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Extraction in Coq

Coq's Extraction turns 18 this year!

One of the central claims to fame of Coq
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The ideal of proof assistants
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Issues with implementation of extraction

practical: has bugs

strategic: is unmaintained
conceptual: inserts lots of Obj.magic
missing features: e.g. no GADTs
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The vision

Give a verified implementation of extraction

formalise Coqin Coq
formalise (a variant of) OCaml
re-implement extraction
verify it
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The MetaCoq project

A

-

a formalisation of Coq in Coq

o confluence, validity, subject reduction
o weak call-by-value standardisation (if t is of first-order inductive type and reduces to Q
a value, then this value can be found with weak call-by-value evaluation) a
machine-checked programs regarding Coq: -
o acorrectand complete type checker .
o anerasure procedure into an untyped version of Coq, removing proofs E

Vision: a fast kernel for daily use, a verified kernel for monthly use

Future work:
o eta, WIP by Meven Lennon-Bertrand

o SProp, WIP by Yann Leray '

o modules, WIP by Yee Jian Tan
o template polymorphism, subsumed by sort polymorphism, WIP by Kenji Maillard et al

7
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Template-Cog

Inductive term : Type :=
tRel : nat -> term
| tVar : ident -> term
| tEvar : nat -> list term -> term
| tSort : Universe.t -> term
| tCast : term -> cast_kind -> term -> term
| tProd : aname -> term -> term -> term
| tLambda : aname -> term -> term -> term
| tLetIn : aname -> term -> term -> term -> term
| tApp : term -> list term -> term
| tConst : kername -> Instance.t -> term

| tInd : inductive -> Instance.t -> term
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tConstruct : inductive -> nat -> Instance.t -> term
tCase : case_info -> predicate term -> term ->
list (branch term) -> term
tProj : projection -> term -> term
tFix : mfixpoint term -> nat -> term

tCoFix : mfixpoint term -> nat -> term.



Erasure to lambda box (Coq Coq Correct @ POPL 20)

We implemented an erasure function from well-typed terms to lambda
box in Coq, following Letouzey's proof.

Theorem: Let 2; I ~t:Tand T be a first-order type. If t reduces to an
irreducible term v, then the erasure of t weak call-by-value evaluates to

the erasure of v.
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The vision

Give a verified implementation of extraction

formalise Coq in Coq
formalise (a variant of ) 0Caml
re-implement extraction
verify it
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Malfunctional Programming

Stephen Dolan

June 10, 2016

Malfunction is an untyped program representation
intended as a compilation target for functional
languages, consisting of a thin wrapper around
OCaml’s Lambda intermediate representation.

Compilers targeting Malfunction convert programs
to a simple s-expression-based syntax with clear
semantics, which is then compiled to native code using
OCaml’s back-end, enjoying both the optimisations
of OCaml’s new flambda pass, and its battle-tested
runtime and garbage collector.

1 Introduction

When a programming language researcher designs
a new language to explore some particular aspect
of programming (in my case, subtyping, in yours,
perhaps dependent types, probabilistic programming,
or COMEFROM-with-current-continuation), the first
person it’s shown to tends to rudely interject with the
following question:

(apply
(global $List $iter)
(global $Pervasives $print_string)
(block "Hello" (block "World" 0)))

2  Why OCaml?

Why re-use OCaml’s back-end specifically, when there
are plenty of other compilers available? The central
issues are efficiency and garbage collection.

C compilers and related projects like LLVM provide
very efficient code generation, but it is tricky to
integrate garbage collection. C compilers assume
ownership of the stack layout, and so may introduce
temporary stack references to heap objects. A
conservative garbage collector can find these references
(by assuming any pointer-like bit-pattern is in fact a
heap pointer), but an efficient moving collector needs
precise data about stack layout, so that heap objects

LIS N R |

13 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

Igdactive t :=
| Mvar of Ident.t

| Mlambda of Ident.t list * t

| Mapply of t * t list

| Mlet of binding list * t

| Mnum of numconst

| Mstring of string

| Mglobal of Longident.t

| Mswitch of t * (case list * t) list

(* Numbers x)

| Mnumopl of unary_num_op * numtype * t

| Mnumop2 of binary_num_op * numtype * t * t
| Mconvert of numtype * numtype * t

(x Vectors .. x)

(x Lazy .. *)

(x Blocks *)

| Mblock of int * t list

| Mfield of int * t

with binding :=

dndnbamddngf=t | Named of Ident.t * t | Recursiv
(Igentinhamet)ofist| "Named of Ident.t * t |
‘Recursive of (Ident.t * t) list ]
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Malfunction

Specification: Interpreter using references for recursion

Plan:

1. Make the Malfunction interpreter pure (recursion via let rec), test it
2. Implementinterpreter in Coq, extract and test it

3. Define inductive evaluation relation, verify it
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Extraction in Coq, using MetaCoq and Malfunction
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Almost™ verified extraction to 0Caml

Theorem: Given

® afirst-orderinductive type | (I is first-order if all constructor arguments are
of first-order inductive type),

2:-0rt:lal..a.n,

t has eta-expanded constructor and fixpoint applications,
2:-0rt=v

visirreducible

® pisthetranslation of t to a Malfunction program via erasure

then p evaluates to a value v' (containing closures) which unfolds to v

1 -
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Coq/ lambda box

structural fix
higher-order constructors
match on o

de Bruijn

fix / match
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Verified Extraction to Malfunction

OCaml/ Malfunction

unary let rec

constructors are blocks
cannot match on functions
named

let rec / switch / proj
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tTM

Almost'" verified extraction to OCaml

Corollary: Given

k + 1 many first-order inductive types |I_k
2:-0rt:11al11..alnl->..->1 ka_k1..a_k nk

t has eta-expanded constructor and fixpoint applications,

® pisthetranslation of t to a Malfunction program via erasure

then for all Malfunction terms x_1... x_k which terminate with normal form
corresponding to a constructor application C_i args_i fitting into the type | _j,
p x_1..x_k evaluates to a value unfolding to the value of t (C_1args_1) ... (C_n args_n).

