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Extraction in Coq
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Coq’s Extraction turns 18 this year!

One of the central claims to fame of Coq



Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

The ideal of proof assistants
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The underlying type theory

No inconsistency found for 30 years, 
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The implementation

About 200k LoC - about 1 critical bug per year
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Issues with implementation of extraction

● practical: has bugs
● strategic: is unmaintained
● conceptual: inserts lots of Obj.magic
● missing features: e.g. no GADTs
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The vision

Give a verified implementation of extraction

● formalise Coq in Coq
● formalise (a variant of ) OCaml
● re-implement extraction
● verify it
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The MetaCoq project

● a formalisation of Coq in Coq
○ confluence, validity, subject reduction
○ weak call-by-value standardisation (if t is of first-order inductive type and reduces to 

a value, then this value can be found with weak call-by-value evaluation)

● machine-checked programs regarding Coq:
○ a correct and complete type checker
○ an erasure procedure into an untyped version of Coq, removing proofs

● Vision: a fast kernel for daily use, a verified kernel for monthly use
● Future work: 

○ eta, WIP by Meven Lennon-Bertrand
○ SProp, WIP by Yann Leray
○ modules, WIP by Yee Jian Tan
○ template polymorphism, subsumed by sort polymorphism, WIP by Kenji Maillard et al
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Template-Coq
Inductive term : Type :=

    tRel : nat -> term

  | tVar : ident -> term

  | tEvar : nat -> list term -> term

  | tSort : Universe.t -> term

  | tCast : term -> cast_kind -> term -> term

  | tProd : aname -> term -> term -> term

  | tLambda : aname -> term -> term -> term

  | tLetIn : aname -> term -> term -> term -> term

  | tApp : term -> list term -> term

  | tConst : kername -> Instance.t -> term

  | tInd : inductive -> Instance.t -> term

  | tConstruct : inductive -> nat -> Instance.t -> term

  | tCase : case_info -> predicate term -> term -> 

            list (branch term) -> term

  | tProj : projection -> term -> term

  | tFix : mfixpoint term -> nat -> term

  | tCoFix : mfixpoint term -> nat -> term.



Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th11

Erasure to lambda box (Coq Coq Correct @ POPL 20)

We implemented an erasure function from well-typed terms to lambda 
box in Coq, following Letouzey’s proof.

Theorem: Let Σ; Γ ⊢ t : T and T be a first-order type. If t reduces to an 
irreducible term v, then the erasure of t weak call-by-value evaluates to 
the erasure of v.
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The vision

Give a verified implementation of extraction

● formalise Coq in Coq
● formalise (a variant of ) OCaml
● re-implement extraction
● verify it
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type t =
| Mvar of Ident.t
| Mlambda of Ident.t list * t
| Mapply of t * t list
| Mlet of binding list * t
| Mnum of numconst
| Mstring of string
| Mglobal of Longident.t
| Mswitch of t * (case list * t) list
(* Numbers *)
| Mnumop1 of unary_num_op * numtype * t
| Mnumop2 of binary_num_op * numtype * t * t
| Mconvert of numtype * numtype * t
(* Vectors … *)
(* Lazy … *)
(* Blocks *)
| Mblock of int * t list
| Mfield of int * t

and binding =
  [ `Unnamed of t | `Named of Ident.t * t | 
`Recursive of (Ident.t * t) list ]

Inductive t :=
| Mvar of Ident.t
| Mlambda of Ident.t list * t
| Mapply of t * t list
| Mlet of binding list * t
| Mnum of numconst
| Mstring of string
| Mglobal of Longident.t
| Mswitch of t * (case list * t) list
(* Numbers *)
| Mnumop1 of unary_num_op * numtype * t
| Mnumop2 of binary_num_op * numtype * t * t
| Mconvert of numtype * numtype * t
(* Vectors … *)
(* Lazy … *)
(* Blocks *)
| Mblock of int * t list
| Mfield of int * t
with binding :=
| Unnamed of t | Named of Ident.t * t | Recursive of 
(Ident.t * t) list.
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Malfunction

