Choice Trees

Representing Nondeterministic, Recursive, and Impure Programs in Coq

<u>Nicolas Chappe</u>, Paul He, Ludovic Henrio, Steve Zdancewic and Yannick Zakowski

Representing **Nondeterministic**, Recursive, and Impure Programs in Coq (POPL'20)

Li-yao Xia, Yannick Zakowski, Paul He, Gregory Malecha, Chung-Kil Hur, Benjamin Pierce, Steve Zdancewic

Choice Trees Interaction

Introduction: Monadic Definitional Interpreters

Prior Work: Interaction Trees

Choice Trees: Tackling Non-Determinism

CTrees, LTSs and Bisimulations

Conclusion

Introduction: Monadic Definitional Interpreters

Modelling computations in a proof assistant Why? How?

Many interesting properties:

- Does a program respect its specification?
- Are two syntactically different programs equivalent?
- Does a compiler respect the meaning of its input programs?
- \rightarrow Notions of equivalence and refinement

$$\begin{array}{c|c} c_1 \mid \sigma \to c_1' \mid \sigma' \\ \hline c_1; c_2 \mid \sigma \to c_1'; c_2 \mid \sigma' \end{array} \text{Small-step} \end{array}$$

$$\frac{c_1 \mid \sigma \downarrow \sigma' \quad c_2 \mid \sigma' \downarrow \sigma''}{c_1; c_2 \mid \sigma \downarrow \sigma''} \text{ Big-step}$$

 $[c_2] \circ [c_1] \qquad \qquad \text{Denotational} \\ \text{composition of continuous functions over a CPO} \\$

Modelling computations in a proof assistant Why? How?

Many interesting properties:

- Does a program respect its specification?
- Are two syntactically different programs equivalent?
- Does a compiler respect the meaning of its input programs?
- \rightarrow Notions of equivalence and refinement

$$\begin{array}{c|c} c_1 \mid \sigma \to c_1' \mid \sigma' \\ \hline c_1; c_2 \mid \sigma \to c_1'; c_2 \mid \sigma' \end{array} \text{Small-step} \end{array}$$

$$\frac{c_1 \mid \sigma \downarrow \sigma' \quad c_2 \mid \sigma' \downarrow \sigma''}{c_1; c_2 \mid \sigma \downarrow \sigma''} \text{ Big-step}$$

 $[c_2] \circ [c_1] \qquad \qquad {\rm Denotational} \\ {\rm composition of \ continuous \ functions \ over \ a \ CPO} \\$

The way we model impacts the ways we can reason

The Semantics Impacts the Reasoning

Compositionality: We can reason on parts of the program separately \rightarrow Simplifies the proof technique

Modularity: The semantics is made of several independent parts \rightarrow Improves maintainability

Executability: A complete reference interpreter can be derived from the semantics of a language

 \rightarrow Helps with testing

Modelling, but how?

Let's focus on executability

To model something as complex as C or LLVM IR, a reference interpreter is very valuable!

Modelling, but how?

- Let's focus on executability
- To model something as complex as C or LLVM IR, a reference interpreter is very valuable!
- ITrees take a simple route (back to the 70's with Reynolds) **Definitional Interpreters**

Describe the language to model via an interpreter written in your host language 📣

Modelling, but how?

- Let's focus on executability
- To model something as complex as C or LLVM IR, a reference interpreter is very valuable!
- ITrees take a simple route (back to the 70's with Reynolds) **Definitional Monadic Interpreters**

Describe the language to model via an interpreter written in your host language 📣

Interpreter for a Modest Language

Commands map an initial environment (memory) to a final environment interp (c : com) (s : env) : env

We thread the state manually

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2$

interp (c1;c2) s1 \triangleq let s2 := interp c1 s1 in interp c2 s2

Monadic Interpreter for a Modest Language

Commands are stateful computations interp (c : com) : state unit

The monad tells us how to thread computations

- state X \triangleq env -> (env * X) maybestate X \triangleq env -> option (env * X)
- Expressions can fail: does not leak into the definition of the sequence
- interp (c1;c2) \triangleq interp c1 ;; interp c2

Interaction Trees

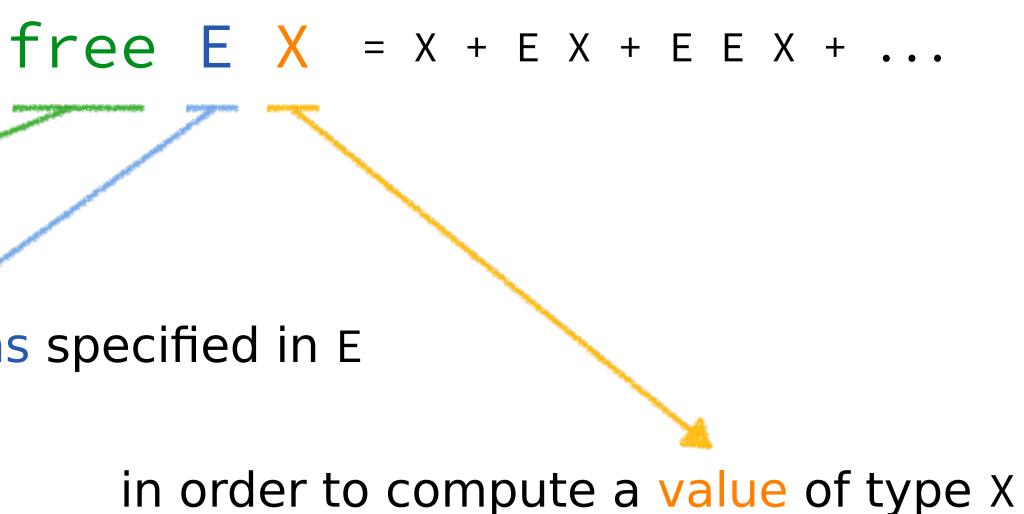
or Representing Recursive, and Impure Programs in Coq

My computation is a piece of syntax

able to perform operations specified in E

ITree Idea 1: the Free Monad

Stateful computations map initial environments to final environments are computations performing reads and writes



interp (c : com) : free Rd_Wr unit

My computation is a piece of syntax

ITree Idea 1: the Free Monad

Stateful computations map initial environments to final environments are computations performing reads and writes

