
Melocoton: A Program Logic for Verified Interoperability

Between OCaml and C

Armaël Guéneau Johannes Hostert Simon Spies Michael Sammler

Lars Birkedal Derek Dreyer

Sept 11, 2023

Many Real Programs Are Multi-Language

Consider the ocaml-ssl library:

• Exposes OpenSSL (a C library) as an OCaml library

• To do so, it is implemented using a mix of both OCaml and C code:

1

As a community, we have a reasonably good idea by now for how to verify programs if they are written in a single language. However, in practice, this is often not the case, since many programs are actually written by combining several different languages. For example, we might want to use SSL in OCaml. And to do so, we can use the OCaml-SSL library. It allows you to use OpenSSL---a library which is written in C---in a program that is itself written in OCaml. As you can see here, GitHub tells us that this library is written in both OCaml and C, and in fact it is mainly responsible for bridging between those two languages. Okay, and so today, our question is: How can we reason about such multi-language programs in Iris?

Mind the gap!

OCaml C

Structured values Integers and pointers

λML V ∈ Val ::= (n ∈ Z) | (ℓ ∈ Loc)

| true | false
| ⟨⟩ | ⟨V,V⟩ | λx. e · · ·

λC w ∈ Val ::= (n ∈ Z) | (a ∈ Addr)

Garbage collection Manual memory management

2

In our case, we are focusing just on OCaml and C. To concentrate on the multi-language aspects, we use idealized versions of the languages. Nevertheless, they have some interesting differences. One of the main differences is that lambda_OCaml, our model of OCaml---whose values you can see here---has more structured values, like pairs or lists, whereas lambda_C, our version of C---seen on the right---, only has integers and pointers. par What also differs significantly is the memory model. The first, obvious difference is that OCaml is garbage-collected, while C, you must manually manage your memory. But more importantly, the memory just stores different things. For ML, each location stores ML arrays containing several ML values. Whereas for C, each location only stores one C value (and we have pointer arithmetic). This difference is also reflected in the natural program logics of these languages Iris_ML and Iris_C. These points-tos here look similar, but they actually are not. The ML points-to can store multiple, structured ML values and the C points-to only stores a single C value. par In code, the way these differences are bridged is by using the OCaml Foreign Function Interface. We will see how that works later in the talk.

Mind the gap!

OCaml C

Structured values Integers and pointers

λML V ∈ Val ::= (n ∈ Z) | (ℓ ∈ Loc)

| true | false
| ⟨⟩ | ⟨V,V⟩ | λx. e · · ·

λC w ∈ Val ::= (n ∈ Z) | (a ∈ Addr)

Garbage collection Manual memory management

2

In our case, we are focusing just on OCaml and C. To concentrate on the multi-language aspects, we use idealized versions of the languages. Nevertheless, they have some interesting differences. One of the main differences is that lambda_OCaml, our model of OCaml---whose values you can see here---has more structured values, like pairs or lists, whereas lambda_C, our version of C---seen on the right---, only has integers and pointers. par What also differs significantly is the memory model. The first, obvious difference is that OCaml is garbage-collected, while C, you must manually manage your memory. But more importantly, the memory just stores different things. For ML, each location stores ML arrays containing several ML values. Whereas for C, each location only stores one C value (and we have pointer arithmetic). This difference is also reflected in the natural program logics of these languages Iris_ML and Iris_C. These points-tos here look similar, but they actually are not. The ML points-to can store multiple, structured ML values and the C points-to only stores a single C value. par In code, the way these differences are bridged is by using the OCaml Foreign Function Interface. We will see how that works later in the talk.

Mind the gap!

OCaml C
OCaml FFI

Structured values Integers and pointers

λML V ∈ Val ::= (n ∈ Z) | (ℓ ∈ Loc)

| true | false
| ⟨⟩ | ⟨V,V⟩ | λx. e · · ·

λC w ∈ Val ::= (n ∈ Z) | (a ∈ Addr)

Garbage collection Manual memory management

2

In our case, we are focusing just on OCaml and C. To concentrate on the multi-language aspects, we use idealized versions of the languages. Nevertheless, they have some interesting differences. One of the main differences is that lambda_OCaml, our model of OCaml---whose values you can see here---has more structured values, like pairs or lists, whereas lambda_C, our version of C---seen on the right---, only has integers and pointers. par What also differs significantly is the memory model. The first, obvious difference is that OCaml is garbage-collected, while C, you must manually manage your memory. But more importantly, the memory just stores different things. For ML, each location stores ML arrays containing several ML values. Whereas for C, each location only stores one C value (and we have pointer arithmetic). This difference is also reflected in the natural program logics of these languages Iris_ML and Iris_C. These points-tos here look similar, but they actually are not. The ML points-to can store multiple, structured ML values and the C points-to only stores a single C value. par In code, the way these differences are bridged is by using the OCaml Foreign Function Interface. We will see how that works later in the talk.

Key Challenge (as an OCaml hacker)

Write “glue code” using the OCaml FFI is tricky and unsafe.

mistake ⇒ memory corruption (often silent and hard to debug)

distinguished

OCaml hacker

Which rules should I follow to safely use the OCaml FFI?

3

Key Challenge (as an expert in program logics)

We already have powerful program logics for OCaml and C

but those are for programs written in a single language

program logics

expert

How do we formally reason about such multi-language code?

4

Key challenge (in this work)

Can we build a program logic for reasoning about interoperability with an FFI,

while preserving language-local reasoning?

λC SemanticsλML Semantics

IrisC
Program Logic

IrisML
Program Logic

given as black box given as black box

Design choice: reuse most of existing semantics/program logics;

do not drop down to a lowest-common denominator (assembly)!

