
Towards verified extraction
from Coq to OCaml

received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101024493.

Yannick Forster, Matthieu Sozeau, Pierre-Marie Pedrót, and Nicolas Tabareau

Gallinette Team, Inria Nantes

Talk at the Cambium seminar, December 7th

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

Extraction in Coq

2

example.v

example.ml

example.mli

example.cmx

untyped lambda
calculus λ□

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

Extraction in Coq

3

Coq’s Extraction turns 18 this year!

One of the central claims to fame of Coq

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

The ideal of proof assistants

4

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th5

The underlying type theory

No inconsistency found for 30 years,

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th6

The implementation

About 200k LoC - about 1 critical bug per year

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th7

Issues with implementation of extraction

● practical: has bugs
● strategic: is unmaintained
● conceptual: inserts lots of Obj.magic
● missing features: e.g. no GADTs

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th8

The vision

Give a verified implementation of extraction

● formalise Coq in Coq
● formalise (a variant of) OCaml
● re-implement extraction
● verify it

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th9

The MetaCoq project

● a formalisation of Coq in Coq
○ confluence, validity, subject reduction
○ weak call-by-value standardisation (if t is of first-order inductive type and reduces to

a value, then this value can be found with weak call-by-value evaluation)

● machine-checked programs regarding Coq:
○ a correct and complete type checker
○ an erasure procedure into an untyped version of Coq, removing proofs

● Vision: a fast kernel for daily use, a verified kernel for monthly use
● Future work:

○ eta, WIP by Meven Lennon-Bertrand
○ SProp, WIP by Yann Leray
○ modules, WIP by Yee Jian Tan
○ template polymorphism, subsumed by sort polymorphism, WIP by Kenji Maillard et al

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th10

Template-Coq
Inductive term : Type :=

 tRel : nat -> term

 | tVar : ident -> term

 | tEvar : nat -> list term -> term

 | tSort : Universe.t -> term

 | tCast : term -> cast_kind -> term -> term

 | tProd : aname -> term -> term -> term

 | tLambda : aname -> term -> term -> term

 | tLetIn : aname -> term -> term -> term -> term

 | tApp : term -> list term -> term

 | tConst : kername -> Instance.t -> term

 | tInd : inductive -> Instance.t -> term

 | tConstruct : inductive -> nat -> Instance.t -> term

 | tCase : case_info -> predicate term -> term ->

 list (branch term) -> term

 | tProj : projection -> term -> term

 | tFix : mfixpoint term -> nat -> term

 | tCoFix : mfixpoint term -> nat -> term.

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th11

Erasure to lambda box (Coq Coq Correct @ POPL 20)

We implemented an erasure function from well-typed terms to lambda
box in Coq, following Letouzey’s proof.

Theorem: Let Σ; Γ ⊢ t : T and T be a first-order type. If t reduces to an
irreducible term v, then the erasure of t weak call-by-value evaluates to
the erasure of v.

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th12

The vision

Give a verified implementation of extraction

● formalise Coq in Coq
● formalise (a variant of) OCaml
● re-implement extraction
● verify it

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th13

type t =
| Mvar of Ident.t
| Mlambda of Ident.t list * t
| Mapply of t * t list
| Mlet of binding list * t
| Mnum of numconst
| Mstring of string
| Mglobal of Longident.t
| Mswitch of t * (case list * t) list
(* Numbers *)
| Mnumop1 of unary_num_op * numtype * t
| Mnumop2 of binary_num_op * numtype * t * t
| Mconvert of numtype * numtype * t
(* Vectors … *)
(* Lazy … *)
(* Blocks *)
| Mblock of int * t list
| Mfield of int * t

and binding =
 [`Unnamed of t | `Named of Ident.t * t |
`Recursive of (Ident.t * t) list]

Inductive t :=
| Mvar of Ident.t
| Mlambda of Ident.t list * t
| Mapply of t * t list
| Mlet of binding list * t
| Mnum of numconst
| Mstring of string
| Mglobal of Longident.t
| Mswitch of t * (case list * t) list
(* Numbers *)
| Mnumop1 of unary_num_op * numtype * t
| Mnumop2 of binary_num_op * numtype * t * t
| Mconvert of numtype * numtype * t
(* Vectors … *)
(* Lazy … *)
(* Blocks *)
| Mblock of int * t list
| Mfield of int * t
with binding :=
| Unnamed of t | Named of Ident.t * t | Recursive of
(Ident.t * t) list.