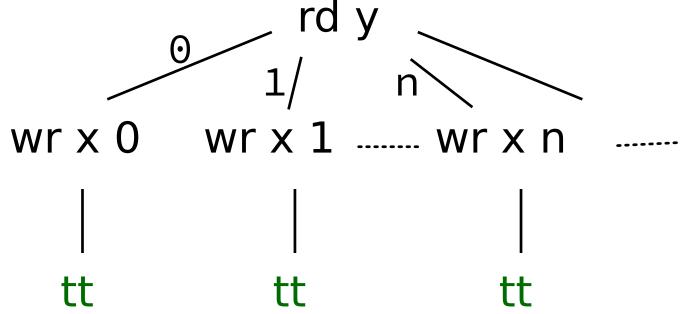
free $E \times = x + E \times + E \times + \dots$

able to perform operations specified in E

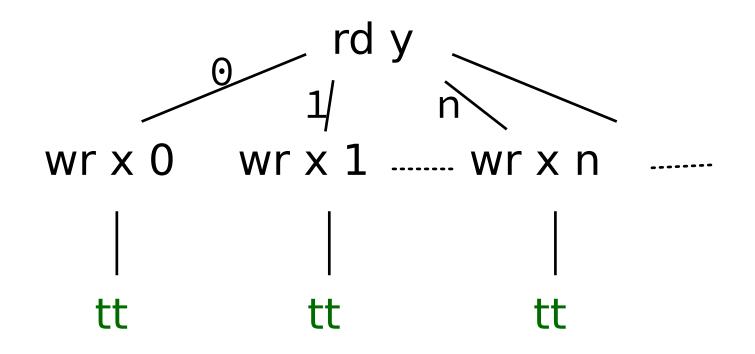
in order to compute a value of type X

$$p_2 \triangleq x := 0; x := y$$

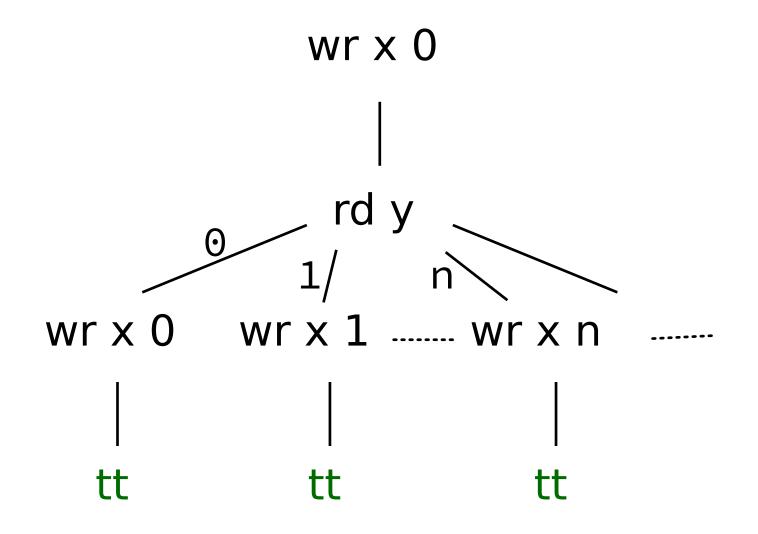
$$wr \ge 0$$

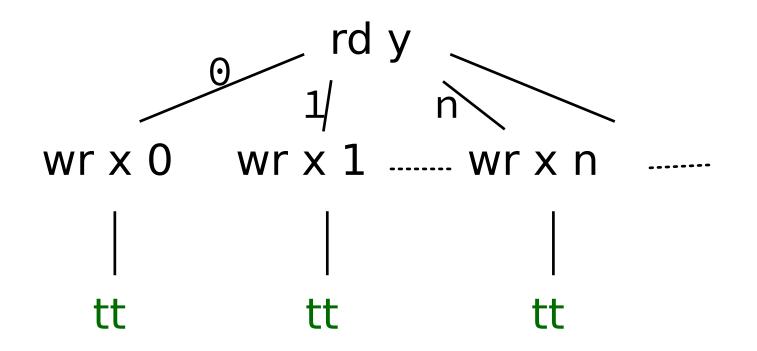


$$p_3 \triangleq x := y$$

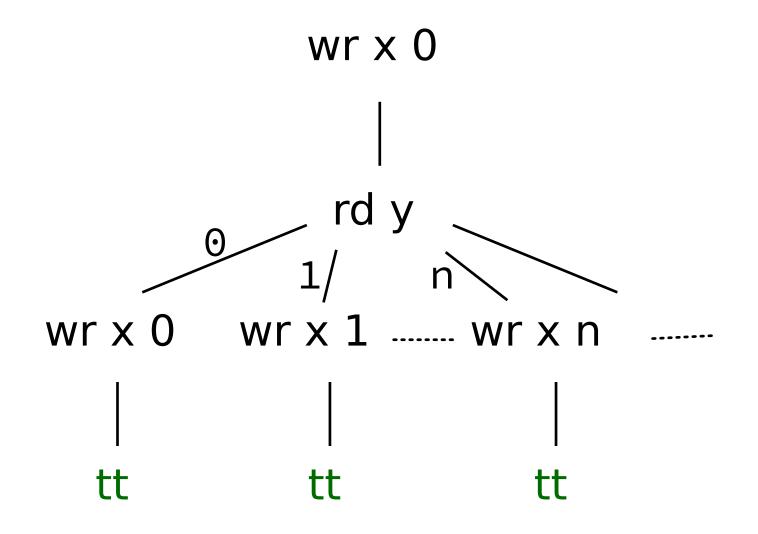


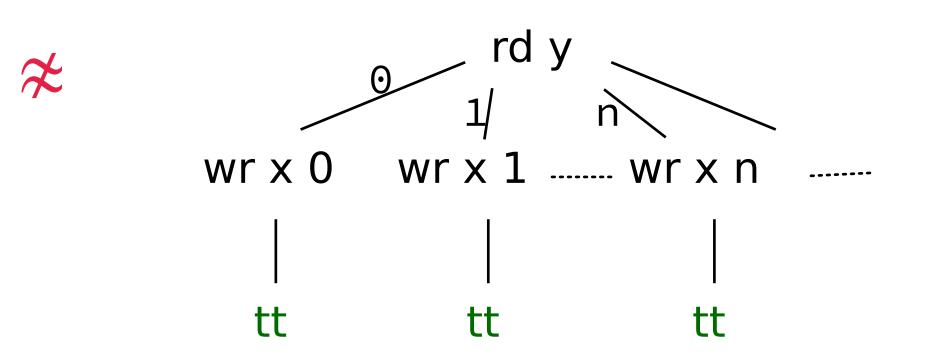
$$p_2 \triangleq x := 0; x := y$$
 are



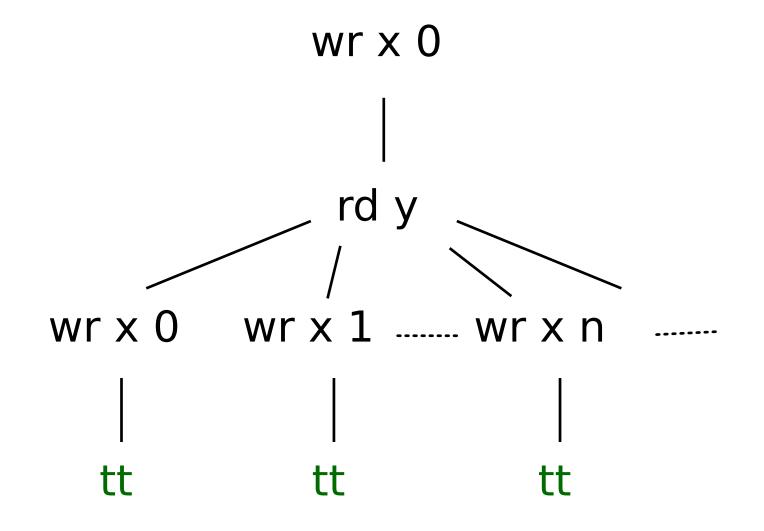


$$p_2 \triangleq x := 0; x := y$$
 are





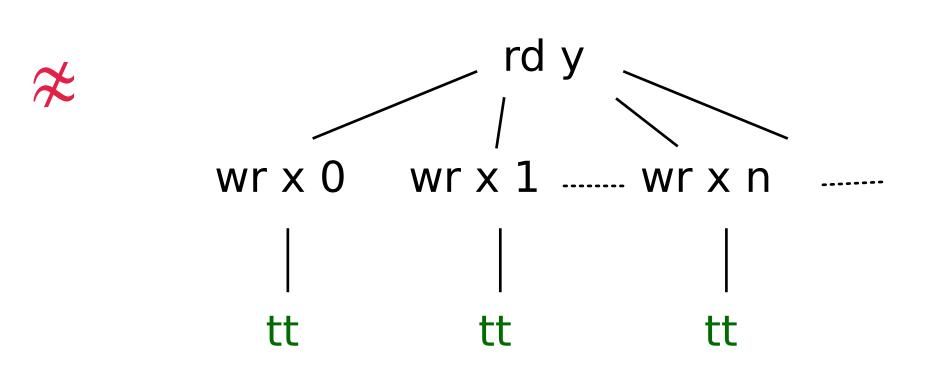
$$p_2 \triangleq x := 0; x := y$$
 are



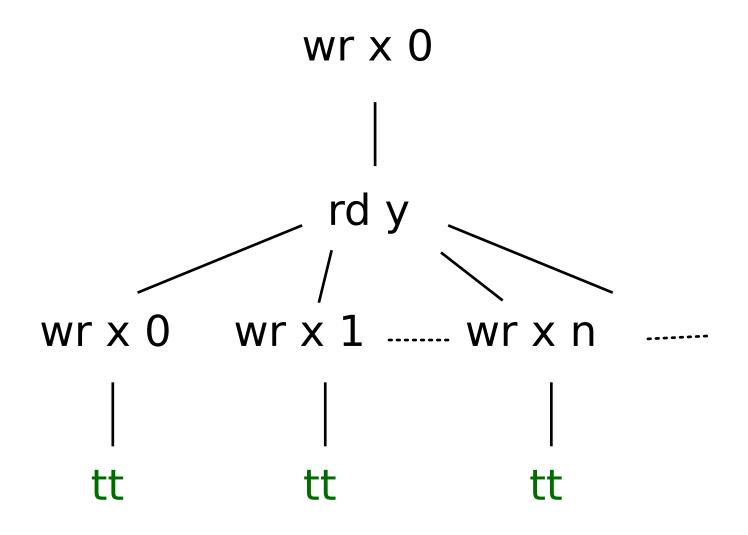
