Static analysis
in Flambda 2

Pierre Chambart, Nathanaélle Courant
and Vincent Laviron (OCamlPro)

Mark Shinwell and Leo White (Jane Street)

Cambium Seminar, Inria Paris, 2023-08-28

Introduction

» We will describe the static analysis used during the middle
of the three passes of Flambda 2, the simplifier

» This was originally conceived as a type system for
Flambda 2 terms

» However it looks like an abstract domain, in the sense of
abstract interpretation

» The static analysis is written in OCaml (about 15kloc)

» All data structures are immutable

» It does not depend on the actual term language itself, only
a few basic types

OCam| 8] Static analysis in Flambda 2 2 @ Jane Street

We want to track the following properties:
» Numeric constants for constant propagation

» Block structures for simplifying accesses and removing
allocation

» Functions and closures for enabling direct calls and inlining

» Variants (mixing integers and blocks) for dead code
removal

Some of these properties are also used for unboxing.

The Flambda 2 simplifier communicates with the static analysis
using a well-defined interface.

OCam| 8] Static analysis in Flambda 2 3 @ Jane Street

Numeric properties

We have several kinds of (unboxed) numbers:
» Floating-point numbers
» 64-bit, 32-bit and machine width integers
» Immediates (numbers with one fewer bit than word-size
integers)
For each of them we use a domain of small finite sets.

OCam| 8] Static analysis in Flambda 2

Block structures

This is the domain used for tracking tuples, record values and
module blocks.

» Only fixed-size blocks
» Arrays are handled separately
» No support for the contents of mutable records

OCam| 8] Static analysis in Flambda 2

Block structures: shapes

» We use a domain of shapes

» A shape can be a full shape, with a list of shapes for each
of the fields...

> or a partial shape, with a partial map of index to known
shapes, the size being at least that of the largest index

Full shapes arise from propagating the annotations of the
OCaml type checker, or directly from allocation primitives.

Partial shapes are created from field accesses when the block
doesn’t have a known shape.

OCam| 8] Static analysis in Flambda 2 6 @ Jane Street

Relational information: examples

We would like to track relations between different fields:

let block_field_to_vars x y =
let block = x, y in
fst block + snd block

let field_to_field x =
let block = x, x in
match block with
| A, A -> case_A (O
| B, B -> case_B ()
| A, B | B, A —> should_be_eliminated ()

OCam| 8] Static analysis in Flambda 2

Relational information

» We handle these relations using a domain tracking aliasing

» Basic elements are (possibly empty) sequences of
projections from variables

» Equivalence classes are tracked using an union-find
structure

» We are only tracking must-alias relations, not may-alias or
must-not-alias

The actual implementation looks slightly different, we will come
to this later

OCam| 8] Static analysis in Flambda 2 8 @ Jane Street

Functions

» For functions (which are all closed), we track their code if
they are eligible for inlining

» We also track a summary capturing the relation between
the inputs and outputs
» Useful for reasoning about functors without inlining

» The summary is represented by an environment extension,
which will be described later

OCam| 8] Static analysis in Flambda 2

Closures

For closures, we reuse part of the logic used for blocks
(including for projections), but with a few differences:

> Indices are not integers, but symbolic labels called value
slots
» The function associated with a given closure is also stored

» For handling mutually-recursive functions, an exira set of
indices (function slots) is used to track accesses from one
closure to another

In OCaml terms at runtime:
» Function slots ~ code pointer sections of a closure block
» Value slots ~ elements of a closure block’s environment

OCam| 8] static analysis in Flambda 2 10 @ Jane Street

Variants and disjunctions: Blocks

Variants are handled by splitting on their constructor,
introducing disjunctions.
» For blocks, we split depending on their tag
» This also applies to block projections
» We also support blocks with unknown tags, which adds a
little complexity

OCam| 8] static analysis in Flambda 2

Variants and disjunctions: Constants

» Constant constructors are treated as immediates, so
handled by the finite sets domain

» A top-level disjunction splits between the constant and
block cases

» The two cases have an empty intersection, so domain
operators act element-wise

OCam| 8] static analysis in Flambda 2

More complicated disjunctions

» Note that although it is possible to have values of
incompatible types flowing into the same variable (typically
using GADTSs), we do not support any other kind of
disjunction.

