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What is CakeML!?

The name
“CakeML”’

comes from
“Cambridge and
&nt m—”

CakeML is:

—p a functional programming language (SML/OCaml like)



What is CakeML!?

CakeML is:

—p a functional programming language (SML/OCaml like)

—p an ecosystem of proofs and tools built around
the language (including a verified compiler)

— a “‘verified stack” extending down to hardware (Verilog)

CakeML is developed in the HOL4 interactive theorem prover.
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This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations



Research questions

-
s it possible to have a clean high-level
_ programming language formalised?
( \
... with a compiler that generates
code with good performance!?
g J
4 )

Can we have everything properly
connected with proofs!
e ;
/
... even transport proved properties down
to actual machine code / hardware!

\_

(some goals shared with the DeepSpec project)
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Going back to 2012 ...



Original motivation

Around 2012: it had become common to use code generators
(e.g. Coqg’s code extraction) to generate code from ITPs.

Example:
Given the logic definition of list append (++),

[] ++ ys = ys A (X::XS) ++ ys = X::(XS ++ ys)
the ITP’s code generator might produce SML code:

fun append [] ysS
| append (x::xs) ys

ysS
X :: append Xs ys



Non-trivial cases

Underspecification:
2 nil case [] is left unspecified j

hd (x::xs) = X
2 underspecification propagates j

. map hd xs ...

Semantic mis%( SMLs = is different from logic = j

if x =y then ... else
how should numbers be translated?

v
fac n = if n < 2 then 1 else fac (n-1) * n




( This is not a good state of affairs. &

4 )
WVell, automated translation is better

than manual ad hoc transcription...
a 7

[ Yes > ,7;_ ]
A

A NG Scott O
Magnus Myreen 4 %
However, ITPs should do more!

ITPs should prove that the
generated SML/OCaml/Scala
code is behaviourally equivalent to

the original functions.
g J

wens

| completely agree. )

Result: we formalised subset of SML (i.e. CakeML) and developed
a proof-producing code-generation tool for HOLA4.
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What exactly is that?

Result: we formalised subset of SML (i.e. CakeML) and developed
a proof-producing code-generation tool for HOLA4.



Interactive theorem provers

Most developments look like this:

Definition fac def: 2 definition )

fac n =
if n = @ then 1 else fac (n-1) * n
End

Definition fac_it_def: 2 definition )

fac_it n acc =
if n = @ then acc else fac_it (n-1) (acc * n)
End

Theorem fac it correct: goal-directed

Vn acc. fac_it n acc = fac n * acc tactic pl"OOf
Proof

Induct

\\ once _rewrite tac [fac def,fac it def]

\\ rw []
QED

12



Interactive theorem provers

Most developments look like this:

\
Theorem fac it correct: goal-directed
Vn acc. fac_it n acc = fac n * acc tactic pI’OOf
A/

Proof

Induct

\\ once _rewrite tac [fac def,fac it def]

\\ rw []
QED

Proved theorems are just
Prover responds: values Of t)'pe “thm” in SML
'

val fac it correct — Vn acc. fac_it n acc = fac n * acc: thm

>

A

HOL4 prover is built on top of HOLA4 is highly
SML read-eval-print loop programmable

13




Proof-producing tool

We developed a tool (called translate) that generates
CakeML AST and automatically proves correspondence:

[ User requests translation of fac_def ] 4

V

> val v_thm = translate fac_def;
Translating fac

The tool defines a CakeML
value (containing an AST)

~N

J

/

val v_thm = - (NUM --> NUM) fac fac_v: thm

>

A

-

\_

... and proves a theorem asserting the
correspondence between fac and fac_v.

~

J
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Components of toolchain

function in the logic

-
y

75
(3N E

Ramana Kuma |
compiler backend

machine code

. = verified function in logic

lllllll



Components of toolchain

[ If we input factorial ... J

V

function in the logic

compiler backend

machlne code

/

\_

Can we compile the verified

compiler with itself?