 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2$

Indeed, they are not the same syntax We fold over the tree to bring in the semantics

> the same $p_3 \triangleq x := y$



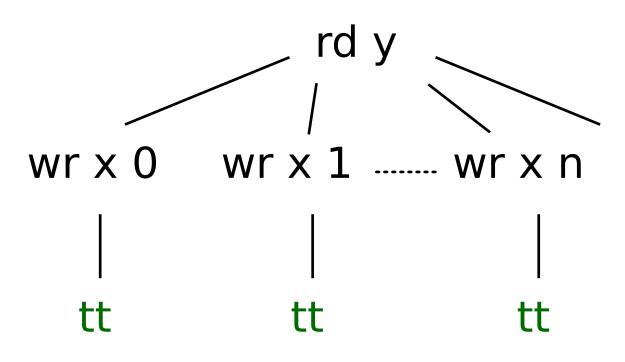
$$p_2 \triangleq x := 0; x := y$$



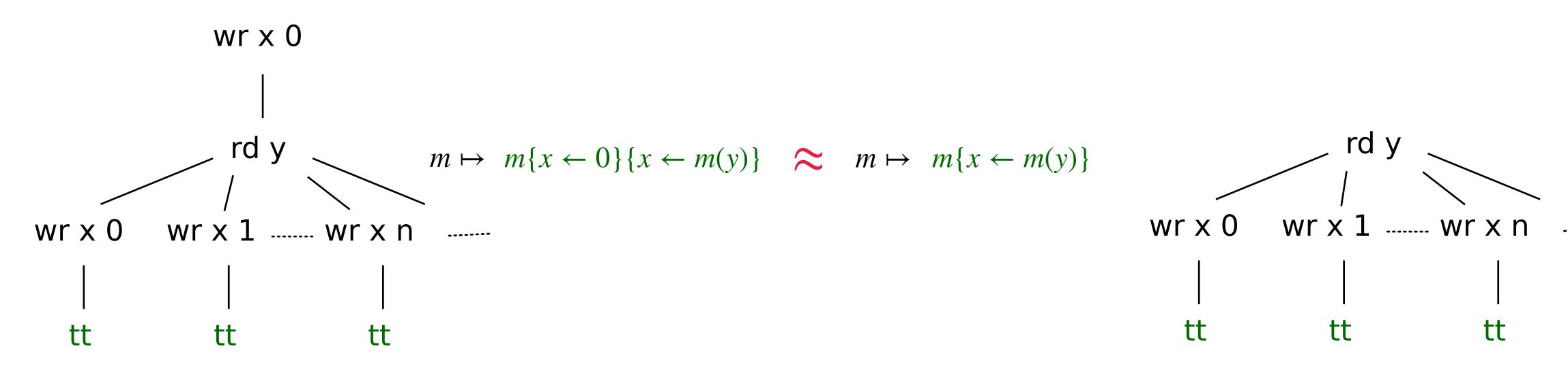
 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2$

Indeed, they are not the same syntax We fold over the tree to bring in the semantics

$$p_3 \triangleq x := y$$



$$p_2 \triangleq x := 0; x := y$$
 are



 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2$

Indeed, they are not the same syntax We fold over the tree to bring in the semantics

the same

$$p_3 \triangleq x := y$$

What tree should we associate to p_1 ?

But What About Loops?