» Such cases are represented with a Top value.

OCam| 8] static analysis in Flambda 2

A typical example:

let £ x =
let y = fst x in
match y with
| A -> assert (fst x == A)
I - > 0

Starting info: x: (T, T) (from the Lambda value kinds)
After binding y: alias relation x[0] =y
In the first branch: y: A

We want to infer x: (A, T)
This can be done using a reduced product

vVvy vy VY

OCam| 8] static analysis in Flambda 2

Reduced product

A reduced product is a standard way to combine two domains
in abstract interpretation.

» The reduction operator can be defined as
| reduce(Ar, Ar) = (i(1(A) Mye(Ar), ar(1(A) M (Ar)) |

» In less formal terms, reduction merges information from
both sides and propagates any new constraints back
into their respective domains when possible

» Reduction is expensive in general

» It can be performed on demand, if the consumer knows
where it is most useful (not the case here)

OCam| 8] static analysis in Flambda 2 15 @ Jane Street

Implementation

We do not implement a full reduced product. Instead, we have:
» A domain of aliases for variables (no projections)

» A domain for approximations that can be either a variable
or a concrete description

» Concrete descriptions for structures have approximations
as sub-elements, allowing to encode projections

» As an invariant, each set of aliases has a single canonical
element, and only this canonical element is allowed to
have a concrete description

» Numerical constants are considered as predefined
variables. Those are always the canonical alias

OCam| 8] static analysis in Flambda 2

Reuvisiting the example

let f x
let y
match y with
| A -> assert (fst x == A)
I - > 0O

» Starting info: x: (T, T) (from the types)

fst x in

> Afterbindingy: x:(=y, T); y: T
» Inthe firstbranch: ‘x:(=y, T); y: A

OCam| 8] static analysis in Flambda 2

Environments

» An environment is a map from program names to
approximations, plus a set of alias constraints

» Environments can be enriched by either adding new
variables with their approximations...

» ...or introducing constraints on one or more existing
variables

» In the second case, this triggers a meet

More on “meet” in just a moment.

OCam| 8] static analysis in Flambda 2

Levels: dual representation of environments

» For performance reasons, we also keep the history of
constraints that were combined to produce the current
environment

> At some synchronization points (decided by the consumer,
in our case the simplification code), we keep a backup of
the compact state at that point

» With that, we can easily extract and replay parts of the
history.

» This is useful for join points, where we only have to join the
part of the history that is not in common; and for extracting
summaries out of the environments at the end of functions.
More on this later

OCam| 8] static analysis in Flambda 2 19 @ Jane Street

» One of the two main operations (the other being join)
» Meet is used to add constraints

> In conditional branches

» In some primitives (typically projections)
> Meeting two types in a given environment will return:

> A type that subsumes both inputs
> An updated environment that reflects the additional
constraints

» Meeting two environments isn’t very useful, and is not
implemented

OCam| 8] static analysis in Flambda 2

Meet examples

The meet algorithm takes as input an environment, and two
approximations. It returns an approximation that subsumes
both of the inputs, and an updated environment.