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th14

Malfunction

Specification: Interpreter using references for recursion

Plan:
1. Make the Malfunction interpreter pure (recursion via let rec), test it
2. Implement interpreter in Coq, extract and test it
3. Define inductive evaluation relation, verify it

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

Extraction in Coq, using MetaCoq and Malfunction

15

example.v

example.mlf

example.mli

example.cmx

untyped lambda
calculus λ□

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

1
6

AlmostTM verified extraction to OCaml

Theorem: Given

● a first-order inductive type I (I is first-order if all constructor arguments are
of first-order inductive type),

● Σ ; [] ⊢ t : I a_1 ... a_n,
● t has eta-expanded constructor and fixpoint applications,
● Σ ; [] ⊢ t ≡ v
● v is irreducible
● p is the translation of t to a Malfunction program via erasure

then p evaluates to a value v' (containing closures) which unfolds to v

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th17

Verified Extraction to Malfunction

Coq / lambda box

● structural fix
● higher-order constructors
● match on □
● de Bruijn
● fix / match

OCaml / Malfunction

● unary let rec
● constructors are blocks
● cannot match on functions
● named
● let rec / switch / proj

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

PCUIC

18

Template-Coq
Coq kernel

η-exp fix + cstrs

η-exp fix + cstrs

Untyped λ□:
●structural fix
●h-o constructors
●match on □

η-exp fix + cstrs
no lets in constructor types

η-exp fix + cstrs

Untyped λ□:
●unary fix
●h-o constructors
●match on □

η-exp constructors

Untyped λ□:
●unary fix
●h-o constructors
●no parameters
●match on □

η-exp constructors

Untyped λ□:
●unary fix
●h-o constructors
●no match on □

η-exp constructors

Untyped λ□:
●unary fix
●constructors as

blocks
●no match on □

MalfunctionUntyped λ□ with named variables and environments wf names

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

1
9

AlmostTM verified extraction to OCaml

Corollary: Given

● k + 1 many first-order inductive types I_k
● Σ ; [] ⊢ t : I_1 a_1_1 ... a_1_n1 -> ... -> I_k a_k_1 ... a_k_nk
● t has eta-expanded constructor and fixpoint applications,
● p is the translation of t to a Malfunction program via erasure

then for all Malfunction terms x_1 ... x_k which terminate with normal form
corresponding to a constructor application C_i args_i fitting into the type I_i,
p x_1 ... x_k evaluates to a value unfolding to the value of t (C_1 args_1) ... (C_n args_n).

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

2
0

Why first-order inductives?

● Standardisation only holds like that, otherwise we'd need to talk about
observational equivalence (type-based, even though the calculus is untyped)

● the erasure theorem for the erasure function only holds like that, otherwise
there may be non-erased residues and we have to talk relationally
everywhere

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th21

Free results

● The CertiCoq project (verified extraction from Coq to C) can benefit
from our transformations

● Given a semantics of CakeML in Coq, we get operationally correct
extraction to CakeML as well

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th22

Todo-Lists
Coq:

● replace template polymorphism with e.g. sort polymorphism

MetaCoq:

● Eta: Specify eta conversion and adapt checker
● Modules: Quoting to Template-Coq, typing, flattening to PCUIC

Malfunction:

● Add support for Extract Inductive and Extract Constant
● Add typing (realizability for Malfunction and OCaml types)
● Add axioms (realizability for λ□ and Coq types)
● Add GADTs (realizability for Malfunction and OCaml types + GADTs)

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th23

Optimisations

● the optimisations currently used are not proved correct, not even on paper
● for some, it is clear what the theorem should be
● for others, the theorem will rely on observational equivalence
● working with Kazuhiko Sakaguchi (research engineer in Gallinette)
● primitive integers and floats?

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th24

Interfacing with OCaml code

“extracted programs don’t go wrong”?

safeHead : forall xs : list nat, xs <> nil -> nat

safeHead : list nat -> nat

safeHead []

in Pierre Letouzey’s thesis the theory is built up using logical relations again in the
object theory

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

2
5

Letouzey’s “semantic” correctness proof

Theorem: If Σ ; [] ⊢ t : A then there is a proof of Σ ; [] ⊢ p : [A] [t] t
where [t] is translation of t to inductive representation of terms, and [A] is a relation.