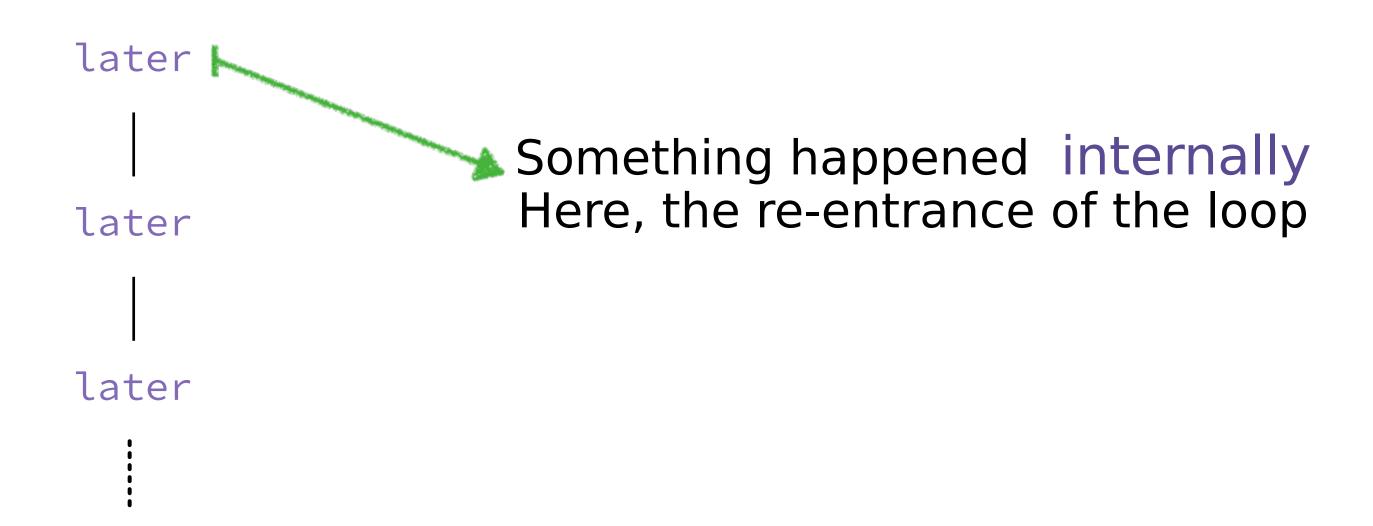
 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c$