1 -
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Why first-order inductives?

® Standardisation only holds like that, otherwise we'd need to talk about
observational equivalence (type-based, even though the calculus is untyped)

® the erasure theorem for the erasure function only holds like that, otherwise
there may be non-erased residues and we have to talk relationally
everywhere

2 .
lreeia—
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Free results

e The CertiCoq project (verified extraction from Coq to C) can benefit
from our transformations

e Given a semantics of CakeML in Coq, we get operationally correct
extraction to CakeML as well
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Todo-Lists
Coq:

e replace template polymorphism with e.g. sort polymorphism
MetaCoq:

e Eta: Specify eta conversion and adapt checker
e Modules: Quoting to Template-Coq, typing, flattening to PCUIC

Malfunction:

Add support for Extract Inductive and Extract Constant

Add typing (realizability for Malfunction and OCaml types)

Add axioms (realizability for Ao and Coq types)

Add GADTs (realizability for Malfunction and OCaml types + GADTSs)

V4

7
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Optimisations

the optimisations currently used are not proved correct, not even on paper
for some, it is clear what the theorem should be

for others, the theorem will rely on observational equivalence

working with Kazuhiko Sakaguchi (research engineer in Gallinette)
primitive integers and floats?
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Interfacing with OCaml code

“extracted programs don't go wrong"?
safeHead : forall xs : list nat, xs <> nil -> nat
safeHead : list nat -> nat

safeHead []

in Pierre Letouzey's thesis the theory is built up using logical relations again in the
object theory
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Letouzey’s “semantic” correctness proof

Theorem: If 2; [ -t:Athenthereisaproofof 2, [J-p:[A] [t] t
where [t] is translation of t to inductive representation of terms, and [A] is a relation.

Example:
[Nlsn:=2;[]F[s »*n]
where [s »*n] is an inductive type in the object theory

[N ->[] s f: There is a proof term p proving

2 [FVs'n[N]s'n->[N](ss’)(fn)
Le.

2, [JFVs'n [s~>*n]->[ss’'>*fn]
2

7
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Reduction quotation lemma

Theorem: If 2; []Fs~*t thenthereisaproofterm pwith2; [JF-p:[s~>*t] where
[s~>*t] isaninductive encoding of reduction in the object theory.

Meta-level equivalent: If s reduces to t in Coq, then we can actually prove the
MetaCoq statement 2; [[Fs~*t

Proof: By induction on the normalformof 2; [[Fs~>*t.

2
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Excursus: Church’s thesis

CT:=forall f: nat -> nat, exists t: Turingmachine, t computes f
This axiom is consistent in CIC via a (set-theoretic) model based on assemblies
It is an open question whether CT is consistent in MLTT

One approach: Provide not a set-theoretic, but an SN based proof of consistency
via realizability-like semantics

27 Towards verified extraction from Cog to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &ZW



Types of truth in proof engineering

“This theorem is true.”

“There is a proof of this theorem.”

“The proof of this theorem can be formalised.”

“The proof of this theorem can be formalised in less than a week.”

WM -

2,3, and 4 need lots of experience to distinguish

Our estimates how long things will take are usually wrong

7
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Alternative approach

Keep the relation [A] on the meta-level, i.e. prove

If 2 [J+-t:Athen[A] 2 [t] t
where [t] is translation of t to inductive representation of terms, and [A] is a
relation:

[Nlsn:=2;[]Fs~*n
_ _ How to define [I] for an inductive
[N ->[N] s f: There is a proof term p proving type | in general? For recursive
occurrences, this will not work...
Vs'n 2 []F[N]s'n->2;[]+-[N](ss’)(fn) '
le.

Vs'n2;[[Fs~>*n->Z%;[]Fss' >*fn

Step-indexing? Iris to the rescue?

7
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What about effectful programs?
What about erased pre-conditions?

3

O Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

b

zea—



Infrastructure is important
200 k LoC, nested mutual inductive propositions with 25+ constructors

MetaCoq exposes the deficits of Coq for “real world” proof engineering:

compilation is slow

GUIs are suboptimal

automatic generation of induction lemmas etc often fails us
long-term maintainability of proofs is an issue

reproducibility and forward Cl are issues (much better already)

7
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Consistency and strong normalization

e strict positivity checker for inductive is implemented

e guard condition for fixpoints are specified as syntactic oracles which must be
preserved by reduction and substitution and ensure strong normalisation

e Touching proof-theoretic principles quickly: CIC seems to be the weakest
constructive higher-order system on usual scales

Future work with Lennard Gaher

e specify the guard condition logically
e implement the guard condition
e reduce guard condition as is to more strict conditions stepwise

3 -
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Modularity and meta-programming

e MetaCoq would benefit from modularity

We don’t have good approaches for modularity

One approach: Coq a la Carte (jww Kathrin Stark), relying on lots of
automation and meta-programming

But: We don’t have good interfaces for meta-programming
MetaCoq could fill this gap, but lots of work is needed

Tactics for modular programming?

automatic demodularisation?

Parametric transport

7
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Towards Verified Extraction from Coq to OCaml

Give a verified implementation of extraction

TCB:
formalise Coq in Coq

formalise Malfunction
re-implement extraction

verify it, operationally TSB: Formalisation of CIC & Malfunction

e the Malfunction & OCaml compilers
e C(oq

https://metacoq.github.io

rd
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