.. then the toolchain produces

machine code and proves

a theorem stating that the code
behaves like the factorial functlon

~N

. = verified function in logic

lllllll

lllllll

= proof-producing tool



[ a function in the logic J .
y Scaling up:

concrete syntax Compiler Bootstrapping

'

SML parser function in the logic

e
type inferencer errererrrr e -
N asT /

compiler backend Michael Norrish

machine code

. = verified function in logic

lllllll



Scaling up:
Compiler Bootstrapping

(- )

If we input

\ the CakeML compiler ...
function in the logic

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

~N

e s then generated code behaves like
Ellas s s the CakeML compiler function. )
machine code . = verified function in logic

lllllll




Version |

[ POPL 14 j [ Compiler Bootstrapping. Everything fit together. j

CakeML: A Verified Implementation of ML

Ramana Kumar * !

Magnus O. Myreen ' !

3

Michael Norrish 2 Scott Owens

! Computer Laboratory, University of Cambridge, UK
? Canberra Research Lab, NICTA, Australia i

% School of Computing, Umversm

Abstract

We have developed and mechanically verified an ML system called
CakeML, which supports a substantial subset of Standard ML.
CakeML is implemented as an interactive read-eval-print loop
(REPL) in x86-64 machine code. Our correctness theorem ensures
that this REPL implementation prints only those results permitted
by the semantics of CakeML. Our verification effort touches on
a breadth of topics including lexing, parsing, type checking, in-
cremental and dynamic compilation, garbage collection, arbitrary-

However, compiler had

very few optimisations.
. J

1. Introduction

The last decade has seen a strong interest in verified compilation;
and there have been significant, high-profile results, many based
on the CompCert compiler for C [1, 14, 16, 29]. This interest is
easy to justify: in the context of program verification, an unverified
compiler forms a large and complex part of the trusted computing
base. However, to our knowledge, none of the existing work on
verified compilers for general-purpose languages has addressed all
aspects of a compiler along two dimensions: one, the compilation



Steps towards realism

How real can
we make the CakeML '
Would like: speed, better /0 etc comprer

Settled on new methodology:
[ ESOP’16 ]

' Big-step Semantics

3 and Yong Kiam Tan®

Scott Owens'
y of Kent, UK

1 gchool of Computing, Universit
chnology, Sweden

2 CSE Department, Chalmers University of Te
3 NICTA, Australia

4 THPC, A*STAR, Singapore

Abstract. When doing an interactive proot about a piece of software,
it 18 important that the underlying programming language’s gsemantics
difficult or unwieldy. Both small-

does not make the ssarily
N and the latter is typi-
20

.

e antice are CommO
S . we consider



Functional big-step

Sample: eval env (Const n) = return (Num n)

eval env (Var n) =

case env n of None = fail | Some v = return v
def

eval env (Op f zs) =

do vs « evals env xs; eval_op f vs od

def
eval env (Let vname x y) =

do v « eval env z;
eval env{vname — Some v) y od

def
where: return v s = (Res v,s)
def

fail s = (Err Crash,s)

monad_bind f g s =

case f s of (Res v,51) = g v s1 | (Err e,51) = (Err e,51)



Sample:

where:

Functional big-step

. def
eval env (Call fname xs) =
do vs « evals env zs;

(fenv,body) < get_env_and_body fname vs;
eval fenv body od /\

[ decrements a clock (“uses fuel”) ... ]

[ ... that is passed around in state. ]

|

def
return v s = (Res v,s)
def

fail s = (Err Crash,s)

monad_bind f g s =

case f s of (Res v,51) = g v s1 | (Err e,51) = (Err e,51)
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Values Languages Transformations

source syntax

Parse concrete syntax

abstract values incl. closures and ref pointers

' source AST
)

FlatLang:

a language for
compiling away
high-level
lang. features

J{

ClosLang:
last language
with closures
(has multi-arg

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Global dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
indexed local variables

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Encode program as
concrete machine code