 $p_1 \triangleq while true do \bullet$

ITree Idea 2: Capretta's Delay Monad

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c$

 $p_1 \triangleq while true do \bullet$

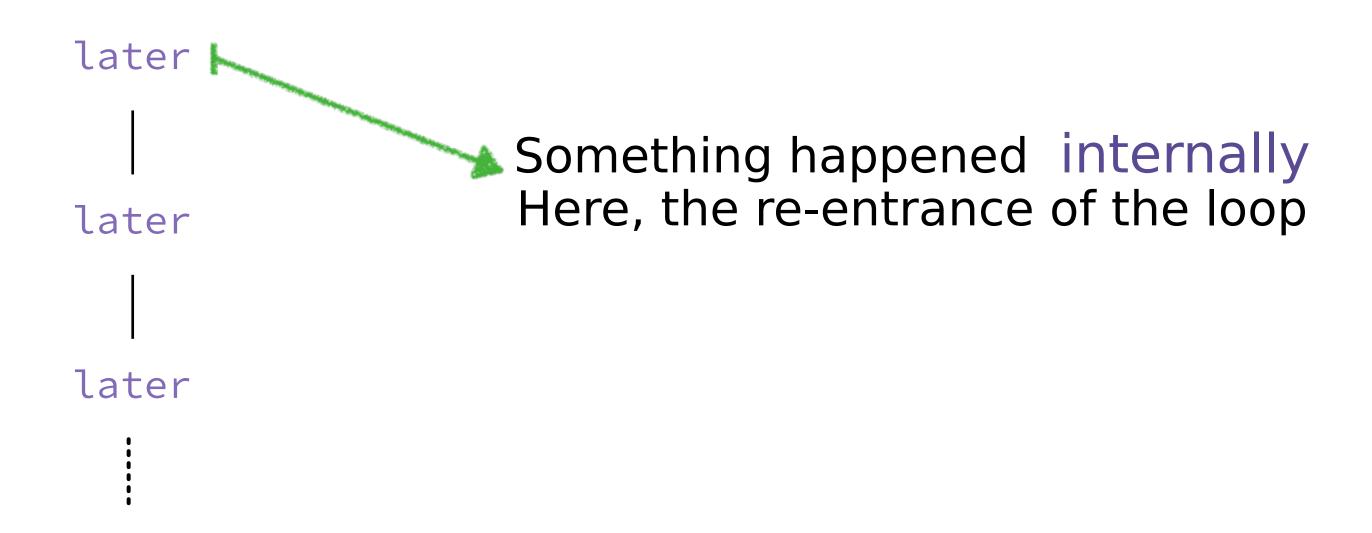


ITree Idea 2: Capretta's Delay Monad

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c$

We move onto a **Coinductive** datatype, p_1 is an infinite tree

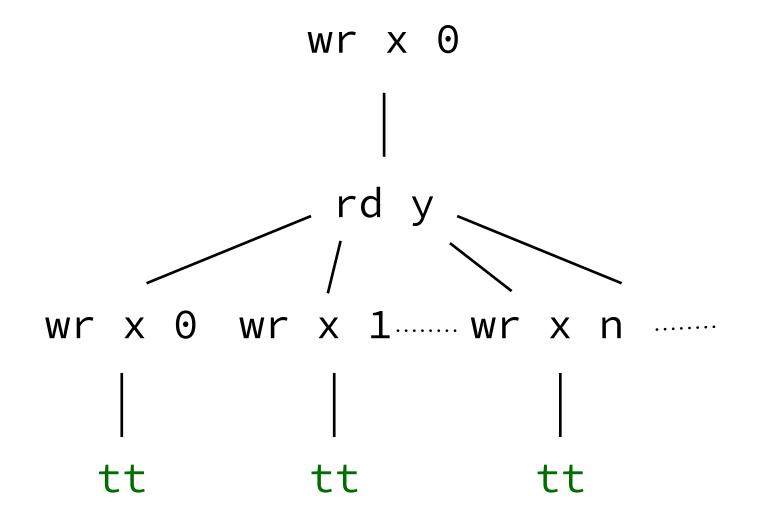
 $p_1 \triangleq while true do \bullet$



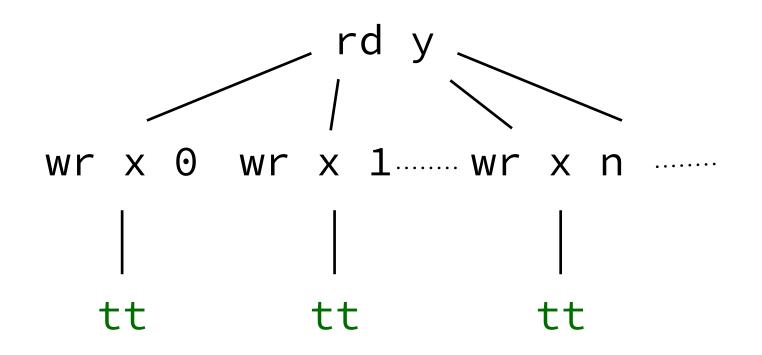
Programs as Stateful Infinite Trees

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c$

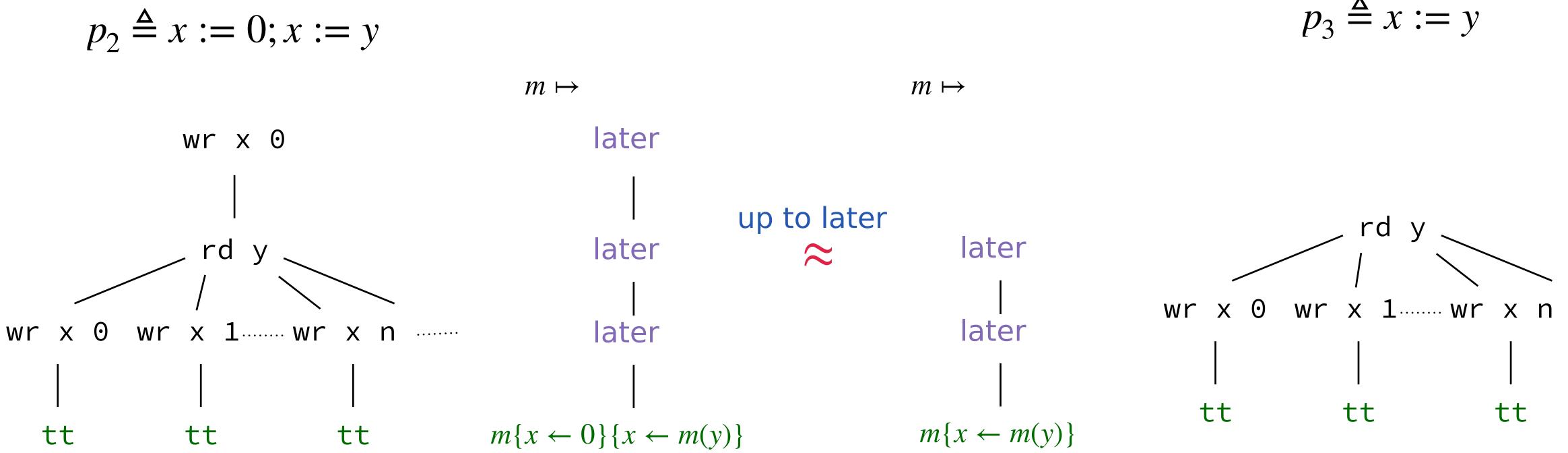
$$p_2 \triangleq x := 0; x := y$$



$$p_3 \triangleq x := y$$



Programs as Stateful Infinite Trees



 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \ b \ do \ c$

 $p_3 \triangleq x := y$

.

- CoInductive itree (E: Type -> Type) (R: Type): Type := Ret (r: R) Later (t: itree E R)
 - Vis {X: Type} (e: E X) (k: $X \rightarrow itree E R$).

A value of the datatype (itree E R) represents:

- a potentially diverging computation,
- which may return a value of type R,
- while emitting during its execution visible events from the interface E.

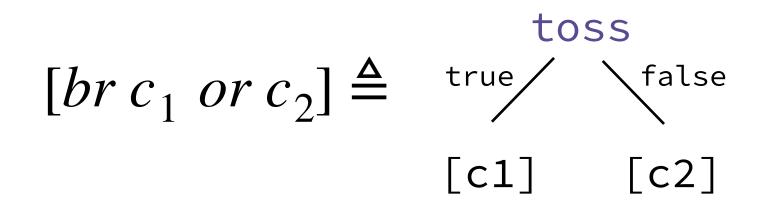
A domain of computations shallow embedded in Coq

Choice Trees

or Representing Nondeterministic, Recursive, and Impure Programs in Coq

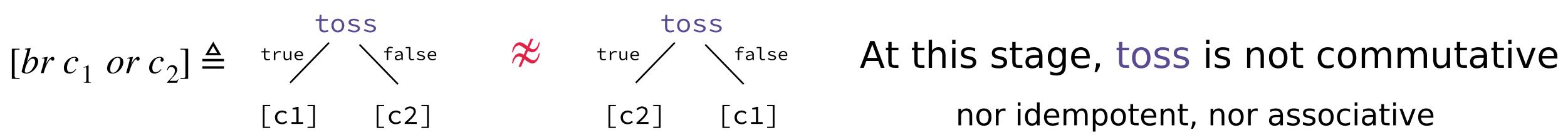
*br c*₁ *or c*₂ : either branch can be executed

Sounds quite easy to model as an itree: let's have a (toss : E bool) event



 $Imp \triangleq \bullet | x := e | c_1; c_2 |$ while b do c | br c_1 or c_2 | stuck | print

*br c*₁ *or c*₂ : either branch can be executed



Question: what is the structure into which we should interpret toss?

- $Imp \triangleq \bullet | x := e | c_1; c_2 | while b do c | br c_1 or c_2 | stuck | print$
- Sounds quite easy to model as an itree: let's have a (toss : E bool) event
 - nor idempotent, nor associative

An idea from Vellym: *sets* of trees? $\mathscr{I}([br c_1 \ or \ c_2]) \triangleq [c_1] \cup [c_2] \quad (In \ Coq: itree \ E \ X \rightarrow Prop)$

Question: what is the structure into which we should interpret toss?

We lose executability, monadic laws, everything becomes harder...

An idea from Vellym: sets of trees? $\mathscr{I}([br c_1 \ or \ c_2]) \triangleq [c_1] \cup [c_2] \quad (In \ Coq: itree \ E \ X \rightarrow Prop)$

Question: what is the structure into which we should interpret toss?

We lose executability, monadic laws, everything becomes harder...

This work: ctrees, what we believe to be the right structure

Nondeterministic branching: but what do we mean?

Can the above program p be stuck?

Case 1: br c_1 or $c_2 \rightarrow c_1$ $p \rightarrow stuck$ is possible

The system may **become** either branch

 $Imp \triangleq \bullet \mid x := e \mid c_1; c_2 \mid while \mid b \mid do \mid c \mid br \mid c_1 \mid or \mid c_2 \mid stuck \mid print$

 $p \triangleq br$ (while true do print) or stuck

Case 2:

$$\frac{c_1 \rightarrow c'_1}{br \ c_1 \ or \ c_2 \rightarrow c'_1}$$

$$p \rightarrow stuck \text{ is not possible}$$

The system may **take a transition** offered by either branch

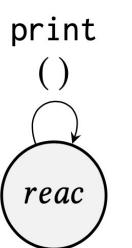
$$p \triangleq br (while true do print) or stuck$$
Let's take the
Case 0 (itree):
$$\overline{br c_1 \text{ or } c_2 \xrightarrow{true} c_1}$$

