
Flambda 2
Pierre Chambart and Vincent Laviron (OCamlPro)

Mark Shinwell (Jane Street)

Cambium Seminar, Inria Paris, 2023-06-26



History and context

Flambda 2: Cambium 2023-06-26 slide 2



What is Flambda 2?

I A new middle end optimizer that replaces Closure and
Flambda 1

I Translates from Lambda to Cmm in two or three passes
I Competes with Closure on compilation speed in a “fast

build” mode
I Competes with Flambda 1 on runtime performance in

optimized mode
I Provides a general and extensible framework for

optimization
I Real, critical systems compiled with it are running right now

Flambda 2: Cambium 2023-06-26 slide 3



Why Flambda 2?

The main motivation was limitations of Flambda 1
I The big one: in Flambda 1, most subexpressions were

named, but control points (e.g. jump targets) were not
named

I This made it difficult to write certain optimizations, for
example match-in-match, or unboxing function return
values

I Flambda 1 was also kind of ad-hoc and rather
over-specialized. We wanted something more principled

We made various prototypes based on Flambda 1, mainly:
I CPS-based control flow optimisation passes
I adjusting the rather problematic closure representation

Eventually we decided a wholesale change of IR was best.

Flambda 2: Cambium 2023-06-26 slide 4



The new world

Flambda 2: Cambium 2023-06-26 slide 5



Structure of the middle end

There are three passes:
I Lambda to flambda converts from Lambda to Flambda 2
I Simplify performs lots of optimizations, in conjunction

with a type system (abstract domain), which does not
depend on the term language

I To cmm produces Cmm code of a form which instruction
selection can work on

In the fast-build “classic” mode, Simplify is not run.

Flambda 2: Cambium 2023-06-26 slide 6



Classic mode

I In Flambda 1, was trying to emulate the performance and
optimisation features of the original compiler

I In Flambda 2, is meant as a fast but still decently good
option, primarily for development builds

I It is compatible with the normal mode (not a configuration
flag)

I In practice, it means bypassing Simplify completely, but
adding a bit of extra work elsewhere

Flambda 2: Cambium 2023-06-26 slide 7



Style of the IR

I A hybrid of A-normal form (ANF), CPS and direct style
I Kennedy-style double-barrelled CPS (second-class normal

and exception continuations): every control point is
named

I No nested subexpressions: every intermediate value is
named, as in ANF

I Still retains normal let-expressions, but the part after the
= never has any control flow effects

I Primitive operations are close to Cmm primitives, but never
have any control flow effects

I This IR is overall better for optimization than Flambda 1,
though it makes some things harder (e.g. peephole
optimizations).

Flambda 2: Cambium 2023-06-26 slide 8



Style of the IR: closures

I The IR has ways of creating and manipulating closures
I One reason for this is to be able to measure their cost

when inlining
I Closures are represented separately from code: closed

function bodies
I This is a major departure from Flambda 1. We should have

used this approach in that system.
I Code gets to its own closure via an explicit my closure

parameter (like in Cmm)
I Code is named using code IDs. These correspond directly

to function symbols in the resulting .o file

Closures are subtle and difficult to deal with.
However we have now tamed their complexity pretty well.

Flambda 2: Cambium 2023-06-26 slide 9



Rough shape of the IR

type expr = (* genuinely only six cases! *)
| Let of ids * named * expr
| Let_cont of k * vars * expr * expr
| Apply of apply * k * exn_k * simples
| Apply_cont of k * simples * trap_action
| Switch of simple * (int * k * simple) list
| Invalid of { message : string }

and named =
| Simple of simple (* var, symbol or const *)
| Prim of ... (* arithmetic, load/store, ... *)
| Set_of_closures of ...
| Static_consts of ... static_const_or_code ...

and static_const_or_code =
| Code of ... (* function body, sans closure *)
| Static_const of ... (* like Cmm data items *)

Flambda 2: Cambium 2023-06-26 slide 10



Name binding for variables and continuations

I The bane of many compiler writers’ lives, but not this time!
I Terms in the IR represent alpha-equivalence classes,

enforced using abstract types
I Names are not unique, but are freshened when looking at

them
I This means terms can just be assembled without either

freshening or concern about name clashes
I Lazy freshening avoids expensive traversals
I Using permutations (as in nominal sets) instead of

substitutions provides a second layer of assurance, as it is
impossible to break alpha-equivalence using these

