Ambros Gleixner — verifier for integer programming results

cake_lpr demo

Eva Darulova — floating-point error bounds

Summary
The CakeML project has developed:

Let’s work together! Get in touch myreen@chalmers.se

Questions?

a formal semantics for an SML/OCaml-style language

52

a bootstrapped verified compiler

scalable proof-producing code generation

separation logic for non-terminating code (liveness)

a verified space cost semantics (proves absence of OOM)

efficient verified applications (e.g. UNSAT proof checker)

Current work: using CakeML to implement other languages

465 204 lines of definition & tactic proofs

Size of the effort

53

 23 918 lines of code for proof automation

 21 545 git commits (https://code.cakeml.org/)

 1 630 lines of Makefiles and Holmakefiles

https://code.cakeml.org/

54

Candle demo

Demo of CakeML compiler

55

Demo by Andreas Lööw

56