<
<
o
&
<
&
<
<
P .
| e New compiler backend:
<> Annotate closure creations p .
ﬁ > Perform closure conv.
BVL: > Inline small functions . .
rctensl | > £ e 8 intermediate languages (ILs)
without > Split over-sized functions
closures into many small functions
. . [ ] [ ] ° [ ) [ )
1 d T G o o and many within-IL optimisations
G E BVI: ) Optimise Let-expressions
£ 5 one global Make some functions tail-
§ 3 variable > recursive using an acc. M "
12| D oo each IL at the right level of abstraction
*g ; Datalang: > Reduce caller-saved vars
5 imperative Combine adjacent
é“@ language > memory allocations
‘ /;/ ) Remove data abstraction
) Simplify program
mogg;a:;:/%: ) ielc.fect target ir?structions. ( \
language with ) erform SSA-like renaming f h b f\ f
mricer:%er W:rl]’g& ) Force two-reg code (if req.) 0 r t e e n e It O
aGC priymitive ) Remove deadcode R
. <> Allocate register names P ro Ofs an d CO m P I I e r
9 N— ) Concretise stack
8 Introduce (raw) calls past g I 5
S StackLang: > function preambles I m P e m e ntatl O n
8 imperative | .= Implement GC primitive \_ J
g language .
S| [with amay ke | o> Turn stack accesses nto
§ stack and R y sters & ch
S| | optional GC | > R Care/comvantions
2 — > Flatten code
S LabLang: . i -
é ass:mbi/ngng. > Delete no-ops (Tick, Skip)

Next slide zooms in

§ g | CARMVB) Cx86-64) (MlPs-szD (RISC-V) Yon g Kiam Tan
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s
Values used by
the semantics

\_

\

J

V

Values

ybstract values incl. closures and ref pointers

Languages

Csource syntax)

[sou rce AST

FlatLang:

a language for
compiling away
high-level
lang. features

.
-

J

AN

\VAAVARVAVERRVAVAV

-

_/
N

ClosLang:
last language
with closures
(has multi-arg

closures)

VYRV

Transformations

Parse concrete syntax

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Global dead code elim.

Turn pattern matches into
if-then-else decision trees

Switch to de Bruijn
iIndexed local variables

Fuse function calls/apps
iInto multi-arg calls/apps

Both proved sound
and complete.

V

Track v_vh_ere closure vaI_ues
flow & inline small functions

Introduce C-style fast
calls wherever possible

Remove deadcode

Annotate closure creations

4 )
Parser and type
inferencer as before
- J
(" )
Early phases reduce
the number of
language features
\_ J
4 )
Language with multi-
argument closures
- J




abstract values incl.

ref and code pointers

ClosLang:
last language
with closures
(has multi-arg

closures)

/

abstract values incl.

4 )

BVL:
functional
language

without
closures

. _/

4 )
BVI:

one global
variable

. _/

(" )
Datal.ang:

imperative
language

.

Y,
WordLanq: )

\

into multi-arg calls/apps

JV‘\/V‘\/\/\/\/\/ \VAAVAVAVAVAVAAVARV

Track where closure values
flow & inline small functions

Introduce C-style fast
calls wherever possible

Remove deadcode

Annotate closure creations

Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
iInto many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Make some functions tail-
recursive using an acc.

Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select tarqget instructions

Language with multi-
argument closures

Simple first-order

functional language
- J

[ Imperative language ]

Machine-like types ]




et
0
I
()
™M
et
0
1
v
O

machine words and code labels

| CARMVG)
CARMVB) CX86-64) (MIPS-&D (RISC-V)

0N
O
e
O
=
2
O
e
O
=

a )

WordLang:
iImperative
language with
machine words,

- W,
a )
StackLang:
Imperative
language

with array-like

optional GC

.

LablLang:
assembly lang.