5

OK; but back to the higher-level picture: We now want to create a version of Iris that combines OCaml and C. To be specific, we want them to combine in a way that preserves language-local reasoning. And by language-local reasoning, we mean that we start with already existing instantiations of Iris for our simplified versions of ML and C, which are given to us as a somewhat black box, and which we try to leave unchanged. What then the missing part is first a semantics for the foreign function interface that also embeds the existing semantics, and further a program logic for the foreign function interface that similarly embeds the existing program logics. Again, we want this to be language-local: Namely we want it to re-use the existing two languages as much as possible, and to directly bridge them. So a thing we don't want to do is compile everything down to something like assembly, but stay at the abstraction level of these two languages.

Key challenge (in this work)

Can we build a program logic for reasoning about interoperability with an FFI,

while preserving language-local reasoning?

λC SemanticsλML Semantics

IrisC
Program Logic

IrisML
Program Logic

given as black box given as black boxwhat we need

Semantics for the FFI

Program Logic for the FFI

Design choice: reuse most of existing semantics/program logics;

do not drop down to a lowest-common denominator (assembly)!
5

OK; but back to the higher-level picture: We now want to create a version of Iris that combines OCaml and C. To be specific, we want them to combine in a way that preserves language-local reasoning. And by language-local reasoning, we mean that we start with already existing instantiations of Iris for our simplified versions of ML and C, which are given to us as a somewhat black box, and which we try to leave unchanged. What then the missing part is first a semantics for the foreign function interface that also embeds the existing semantics, and further a program logic for the foreign function interface that similarly embeds the existing program logics. Again, we want this to be language-local: Namely we want it to re-use the existing two languages as much as possible, and to directly bridge them. So a thing we don't want to do is compile everything down to something like assembly, but stay at the abstraction level of these two languages.

Contributions

Melocoton:

• Two instantiations of Iris for a ML-like and C-like language with external calls

• An operational semantics for the OCaml FFI, bridging between the two languages.

• A separation logic for the OCaml FFI, bridging between the two language logics.

• A number of interesting case studies

Language-locality: Verification of mixed OCaml/C programs can be done almost

entirely in logics for OCaml and C!

In Iris: the logic is proved sound and all proofs are checked in Coq

6

And that is what we achieve with Melocoton. Concretely, we follow the following recipe: We are initially given two single-language Iris instantiations, which we leave essentially unchanged, except for one twist: we extend them with external calls. We then build an operational semantics, which embeds both existing semantics using external calls and extends them with semantics for the OCaml foreign function interface. On top of the semantics we build a program logic, which embeds the two language-local logics. In particular, what makes this logic interesting is that it resolves how ownership of heap resources can be transferred between the two languages. Finally, we verify several interesting case studies in Melocoton par And again, the key point in our work is language-locality. When you as a user use Melocoton to verify your multi-language programs, almost all of the correctness proofs are done in the existing program logic for either OCaml or C.

Contributions

Melocoton:

• Two instantiations of Iris for a ML-like and C-like language with external calls

• An operational semantics for the OCaml FFI, bridging between the two languages.

• A separation logic for the OCaml FFI, bridging between the two language logics.

• A number of interesting case studies

Language-locality: Verification of mixed OCaml/C programs can be done almost

entirely in logics for OCaml and C!

In Iris: the logic is proved sound and all proofs are checked in Coq

6

And that is what we achieve with Melocoton. Concretely, we follow the following recipe: We are initially given two single-language Iris instantiations, which we leave essentially unchanged, except for one twist: we extend them with external calls. We then build an operational semantics, which embeds both existing semantics using external calls and extends them with semantics for the OCaml foreign function interface. On top of the semantics we build a program logic, which embeds the two language-local logics. In particular, what makes this logic interesting is that it resolves how ownership of heap resources can be transferred between the two languages. Finally, we verify several interesting case studies in Melocoton par And again, the key point in our work is language-locality. When you as a user use Melocoton to verify your multi-language programs, almost all of the correctness proofs are done in the existing program logic for either OCaml or C.

Outline

1. Language-local program logics with external calls

2. Program logic for FFI

3. Focus: the language boundary

7

We don't quite have time to talk about all of Melocoton, so today we focus on what we think the Iris crowd will most appreciate. Concretely, we start by discussing how we integrate external calls into the existing languages and their reasoning principles. Then, we'll describe the subset of the program logic for the foreign function interface. Finally, we will explain what happens, both operationally and in the program logic, when crossing the language boundary and how ownership is transferred there. To keep things concrete, we will use a toy example in this talk that ArmaÃ«l will now tell you about.

Outline

1. Language-local program logics with external calls

2. Program logic for FFI

3. Focus: the language boundary

7

We don't quite have time to talk about all of Melocoton, so today we focus on what we think the Iris crowd will most appreciate. Concretely, we start by discussing how we integrate external calls into the existing languages and their reasoning principles. Then, we'll describe the subset of the program logic for the foreign function interface. Finally, we will explain what happens, both operationally and in the program logic, when crossing the language boundary and how ownership is transferred there. To keep things concrete, we will use a toy example in this talk that ArmaÃ«l will now tell you about.

Outline

1. Language-local program logics with external calls

2. Program logic for FFI

3. Focus: the language boundary

7

We don't quite have time to talk about all of Melocoton, so today we focus on what we think the Iris crowd will most appreciate. Concretely, we start by discussing how we integrate external calls into the existing languages and their reasoning principles. Then, we'll describe the subset of the program logic for the foreign function interface. Finally, we will explain what happens, both operationally and in the program logic, when crossing the language boundary and how ownership is transferred there. To keep things concrete, we will use a toy example in this talk that ArmaÃ«l will now tell you about.

Using the OCaml FFI: examples

The OCaml FFI deals with two core challenges:

• mediating between the different views of the OCaml memory

• interacting with the OCaml GC

8

Using the OCaml FFI: examples

The OCaml FFI deals with two core challenges:

• mediating between the different views of the OCaml memory

• interacting with the OCaml GC

8

Example: updating an OCaml reference from C code

OCaml code: let main () =

let r = ref 0 in

update_ref r; (* TODO call C code and use rand () *)

print_int !r

C code: int rand(int x) { ... }

Glue code bridges between OCaml and C values by using powerful FFI primitives...