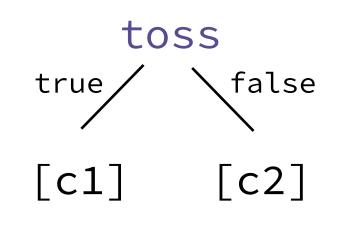
$$p \xrightarrow{true} stuck \text{ possible}$$
Case 1:
$$\overline{br c_1 \text{ or } c_2 \rightarrow c_1}$$

$$p \rightarrow stuck \text{ possible}$$
Case 2:
$$c_1 \rightarrow c'_1$$

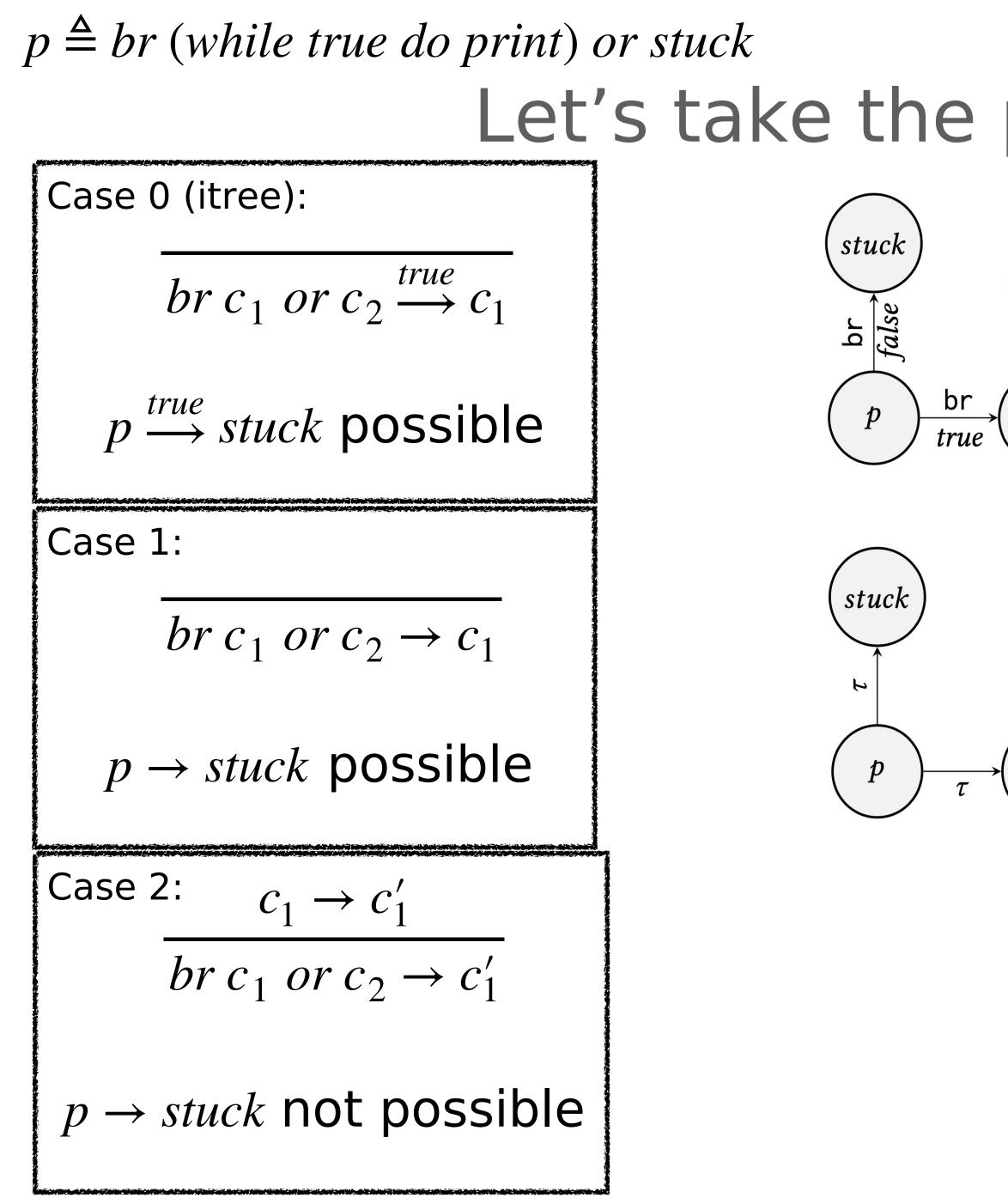
$$p \rightarrow stuck \text{ not possible}$$

perspective of an LTS



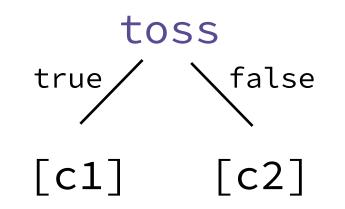


External event, false we observe which event happened, what branch we took what branch we took



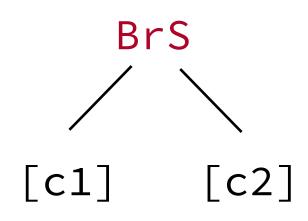
Let's take the perspective of an LTS

print reac



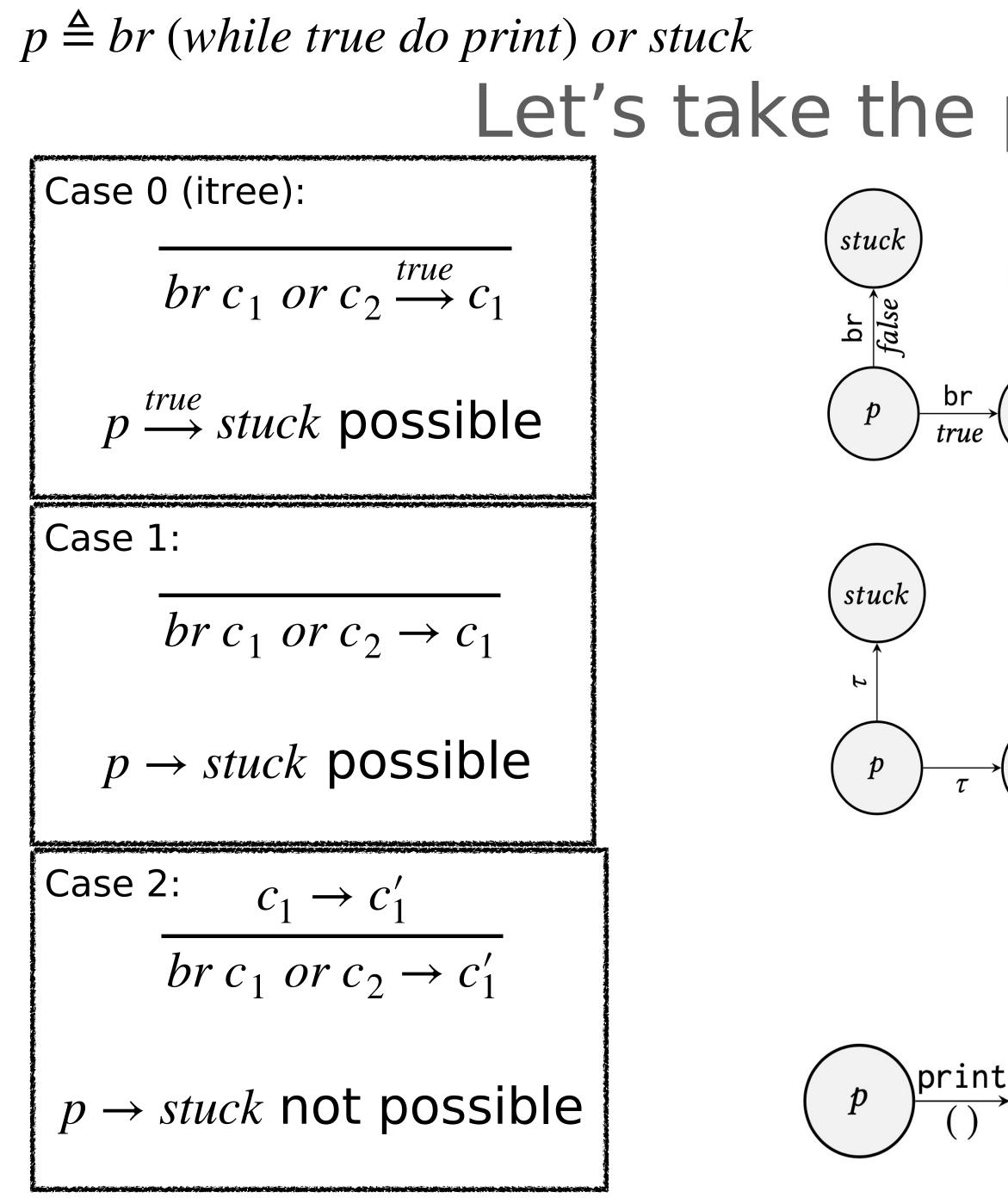
External event, we observe which event happened, what branch we took

