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Goal of this talk

● What is ThreadSanitizer (TSan) and how is it useful?

● What is required to integrate the TSan runtime to OCaml programs?

● Hear your questions and suggestions about it



Finally, we can have data races too

A data race is a race condition defined by:

● Two accesses are made to the same 
memory location,

● At least one of them is a write, and
● No order is enforced between them.

Event ordering is formalized in terms of a partial order called 
happens-before. It is defined by the OCaml 5 memory model.

Data races are:

● Hard to detect (possibly silent)
● Hard to track down



ThreadSanitizer (TSan)

● Runtime data race detector (dynamic analysis, not static!)
● Initially developed for C++ by Google, now supported in

○ C, C++ with GCC and clang
○ Go
○ Swift

● Battle-tested, already found: 1
○ 1200+ races in Google’s codebase
○ ~100 in the Go stdlib
○ 100+ in Chromium
○ LLVM, GCC, OpenSSL, WebRTC, Firefox

● Requires to compile your program specially
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Demo



module Exercise (Q : Queueable) = struct
  let exercise queue = 
    for i = 0 to 4 do
      Format.printf "Adding %d\n%!" i;
      Q.push i queue
    done

  let work () =
    let go = Atomic.make false in
    let q = Q.create () in
    let d = Domain.spawn (fun () -> Atomic.set go true; exercise q) in
    while not (Atomic.get go) do Domain.cpu_relax () done;
    exercise q;
    Domain.join d
end

module Seq = Exercise (Queue)
module Par = Exercise (struct
  include Lockfree.Michael_scott_queue
  let push i q = Fun.flip push i q
end)

let () =
  print_endline "With a non domain-safe queue";
  Seq.work ();
  print_endline "With a domain-safe queue";
  Par.work ()



How does it work?



Two components

Program instrumentation

● Memory accesses
● Thread spawning and 

joining
● Mutex locks and 

unlocks, …

Runtime library
call



Race detector state machine



TSan’s internal state

● Each thread holds a vector clock (array 
of N clocks, N = number of threads)

● Each thread increments its clock upon 
every event (memory access, mutex 
operation…)

● Some operations (e.g. mutex locks, 
atomic reads) synchronize clocks 
between threads

Comparing vector clocks allows to 
establish happens-before relations.



Stores information about memory accesses.

8-byte shadow word for an access:

Shadow state

The shadow state stores M shadow words per application word (M ∈ [2, 7], default M = 4)
If shadow words are filled, evict one at random

TID: accessor thread ID

clock: scalar clock of accessor, optimized vector clock

pos: offset, size

w: is write

Virtual memory

shadow = M × addr & mask



Upon memory access, compare:

accessor’s clock with each existing shadow word

❏ do the accesses overlap?
❏ is one of them a write?
❏ are the thread IDs different?
❏ are they unordered by happens-before?

Race detection



Upon memory access, compare:

accessor’s clock with each existing shadow word

❏ do the accesses overlap?
❏ is one of them a write?
❏ are the thread IDs different?
❏ are they unordered by happens-before?

Race detection

RACE



Upon memory access, compare:

accessor’s clock with each existing shadow word

❏ do the accesses overlap?
❏ is one of them a write?
❏ are the thread IDs different?
❏ are they unordered by happens-before?

Race detection

RACE

Limitations:

● Runtime analysis: data 
races are only detected on 
visited code paths

● Finite number of memory 
accesses remembered (M 
per memory word)



So what do we need to support TSan?



Instrumentation of memory accesses

fun () ->
  r := 10;
  let x = !r in
  g x



Instrumentation of memory accesses

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (store val r/503 21)

 (let x/514 (load_mut val r/503)

   (app{simple_race.ml:6,46-58} g/42 x/514 val))

fun () ->
  r := 10;
  let x = !r in
  g x



Instrumentation of memory accesses

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (store val r/503 21)

 (let x/514 (load_mut val r/503)

   (app{simple_race.ml:6,46-58} g/42 x/514 val))

fun () ->
  r := 10;
  let x = !r in
  g x



Instrumentation of memory accesses

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (store val r/503 21)

 (let x/514 (load_mut val r/503)

   (app{simple_race.ml:6,46-58} g/42 x/514 val))

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (let (newval/531 21 loc/530 r/503)
   (extcall "__tsan_write8" loc/530 ->unit) 1
   (store val loc/530 newval/531))

 (let x/514
   (let loc/533 r/503
     (extcall "__tsan_read8" loc/533 ->unit) 1
     (load_mut val loc/533)))
   (app{simple_race.ml:7,47-59} g/42 x/514 val))