\VAVAVAAVAVAVAVAVAVAVAVAVAVAL

Simplify program Machine-like types

NCcITIOvVe Uadla dDsliaClorl s ]

\_

Select target instructions

Perform SSA-like renaming . .
Imperative compiler

with an FP twist:
garbage collector,
live-var annotations,
fast exception

Introduce (raw) calls past mechanisms (for M|_)
function preambles

Force two-reg code (if req.)
Remove deadcode

Allocate register names

Concretise stack

4 )

- J

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)
Encode program as

Targets 5 architectures

\_

concrete machine code - N

J




Performance numbers

4 )
CakeML defaults to

arbitrary precision ints -

\_ PN
3 L
higher-order inlining would help )
execution time [ V g
relativeto , | - _
native-code
compiled 15 .
OCaml (red) 1
0.5 F -
0 S, % Y 2 X x 9 o
S > (A O, "0y 2, s,
G/)® 0)20 (Y &Q
ocamlopt 4.02.3 sminjv110.78 s cakem| =
miton 20100608 m— polyc v5.6
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Verified checking of LRAT

\

! \

Verified cake Ipr implementation is near
highly optimised ACL2-generated checker

/

4

100 \/ —
-8 acl2-1rat
—é 30 - cake_lpr N
e cog-lrat
o 60 [ 1 .
G
o)
O
o 40 [ —
E
— 20 | —
A O | = ! ! ! ! L L

10" 101 102 103

Time limit (seconds, logarithmic scale) /\

(—‘Percent of SAT Race 2019 proofs checked ... ]

Tan et al. TACAS’2 | -

-

\_

... within (per instance)
time limit.

~

J




Demo of cake |pr checker




Other developments

How to verify manually written CakeML code?

Background:

Arthur Chargueraud developed CFML for reasoning
about OCaml code in Coq

A verified programming logic for CakeML:

Armael Gueneau adapted CFML for reasoning about
CakeML code (including state, exceptions and |/O)

Son Ho implemented significant proof automation
for Armaél’s program logic for CakeML

30



Infinite runs and liveness

Infinite runs:
Compiler proofs talk about infinite runs.
— Program logic should be able to!

— CakeML CF adapted to reasoning about
infinite runs and liveness properties.

Johannes Aman Pohjola
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Problem with liveness

Problem: Compiler correctness allows any CakeML program
to exit early with an out-of-memory (OOM) error.
A

Thus: non-terminating CakeML programs
might terminate once compiled...

Shape of compiler correctness theorem:

machine_sem ffi (compile ¢ prog) C
extend_with_resource_limit (source_sem ffi prog)

A
source behaviours extended
with early OOM termination

32




Proving absence of OOM

Solution: A verified space cost semantics for CakeML that
allows liveness properties to transfer to machine code.

Shape of new alternative theorem: if space cost semantics
says prog is safe ...

is_safe_for_space ffi ¢ prog ... =
machine_sem ffi (compile ¢ prog) = source_sem ffi prog

A

C ... then semantics is preserved exactly )

C and liveness properties proved at source carry to machine code!)
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This talk

Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light, other compilers,

proof checkers, collaborations
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verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

OL light, other compilers,

proof checkers, collaborations
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Verified stack

A verified stack is a computer system that is demonstrably
correct. Specifically, it is a system with a formal proof of
correctness that covers all layers of the implementation,
from the hardware through to the application code.

Examples: CLI stack
Verisoft
CakeML+Silver [PLDI’ 19]
Erbsen et al. [PLDI'21]
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CakeML

compiler work produced end-to-end verification
that ended at the software-hardware interface (ISA).

64-bit 32-bit

q

lyTang. J*~
assembly lang. ] Encode program as

concrete machine code

(ARMV6 )‘ \

words words

: (ARMVS) (X86-64) (MIPS-64) (RISC-V)

All languages communicate with the external world
via a byte-array-based foreign-function interface.