Example:

[ℕ] s n := Σ ; [] ⊢ [s ⇝* n]
where [s ⇝* n] is an inductive type in the object theory

[ℕ -> ℕ] s f : There is a proof term p proving

 Σ ; [] ⊢ ∀ s’ n, [ℕ] s’ n -> [ℕ] (s s’) (f n)

i.e.

 Σ ; [] ⊢ ∀ s’ n, [s ⇝* n]-> [s s’ ⇝* f n]

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

2
6

Reduction quotation lemma

Theorem: If Σ ; [] ⊢ s ⇝* t then there is a proof term p with Σ ; [] ⊢ p : [s ⇝* t] where
[s ⇝* t] is an inductive encoding of reduction in the object theory.

Meta-level equivalent: If s reduces to t in Coq, then we can actually prove the
MetaCoq statement Σ ; [] ⊢ s ⇝* t

Proof: By induction on the normal form of Σ ; [] ⊢ s ⇝* t.

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th27

Excursus: Church’s thesis

CT := forall f : nat -> nat, exists t : Turingmachine, t computes f

This axiom is consistent in CIC via a (set-theoretic) model based on assemblies

It is an open question whether CT is consistent in MLTT

One approach: Provide not a set-theoretic, but an SN based proof of consistency
via realizability-like semantics

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th28

Types of truth in proof engineering

1. “This theorem is true.”
2. “There is a proof of this theorem.”
3. “The proof of this theorem can be formalised.”
4. “The proof of this theorem can be formalised in less than a week.”

2, 3, and 4 need lots of experience to distinguish

Our estimates how long things will take are usually wrong

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th29

Alternative approach

Keep the relation [A] on the meta-level, i.e. prove

If Σ ; [] ⊢ t : A then [A] Σ [t] t
where [t] is translation of t to inductive representation of terms, and [A] is a
relation:

[ℕ] s n := Σ ; [] ⊢ s ⇝* n

[ℕ -> ℕ] s f : There is a proof term p proving

 ∀ s’ n, Σ ; [] ⊢ [ℕ] s’ n -> Σ ; [] ⊢ [ℕ] (s s’) (f n)

i.e.

 ∀ s’ n, Σ ; [] ⊢ s ⇝* n-> Σ ; [] ⊢ s s’ ⇝* f n

How to define [I] for an inductive
type I in general? For recursive
occurrences, this will not work…

Step-indexing? Iris to the rescue?

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

3
0

What about effectful programs?
What about erased pre-conditions?

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th31

Infrastructure is important
200 k LoC, nested mutual inductive propositions with 25+ constructors

MetaCoq exposes the deficits of Coq for “real world” proof engineering:

● compilation is slow
● GUIs are suboptimal
● automatic generation of induction lemmas etc often fails us
● long-term maintainability of proofs is an issue
● reproducibility and forward CI are issues (much better already)

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th

3
2

Consistency and strong normalization

● strict positivity checker for inductive is implemented
● guard condition for fixpoints are specified as syntactic oracles which must be

preserved by reduction and substitution and ensure strong normalisation
● Touching proof-theoretic principles quickly: CIC seems to be the weakest

constructive higher-order system on usual scales

Future work with Lennard Gäher

● specify the guard condition logically
● implement the guard condition
● reduce guard condition as is to more strict conditions stepwise

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th33

Modularity and meta-programming

● MetaCoq would benefit from modularity
● We don’t have good approaches for modularity
● One approach: Coq à la Carte (jww Kathrin Stark), relying on lots of

automation and meta-programming
● But: We don’t have good interfaces for meta-programming
● MetaCoq could fill this gap, but lots of work is needed
● Tactics for modular programming?
● automatic demodularisation?
● Parametric transport

Towards verified extraction from Coq to OCaml - Yannick Forster - Cambium Seminar Dec 7th34

Towards Verified Extraction from Coq to OCaml

Give a verified implementation of extraction

● formalise Coq in Coq
● formalise Malfunction
● re-implement extraction
● verify it, operationally

https://metacoq.github.io

TCB:

● the Malfunction & OCaml compilers
● Coq

TSB: Formalisation of CIC & Malfunction