The runtime representation of OCaml values

At runtime, an OCaml value is either an integer or a pointer to a block:

let x = 1

let b = true

let y = (1, 2)

let r = ref 42

let a = [| (1, 2); (3, 4) |]

...

1 2 3 4

a

r
42

y
1 2b 1

x 1

...

Glue code has access to this low-level representation of OCaml values.

9

Example: updating an OCaml reference from C code

OCaml code: external update_ref : int ref -> unit = "caml_update_ref"

let main () =

let r = ref 0 in

update_ref r;

print_int !r

C code: int rand(int x) { ... }

Glue code bridges between OCaml and C values by using powerful FFI primitives...

The runtime representation of OCaml values

At runtime, an OCaml value is either an integer or a pointer to a block:

let x = 1

let b = true

let y = (1, 2)

let r = ref 42

let a = [| (1, 2); (3, 4) |]

...

1 2 3 4

a

r
42

y
1 2b 1

x 1

...

Glue code has access to this low-level representation of OCaml values.

9

Example: updating an OCaml reference from C code

OCaml code: external update_ref : int ref -> unit = "caml_update_ref"

let main () =

let r = ref 0 in

update_ref r;

print_int !r

C code: int rand(int x) { ... }

Glue code: value caml_update_ref(value r) {

/* TODO */

int y = rand(x);

/* TODO */

}

Glue code bridges between OCaml and C values by using powerful FFI primitives...

The runtime representation of OCaml values

At runtime, an OCaml value is either an integer or a pointer to a block:

let x = 1

let b = true

let y = (1, 2)

let r = ref 42

let a = [| (1, 2); (3, 4) |]

...

1 2 3 4

a

r
42

y
1 2b 1

x 1

...

Glue code has access to this low-level representation of OCaml values.

9

Example: updating an OCaml reference from C code

OCaml code: external update_ref : int ref -> unit = "caml_update_ref"

let main () =

let r = ref 0 in

update_ref r;

print_int !r

C code: int rand(int x) { ... }

Glue code: value caml_update_ref(value r) {

/* TODO */

int y = rand(x);

/* TODO */

}

Glue code bridges between OCaml and C values by using powerful FFI primitives...

The runtime representation of OCaml values

At runtime, an OCaml value is either an integer or a pointer to a block:

let x = 1

let b = true

let y = (1, 2)

let r = ref 42

let a = [| (1, 2); (3, 4) |]

...

1 2 3 4

a

r
42

y
1 2b 1

x 1

...

Glue code has access to this low-level representation of OCaml values.

9

Example: updating an OCaml reference from C code

OCaml code: external update_ref : int ref -> unit = "caml_update_ref"

let main () =

let r = ref 0 in

update_ref r;

print_int !r

C code: int rand(int x) { ... }

Glue code: value caml_update_ref(value r) {

int x = Int_val(Field(r, 0));

int y = rand(x);

Store_field(r, 0, Val_int(y));

return Val_int(0);

}

Glue code bridges between OCaml and C values by using powerful FFI primitives...

The runtime representation of OCaml values

At runtime, an OCaml value is either an integer or a pointer to a block:

let x = 1

let b = true

let y = (1, 2)

let r = ref 42

let a = [| (1, 2); (3, 4) |]

...

1 2 3 4

a

r
42

y
1 2b 1

x 1

...

Glue code has access to this low-level representation of OCaml values.
9

Example: updating an OCaml reference from C code

OCaml code: external update_ref : int ref -> unit = "caml_update_ref"

let main () =

let r = ref 0 in

update_ref r;

print_int !r

C code: int rand(int x) { ... }

Glue code: value caml_update_ref(value r) {

int x = Int_val(Field(r, 0));

int y = rand(x);

Store_field(r, 0, Val_int(y));

return Val_int(0);

}

Glue code bridges between OCaml and C values by using powerful FFI primitives...

The runtime representation of OCaml values

At runtime, an OCaml value is either an integer or a pointer to a block:

let x = 1

let b = true

let y = (1, 2)

let r = ref 42

let a = [| (1, 2); (3, 4) |]

...

1 2 3 4

a

r
42

y
1 2b 1

x 1

...

Glue code has access to this low-level representation of OCaml values.

9

Writing glue code

value caml_update_ref(value r) {

int x = Int_val(Field(r, 0)); /* read the first field of the input block */

int y = rand(x); /* get a random integer */

Store_field(r, 0, Val_int(y)); /* store the value in the block */

return Val_int(0); /* return () */

}

r
n

10

Writing glue code

value caml_update_ref(value r) {

int x = Int_val(Field(r, 0)); /* read the first field of the input block */

int y = rand(x); /* get a random integer */

Store_field(r, 0, Val_int(y)); /* store the value in the block */

return Val_int(0); /* return () */

}

r
n

<--

10

Writing glue code

value caml_update_ref(value r) {

int x = Int_val(Field(r, 0)); /* read the first field of the input block */

int y = rand(x); /* get a random integer */

Store_field(r, 0, Val_int(y)); /* store the value in the block */

return Val_int(0); /* return () */

}

nx

r
n

<--

10

Writing glue code

value caml_update_ref(value r) {

int x = Int_val(Field(r, 0)); /* read the first field of the input block */

int y = rand(x); /* get a random integer */

Store_field(r, 0, Val_int(y)); /* store the value in the block */

return Val_int(0); /* return () */

}

my

nx

r
n

<--

10

Writing glue code

value caml_update_ref(value r) {

int x = Int_val(Field(r, 0)); /* read the first field of the input block */

int y = rand(x); /* get a random integer */

Store_field(r, 0, Val_int(y)); /* store the value in the block */

return Val_int(0); /* return () */

}

my

nx

r
m

<--

10

Writing glue code

value caml_update_ref(value r) {

int x = Int_val(Field(r, 0)); /* read the first field of the input block */

int y = rand(x); /* get a random integer */

Store_field(r, 0, Val_int(y)); /* store the value in the block */

return Val_int(0); /* return () */

}

my

nx

r
m

<--

10

Using the OCaml FFI: examples

The OCaml FFI deals with two core challenges:

• mediating between the different views of the OCaml memory

• interacting with the OCaml GC

11

Example: swapping an OCaml pair

OCaml code: external swap_pair : 'a * 'b -> 'b * 'a = "caml_swap_pair"

This implementation is unfortunately incorrect and will silently corrupt memory!

caml_alloc may run the GC which does not know about C variables and arguments...

