Towards verified extraction
from Cog to OCaml

Yannick Forster, Matthieu Sozeau, Pierre-Marie Pedrét, and Nicolas Tabareau
Gallinette Team, Inria Nantes

Talk at the Cambium seminar, December 7th

received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie grant agreement No. 101024493.

Extraction in Coq

/

untyped lambda example.ml
calculus Ao

examplev
P example.cmx

example.mli

7
2 Towards verified extraction from Cog to OCaml - Yannick Forster - Cambium Seminar Dec 7th &t%—

Extraction in Coq

Coq's Extraction turns 18 this year!

One of the central claims to fame of Coq

3 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

N? d'ordre : 7567

These de doctorat
présentée a
L’Université de Paris-Sud
U.F.R. Scientifique d’Orsay
par

PIERRE LETOUZEY

pour obtenir
le grade de docteur en sciences

de I'Université de Paris XI Orsay
spécialité : Informatique

Sujet :

Programmation fonctionnelle certifiée

L’extraction de programmes dans 'assistant Coq

Soutenue le 9 juillet 2004 devant la commission d’examen composée de

M. LEROY Xavier président

M. BERARDI Stefano rapporteurs
M. MONIN Jean-Frangois

Mme BENZAKEN Véronique examinateurs
M. SCHWICHTENBERG Helmut

Mme PauvLIN Christine directeur

The ideal of proof assistants

.~ untrusted code

type inference
7

type classes

N
N

tactics
\
1 y
plugins |
1
1
E 1
1
‘ trusted code base '
\ parsing o TR S extraction
\ - S
¢ \
\ /7 "
\ i ;
\
& ' kernel ; '
\ 7
N / ,
N Y type checking ’
" N -
~ " 4
~ ™~ =4 - - g

4 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

W-Empty Ax-Prop
WrE(IID
W-Local-Assum Ax-Set
BT :5 seS z ¢l
WF(E)T :: (z:T)]
W-Local-Def LEes
ET|Ft:T z ¢l
WF(EIL = (¢ =t:T)]
S—— Nar
W-Global-Assum
E|[FT:s seS c¢E
WF(E; ¢:T)[|
Const
W-Global-Def
E(|+-t:T c¢E
WF(E; c:=t:T)|
Prod-SProp
Ax-SProp
E[T'| + SProp : Type(1) i

The underlying type theory

WF(E)[T]
E[T] + Prop : Type(1)

WF(E)[T]
E[T'| + Set : Type(1)

WF(E)[T]

E[T| + Type(i) : Type(i + 1)

WF(E)[T] (z:T)eT or (z:=t:T)cT forsomet
ElFa:T
WEF(E)[T] (¢c:T)€E or (c:=t:T) € E for some t
Elke:T
EL|+T:s seS E[l: (z:T) U : SProp
ET|+Va:T,U : SProp
EE[/EE s sesS El:(x:T)]FU:Prop

El)+Vz:T, U: Prop

5 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

Prod-Prop
El+T:s seS E[l:(z:T)]FU: Prop
El|+Vz:T, U: Prop
Prod-Set
ETFT:s s € {SProp, Prop, Set} El:(z:T)]FU:Set
El|F ¥e T, U : Set
Prod-Type
El|+T:s s € {SProp, Type(i)} El : (z:T)) U : Type(i)
E[l-Vz: T, U: Type(i)
Lam
El|-Ne:T, Uzs BI*: (g:)| iU
BRI E Xz Bt Ve« T U
App
EN|-¢:ve:U, T Eltu:U
ElF (tuw): T{z/u}
et

El\+t:T El (e =t:T)|Fu:U
Elltletz:=¢t:Tinu:U{z/t}

lrrzia—

Product ~ Team Enterprise

B coq/coq pusic

65

github
boot
checker
dlib
config
cogpp
dev
doc
engine
gramlib

ide/cogide

kernel
fib

fibrary
man
parsing
plugins
pretyping
printing
proofs
stm

]
]
]
]
[]
[]
]
]
[]
]
&
W interp
B
»
]
[]
]
]
-
[]
[]
o
[]

sysinit

master + 918 branches © 117 tags

T9B cogbot-app(bot] and gares Merge PR #16056: Do not rely on the Stream AP.