Specification: Interpreter using references for recursion

Plan:
1. Make the Malfunction interpreter pure (recursion via let rec), test it
2. Implement interpreter in Coq, extract and test it
3. Define inductive evaluation relation, verify it
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Extraction in Coq, using MetaCoq and Malfunction
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example.mli
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untyped lambda 
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AlmostTM verified extraction to OCaml

Theorem: Given

● a first-order inductive type I (I is first-order if all constructor arguments are 
of first-order inductive type),

● Σ ; [] ⊢ t : I a_1 ... a_n,
● t has eta-expanded constructor and fixpoint applications,
● Σ ; [] ⊢ t ≡ v
● v is irreducible
● p is the translation of t to a Malfunction program via erasure

then p evaluates to a value v' (containing closures) which unfolds to v
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Verified Extraction to Malfunction

Coq / lambda box

● structural fix
● higher-order constructors
● match on □ 
● de Bruijn 
● fix / match

OCaml / Malfunction

● unary let rec
● constructors are blocks
● cannot match on functions
● named
● let rec / switch / proj
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PCUIC

18

Template-Coq
Coq kernel

η-exp fix + cstrs

η-exp fix + cstrs

Untyped λ□:
●structural fix
●h-o constructors
●match on □

η-exp fix + cstrs
no lets in constructor types

η-exp fix + cstrs

Untyped λ□:
●unary fix
●h-o constructors
●match on □

η-exp constructors

Untyped λ□:
●unary fix
●h-o constructors
●no parameters
●match on □

η-exp constructors

Untyped λ□:
●unary fix
●h-o constructors
●no match on □

η-exp constructors

Untyped λ□:
●unary fix
●constructors as 

blocks
●no match on □

MalfunctionUntyped λ□ with named variables and environments wf names
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AlmostTM verified extraction to OCaml

Corollary: Given

● k + 1 many first-order inductive types I_k
● Σ ; [] ⊢ t : I_1 a_1_1 ... a_1_n1 -> ... -> I_k a_k_1 ... a_k_nk
● t has eta-expanded constructor and fixpoint applications,
● p is the translation of t to a Malfunction program via erasure

then for all Malfunction terms x_1 ... x_k which terminate with normal form 
corresponding to a constructor application C_i args_i fitting into the type I_i,
p x_1 ... x_k evaluates to a value unfolding to the value of t (C_1 args_1) ... (C_n args_n).
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Why first-order inductives?

● Standardisation only holds like that, otherwise we'd need to talk about 
observational equivalence (type-based, even though the calculus is untyped)

● the erasure theorem for the erasure function only holds like that, otherwise 
there may be non-erased residues and we have to talk relationally 
everywhere
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Free results

● The CertiCoq project (verified extraction from Coq to C) can benefit 
from our transformations

● Given a semantics of CakeML in Coq, we get operationally correct 
extraction to CakeML as well
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Todo-Lists
Coq:

● replace template polymorphism with e.g. sort polymorphism

MetaCoq:

● Eta: Specify eta conversion and adapt checker
● Modules: Quoting to Template-Coq, typing, flattening to PCUIC

Malfunction:

● Add support for Extract Inductive and Extract Constant
● Add typing (realizability for Malfunction and OCaml types)
● Add axioms (realizability for λ□ and Coq types)
● Add GADTs (realizability for Malfunction and OCaml types + GADTs)
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Optimisations

● the optimisations currently used are not proved correct, not even on paper
● for some, it is clear what the theorem should be
● for others, the theorem will rely on observational equivalence
● working with Kazuhiko Sakaguchi (research engineer in Gallinette)
● primitive integers and floats?
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Interfacing with OCaml code

“extracted programs don’t go wrong”?

safeHead : forall xs : list nat, xs <> nil -> nat

safeHead : list nat -> nat

safeHead []

in Pierre Letouzey’s thesis the theory is built up using logical relations again in the 
object theory
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Letouzey’s “semantic” correctness proof

Theorem: If Σ ; [] ⊢ t : A then there is a proof of Σ ; [] ⊢ p : [A] [t]  t
where [t] is translation of t to inductive representation of terms, and [A] is a relation.