OCaml has a “tracing” garbage collector.

Starts from roots; collects unreachable blocks; may also move blocks in memory.

let x, y =

let l = [1; 2; 3] in

(List.filter even l, List.tl l)

...

racines tas

1

2

3

2

x
y

12

Example: swapping an OCaml pair

OCaml code: external swap_pair : 'a * 'b -> 'b * 'a = "caml_swap_pair"

Glue code:

(first attempt)

value caml_swap_pair(value p)

{

value r = caml_alloc(0, 2); /* allocate a block for the result */

value x = Field(p, 0); /* read the input pair */

value y = Field(p, 1);

Store_field(r, 0, y); /* initialize the output pair */

Store_field(r, 1, x);

return r; /* return it */

}

This implementation is unfortunately incorrect and will silently corrupt memory!

caml_alloc may run the GC which does not know about C variables and arguments...

OCaml has a “tracing” garbage collector.

Starts from roots; collects unreachable blocks; may also move blocks in memory.

let x, y =

let l = [1; 2; 3] in

(List.filter even l, List.tl l)

...

racines tas

1

2

3

2

x
y

12

Example: swapping an OCaml pair

OCaml code: external swap_pair : 'a * 'b -> 'b * 'a = "caml_swap_pair"

Glue code:

(first attempt)

value caml_swap_pair(value p)

{

value r = caml_alloc(0, 2); /* allocate a block for the result */

value x = Field(p, 0); /* read the input pair */

value y = Field(p, 1);

Store_field(r, 0, y); /* initialize the output pair */

Store_field(r, 1, x);

return r; /* return it */

}

This implementation is unfortunately incorrect and will silently corrupt memory!

caml_alloc may run the GC which does not know about C variables and arguments...

OCaml has a “tracing” garbage collector.

Starts from roots; collects unreachable blocks; may also move blocks in memory.

let x, y =

let l = [1; 2; 3] in

(List.filter even l, List.tl l)

...

racines tas

1

2

3

2

x
y

12

Example: swapping an OCaml pair

OCaml code: external swap_pair : 'a * 'b -> 'b * 'a = "caml_swap_pair"

Glue code:

(first attempt)

value caml_swap_pair(value p)

{

value r = caml_alloc(0, 2); /* allocate a block for the result */

value x = Field(p, 0); /* read the input pair */

value y = Field(p, 1);

Store_field(r, 0, y); /* initialize the output pair */

Store_field(r, 1, x);

return r; /* return it */

}

This implementation is unfortunately incorrect and will silently corrupt memory!

caml_alloc may run the GC which does not know about C variables and arguments...

OCaml has a “tracing” garbage collector.

Starts from roots; collects unreachable blocks; may also move blocks in memory.

let x, y =

let l = [1; 2; 3] in

(List.filter even l, List.tl l)

...

racines tas

1

2

3

2

x
y

12

Swapping pairs in the presence of a garbage collector

This implementation is unfortunately incorrect!

value caml_swap_pair(value p)

{

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}
...

...

&p p0

x y<--

13

Swapping pairs in the presence of a garbage collector

This implementation is unfortunately incorrect!

value caml_swap_pair(value p)

{

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}
...

...

&r ? ?r

&p p0

x y

<--

13

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...

&p p0

x y
<--

14

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...
root

&p p0

x y<--

14

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...

&r ? ?r

root

&p p1

x y

<--

14

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...

&x x

&r ? ?r

root

&p p1

x y

<--

14

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...

&y y

&x x

&r ? ?r

root

&p p1

x y

<--

14

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...

&y y

&x x

&r ?yr

root

&p p1

x y

<--

14

Registering roots

CAMLparam1(p) registers &p as a GC root.

The GC will avoid collecting the block, and will update p if the block moves.

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

...

...

&y y

&x x

&r y xr

root

&p p1

x y

<--

14

Unregistering roots

One subtle bug remains!

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

The GC will continue to update &p after the function returns, corrupting the stack...!

We must use CAMLreturn() to unregister local roots when returning.

15

Unregistering roots

One subtle bug remains!

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

return r;

}

The GC will continue to update &p after the function returns, corrupting the stack...!

We must use CAMLreturn() to unregister local roots when returning.
15

Our final implementation for swap pair

external swap_pair : 'a * 'b -> 'b * 'a = "caml_swap_pair"

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}

16

Outline: Language-local reasoning

1. Language-local program logics with external calls

17

Language-local reasoning

We reuse:

λC SemanticsλML Semantics

IrisC
Program Logic

IrisML
Program Logic

The one change: a minimal extension allowing external calls.

18

Modeling External Calls

external update_ref : int ref -> unit = "caml_update_ref"

let main () :=

let r = ref 0 in

update_ref r;

print_int !r

We model external calls as a new syntactic construct (inlining the declaration):

e ∈ Expr ::= · · · | call fn e⃗

We assign no semantics to external calls: they are simply stuck!

19

Modeling External Calls

external update_ref : int ref -> unit = "caml_update_ref"

let main () :=

let r = ref 0 in

update_ref r;

print_int !r

We model external calls as a new syntactic construct (inlining the declaration):

e ∈ Expr ::= · · · | call fn e⃗

We assign no semantics to external calls: they are simply stuck!