Examples:
{x:(8,T)y: Tt == N (=,B)

_>
{x:(=y,B); y:A} =x

{x:(=y,T); y:T; z:A} =x N (=2,7T)

_>
{x:(=y,T)i y: A z:=y| aliases : {y,z}} =x

OCam| 8] static analysis in Flambda 2

Meet algorithm part 1

Our current meet algorithm proceeds as follows:

» If any of the inputs is a variable, replace it with its canonical
alias

» Fetch the corresponding concrete descriptions

» Do the relevant meet operation
» This may call the generic meet algorithm recursively
» Protection against cycles is needed because of the
recursion inherent in closures
» This returns a new approximation and an updated
environment

OCam| 8] static analysis in Flambda 2

Meet algorithm part 2

> |f exactly one of the inputs was a variable, replace the
approximation for its canonical element by the new result in
the updated environment. The result approximation is an
alias to this variable

» If both inputs were variables, choose one to become the
new canonical element and merge their equivalence
classes

» The approximation for the non-canonical one is replaced in
the result environment by an alias to the canonical one

» The result approximation is an alias to the canonical
element

OCam| 8] static analysis in Flambda 2 23 @ Jane Street

Environment extensions

» Environment extensions represent sets of constraints on
a set of variables, expressed in the shape of a map from
variables to approximations.

» The set of constrained variables is all of the keys of the
map plus all free variables in the approximations.

Example:
let £ xy = (x, y)
Summary: {result : (=x,=v)}

The summary can then be associated to the function in the
environment.

OCam| 8] static analysis in Flambda 2 24 @ Jane Street

Existentially-quantified variables

The environment can handle existentially-quantified variables.
» This allows the encoding of more constraints:
{x:(=,=y) Iy: T}
» In practice, it is mostly used for variables no longer in
scope

» Adapting environments to more restricted scopes (e.g.
going under a lambda) becomes cheap

» This is done using a lock in the environment

» Environment extensions can also introduce existential
variables

OCam| 8] static analysis in Flambda 2 25 @ Jane Street

Extensions under disjunctions

» All disjunctions can have extensions associated to
individual cases

» During meet, these extensions can be temporarily added
while under the corresponding case

» If only one case remains possible, then the extension gets
lifted to the result environment

These extensions are not inferred during join (too expensive).
Instead, during meet when several disjunction cases remain,
extensions are extracted from the relevant result environments
and stored with the cases.

This mostly matters during variant unboxing.

OCam| 8] static analysis in Flambda 2 26 @ Jane Street

Extensions under disjunctions: example

Unboxing of variants relies on this feature for precise tracking of
unboxed parameters to their contents.

Example:

let f cond y z =
let r = if cond then A y else B z in ...

let f_unboxed cond y z =
let tag, arg = if cond then A, y else B, z in ...

{arg: T, tag: (A{arg: =y} | B{arg: =z})}

OCam| 8] static analysis in Flambda 2

» The other of the two main operations, alongside meet

» Join is used mostly when merging branches (i.e. at
continuation handlers)

» The usual join takes two environments, and returns an
environment that contains only properties that hold on both
branches

» In practice our use of levels provides us with a common
ancestor, which helps in keeping the complexity
manageable

» Joining two types in a given environment is also
implemented

OCam| 8] static analysis in Flambda 2

Join algorithm

Join operates on two environments.

» Find a common ancestor. In practice, the consumer
specifies it, but it would be possible to infer it

> Use the levels to efficiently factor each input into an
extension over the common ancestor

» Existentially quantify all variables defined in the
extensions. Variables occurring only on one side get
introduced on the other side with a special approximation
that behaves like a Bottom element

» Join the individual approximations associated to each
variable

> Add the resulting extension to the ancestor environment

OCam| 8] static analysis in Flambda 2 29 @ Jane Street

Join on approximations

The join on approximations works like this:

» Joining two concrete descriptions returns a concrete
description, recursively calling join if needed

» If only one side is a variable alias: expand this alias in
the corresponding input environment and join the concrete
descriptions

» If both sides are variable aliases: if they share a
common alias pick one of them as the return
approximation. Otherwise expand the aliases in their
respective environments and join the concrete descriptions

OCam| 8] static analysis in Flambda 2 30 @ Jane Street

Derived numbers

» Programs can extract the tag of a given block and
manipulate it as an integer

» This often happens in code produced by the pattern
matching compiler

» This introduces a relation between numbers and blocks

» This is currently handled by replacing the domain for
immediates by either a concrete set or a relational
constraint linking the block