Example: 

[ℕ] s n := Σ ; [] ⊢ [s ⇝* n] 
where [s ⇝* n]  is an inductive   type in the object theory

[ℕ -> ℕ] s f : There is a proof term p proving 

    Σ ; [] ⊢ ∀ s’ n, [ℕ] s’ n -> [ℕ] (s s’) (f n) 

i.e.

    Σ ; [] ⊢ ∀ s’ n, [s ⇝* n]-> [s s’ ⇝* f n]
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Reduction quotation lemma

Theorem: If Σ ; [] ⊢ s ⇝* t  then there is a proof term p with Σ ; [] ⊢ p : [s ⇝* t ] where 
[s ⇝* t ]  is an inductive encoding of reduction in the object theory.

Meta-level equivalent: If s reduces to t in Coq, then we can actually prove the 
MetaCoq statement Σ ; [] ⊢ s ⇝* t

Proof: By induction on the normal form of Σ ; [] ⊢ s ⇝* t.
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Excursus: Church’s thesis

CT := forall f : nat -> nat, exists t : Turingmachine, t computes f

This axiom is consistent in CIC via a (set-theoretic) model based on assemblies

It is an open question whether CT is consistent in MLTT

One approach: Provide not a set-theoretic, but an SN based proof of consistency 
via realizability-like semantics
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Types of truth in proof engineering

1. “This theorem is true.”
2. “There is a proof of this theorem.”
3. “The proof of this theorem can be formalised.”
4. “The proof of this theorem can be formalised in less than a week.”

2, 3, and 4 need lots of experience to distinguish

Our estimates how long things will take are usually wrong
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Alternative approach

Keep the relation [A] on the meta-level, i.e. prove

If Σ ; [] ⊢ t : A then [A] Σ [t]  t
where [t] is translation of t to inductive representation of terms, and [A] is a 
relation:

[ℕ] s n := Σ ; [] ⊢ s ⇝* n

[ℕ -> ℕ] s f : There is a proof term p proving 

    ∀ s’ n,  Σ ; [] ⊢ [ℕ] s’ n -> Σ ; [] ⊢ [ℕ] (s s’) (f n) 

i.e.

    ∀ s’ n, Σ ; [] ⊢ s ⇝* n-> Σ ; [] ⊢ s s’ ⇝* f n

How to define [I] for an inductive 
type I in general? For recursive 
occurrences, this will not work…

Step-indexing? Iris to the rescue?
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What about effectful programs? 
What about erased pre-conditions?
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Infrastructure is important
200 k LoC, nested mutual inductive propositions with 25+ constructors

MetaCoq exposes the deficits of Coq for “real world” proof engineering:

● compilation is slow
● GUIs are suboptimal 
● automatic generation of induction lemmas etc often fails us
● long-term maintainability of proofs is an issue
● reproducibility and forward CI are issues (much better already)
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Consistency and strong normalization

● strict positivity checker for inductive is implemented
● guard condition for fixpoints are specified as syntactic oracles which must be 

preserved by reduction and substitution and ensure strong normalisation
● Touching proof-theoretic principles quickly: CIC seems to be the weakest 

constructive higher-order system on usual scales

Future work with Lennard Gäher

● specify the guard condition logically
● implement the guard condition
● reduce guard condition as is to more strict conditions stepwise
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Modularity and meta-programming

● MetaCoq would benefit from modularity
● We don’t have good approaches for modularity
● One approach: Coq à la Carte (jww Kathrin Stark), relying on lots of 

automation and meta-programming
● But: We don’t have good interfaces for meta-programming
● MetaCoq could fill this gap, but lots of work is needed
● Tactics for modular programming?
● automatic demodularisation?
● Parametric transport
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Towards Verified Extraction from Coq to OCaml

Give a verified implementation of extraction

● formalise Coq in Coq
● formalise Malfunction
● re-implement extraction
● verify it, operationally

https://metacoq.github.io

TCB:

● the Malfunction & OCaml compilers
● Coq

TSB: Formalisation of CIC & Malfunction