19

Modeling External Calls

external update_ref : int ref -> unit = "caml_update_ref"

let main () :=

let r = ref 0 in

update_ref r;

print_int !r

We model external calls as a new syntactic construct (inlining the declaration):

e ∈ Expr ::= · · · | call fn e⃗

We assign no semantics to external calls: they are simply stuck!
19

Interface Specifications

We still want to reason about calls to caml_update_ref, as if it had the specification:

∀ℓn. {ℓ 7→ML n} call caml update ref [ℓ] {V′.∃m. V′ = ⟨⟩ ∗ ℓ 7→ML m}ML

“ℓ 7→ML V” is a Separation Logic assertion

• asserts that the memory location ℓ stores the value V

• grants the permission to access the location (read/write)

To do so, we introduce interfaces Ψ and Hoare triples {P} e@Ψ{v.Q} that verify

programs against them. For example, for caml_update_ref, we assume:

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ] ⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩ ⊑ Ψ

" This is an assumption, not a Hoare triple "

20

Interface Specifications

We still want to reason about calls to caml_update_ref, as if it had the specification:

∀ℓn. {ℓ 7→ML n} call caml update ref [ℓ] {V′.∃m. V′ = ⟨⟩ ∗ ℓ 7→ML m}ML

“ℓ 7→ML V” is a Separation Logic assertion

• asserts that the memory location ℓ stores the value V

• grants the permission to access the location (read/write)

To do so, we introduce interfaces Ψ and Hoare triples {P} e@Ψ{v.Q} that verify

programs against them. For example, for caml_update_ref, we assume:

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ] ⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩ ⊑ Ψ

" This is an assumption, not a Hoare triple "

20

Interface Specifications

We still want to reason about calls to caml_update_ref, as if it had the specification:

∀ℓn. {ℓ 7→ML n} call caml update ref [ℓ] {V′.∃m. V′ = ⟨⟩ ∗ ℓ 7→ML m}ML

“ℓ 7→ML V” is a Separation Logic assertion

• asserts that the memory location ℓ stores the value V

• grants the permission to access the location (read/write)

To do so, we introduce interfaces Ψ and Hoare triples {P} e@Ψ{v.Q} that verify

programs against them. For example, for caml_update_ref, we assume:

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ] ⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩ ⊑ Ψ

" This is an assumption, not a Hoare triple "

20

Interface Specifications

We still want to reason about calls to caml_update_ref, as if it had the specification:

∀ℓn. {ℓ 7→ML n} call caml update ref [ℓ] {V′.∃m. V′ = ⟨⟩ ∗ ℓ 7→ML m}ML

“ℓ 7→ML V” is a Separation Logic assertion

• asserts that the memory location ℓ stores the value V

• grants the permission to access the location (read/write)

To do so, we introduce interfaces Ψ and Hoare triples {P} e@Ψ{v.Q} that verify

programs against them. For example, for caml_update_ref, we assume:

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ] ⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩ ⊑ Ψ

" This is an assumption, not a Hoare triple "

20

Desugaring To Predicate Transformers

Implement interface triples as a predicate transformer Ψ:

Ψ : FnName︸ ︷︷ ︸
Name

→ V⃗al︸︷︷︸
Args

→ (Val → iProp)︸ ︷︷ ︸
Postcondition

→ iProp︸ ︷︷ ︸
Precondition

“iProp” is the type of Iris propositions, which includes:

• quantifiers ∀, ∃, ... and pure propositions

• Separation Logic modalities

• memory assertions of both languages (ℓ 7→ML V, a 7→C w)

• specifications {P} e@Ψ {Q} of both languages

We desugar

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ]

⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩

as follows:

Ψupd fn V⃗ Φ :=∃ℓn. ℓ 7→ML n ∗ fn = caml update ref ∗ V⃗ = [ℓ]

∗ (∀V′m.V′ = ⟨⟩ ∗ ℓ 7→ML m −−∗ Φ(V′))

21

Desugaring To Predicate Transformers

Implement interface triples as a predicate transformer Ψ:

Ψ : FnName︸ ︷︷ ︸
Name

→ V⃗al︸︷︷︸
Args

→ (Val → iProp)︸ ︷︷ ︸
Postcondition

→ iProp︸ ︷︷ ︸
Precondition“iProp” is the type of Iris propositions, which includes:

• quantifiers ∀, ∃, ... and pure propositions

• Separation Logic modalities

• memory assertions of both languages (ℓ 7→ML V, a 7→C w)

• specifications {P} e@Ψ {Q} of both languages

We desugar

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ]

⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩

as follows:

Ψupd fn V⃗ Φ :=∃ℓn. ℓ 7→ML n ∗ fn = caml update ref ∗ V⃗ = [ℓ]

∗ (∀V′m.V′ = ⟨⟩ ∗ ℓ 7→ML m −−∗ Φ(V′))

21

Desugaring To Predicate Transformers

Implement interface triples as a predicate transformer Ψ:

Ψ : FnName︸ ︷︷ ︸
Name

→ V⃗al︸︷︷︸
Args

→ (Val → iProp)︸ ︷︷ ︸
Postcondition

→ iProp︸ ︷︷ ︸
Precondition

“iProp” is the type of Iris propositions, which includes:

• quantifiers ∀,∃, ... and pure propositions

• Separation Logic modalities

• memory assertions of both languages (ℓ 7→ML V, a 7→C w)

• specifications {P} e@Ψ {Q} of both languages

We desugar

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ]

⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩

as follows:

Ψupd fn V⃗ Φ :=∃ℓn. ℓ 7→ML n ∗ fn = caml update ref ∗ V⃗ = [ℓ]

∗ (∀V′m.V′ = ⟨⟩ ∗ ℓ 7→ML m −−∗ Φ(V′))

21

Desugaring To Predicate Transformers

Implement interface triples as a predicate transformer Ψ:

Ψ : FnName︸ ︷︷ ︸
Name

→ V⃗al︸︷︷︸
Args

→ (Val → iProp)︸ ︷︷ ︸
Postcondition

→ iProp︸ ︷︷ ︸
Precondition

“iProp” is the type of Iris propositions, which includes:

• quantifiers ∀,∃, ... and pure propositions

• Separation Logic modalities

• memory assertions of both languages (ℓ 7→ML V, a 7→C w)

• specifications {P} e@Ψ {Q} of both languages

We desugar

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ]

⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩

as follows:

Ψupd fn V⃗ Φ :=∃ℓn. ℓ 7→ML n ∗ fn = caml update ref ∗ V⃗ = [ℓ]

∗ (∀V′m.V′ = ⟨⟩ ∗ ℓ 7→ML m −−∗ Φ(V′))

21

Implementing Interface Triples

Ψ : FnName︸ ︷︷ ︸
Name

→ V⃗al︸︷︷︸
Args

→ (Val → iProp)︸ ︷︷ ︸
Postcondition

→ iProp︸ ︷︷ ︸
Precondition

We parameterize Hoare triples by Ψ (inspired by de Vilhena and Pottier [2021]):

“{P} e@Ψ {Q}” means:

“Starting from a state satisfying P , e reduces to a value arriving in a state satisfying Q

— either by normal reductions, or by making external calls that satisfy Ψ”

Note: In a OCaml-and-C program (after linking), adequacy holds for Ψ fn V⃗ Φ := ⊥

22

Implementing Interface Triples

Ψ : FnName︸ ︷︷ ︸
Name

→ V⃗al︸︷︷︸
Args

→ (Val → iProp)︸ ︷︷ ︸
Postcondition

→ iProp︸ ︷︷ ︸
Precondition

We parameterize Hoare triples by Ψ (inspired by de Vilhena and Pottier [2021]):

“{P} e@Ψ {Q}” means:

“Starting from a state satisfying P , e reduces to a value arriving in a state satisfying Q

— either by normal reductions, or by making external calls that satisfy Ψ”

Note: In a OCaml-and-C program (after linking), adequacy holds for Ψ fn V⃗ Φ := ⊥

22

Implementing Interface Triples

In Iris, we then define Hoare triples in terms of the operational semantics:

{P} e@Ψ {Q} := □ (P −−∗ wp e@Ψ {Q})

wp e@Ψ {Q} :=

Q(v) e = v

∀e′, (e → e′) ⇒ wp e′@Ψ {Q} e reducible

Ψ fn V⃗
(
λV′.wpK[V′] @Ψ {Q}

)︸ ︷︷ ︸
Postcondition

e = K[call fn V⃗]

23

Outline: The OCaml FFI

1. Language-local program logics with external calls

2. Glue code and program logic for FFI

24

External Calls in Glue Code

In glue code we treat operations of the OCaml FFI as external functions.

value caml_update_ref(value r) {

int x = Int_val (Field(r, 0));

int y = rand(x);

Store_field(r, 0, Val_int(y));

return Val_int(0);

}

Glue code is verified using the program logic for C, but additionally assuming an

interface ΨFFI for the OCaml FFI primitives, with resources e.g. γ 7→blk[t|m] v⃗.

〈
GC(θ) ∗ γ 7→blk[0|mut] v⃗ ∗ γ ∼θ

C w ∗ v′ ∼θ
C w′〉

Store field(w, i,w′)〈
GC(θ) ∗ γ 7→blk[0|mut] v⃗[i := v′]

〉 ⊑ ΨFFI

25

External Calls in Glue Code

In glue code we treat operations of the OCaml FFI as external functions.

value caml_update_ref(value r) {

int x = Int_val (Field(r, 0));

int y = rand(x);

Store_field(r, 0, Val_int(y));

return Val_int(0);

}

Glue code is verified using the program logic for C, but additionally assuming an

interface ΨFFI for the OCaml FFI primitives, with resources e.g. γ 7→blk[t|m] v⃗.〈
GC(θ) ∗ γ 7→blk[0|mut] v⃗ ∗ γ ∼θ

C w ∗ v′ ∼θ
C w′〉

Store field(w, i,w′)〈
GC(θ) ∗ γ 7→blk[0|mut] v⃗[i := v′]

〉 ⊑ ΨFFI

25

External Calls in Glue Code

In glue code we treat operations of the OCaml FFI as external functions.

value caml_update_ref(value r) {

int x = Int_val (Field(r, 0));

int y = rand(x);

Store_field(r, 0, Val_int(y));

return Val_int(0);

}

{
GC(θ) ∗ γ 7→blk[0|mut] [n] ∗ γ ∼θ

C w
}

call caml update ref [w] @ ΨFFI{
w′.∃m. GC(θ) ∗ γ 7→blk[0|mut] [m] ∗ w′ ∼θ

C 0
}

Glue code is verified using the program logic for C, but additionally assuming an

interface ΨFFI for the OCaml FFI primitives, with resources e.g. γ 7→blk[t|m] v⃗.〈
GC(θ) ∗ γ 7→blk[0|mut] v⃗ ∗ γ ∼θ

C w ∗ v′ ∼θ
C w′〉

Store field(w, i,w′)〈
GC(θ) ∗ γ 7→blk[0|mut] v⃗[i := v′]

〉 ⊑ ΨFFI

25

Outline: The OCaml-FFI boundary

1. Language-local program logics with external calls

2. Glue code and program logic for FFI

3. Focus: the OCaml-FFI boundary

26

View Reconciliation

We assumed an interface for caml update ref that uses ML points-tos:

∀ℓn. ⟨ℓ 7→ML n⟩ caml update ref [ℓ] ⟨V′. ∃m.V′ = ⟨⟩ ∗ ℓ 7→ML m⟩

Meanwhile, we proved the following specification for caml update ref using ΨFFI:{
GC(θ) ∗ γ 7→blk[0|mut] [n] ∗ γ ∼θ

C w
}

call caml update ref [w] @ ΨFFI{
w′.∃m. GC(θ) ∗ w′ ∼θ

C 0 ∗ γ 7→blk[0|mut] [m]
}

These express two different views about the same piece of state!