37



Extending into hardware

4 )
Valuable: shows that assumptions made in
compiler proofs and file system can be realised! L .
N ) verified implementation of
iIn-memory file system
~ ly | ]
S kassemb y ang) Encode program as
- concrete machine code manual proof
+—~ 0N
P < >
< 5 | ((ARMvG ) \ ( Silver ISA)
m = ]
2 u1 A
< £ (ARMV8) (x86-64) (MIPS-64) (RISC-V)
o = |

. . manual proof
All languages communicate with the external world P

via a byte-array-based foreign-function interface.

v

( Silver CPU shallow embedding )

I automatic proof

(Silver CPU in Verilog (deep emb.))




Lcompiler proofs and file system can be realised! [v

erified implementation of
iIn-memory file system

U P’
S kassembly Iangj Encode program as
- concrete machine code manual proof
— W0
o P < >
A O (ARMv6) \ ( Silver ISA)
m = |
2 uni A
< £ (ARMVS) (x86-64) (MIPS-64) (RISC-V)
© 5. manual proof
All languages communicate with the external world P
via a byte-array-based foreign-function interface.
v
(Silver CPU shallow embedding)
The hardware work is all by: I automatic proof

Silver CPU in Verilog (deep emb.))

O\ )

Verilog ).._x'almost the same...

l verified compilation (CPP’21)

Andreas Loow ( FPGA-technology mapped netlists J




How real is it!

The verified CPU can

run non-trivial programs,
including the entire
CakeML compiler.
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HOL light

Is an ITP by John Harrison for higher-order logic (HOL):

e Shares the lead in Freek Wiedijk's 100 Theorems challenge
with Isabelle/HOL (86/100)

* Major formalizations of various branches of mathematics:
(multivariate-) real analysis, complex analysis, ...

* Proof of the Kepler conjecture (Flyspeck project)

42


https://www.cs.ru.nl/~freek/100/

Candle

[ proved to be sound ]

\/

Candle is a verified clone of HOL light.

A

[ it really looks and feels like HOL light |

A

[ | can show a demo if we have time... J
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Candle

Candle has an LCF-style :

Derived code: tactics,

design (logical kernel):

proofs, definitions,
provers, etc.

g
we proved an end-to-end Logical kernel
soundness theorem:

.
- : CakeML compiler +
... machine code running 2 read-eval-print loop
prover will only output (REPL)

theorems that are true = — &,
according to semantics of
higher-order logic.
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Candle: A Verified Implementation of HOL Light
Oskar Abrahamsson & [ ITP 2022 ]

Chalmers University of Technology, Gothenburg, Sweden

Magnus O. Myreen &
Chalmers University of Technology, Gothenburg, Sweden

Ramana Kumar &

London, UK builds on

Thomas Sewell &

University of Cambridge, UK th e€se resu Its

Cakes that Bake Cakes: Dynamic Computation in CakeML

[ PLDI 2023 ]

A major effort to insert the CakeML compiler into
the CakeML runtime (enables dynamic compilation)

Thomas Sewell
45
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Part |: The core of the CakeML project
research questions, main ideas,

verified compilation, end-to-end correctness

Part 2: Extensions and collaborations

hardware, HOL light

proof checkers, collaborations
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Raskell-like language

PureCake: A Verified Compiler for a Lazy Functional

Language

Some code PureCake can compile:

O 0 I N g ks W DN =

_ =
N = O

numbers :: [Integer]

numbers =
let numn=n: num (n + 1)
in num 0

factA :: Integer -> Integer -> Integer
factA a n =

if n < 2 then a

else factA (a *x n) (n - 1)

factorials :: [Integer]
factorials = map (factA 1) numbers

14
15
16
17
18
19
20
21
22
23
24
25

47

[ PLDI 2023 ]

app :: (a => I0 b) -> [a] -> I0 ()
app f 1 = case 1 of

[1] -> return ()

h:t =>do fh; app f t

main :: I0 ()
main = do
argl <- read_argl
-- fromString == @ on malformed input
let 1 = fromString arg
facts = take 1 factorials
app (\i -> print $ toString 1) facts