Flambda 2: Cambium 2023-06-26 slide 11



Example: match expression in IR

Switch is low level, only on naked integers.
match x with
| None -> 1
| Some s -> s

IR:

let i = is_int x
switch i
| 0 -> apply_cont k_return 1
| 1 -> apply_cont k_some ; yes, we have goto!
where k_some =

let r = field x 0 in
apply_cont return r

Flambda 2: Cambium 2023-06-26 slide 12



Relational reasoning

let x = if b then None else Some 3 in
match x with
| None -> 3
| Some n -> n

is_int x : =1 should imply x : Block (Tag_0, =3)

let i = is_int x
switch i
| 0 -> apply_cont k_return 1
| 1 -> apply_cont k_some

where k_some =
let r = field x 0 in
apply_cont k_return r

Flambda 2: Cambium 2023-06-26 slide 13



Translation from Lambda to Flambda 2

Flambda 2: Cambium 2023-06-26 slide 14



CPS conversion

I Continuations and proto-Flambda 2 terms are created:
I let cont of (non-trivial) let-bindings and code branches
I Add return continuation to function parameters

I Mutable variables (local references) are turned into
immutable variables and passed as extra continuation
parameters when necessary. There are no mutable
variables in Flambda 2.

Meanwhile, at the same time, a hand-deforested closure
conversion algorithm runs.

Flambda 2: Cambium 2023-06-26 slide 15



Closure conversion

I Introduces closure and code bindings
I Produces actual Flambda 2 terms
I Removal of dead continuations arising from CPS

conversion
I Localized unboxing
I Lifting of obviously-constant values

Flambda 2: Cambium 2023-06-26 slide 16



Classic mode features

Closure conversion also does most classic mode optimizations.
I Simple lifting of static data

I Boxed values
I Blocks (including modules)
I Closures

I Tracking of value approximations:
I Code for inlining or direct calls
I Block fields to skip loading and yield lifted symbols
I OCaml values for unboxing and static switch reduction

I Approximations translated to Flambda 2 types for .cmx
export
I .cmx compatibility between classic and optimized

modes!
I Counting of continuation occurrences (needed for Cmm

translation)

Flambda 2: Cambium 2023-06-26 slide 17



Flambda 2 to Cmm

Flambda 2: Cambium 2023-06-26 slide 18



Translation from Flambda 2 to Cmm

We’re going to look at this before Simplify as it completes the
classic mode pipeline.
I Eliminate continuations:

I Direct translation to static exit/catch
I Inline continuations used exactly once

I Produce expressions that Selectgen will like:
I Substitute let-bound expressions used exactly once, and

not crossing some boundaries (e.g. loops)
I Allow some re-ordering if effects/coeffects allow it
I This removes the need for the old Un anf pass

I For exception handlers:
I Use Cmm mutable variables for exception handler extra

parameters introduced during closure conversion

Flambda 2: Cambium 2023-06-26 slide 19



Optimizations in To cmm

I Remove unused value/function slots
I Statically allocate sets of closures with no value slots
I Switches

I Generate an if-then-else directly, particularly when one
discriminant is 0

I Decide whether to use the tagged or untagged version of
the scrutinee for binary switches (use the smallest
expression)

I In classic mode, unbox some numbers:
I Substitute boxed operations at their use-site
I Rely on Cmm helpers to unbox the substituted boxing (if

applicable)
I This can duplicate boxing operations

Flambda 2: Cambium 2023-06-26 slide 20



Simplify

Flambda 2: Cambium 2023-06-26 slide 21



High level view

The simplifier is in general a one-pass optimizer (although
occasionally it may rerun itself on individual functions). It works
in three stages:
I Downwards traversal in dominator order, collecting and

using information in an abstract domain
I A couple of fast fixpoint calculations having reached the

end
I Upwards traversal rebuilding the term

The simplifier is tail recursive, which is important for processing
large source files