27

View Reconciliation: Update Rules

Idea:

• make ℓ 7→ML V⃗ and γ 7→blk[0|mut] v⃗ mutually exclusive (for related ℓ and γ)

• have view reconciliation rules to switch between the two representations

GC(θ) ∗ ℓ 7→ML V⃗ ≡−∗ ∃v⃗, γ.GC(θ) ∗ γ 7→blk[0|mut] v⃗ ∗ ℓ ∼ML γ ∗ V⃗ ∼ML v⃗ (ml-to-ffi)

GC(θ) ∗ γ 7→blk[0|mut] v⃗ ∗ V⃗ ∼ML v⃗ ≡−∗ ∃ℓ.GC(θ) ∗ ℓ 7→ML V⃗ ∗ ℓ ∼ML γ (ffi-to-ml)

28

View Reconciliation: Challenge

Challenge: proving that the view reconciliation rules are sound is hard!

The standard workflow in Iris:

• have Separation Logic memory assertions (ℓ 7→ML V)

• have the state of the operational semantics (finite map: Location ⇀ Value)

• relate the two (“state interpretation”). Often straightforward...

• in the program logic, we can hold a mix of ℓ 7→ML V⃗ and γ 7→blk[0|mut] v⃗

• the operational semantics has only one simultaneous view of the OCaml state

How can we relate the assertions and the operational semantics state?

29

View Reconciliation: Challenge

Challenge: proving that the view reconciliation rules are sound is hard!

The standard workflow in Iris:

• have Separation Logic memory assertions (ℓ 7→ML V)

• have the state of the operational semantics (finite map: Location ⇀ Value)

• relate the two (“state interpretation”). Often straightforward...

• in the program logic, we can hold a mix of ℓ 7→ML V⃗ and γ 7→blk[0|mut] v⃗

• the operational semantics has only one simultaneous view of the OCaml state

How can we relate the assertions and the operational semantics state?

29

View Reconciliation: Challenge

Challenge: proving that the view reconciliation rules are sound is hard!

The standard workflow in Iris:

• have Separation Logic memory assertions (ℓ 7→ML V)

• have the state of the operational semantics (finite map: Location ⇀ Value)

• relate the two (“state interpretation”). Often straightforward...

• in the program logic, we can hold a mix of ℓ 7→ML V⃗ and γ 7→blk[0|mut] v⃗

• the operational semantics has only one simultaneous view of the OCaml state

How can we relate the assertions and the operational semantics state?

29

View Reconciliation: Challenge (2)

In the operational semantics, there is only one simultaneous view of the OCaml state.

In OCaml

external call

return

In glue code

30

View Reconciliation: Challenge (2) and Solution

In the program logic: what happens to OCaml points-to?

Solution: track both views of the state in the program logic

In OCaml

external call

return

In glue code

31

View Reconciliation: Challenge (2) and Solution

In the program logic: what happens to OCaml points-to?

Solution: track both views of the state in the program logic

In OCaml

external call

return

In glue code

31

Changing The Representation: Making Difficult Choices

let x = ?

let b = ?

let y = (?, ?)

...

y
1 2b 1

x 1

...

Quiz Time: What are the OCaml values of x, b, and y?

High-level representation is not unique!

How does Operational Semantics choose the right value when switching to ML values?

32

Changing The Representation: Making Difficult Choices

let x = 1

let b = true

let y = (1, 2)

...

y
1 2b 1

x 1

...

High-level representation is not unique!

How does Operational Semantics choose the right value when switching to ML values?

32

Changing The Representation: Making Difficult Choices

let x = 1

let b = true

let y = (1, 2)

...

y
1 2b 1

x 1

...

High-level representation is not unique!

How does Operational Semantics choose the right value when switching to ML values?

32

Changing The Representation: Making Difficult Choices

let x = 1

let b = true

let y = (1, 2)

...

y
1 2b 1

x 1

...

High-level representation is not unique!

How does Operational Semantics choose the right value when switching to ML values?

32

Angelic Non-Determinism And The Weakest Pre

We use angelic nondeterminism, based on multi-relations (see DimSum, CCR)!

wp e {Φ} ˆ:= · · · ∨
(
e reducible ∗ ∀e′. e → e′ −−∗ wp e′ {Φ}

)
usual Iris

wp e {Φ} ˆ:= · · · ∨
(
∃X. e ↠ X ∗ ∀e′. e′ ∈ X −−∗ wp e′ {Φ}

)
multi-relations

Regular C and ML, not having angelic non-determinism, retain usual SOS

For adequacy, existential needs to be extracted ⇒ transfinite Iris

33

Angelic Non-Determinism And The Weakest Pre

We use angelic nondeterminism, based on multi-relations (see DimSum, CCR)!

wp e {Φ} ˆ:= · · · ∨
(
e reducible ∗ ∀e′. e → e′ −−∗ wp e′ {Φ}

)
usual Iris

wp e {Φ} ˆ:= · · · ∨
(
∃X. e ↠ X ∗ ∀e′. e′ ∈ X −−∗ wp e′ {Φ}

)
multi-relations

Regular C and ML, not having angelic non-determinism, retain usual SOS

For adequacy, existential needs to be extracted ⇒ transfinite Iris

33

Angelic Non-Determinism And The Weakest Pre

We use angelic nondeterminism, based on multi-relations (see DimSum, CCR)!

wp e {Φ} ˆ:= · · · ∨
(
e reducible ∗ ∀e′. e → e′ −−∗ wp e′ {Φ}

)
usual Iris

wp e {Φ} ˆ:= · · · ∨
(
∃X. e ↠ X ∗ ∀e′. e′ ∈ X −−∗ wp e′ {Φ}

)
multi-relations

Regular C and ML, not having angelic non-determinism, retain usual SOS

For adequacy, existential needs to be extracted ⇒ transfinite Iris

33

Conclusion

Contribution: An Iris for toy C+ML+FFI, emphasizing language-local reasoning.