The implementation

Explore ~ Marketplace ~Pricing

<> Code (Issues 25k 11 Pullrequests 97 (Actions [Projects 32 [wiki @ Security |~ Insights

Drop minimurn zarith version to 1.1
move Usage to Boot

Cache relevance inside projections.

Add a staging notion to summaries

Inform dune that autoconfigure depends on PWD

Remove the legacy interpretation mode for ARGUMENT EXTEND.
Merge PR #16039; Remove the legacy engine, at last

Document minimal ocamlfind version and make sure we test it

Move the incomplete Constraints.t manipulation functions out of the k
Added Print Notation command

Merge PR #15912: [coqide] Fix code to display goal in b

th top script.

Add a stagin

g notion to summaries
Fix parentheses around letrec blocks in native compiler
Do not rely on the Stream API to parse Coq project files.

Add a sta

g notion to summaries
(coqdep] understand META package files

Add a staging notion to summaries

Add a staging notion to summaries

Merge PR #16012: tactic unification debug: print terms when entering
Avoid anomaly if the new proof has no fg goal

Remove the legacy engine, at last.

Fix (partial) #15140 vos/vok vs workers

import fiters for Require

cowne | ([

v stosdte Shoursago 38,034 commits

6 days ago
3 months ago
26 days ago
yesterday

4 months ago
5 months ago
yesterday

4 days ago

2 months ago
3 months ago
10 days ago
yesterday

8 days ago
20 hours ago
yesterday

4 months ago
yesterday
yesterday

7 days ago

4 months ago
5 days ago

2 months ago

15 days ago

Sign up

About

Coq is a formal proof management
system. It provides a formal language to
write mathematical definitions,
executable algorithms and theorems
together with an environment for semi-
interactive development of machine-
checked proofs

& coginriafi/

dependenttypes coq

m proving

proof-assistant

Readme
LGPL-2.1 license
Code of conduct
3.8k stars

108 watching

RCRR R -]

556 forks

Releases 41

© Coq815.1
+43 releases

Contributors 207

Z9038®
»®

+ 196 contributors

Languages

About 200k LoC - about 1 critical bug per year

6 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

£ Noications

% Fok 556

T star

38k

zea—

Issues with implementation of extraction

practical: has bugs

strategic: is unmaintained
conceptual: inserts lots of Obj.magic
missing features: e.g. no GADTs

] Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

b

zea—

The vision

Give a verified implementation of extraction

formalise Coqin Coq
formalise (a variant of) OCaml
re-implement extraction
verify it

8 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

b

zea—

The MetaCoq project

A

-

a formalisation of Coq in Coq

o confluence, validity, subject reduction
o weak call-by-value standardisation (if t is of first-order inductive type and reduces to Q
a value, then this value can be found with weak call-by-value evaluation) a
machine-checked programs regarding Coq: -
o acorrectand complete type checker .
o anerasure procedure into an untyped version of Coq, removing proofs E

Vision: a fast kernel for daily use, a verified kernel for monthly use

Future work:
o eta, WIP by Meven Lennon-Bertrand

o SProp, WIP by Yann Leray '

o modules, WIP by Yee Jian Tan
o template polymorphism, subsumed by sort polymorphism, WIP by Kenji Maillard et al

7
O Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zta/-

Template-Cog

Inductive term : Type :=
tRel : nat -> term
| tVar : ident -> term
| tEvar : nat -> list term -> term
| tSort : Universe.t -> term
| tCast : term -> cast_kind -> term -> term
| tProd : aname -> term -> term -> term
| tLambda : aname -> term -> term -> term
| tLetIn : aname -> term -> term -> term -> term
| tApp : term -> list term -> term
| tConst : kername -> Instance.t -> term

| tInd : inductive -> Instance.t -> term

10 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

tConstruct : inductive -> nat -> Instance.t -> term
tCase : case_info -> predicate term -> term ->
list (branch term) -> term
tProj : projection -> term -> term
tFix : mfixpoint term -> nat -> term

tCoFix : mfixpoint term -> nat -> term.