» This works well for propagating information from the
number to the block, not well for the reverse direction

» There is a similar problem and solution for the boolean
identifying whether a value is a block or an integer

OCam| 8] static analysis in Flambda 2 31 @ Jane Street

Derived numbers: alternatives

» A reduced product with a domain tracking these relations
would work

» Another possibility is to consider finite sets as generic
disjunctions and allow environment extensions on them

» The latter approach also opens possibilities for tracking
other relations (equality, comparison)

OCam| 8] static analysis in Flambda 2

Fixpoints and widening

» The domain was not designed for use in fixpoint
computations

» There are possible implementations for a widening
operator

» Comparison (inclusion check) would be particularly tricky
to implement

OCam| 8] static analysis in Flambda 2

Interface to the simplifier

The static analysis has a relatively small interface to the
Flambda 2 simplifier. It provides the following operations on
environments:
> Creation and (de)serialization
» Updating:
» Adding variables
» Meet to add any kind of constraint
» Join to merge branches
» Variable removal can be done independently (usually done
during join)
» Querying:
» Meet can be used for queries (looking at the resulting
approximation, e.g. “is this a block?”)
» Faster, specialised queries are also supported (less
precise)

OCam| 8] static analysis in Flambda 2 34 @ Jane Street

Example: Sum of squares using streams

We will see how the analysis helps us optimize this program:
let square x = X * X
let ints lo hi =
unfold (fun i -> if i > hi then Empty else
Cons (i, 1 + 1)) 1lo

let sum s = fold_left (+) 0 s

let foo () = sum (map square (ints 0 11))

This uses a minimal version of the Sequence module from the
Base library. (We will talk about Seq later.)

OCam| 8] static analysis in Flambda 2 35 @ Jane Street

Example: Minimal Base.Sequence

type ('a, 's) node = Empty | Cons of 'a * '
type _ t = State
's * ('s -> ('a, 's) mnode)) -> 'a t

S

let rec fold_left f acc (State (s, next)) =
match next s with

| Empty -> acc
| Cons (x, s') ->
fold_left f (f acc x) (State (s', next))

let map f (State (s, next)) =
State (s, fun s ->
match next s with
| Empty -> Empty
| Cons (x, s') -> Cons (f x, s'))

let unfold f acc = State (acc, f)

OCam| 8] static analysis in Flambda 2

Running example

let s1 = ints 0 11 in Environment:
let s2 = map square sl in map, sum, etc. omitted.
sum s2

OCam| 8] static analysis in Flambda 2

Running example

let f1 =

ints.anon {hi=11}
in
let s1 = unfold f1 0 in
let s2 map square sl in
sum s2

Environment:
f1: [ints.anon{hi — 11}]

OCam| 8] static analysis in Flambda 2

Running example

let f1 =
ints.anon {hi=11} Environment:
in f1: [ints.anon{hi — 11}]
let s1 = State (0, f1) in si: (0,=f1)
let s2 = map square sl in
sum s2

OCam| 8] static analysis in Flambda 2

Running example

let f1 =
ints.anon {hi=11}
in
let s1 = State (0, f1) in
let s2

let State(s, next) = sl in
let f2 = map.anon
{next=next ,f=squarel
in
State (s, f2)

in

sum s2

Environment:

f1:
si:

S
next:

[ints.anon{hi > 11}]
(0,=f1)

0

—iil

OCam| 8] static analysis in Flambda 2

Running example

let f1
let sl1
let f2

{next=£f1,f=square}

in
let s2
sum s2

.) ~ Environment:
ints.anon {hi=11} in [4. [ints.anon{hi — 11}]
State (0, f1) in .

si: (0,=f1)
map.anon

£f2: [map.anon

{next — =f1,

State (0, £2) in f — =square}]

s2: (0,=f2)

OCam| 8] static analysis in Flambda 2

Running example

Environment:

let f1 = ints.anon {hi=11} in 21

let s1 = State (0, f1) in)

let f2 = map.anon 25

{next=f1,f=square’}

in

let s2 = State (0, f2) in s2:

fold_left (+) 0 s2 S:
next:

[ints.anon{hi — 11}]
(0,=f1)
[map.anon
{next — =f1,
f — =square}|
(0,=£2)
0
=f2

OCam| 8] static analysis in Flambda 2

Running example

let f1 = ints.anon {hi=11} in
let s1 = State (0, f1) in

let f2 = map.anon .