We give a general recipe for merging two languages:

1. Abstract over “the other side” using interfaces and external calls

2. Formalize the semantics of the FFI (memory model and primitives)

3. Bridge between memory models using view reconciliation

More in the paper: https://melocoton-project.github.io

• more detailed FFI: callbacks, custom blocks, GC interaction

• logical relation for semantic typing of external functions

34

https://melocoton-project.github.io

Conclusion

Contribution: An Iris for toy C+ML+FFI, emphasizing language-local reasoning.

We give a general recipe for merging two languages:

1. Abstract over “the other side” using interfaces and external calls

2. Formalize the semantics of the FFI (memory model and primitives)

3. Bridge between memory models using view reconciliation

More in the paper: https://melocoton-project.github.io

• more detailed FFI: callbacks, custom blocks, GC interaction

• logical relation for semantic typing of external functions

34

https://melocoton-project.github.io

Conclusion

Contribution: An Iris for toy C+ML+FFI, emphasizing language-local reasoning.

We give a general recipe for merging two languages:

1. Abstract over “the other side” using interfaces and external calls

2. Formalize the semantics of the FFI (memory model and primitives)

3. Bridge between memory models using view reconciliation

More in the paper: https://melocoton-project.github.io

• more detailed FFI: callbacks, custom blocks, GC interaction

• logical relation for semantic typing of external functions

34

https://melocoton-project.github.io

bonus slides

35

The semantics

ML C

FFI wrapper Linker

The FFI wrapper

• Convert ML values to block-level

• Provide FFI: a C calling convention for

ML

The Linker

• Link programs using the same calling

convention

• Resolve external calls

36

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→C p0

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→C p0

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→C p0

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→C p0

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→C p0

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→C p0

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

⟨GC(α) ∗&p 7→C p0 ∗ blkaddr(α, γ) = p0⟩
CAMLparam1(p)

⟨GC(α) ∗&p 7→root γ⟩
37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...
root

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

⟨GC(α) ∗&p 7→C p0 ∗ blkaddr(α, γ) = p0⟩
CAMLparam1(p)

⟨GC(α) ∗&p 7→root γ⟩
37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...
root

&p p0

x y

γ
Permissions:

GC(α)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

⟨GC(α)⟩
caml alloc(0, n)〈

r. ∃β.blkaddr(β, δ) = r ∗ GC(β) ∗ δ 7→blk[0|imm] [?; ...; ?]
〉

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&r

δ

? ?r

root

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

δ 7→blk[0|imm] [?; ?]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

⟨GC(α)⟩
caml alloc(0, n)〈

r. ∃β.blkaddr(β, δ) = r ∗ GC(β) ∗ δ 7→blk[0|imm] [?; ...; ?]
〉

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&r

δ

? ?r

root

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

δ 7→blk[0|imm] [?; ?]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

Rule for reading a root &p

⟨GC(β) ∗&p 7→root γ⟩ *(&p)

⟨p1.blkaddr(β, γ) = p1 ∗ GC(β),&p 7→root γ⟩
37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&x x

&r

δ

? ?r

root

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

δ 7→blk[0|imm] [?; ?]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

〈
GC(β) ∗ γ 7→blk[0|imm] [..; vi; ...] ∗ blkaddr(β, γ) = p

〉
Field(p, i)〈

vi. GC(β), γ 7→blk[0|imm] [..; vi; ...]
〉

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&y y

&x x

&r

δ

? ?r

root

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

δ 7→blk[0|imm] [?; ?]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

〈
GC(β) ∗ γ 7→blk[0|imm] [..; vi; ...] ∗ blkaddr(β, γ) = p

〉
Field(p, i)〈

vi. GC(β), γ 7→blk[0|imm] [..; vi; ...]
〉

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&y y

&x x

&r

δ

?yr

root

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

δ 7→blk[0|imm] [y; ?]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

〈
GC(β) ∗ δ 7→blk[0|imm] [..; vi; ...] ∗ blkaddr(β, δ) = r

〉
Store field(r, i, v)〈

GC(β) ∗ δ 7→blk[0|imm] [..; v; ...]
〉

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&y y

&x x

&r

δ

y xr

root

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→root γ

δ 7→blk[0|imm] [y; x]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

〈
GC(β) ∗ δ 7→blk[0|imm] [..; vi; ...] ∗ blkaddr(β, δ) = r

〉
Store field(r, i, v)〈

GC(β) ∗ δ 7→blk[0|imm] [..; v; ...]
〉

37

Checking swap pair

value caml_swap_pair(value p)

{

CAMLparam1(p);

value r = caml_alloc(0, 2);

value x = Field(p, 0);

value y = Field(p, 1);

Store_field(r, 0, y);

Store_field(r, 1, x);

CAMLreturn(r);

}
...

...

&y y

&x x

&r

δ

y xr

&p p1

x y

γ Permissions:

GC(β)

γ 7→blk[0|imm] [x; y]

&p 7→C p1

δ 7→blk[0|imm] [y; x]

Facts:

blkaddr(α, γ) = p0

blkaddr(β, δ) = r

blkaddr(β, γ) = p1

<--

A permission describes the right to access some resources or memory:

GC(α) : permission to use C functions of the FFI

→ α: an abstract name that identifies a specific layout of the GC memory.

(α changes when the GC moves or deallocates block)

γ 7→blk[0|imm] [x; y; ...] : permission to access a block in the GC memory

→ γ: abstract label of the block

→ [x; y; ...]: contents of the block

&p 7→C p0 : permission to access the C variable p

→ p0: current value of the variable

We also collect “facts” (mathematical equalities) of the form:

blkaddr(α, γ) = p0

means: the block with label γ has concrete address p0,

when the GC memory is in layout α

⟨GC(β) ∗&p 7→root γ⟩
CAMLreturn(r)

⟨GC(β) ∗&p 7→C blkaddr(β, γ)⟩
37