Flambda 2: Cambium 2023-06-26 slide 22



Inlining

One of the main optimizations the simplifier performs is inlining.
It looks at:
I Inlining cost in code size (CPU fetch, binary size, compile

time)
I Inlining benefits by specialising code to its context

To decide whether an inlining is worth doing:
I Heuristically decide when inlining is good (e.g. for very

small functions)
I Inline then examine the result (Flambda 1 did this, but

Flambda 2 can do the examination without actually
rebuilding the proposed inlined term)

Flambda 2: Cambium 2023-06-26 slide 23



Forward pass: information collection

Traverse the control flow in dominator order
I Variables are freshened behind the scenes
I let introduces equations (meet) on variables in the

domain
I let cont is a join on the domain
I Dependencies between variables, symbols, etc are

accumulated

Flambda 2: Cambium 2023-06-26 slide 24



Forward pass: transformation

I Inlining
I Partial- and over-application expansion
I Simplification of primitives based on information in the

domain
I Decisions for static allocation (as in previous middle ends,

statically-allocated values may be inconstant)
I Accumulation of symbol bindings corresponding to new

static allocations
I Unboxing
I CSE

Flambda 2: Cambium 2023-06-26 slide 25



Fixpoints

We don’t do fixpoints on the abstract domain, but there are still
some specific optimizations we need them for.

These are done once the “bottom” of the term has been
reached.
I Dependency calculations, to work out which bindings are

dead
I Local data flow analysis for mutable unboxing

Flambda 2: Cambium 2023-06-26 slide 26



Upward pass

I Rebuilding of the term
I Deletion of dead bindings
I Continuation simplifications (e.g. inlining continuations

used exactly once)
I Rewriting of primitives for mutable unboxing
I Insertion of symbol bindings at the toplevel of the

expression
I Computation of free variables
I Counting of continuation occurrences (needed for Cmm

translation)

At one point we tried keeping free variable sets on the terms,
but it was a performance disaster.

Flambda 2: Cambium 2023-06-26 slide 27



Examples of new optimizations

Flambda 2: Cambium 2023-06-26 slide 28



Match-in-match without allocation

type t = C | D | E
type s = A of int | B of int

let foo c a b =
let m =

match c with
| C -> A a
| D -> B b
| E -> B (b + 1)

in
match m with
| A x -> ...
| B y -> ...

Flambda 2: Cambium 2023-06-26 slide 29



Post-inlining array operation specialization

let bar arr =
for x = 0 to Array.length arr - 2 do

arr.(x) <- arr.(x + 1)
done

let foo (arr : int array) =
...;
(bar [@inlined]) arr;
...

Flambda 2: Cambium 2023-06-26 slide 30



Loops like a C compiler (well, almost...)

let f cb i xs =
(List.iter [@inlined])
(fun [@inline] x ->

cb (i + x))
xs

subq $24, %rsp
movq %rax, (%rsp)
movq %rbx, 8(%rsp)
movq %rdi, 16(%rsp)

L100:
testb $1, %dil
je L101
movl $1, %eax
addq $24, %rsp
ret
.align 2

L101:
movq (%rsp), %rbx
movq (%rdi), %rax
movq 8(%rsp), %rdi
leaq -1(%rdi,%rax), %rax
movq (%rbx), %rdi
call *%rdi
movq 16(%rsp), %rdi
movq 8(%rdi), %rdi
movq %rdi, 16(%rsp)
jmp L100

Flambda 2: Cambium 2023-06-26 slide 31



Improved mutable unboxing

type t = { a : int; b : float }

let[@inline] g r =
r := { !r with b = !r.b +. 1. }

let f x =
let r = ref x in
for i = 0 to 10 do

g r
done;
!r.b +. Float.of_int !r.a

Flambda 2: Cambium 2023-06-26 slide 32



Identity matches

type t = A | B | C
let f = function
| A -> 0
| B -> 1
| C -> 2

type t1 = C of int | D of int
type t2 = Foo of int | Bar of int
let g = function

| C x -> Foo x
| D y -> Bar y

Flambda 2: Cambium 2023-06-26 slide 33



Local exceptions converted into jumps

exception Exit

let f x y =
let r = ref x in
try

for i = 1 to y do
if !r > 100 then raise_notrace Exit;
r := !r + y

done;
!r

with Exit -> !r

Flambda 2: Cambium 2023-06-26 slide 34



A couple of things are missing

Compared to Flambda 1, the following aren’t yet implemented
in Flambda 2:
I Unboxing of free variables of functions inside closures
I Specialization of functions given invariant parameters
I Lambda lifting (implemented in Flambda 1 but off by

default, as it was never fully satisfactory)
The first of these is likely to come soon to Flambda 2.