{next=f1,f=square} Environment:

in f1: [ints.anon{hi +— 11}]
let s2 = State (0, f2) in sl: (O,:fl)

let State (s, next) = 82 in £92: [map.anon

loop (s=s,acc=0) { {next » —=f1,

match next s with

f— =
| Empty -> acc square]

| ConS (X, s |) _> SQ: (o, :f2)
let acc' = (+) acc x in
loop (s=s', acc=acc')

OCam| 8] static analysis in Flambda 2 Jane Street

Running example

let f1 = ints.anon {hi=11} in
let s1 = State (0, f1) in
let f2 = map.anon {next=fl,

f=squarel} in

let s2 = State (0, f2) in fi:
loop (s=0,acc=0) { s1:
match f2 s with £92:
| Empty -> acc
| Cons (x, s') ->
let acc' = acc + x in
loop (s=s', acc=acc') 82
}

We will now only consider the
contents of the loop

Environment:

[ints.anon{hi — 11}]
(0,=f1)
[map.anon

{next — =f1,

f — =square}]
(0,=£2)

OCam| 8] Static analysis in Flambda 2

Running example

Environment:

f1:

si:

match f2 s with)

| Empty -> acc 52

| Cons (x, s') ->

let acc' = acc + x in

loop (s=s', acc=acc') s2:

S:

acc:

[ints.anon{hi — 11}]
(0,=f1)
[map.anon
{next — =f1,
f — =square}]
(0,=£2)
T
T

OCam| 8] static analysis in Flambda 2

Running example

let r = Envi .
match f1 s with nwronmgnt. :
| Empty -> Empty f1: [ints.anon{hi > 11}]
| Cons (x, s') -> si: (0,=f1)
let y = square x in f2: [map.anon
Cons (y, s') {next — =f1,
o f — =square}]
match r with .
s2: (0,=f2)
| Empty -> acc T
| Cons (x, s') -> S:
let acc' = acc + x in acc: T

loop (s=s', acc=acc')

OCam| 8] static analysis in Flambda 2

Running example

let p =
if s < 11 then
t

let = s+1 in Coms (s,t) Environment:

else Empty f1: [ints.anon{hi +— 11}]
in si: (0,=f1)
let T = f2: [map.anon

match p with
| Empty -> Empty
| Cons (x, s') ->

{next — =f1,
f — =square}]

let y = square x in s2: (0,=f2)
Cons (y, s') s: T
in acc: T
match r with t T

| Empty -> acc

| Cons (x, s') ->
let acc' = acc + x in
loop (s=s', acc=acc')

p: Empty | Cons(=s,=t)

OCam| 8] static analysis in Flambda 2

Running example

let p =
if s < 11 then
t

let = s+1 in Coms (s,t) Environment:

else Empty f1: [ints.anon{hi +— 11}]
in si: (0,=f1)
let T = f2: [map.anon

match p with

| Empty -> Empty {next — =f1,

f — =square}]

| Cons _ ->
let y = s * s in s2: (0,=f2)
Cons (y, t) s: T
in acc: T
match r with t T

| Empty -> acc

| Cons (x, s') ->
let acc' = acc + x in
loop (s=s', acc=acc')

p: Empty | Cons(=s,=t)