Instrumentation of memory accesses

● In OCaml, writes are done through caml_modify (except for immediates), 
so it needs to be instrumented too

● In general, runtime C functions that do significant things (memory accesses, 
thread operations…) need to be instrumented

○ We use the built-in TSan support in gcc/clang to instrument them

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (store val r/503 21)

 (let x/514 (load_mut val r/503)

   (app{simple_race.ml:6,46-58} g/42 x/514 val))

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (let (newval/531 21 loc/530 r/503)
   (extcall "__tsan_write8" loc/530 ->unit) 1
   (store val loc/530 newval/531))

 (let x/514
   (let loc/533 r/503
     (extcall "__tsan_read8" loc/533 ->unit) 1
     (load_mut val loc/533)))
   (app{simple_race.ml:7,47-59} g/42 x/514 val))



Function entries and exits

● Recall: TSan gives the backtrace of both conflicting accesses



Function entries and exits

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)

 (let (newval/531 21 loc/530 r/503)
   (extcall "__tsan_write8" loc/530 ->unit) 1
   (store val loc/530 newval/531))
 (let x/514
   (let loc/533 r/503
     (extcall "__tsan_read8" loc/533 ->unit) 1
     (load_mut val loc/533)))

   (app{simple_race.ml:7,47-59} g/42 x/514 val))

(function{simple_race.ml:6,24-59} camlSimple_race.fun_521
  (param/513: val)
 (extcall "__tsan_func_entry" return_addr ->unit) 1
 (let (newval/531 21 loc/530 r/503)
   (extcall "__tsan_write8" loc/530 ->unit) 1
   (store val loc/530 newval/531))
 (let x/514
   (let loc/533 r/503
     (extcall "__tsan_read8" loc/533 ->unit) 1
     (load_mut val loc/533)))
 (let arg/532 x/514
   (extcall "__tsan_func_exit" ->unit) 1
   (app{simple_race.ml:6,46-58} g/42 arg/532 val)))

● To be able to show backtraces of past program points, TSan requires us to instrument 
function entries and exits

● Tail calls must be handled with care



Technical point #1.1 Exceptions

● In C, it is easy to instrument function entry and exits
● C++ has to take care of exceptions
● In OCaml also:

○ Any function can be exited due to an exception
○ Unlike in C++, exceptions do not unwind the stack

● TSan’s linear view of the call stack does not hold.



Technical point #1.1 Exceptions

let i () =  raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

value print_and_call_ocaml_h(value unit)
{
 printf("Hello from C\n");
 caml_callback(*caml_named_value("h"), Val_unit);
 return Val_unit;
}



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● Cmm instrumentation emits call to tsan_func_entry 
when entering a function

● TSan backtrace:
○ f
○ g

sp



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● Switching back to C stack for the C function call
● C code is instrumented by the C compiler which also emits 

call to tsan_func_entry on function entry
● TSan backtrace:

○ f
○ g
○ print_and_call_ocaml_h

sp



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● Switching back to OCaml stack for the callback
● TSan backtrace:

○ f
○ g
○ print_and_call_ocaml_h
○ h
○ i

sp



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● For TSan, we are still in f / g / print_and_call_h / h / i
○ Calling the race function of the exception handler 

without any other prior actions would result in an 
incorrect backtrace

sp

exn handler



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● For TSan, we are still in f / g / print_and_call_h / h / i
○ Calling the race function of the exception handler 

without any other prior actions would result in an 
incorrect backtrace

● While raising the exception, in caml_raise_exn
○ Use frame_descr to scan the stack up to the next 

exception handler
○ Emit tsan_func_exit for every stack frame

sp



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● For TSan, we are still in f / g / print_and_call_h
● The exception propagates through the C stack, frame_descr 

can’t help here
● In caml_raise

○ Use libunwind to scan the stack up to the next handler
○ Emit tsan_func_exit for every C stack frame

sp



let i () = raise MyExn

let h () =  i ()

let g () = print_and_call_ocaml_h ()

let f () =
  try g () with
  | MyExn -> race ()

let () =
  let d = Domain.spawn (fun () -> race ()) in
  f ();
  Domain.join d

● Again in the OCaml stack
● The process repeat: back to using frame_descr in 

caml_raise_exn to emit tsan_func_exit until the 
exception handler (in function f)

sp



Technical point #1.2 Effect handlers

● Effect handlers are like exceptions, except you can come back

type _ Effect.t += E : string Effect.t

let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

https://kcsrk.info/slides/retro_effects_simcorp.pdf

https://kcsrk.info/slides/retro_effects_simcorp.pdf


let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● OCaml startup spawns the initial fiber

sp



let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● main calls Effect.match_with
○ Allocates a new fiber
○ Switches to the stack into fiber #1
○ Executes the computation (through 

caml_runstack) 

sp



let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● Perform the E effect
● caml_perform