Flambda 2: Cambium 2023-06-26 slide 35



Flambda 2 type system (abstract domains)

Flambda 2: Cambium 2023-06-26 slide 36



Abstract domain API

I Meet and join
I Queries (checking properties)
I Levels: backtracking/replaying functionality
I No fixpoints needed, so no widening or inclusion test

Full details to come in a follow-up talk, but we will whet the
appetite here

Flambda 2: Cambium 2023-06-26 slide 37



Typical basic use

Reading the first field of a block b

let v = Variable.create "field" in
let env = TE.add_definition env v in
let t = T.immutable_block ˜fields:[v] in
let env = TE.add_equation env b t in

Flambda 2: Cambium 2023-06-26 slide 38



More constructors

Reading from a block b at field idx
For performance reasons, we don’t want to build large useless
values

let v = Variable.create "field" in
let env = TE.add_definition env v in
let t = T.immutable_block_with_size_at_least
˜n:(idx+1) ˜field_n_minus_one:v in

let env = TE.add_equation env b t in

Flambda 2: Cambium 2023-06-26 slide 39



Inspection functions

Collection of light ’prove’ and ’meet’ functions that might avoid
an expensive meet

let block_type = TE.find env b in
let meet_shortcut =

meet_block_field_simple env block_type idx
in
match meet_shortcut with
| Known_result res -> ...
| Need_meet -> (* previous case *) ...
| Invalid -> Bottom

Flambda 2: Cambium 2023-06-26 slide 40



Reify

Ability to reconstruct terms from approximations
I Can replace primitives by their known result
I Used mostly for lifting allocations

Flambda 2: Cambium 2023-06-26 slide 41



Everything else

Flambda 2: Cambium 2023-06-26 slide 42



How do we make this go fast?

I Careful handling of names, as we have described
I Most identifiers (variables etc.) are represented by

integers, with a hash table on the side providing more
details when required

I Upon import of .cmx files any hash collisions are resolved
via lazy renaming

I This means we can use Patricia trees for sets and maps
I Avoid default inlining parameters being too aggressive
I Aggressive pruning of .cmx file contents via reachability

analysis
I Profiling with memtrace and perf (more to do here)

Terms of the IR are immutable to reduce the potential for error,
but there is some local use of mutability for performance hidden
under interfaces.

Flambda 2: Cambium 2023-06-26 slide 43



Flambda 2 and the rest of the OCaml system

Flambda 2 is well-isolated in its own directory. The interface is:
val lambda_to_cmm :

ppf_dump:Format.formatter ->
prefixname:string -> filename:string ->
keep_symbol_tables:bool ->
Lambda.program -> Cmm.phrase list

From the rest of the compiler it needs:
I The ability to generate direct push/pop trap primitives for

exception handling in the backend
I A few minor changes in the front end of the compiler
I A relatively simple patch to improve handling of

asynchronous exceptions (e.g. those arising from
finalisers). We will present this upstream. The patch
prevents GC safe points from having control flow effects.

Flambda 2: Cambium 2023-06-26 slide 44



Correctness

Three main test suites:
I normal compiler testsuite
I compiling all of OPAM
I compiling the Jane Street tree and running all the tests

The Jane Street tree is the most effective test suite: it’s quite
hard to cause a bug in the compiler and not have a failure. This
is partially because there are very many tests that involve not
only compilation but also execution.

There has not been a single failure amongst the Jane Street
deployments so far. More than 8,000 critical systems compiled
with Flambda 2 are running daily. This number will increase
now that, for most systems built with Flambda 1, Flambda 2 is
used instead.