Erasure to lambda box (Coq Coq Correct @ POPL 20)

We implemented an erasure function from well-typed terms to lambda
box in Coq, following Letouzey's proof.

Theorem: Let 2; I ~t:Tand T be a first-order type. If t reduces to an
irreducible term v, then the erasure of t weak call-by-value evaluates to

the erasure of v.

11 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th &ZW

The vision

Give a verified implementation of extraction

formalise Coq in Coq
formalise (a variant of) 0Caml
re-implement extraction
verify it

12 Towards verified extraction from Cog to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

b

zea—

Malfunctional Programming

Stephen Dolan

June 10, 2016

Malfunction is an untyped program representation
intended as a compilation target for functional
languages, consisting of a thin wrapper around
OCaml’s Lambda intermediate representation.

Compilers targeting Malfunction convert programs
to a simple s-expression-based syntax with clear
semantics, which is then compiled to native code using
OCaml’s back-end, enjoying both the optimisations
of OCaml’s new flambda pass, and its battle-tested
runtime and garbage collector.

1 Introduction

When a programming language researcher designs
a new language to explore some particular aspect
of programming (in my case, subtyping, in yours,
perhaps dependent types, probabilistic programming,
or COMEFROM-with-current-continuation), the first
person it’s shown to tends to rudely interject with the
following question:

(apply
(global $List $iter)
(global $Pervasives $print_string)
(block "Hello" (block "World" 0)))

2 Why OCaml?

Why re-use OCaml’s back-end specifically, when there
are plenty of other compilers available? The central
issues are efficiency and garbage collection.

C compilers and related projects like LLVM provide
very efficient code generation, but it is tricky to
integrate garbage collection. C compilers assume
ownership of the stack layout, and so may introduce
temporary stack references to heap objects. A
conservative garbage collector can find these references
(by assuming any pointer-like bit-pattern is in fact a
heap pointer), but an efficient moving collector needs
precise data about stack layout, so that heap objects

LIS N R |

13 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

Igdactive t :=
| Mvar of Ident.t

| Mlambda of Ident.t list * t

| Mapply of t * t list

| Mlet of binding list * t

| Mnum of numconst

| Mstring of string

| Mglobal of Longident.t

| Mswitch of t * (case list * t) list

(* Numbers x)

| Mnumopl of unary_num_op * numtype * t

| Mnumop2 of binary_num_op * numtype * t * t
| Mconvert of numtype * numtype * t

(x Vectors .. x)

(x Lazy .. *)

(x Blocks *)

| Mblock of int * t list

| Mfield of int * t

with binding :=

dndnbamddngf=t | Named of Ident.t * t | Recursiv
(Igentinhamet)ofist| "Named of Ident.t * t |
‘Recursive of (Ident.t * t) list]

b

e of

zea—

Malfunction

Specification: Interpreter using references for recursion

Plan:

1. Make the Malfunction interpreter pure (recursion via let rec), test it
2. Implementinterpreter in Coq, extract and test it

3. Define inductive evaluation relation, verify it

14 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th &z

zea—

Extraction in Coq, using MetaCoq and Malfunction

~_ untyped lambda example.mlf\

calculus Ao

examplev
P example.cmx

example.mli

7
15 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &t%—

Almost™ verified extraction to 0Caml

Theorem: Given

® afirst-orderinductive type | (I is first-order if all constructor arguments are
of first-order inductive type),