○ In order to resume execution into the 
effect handler of fiber #0

○ Use frame_descr to emit calls to 
tsan_func_exit

sp



let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● Into the effect handler effc from fiber #0

sp



let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● Calls continue to resume execution in the 
computation

● caml_resume
○ In order to resume execution in the fiber 

#1 stack
○ Use frame_descr to emit calls to 

tsan_func_entry

sp



let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● The computation completes
● caml_runstack

○ Free the fiber
○ Resume execution in the initial fiber
○ Call the value handler

sp



let comp () =
  print_string "0 ";
  print_string (perform E);
  print_string "3 "

let main () =
  match_with comp () {
    retc = Fun.id;
    effc = (fun (type a) (eff : a Effect.t) ->
      match eff with
      | E -> Some (fun (k : (a, unit) continuation) ->
          print_string "1 "; continue k "2 "; print_string "4 ")
      | _ -> None);
    exnc = (fun e -> raise e); }

● Completes the effect handler and so the match_with

sp



Technical point #2: Memory model

● TSan understands the C11 memory model
● The OCaml 5 memory model is quite different

We map OCaml memory accesses to C11 accesses. The mapping must be such 
that:

● Racy programs (in the OCaml sense) must be mapped to racy programs (in 
the C11 sense) so that OCaml data races are detected

● Race-free programs (in the OCaml sense) must be mapped to race-free 
programs (in the C11 sense) as we don’t want false positives

What we “show” to TSan is not necessarily the real memory operations.



Operation Location in the codebase Implementation TSan view

Atomic load caml_atomic_load
fence(acquire)
atomic_load(seq_cst)

atomic_load(seq_cst)

Atomic store caml_atomic_exchange
fence(acquire)
atomic_exchange(seq_cst)
fence(release)

atomic_exchange(seq_cst)

Non-atomic load assembly atomic_load(relaxed) plain load

Non-atomic store (initializing)  assembly or caml_initialize plain store -

Non-atomic store (assignment, 
integer)

assembly or caml_modify
fence(acquire)
atomic_store(release)

plain store

Non-atomic store (assignment, 
pointer)

assembly or caml_modify
fence(acquire)
atomic_store(release)

plain store

Non-atomic store (non-word-sized 
field)

 assembly plain store plain store



Operation Location in the codebase Implementation TSan view

Atomic load caml_atomic_load
fence(acquire)
atomic_load(seq_cst)

atomic_load(seq_cst)

Atomic store caml_atomic_exchange
fence(acquire)
atomic_exchange(seq_cst)
fence(release)

atomic_exchange(seq_cst)

Non-atomic load assembly atomic_load(relaxed) plain load

Non-atomic store (initializing)  assembly or caml_initialize plain store -

Non-atomic store (assignment, 
integer)

assembly or caml_modify
fence(acquire)
atomic_store(release)

plain store

Non-atomic store (assignment, 
pointer)

assembly or caml_modify
fence(acquire)
atomic_store(release)

plain store

Non-atomic store (non-word-sized 
field)

 assembly plain store plain store



● The instrumentation has a performance cost: about 7-13x slowdown
○ compared to 5-15x for C/C++

● Memory consumption is increased by 2-7x (compared to 5-10x for C/C++)
● No cost if TSan is not enabled on your opam switch
● An earlier version based on OCaml 5.0 is already available on opam:

opam switch create 5.0.0+tsan
● We have already used the mode to find races in

○ Lockfree: ocaml-multicore/lockfree#40, ocaml-multicore/lockfree#39
○ Domainslib: ocaml-multicore/domainslib#72,  ocaml-multicore/domainslib#103
○ The OCaml runtime: ocaml/ocaml#11040

● A feature complete PR is ready: ocaml/ocaml#12114
○ ~1,700 lines of diff + 1,000 lines of test suite
○ No full review yet

Current status

https://github.com/ocaml-multicore/lockfree/pull/40
https://github.com/ocaml-multicore/lockfree/issues/39
https://github.com/ocaml-multicore/domainslib/issues/72
https://github.com/ocaml-multicore/domainslib/pull/103
https://github.com/ocaml/ocaml/issues/11040
https://github.com/ocaml/ocaml/pull/12114


Thank You



Backup slide #1: scalar clocks vs vector clocks
Credits: go test -race Under the Hood

https://www.youtube.com/watch?v=5erqWdlhQLA


Backup slide #1: scalar clocks vs vector clocks