Flambda 2: Cambium 2023-06-26 slide 45



Language extensions

Flambda 2 has (or will soon have) support for various
interesting language extensions:
I Regions for non-escaping local allocations made on a

separate stack (in production now)
I Unboxed tuples, including for function parameters and

return values (nearly ready)
I SIMD vector types (in progress)

Implementing these new features in Flambda 2 has been
generally straightforward (save for a few tricky details in the
case of local allocations). Indeed for locals, the implementation
in Flambda 1 turned out to be inhibiting existing optimizations,
which was not the case in Flambda 2.

Flambda 2: Cambium 2023-06-26 slide 46



This project has taken longer than expected!

I Perhaps we should have tried harder to make incremental
changes to Flambda 1, but the structure of the existing
passes and the step change required in IR would have
made this problematic

I We maybe should have tried to do only classic mode first
I We could next have done Simplify with a more

straightforward type system, before improving the typing.
I Although we didn’t come up with the idea of using the

Lambda to Flambda 2 pass to implement classic mode
optimizations until quite late on. (At first we thought we
could still somehow use Simplify for classic mode, but
that would have been too slow.)

It’s unclear whether we would have reached a comparably good
end result with a different programme of development.

Flambda 2: Cambium 2023-06-26 slide 47



Future directions

I We still need to do some code cleanup, but it’s in a pretty
good state

I This is to be expected when a new chunk of code arrives
I We plan to work on trying to simplify various parts of the

system (for example the notion of ‘symbol’ can probably be
replaced by variables using a special ‘static’ mode, which
will avoid the special dominator scoping rule for symbols)

I There are many exciting optimizations on the list, for
example partial dead code elimination, for better
placement of allocations; and improved compilation of
match-in-match.

Flambda 2: Cambium 2023-06-26 slide 48



Any questions?

Thanks to everyone who has contributed:

Guillaume Bury, Pierre Chambart, Nathanaëlle Courant,
Keryan Didier, Vincent Laviron (OCamlPro)

Xavier Clerc, Luke Maurer, Pierre Oechsel, Mark Shinwell,
Leo White (Jane Street)

plus anyone we have forgotten.

Flambda 2: Cambium 2023-06-26 slide 49



Extra slides

Flambda 2: Cambium 2023-06-26 slide 50



Levels

Hints to make join efficient.
Often joins are between two mostly identical states: A large
shared context and a small diff on top.
Levels marks points where to look for shared context.

Flambda 2: Cambium 2023-06-26 slide 51



Some aliases have to be tracked

let f x y =
let block = (x, y) in
fst block + snd block

should turn into

let f x y =
x + y

Flambda 2: Cambium 2023-06-26 slide 52



Types and environments

I Type: information known about one value
I Singletons, finite sets
I Block shapes
I Aliases
I And more

I Environment: mostly a map from variables to their types
I Also contains relational information

Flambda 2: Cambium 2023-06-26 slide 53



Main operations: Meet and Join

I Meet is used to add constraints
I In conditional branches
I In some primitives (typically projections)

I Meeting two types in a given environment will return:
I A type that subsumes both inputs
I An updated environment that reflects the additional

constraints
I Meeting two environments isn’t very useful, and is not

implemented

Flambda 2: Cambium 2023-06-26 slide 54



Main operations: Meet and Join

I Join is used mostly when merging branches (i.e. on
continuation handlers)

I The usual join takes two environments, and returns an
environment that contains only properties that hold on both
branches

I In practice our use of levels can provide us with a common
ancestor, which helps keeping the complexity manageable

I Joining two types in a given environment is also
implemented

Flambda 2: Cambium 2023-06-26 slide 55



Basic types: finite sets

I Used mostly for numbers, also for immutable strings
I Meet is the set intersection, Join is the set union
I Non-relational

Flambda 2: Cambium 2023-06-26 slide 56



Aliases: Environment

I Relational information, tracked globally in the environment
I Implemented using equivalence classes
I Meet merges equivalence classes, Join splits them

Flambda 2: Cambium 2023-06-26 slide 57



Aliases: Canonical elements

I Each equivalence class has a canonical element
I Only canonical elements have concrete types associated

to them
I Non-canonical elements have alias types (singletons)

Flambda 2: Cambium 2023-06-26 slide 58



Aliases: Meet and Join

I Meet between two alias types merges the equivalence
classes

I Join between two alias types is Top unless they’re in the
same equivalence class