OCam| 8] static analysis in Flambda 2

Running example

let p =
if s < 11 then
let t = s+1 in Cons (s,t) f1:
else Empty si:
in £2:
let r =
match p with
| Empty -> Empty
| Cons _ -> s2:
let y = s * s in S:
Cons (y, t) acc:
in t:
match r with p:
| Empty -> acc y:
| Cons (x, s') -> r
let acc' = acc + x in :
loop (s=s', acc=acc')

Environment:

[ints.anon{hi > 11}]
(0,=£1)
[map.anon
{next — =f1,
f — =square}]
(0,=f£2)
T
T
T
Empty | Cons(=s, =t)

T
Empty | Cons(=y, =t)

37 @ Jane Street

OCam| 8] static analysis in Flambda 2

Running example

let p = .
if s < 11 then Environment:

let t = s+l in Coms (s,t) f1: [ints.anon{hi — 11}]
else Empty s1: (07:f1)
Lo f2: [map.anon
let r =

{next — =f1,

match with
P f — =square}]

| Empty -> Empty

| Cons _ -> s2: (0,=f2)
let y = s * s in s T
Cons (y, t) acc: T
in t: T
match r with p: Emptleons(:s,:i)
: gmpty -> acc v T
ons _ -> : -
let acc' = acc + y in r: Empty | Cons(=y,=t)

loop (s=t, acc=acc')

OCam| 8] static analysis in Flambda 2 37 @ Jane Street

Running example

Environment:

let r = f1:
if s < 11 then si:
let t = s + 1 in £92:
let y = 8 * s in
Cons (y, t)
else
Empty s2:
in S:
match r with acc.
| Empty -> acc t:
| Cons _ -> p:
let acc' = acc + y in .
- - ¥
loop (s=t, acc=acc') .

[ints.anon{hi > 11}]
(07 :fl)
[map.anon
{next — =f1,
f — =square}]
(07 :fQ)
T
T
T
Empty | Cons(=s, =t)

T
Empty | Cons(=y, =t)

OCam| 8] static analysis in Flambda 2 37 @ Jane Street

Running example

Environment:
f1: [ints.anon{hi > 11}]
si: (0,=f1)
f2: [map.anon

if s < 11 then {next|—>*f1
B)

let t = s + 1 in
Lot e % s in f — =square}|
y
let acc' = acc + y in s2: (07:f2)
loop (s=t, acc=acc') st T
else acc: T

acc t: T
p: Empty | Cons(=s, =t)
y: T
r: Empty | Cons(=y,=t)

OCam| 8] static analysis in Flambda 2 37 @ Jane Street

Running example

Environment:

loop (s=0,acc=0) {
if s < 11 then

let t = s + 1 in
let y = s * s in
let acc' = acc + y in

loop (s=t, acc=acc')
else
acc

f1:
si:
f2:

s2:

acc:

R

[ints.anon{hi > 11}]
(07 :fl)
[map.anon
{next — =f1,
f — =square}]
(07 :fQ)
T
T
T
Empty | Cons(=s, =t)

T
Empty | Cons(=y, =t)

OCam| 8] static analysis in Flambda 2 37 @ Jane Street

Stdlib.Seq.fold left

let rec fold_left f acc seq =
match seq () with
| Nil -> acc
| Cons (x, next) ->
let acc = f acc x in
fold_left f acc next

Simplifying this requires proving that next equals seq which is
tricky, in addition to having function specialization in the
simplifier, which is not yet there.

We can however prove this for the type in the example, and
specialization is not required.

OCam| 8] static analysis in Flambda 2 38 @ Jane Street

Conclusion

» This is not a finished work
» Some features are written but not yet merged
» There are features in the pipeline we haven't started on yet
» Maybe some existing features will be altered in the future
» However the code is stable and fully reviewed
» The API enables changes to be made locally without
touching the rest of the system
» Many production systems are built with this (10,000+
instances)
» Systems have been running now for several months
» There have been no known miscompilations amongst these
» Flambda 2 is expected to replace Closure and Flambda 1
completely at Jane Street during September

OCam| 8] static analysis in Flambda 2 39 @ Jane Street