2:-0rt:lal..a.n,

t has eta-expanded constructor and fixpoint applications,
2:-0rt=v

visirreducible

® pisthetranslation of t to a Malfunction program via erasure

then p evaluates to a value v' (containing closures) which unfolds to v

1 -

7
6 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &ZW

Coq/ lambda box

structural fix
higher-order constructors
match on o

de Bruijn

fix / match

17 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

Verified Extraction to Malfunction

OCaml/ Malfunction

unary let rec

constructors are blocks
cannot match on functions
named

let rec / switch / proj

4 Template-Coq) / PCUIC \

Coq kernel \[
! /[n-exp fix + cstrs]

J
K[n-exp fix + cstrs b/]

n-exp fix + cstrs
: D D

no lets in constructor types

4

Untyped A Untyped Ao 4 Untyped Ac: N (€ Untyped Ao N Untyped Ac: N
estructural fix eunary fix eunary fix eunarv fix eunary fix
eh-o constructors] eh-0 c};nstructors —*| eh-oconstructors eh-o0 c)gnstructors g CUreuEEiEes
ematch on o ematch on o eno parameters eno match on o blocks
komatch ono VAR) _eno match on o)
'a)\ (N\ (N\ 'a Y 'd N
n-exp fix + cstrs n-exp constructors n-exp constructors n-exp constructors
& J N\ J N\ J & J o J
s < D
Untyped Ao with named variables and environments [wf names] —v[Malfunction }
- J

v d
18 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &@W

tTM

Almost'" verified extraction to OCaml

Corollary: Given

k + 1 many first-order inductive types |I_k
2:-0rt:11al11..alnl->..->1 ka_k1..a_k nk

t has eta-expanded constructor and fixpoint applications,

® pisthetranslation of t to a Malfunction program via erasure

then for all Malfunction terms x_1... x_k which terminate with normal form
corresponding to a constructor application C_i args_i fitting into the type | _j,
p x_1..x_k evaluates to a value unfolding to the value of t (C_1args_1) ... (C_n args_n).

1 -

7
Q Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zéa/-

Why first-order inductives?

® Standardisation only holds like that, otherwise we'd need to talk about
observational equivalence (type-based, even though the calculus is untyped)

® the erasure theorem for the erasure function only holds like that, otherwise
there may be non-erased residues and we have to talk relationally
everywhere

2 .
lreeia—

O Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

Free results

e The CertiCoq project (verified extraction from Coq to C) can benefit
from our transformations

e Given a semantics of CakeML in Coq, we get operationally correct
extraction to CakeML as well

21 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zéa/-

Todo-Lists
Coq:

e replace template polymorphism with e.g. sort polymorphism
MetaCoq:

e Eta: Specify eta conversion and adapt checker
e Modules: Quoting to Template-Coq, typing, flattening to PCUIC

Malfunction:

Add support for Extract Inductive and Extract Constant

Add typing (realizability for Malfunction and OCaml types)

Add axioms (realizability for Ao and Coq types)

Add GADTs (realizability for Malfunction and OCaml types + GADTSs)

V4

7
22 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zta/-

Optimisations

the optimisations currently used are not proved correct, not even on paper
for some, it is clear what the theorem should be

for others, the theorem will rely on observational equivalence

working with Kazuhiko Sakaguchi (research engineer in Gallinette)
primitive integers and floats?

7
23 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zéa/-

Interfacing with OCaml code

“extracted programs don't go wrong"?
safeHead : forall xs : list nat, xs <> nil -> nat
safeHead : list nat -> nat

safeHead []

in Pierre Letouzey's thesis the theory is built up using logical relations again in the
object theory

24 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &Z

zea—

Letouzey’s “semantic” correctness proof

Theorem: If 2; [-t:Athenthereisaproofof 2, [J-p:[A] [t] t
where [t] is translation of t to inductive representation of terms, and [A] is a relation.

Example:
[Nlsn:=2;[]F[s »*n]
where [s »*n] is an inductive type in the object theory

[N ->[] s f: There is a proof term p proving

2 [FVs'n[N]s'n->[N](ss’)(fn)
Le.