Flambda 2: Cambium 2023-06-26 slide 59



Blocks

I Blocks have both positive and negative versions
I Positive block types represent full blocks as maps from

indices (integers) to types
I Negative block types represent blocks where only part of

the indices are known (the total size might not be known
either)

I Both forms can represent projections using alias types in
the map

Flambda 2: Cambium 2023-06-26 slide 60



Variants: representation

I Variants introduce disjunctive constraints:
I Variant values can be either integers or blocks
I Variant blocks can have different shapes depending on their

tag
I Meet applies component-wise, with Bottom components

removed, but the component-wise environments must be
joined or dropped (see later for a better solution)

I Join applies component-wise

Flambda 2: Cambium 2023-06-26 slide 61



Variants: relational information

I Some variables can track the tag of a block, or whether a
variant is an integer or a pointer

I The typing environment represents this relation in the
types of the integer variable (not the blocks directly)

I Meet between a concrete type and a tag or isint type
introduce constraints on the relevant variant type

I Meet between two tag or isint types could introduce
various constraints, but it’s not common so in practice it’s
not implemented

I Join is straightforward

Flambda 2: Cambium 2023-06-26 slide 62



Closures

I Very similar to regular blocks, with an extra field for the
code

I Environment entries are indexed by value slot instead of
integers

I Mutually recursive functions are indexed by function slot
I Support exists for disjunctions of closure types, similar to

variant blocks
I Meet and Join use the same algorithms as for blocks

Flambda 2: Cambium 2023-06-26 slide 63



Environment extensions

I A special data structure that encodes partial environments
I As all relational information can be encoded as types,

concretely it is a map from variables to types
I Initially returned by the meet functions instead of a full

environment
I Now also stored in some disjunctive contexts to encode

constraints that only apply in one case
I When a meet resolves a disjunction to a single case, the

corresponding extension can be recovered and added to
the result

I Useful for unboxing variants

Flambda 2: Cambium 2023-06-26 slide 64



Function return types

I Summary of the relations between inputs and outputs of a
function

I Computed by extracting the environment for the return
continuation

I Used for non-inlined direct function applications
I Disabled by default, can be activated for functors only or all

functions
I Attached to code, not closures

Flambda 2: Cambium 2023-06-26 slide 65



Existential variables

I Environments can manipulate existentially-quantified
variables

I This corresponds to variables no longer in scope
I Usually introduced during Join to keep relational

information
I Can be explicitly projected out to make environments more

compact
I Would cause trouble if we had to implement fixpoints

Flambda 2: Cambium 2023-06-26 slide 66



Optimisation: levels

I Environments have a dual representation
I They can be viewed as a single structure, with all

constraints propagated, allowing fast queries
I They can be viewed as a sequence of variable

introductions and refinments by constraints, allowing faster
joins

I We use a data structure that can do both

Flambda 2: Cambium 2023-06-26 slide 67



Levels

I We use a notion of scopes, that are defined by the user
(Simplify here), to split our environment

I An environment is then a map from scope to level (plus a
single current level)

I A level stores, for the corresponding scope:
I Which variables have been introduced
I Which equations (or constraints) have been added
I A compact representation of the environment at the end of

the scope

Flambda 2: Cambium 2023-06-26 slide 68



Levels

I During Join, the user specifies a base scope that is
guaranteed to be included on both sides

I For each side, we then merge all levels with later scopes
into a single one, discarding the compact environments

I We then introduce all variables from both sides into the
result, as existentials

I Existentials only present on one side are given a special
Bottom type on the other side

I We then join all the constraints, keeping only constraints
valid on both sides

I The result of the Join is the environment at the base
scope, with the current level set to contain all the new
variables and the common constraints

I The compact form is re-computed from that

Flambda 2: Cambium 2023-06-26 slide 69


	History and context
	The new world
	Translation from Lambda to Flambda 2
	mygreenFlambda 2black to mygreenCmmblack
	Simplify
	Introduction
	Forward pass
	Fixpoint calculations
	Upward pass

	Examples of new optimizations
	Flambda 2 type system (abstract domains)
	Everything else
	Extra slides