Language Compiler implementation Comments on verification

CPureCake sourcej
~ ~ > lexing, parsing, desugaring can reject input; this pass is not verified
> split letrecs and simplify proved to preserve = (Sec 3.4)
cepfgéi_?:?é;: 5 <«— run type inferencer rejects ill-typed programs, proved sound
pure call-by-name > demands analysis proved to preserve = (Sec 4.4)
(subst. semantics) annotates with seqs
front end <+— run type inferencer (again) rejects ill-typed programs, proved sound
backend {_ ) translate into call-by-value; proof was broken down to five relations;
~ ~ introduce delay & force; implementation stays within their composition
avoid delay (force (var _))
ThunkLang: _
oure call-by-value lift lambdas out of lets implementation stays within the transitive closure of a
(subst. semantics) and letrecs, and simplify syntactic relation that preserves semantics

some force expressions
\_ _J

reformulate to make step
into StateLang simpler

proof uses the composition of three relations:
1. expands the 10 monad into stateful operations
2. replaces Delay, Box, Force with stateful operations
3. tidies up the result

EnvLang:
pure call-by-value

L (env. semantics) compile delay, box, force
_J

and IO monads to stateful ops

StateLang:
impure call-by-value
(env. semantics)

push _ - unit inwards implementation stays within the transitive closure

make every lambda bind a of a syntactic relation that preserves semantics

variable to align with CakeML

( R .
CakeML source translate into CakeML and

\_ N p attach helper functions

/\
[ CakeML as target language ]

ViV VAV
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... and another compiler:

Pancake

[ PLOS 2023 ]

Verified Systems Programming Made Sweeter

Johannes Aman Pohjola
j.amanpohjola@unsw.edu.au

UNSW Sydney
Australia

Krishnan Winter
k.winter@student.unsw.edu.au

UNSW Sydney
Australia

Tiana Tsang Ung
t.tsangung@student.unsw.edu.au
UNSW Sydney
Australia

Magnus O. Myreen
myreen@chalmers.se
Chalmers University of Technology
Gothenburg, Sweden

Hira Taqdees Syeda”
syedahir@amazon.com
Chalmers University of Technology
Gothenburg, Sweden

Tsun Wang Sau
t.sau@student.unsw.edu.au

UNSW Sydney
Australia

Craig McLaughlin
c.mclaughlin@unsw.edu.au
UNSW Sydney
Australia

Michael Norrish

michael.norrish@anu.edu.au
Australian National University
Canberra, Australia

Miki Tanaka

miki.tanaka@unsw.edu.au
UNSW Sydney
Australia

Benjamin Nott
b.nott@student.unsw.edu.au

UNSW Sydney
Australia

Remy Seassau’
remy.seassau@cs.ox.ac.uk

UNSW Sydney
Australia

Gernot Heiser

gernot@unsw.edu.au
UNSW Sydney
Australia
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hardware, HOL light, other compilers,
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Applications

Some tools generate proof traces / files / logs.

A
[ e.g. SAT solvers generate DRAT proofs of UNSAT ]

Verified checkers = Good applications for CakeML tools!

Great opportunities for collaborations! ) cake_lpr demo ]

Marijn Heule — checker for DRAT / LPR proofs

Jakob Nordstrom et al. — pseudo boolean checker / VeriPB
Ambros Gleixner — verifier for integer programming results

Eva Darulova — floating-point error bounds
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Questions?

Summary

The —— CakeML project has developed:

— a formal semantics for an SML/OCaml-style language
— a bootstrapped verified compiler

— scalable proof-producing code generation

— separation logic for non-terminating code (liveness)

— a verified space cost semantics (proves absence of OOM)

— efficient verified applications (e.g. UNSAT proof checker)

Current work: using CakeML to implement other languages

Let’s work together! Get in touch myreen@chalmers.se
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Size of the effort

465 204 lines of definition & tactic proofs
23 918 lines of code for proof automation

| 630 lines of Makefiles and Holmakefiles

21 545 git commits (https://code.cakeml.org/)
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https://code.cakeml.org/

Candle demo
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Demo of CakeML compiler

myreen@oven2:~/demo/latest-version$




Demo by Andreas Loow
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