2, [JFVs'n [s~>*n]->[ss’'>*fn]
2

7
5 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th &ZW

Reduction quotation lemma

Theorem: If 2; []Fs~*t thenthereisaproofterm pwith2; [JF-p:[s~>*t] where
[s~>*t] isaninductive encoding of reduction in the object theory.

Meta-level equivalent: If s reduces to t in Coq, then we can actually prove the
MetaCoq statement 2; [[Fs~*t

Proof: By induction on the normalformof 2; [[Fs~>*t.

2

6 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &ZW

Excursus: Church’s thesis

CT:=forall f: nat -> nat, exists t: Turingmachine, t computes f
This axiom is consistent in CIC via a (set-theoretic) model based on assemblies
It is an open question whether CT is consistent in MLTT

One approach: Provide not a set-theoretic, but an SN based proof of consistency
via realizability-like semantics

27 Towards verified extraction from Cog to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &ZW

Types of truth in proof engineering

“This theorem is true.”

“There is a proof of this theorem.”

“The proof of this theorem can be formalised.”

“The proof of this theorem can be formalised in less than a week.”

WM -

2,3, and 4 need lots of experience to distinguish

Our estimates how long things will take are usually wrong

7
28 Towards verified extraction from Cog to OCaml - Yannick Forster - Cambium Seminar Dec 7th &ZW

Alternative approach

Keep the relation [A] on the meta-level, i.e. prove

If 2 [J+-t:Athen[A] 2 [t] t
where [t] is translation of t to inductive representation of terms, and [A] is a
relation:

[Nlsn:=2;[]Fs~*n
_ _ How to define [I] for an inductive
[N ->[N] s f: There is a proof term p proving type | in general? For recursive
occurrences, this will not work...
Vs'n 2 []F[N]s'n->2;[]+-[N](ss’)(fn) '
le.

Vs'n2;[[Fs~>*n->Z%;[]Fss' >*fn

Step-indexing? Iris to the rescue?

7
29 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &ZW

What about effectful programs?
What about erased pre-conditions?

3

O Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th

b

zea—

Infrastructure is important
200 k LoC, nested mutual inductive propositions with 25+ constructors

MetaCoq exposes the deficits of Coq for “real world” proof engineering:

compilation is slow

GUIs are suboptimal

automatic generation of induction lemmas etc often fails us
long-term maintainability of proofs is an issue

reproducibility and forward Cl are issues (much better already)

7
37 Towards verified extraction from Cog to OCaml - Yannick Forster - Cambium Seminar Dec 7th &ZW

Consistency and strong normalization

e strict positivity checker for inductive is implemented

e guard condition for fixpoints are specified as syntactic oracles which must be
preserved by reduction and substitution and ensure strong normalisation

e Touching proof-theoretic principles quickly: CIC seems to be the weakest
constructive higher-order system on usual scales

Future work with Lennard Gaher

e specify the guard condition logically
e implement the guard condition
e reduce guard condition as is to more strict conditions stepwise

3 -

7
2 Towards verified extraction from Cog to OCaml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zéa/-

Modularity and meta-programming

e MetaCoq would benefit from modularity

We don’t have good approaches for modularity

One approach: Coq a la Carte (jww Kathrin Stark), relying on lots of
automation and meta-programming

But: We don’t have good interfaces for meta-programming
MetaCoq could fill this gap, but lots of work is needed

Tactics for modular programming?

automatic demodularisation?

Parametric transport

7
33 Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th &Z’Zéa/-

Towards Verified Extraction from Coq to OCaml

Give a verified implementation of extraction

TCB:
formalise Coq in Coq

formalise Malfunction
re-implement extraction

verify it, operationally TSB: Formalisation of CIC & Malfunction

e the Malfunction & OCaml compilers
e C(oq

https://metacoq.github.io

rd
34 Towards verified extraction from Coq to 0Caml - Yannick Forster - Cambium Seminar Dec 7th &ZW