print reac



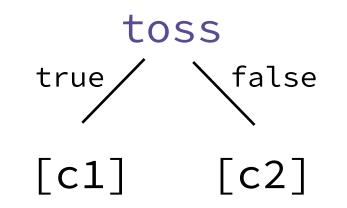
Stepping branch,

we observe that a branch has been taken



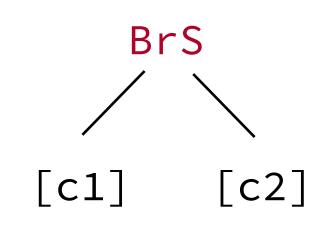
Let's take the perspective of an LTS

print reac



External event, we observe which event happened, what branch we took

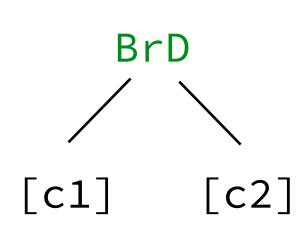
print reac



Stepping branch,

we observe that a branch has been taken

print reac



Delayed branch, there's a branch, but we don't observe it

Choice trees

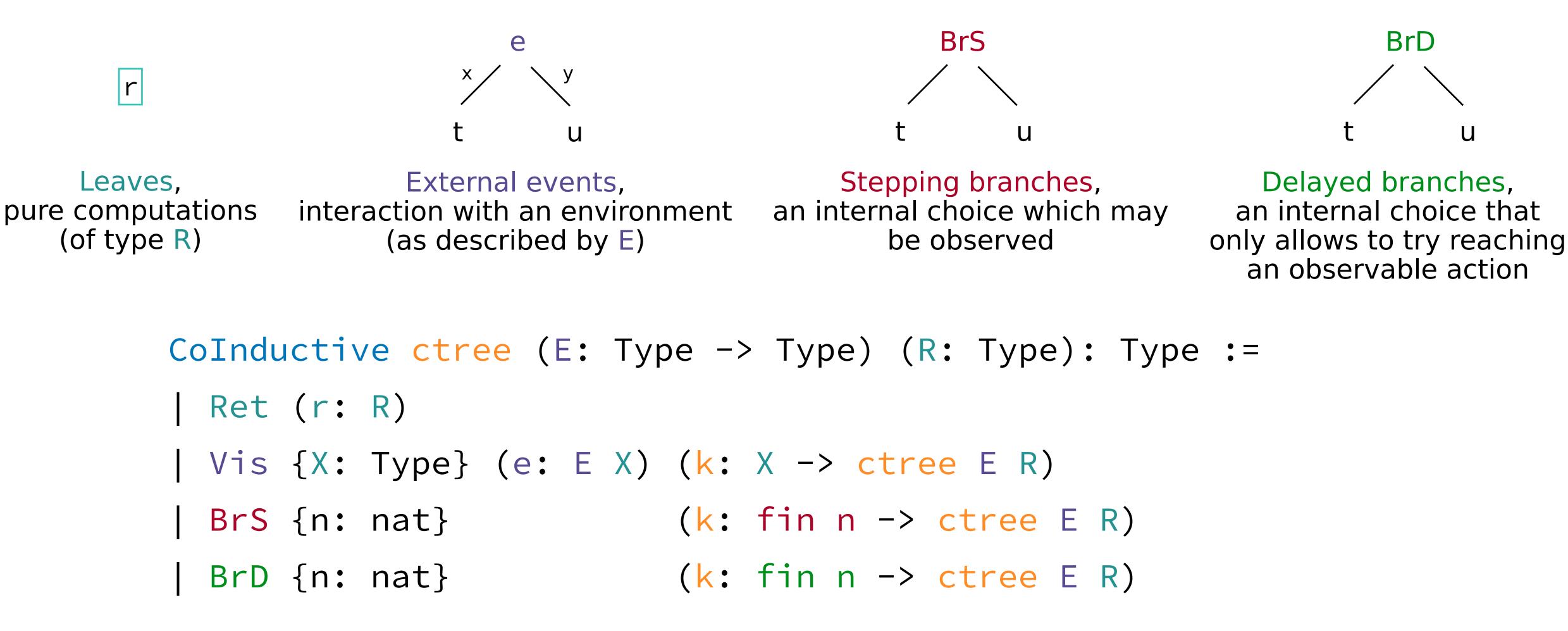
r

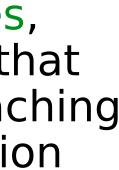
External events, (as described by E)

CoInductive ctree (E: Type -> Type) (R: Type): Type :=

- Ret (r: R)
- Vis {X: Type} (e: E X) (k: X -> ctree E R)
- BrS {n: nat} (k: fin n -> ctree E R)
- | BrD {n: nat}

A *ctree E R* models a computation as a potentially infinite tree made of:

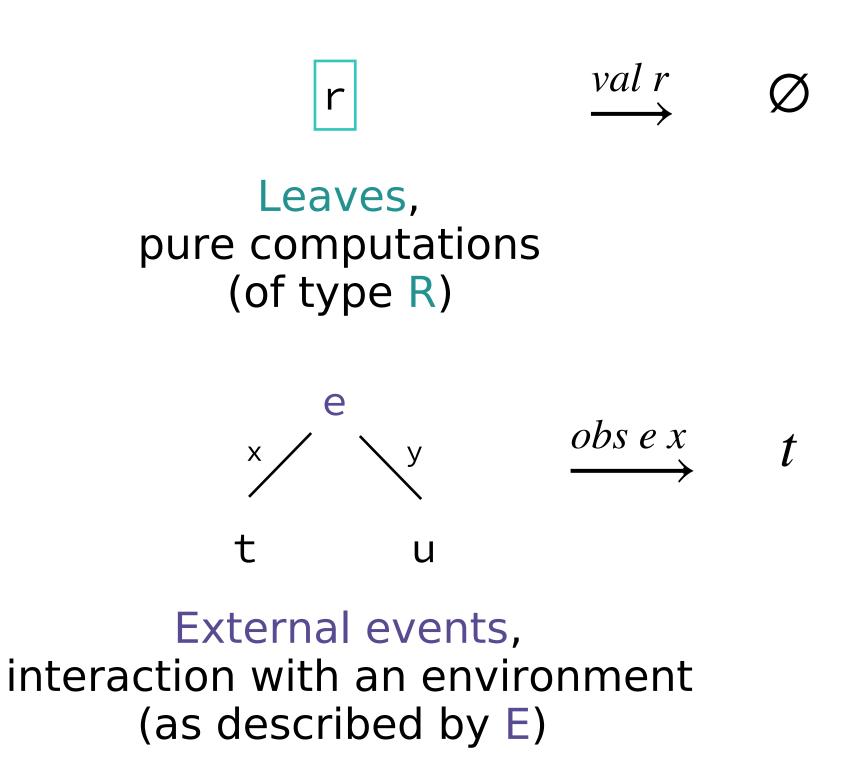


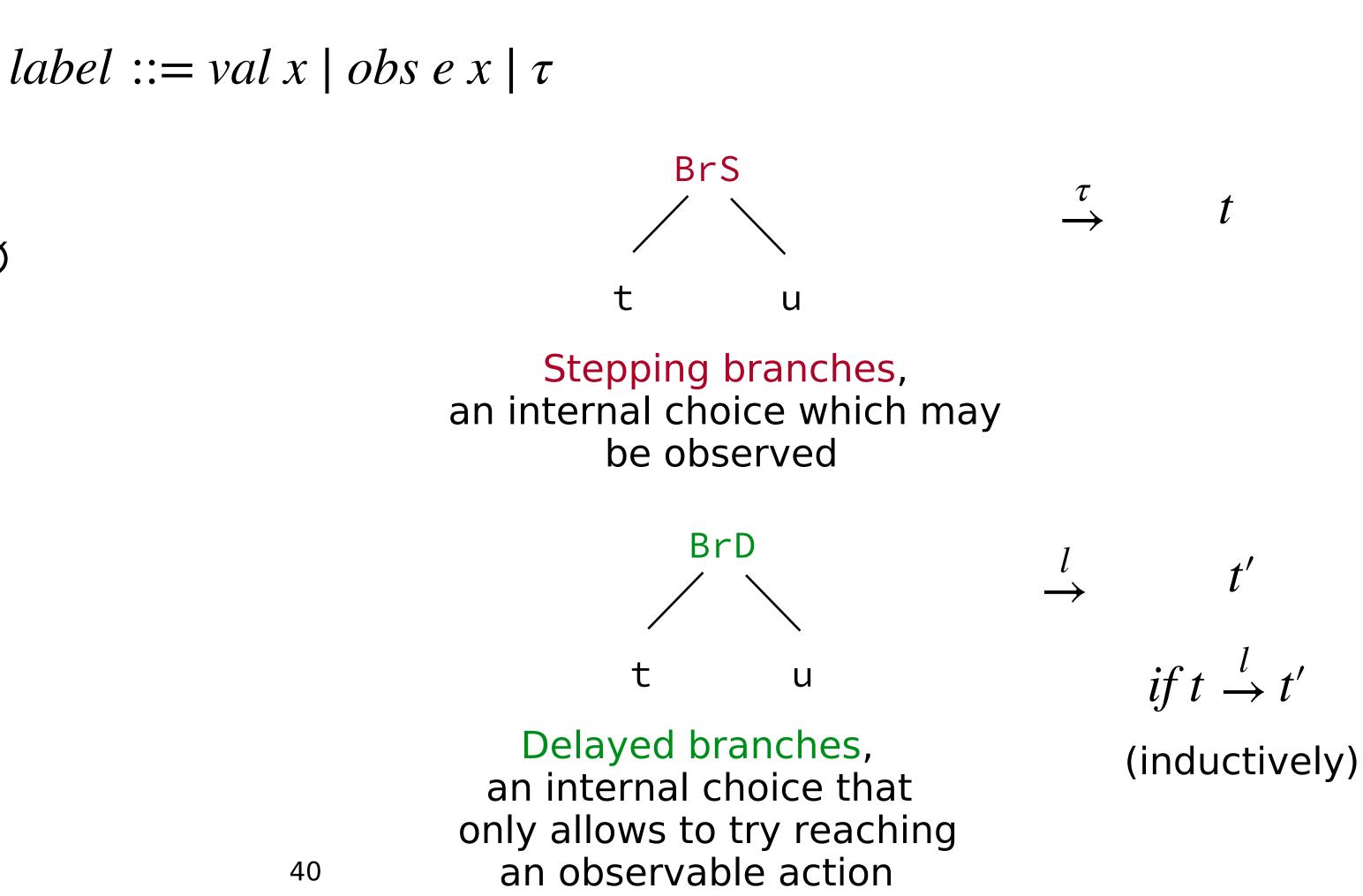


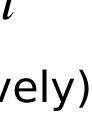
CTrees, LTSs and Bisimulations

Question: when should two ctrees be deemed equivalent?

There has already been a lot of work on equivalence of LTSs, Let's build LTSs from ctrees!



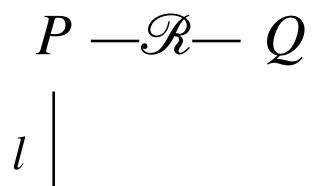




Bisimulation over LTSs

Question: when should two ctrees be deemed equivalent?

Let $(\mathcal{S}, \xrightarrow{l})$ be a LTS, \mathscr{R} a relation on \mathcal{S} is a simulation if:



P'

Bisimulation over LTSs

Let
$$(\mathcal{S}, \stackrel{l}{\rightarrow})$$
 be a LTS, \mathscr{R}

P' ...

Similarity is then defined as the largest simulation A whole zoo have been studied: weak, complete, branching, ...

Question: when should two ctrees be deemed equivalent?

a relation on \mathcal{S} is a simulation if:

$$P - \mathcal{R} - Q$$

$$\downarrow l$$

$$P' - \mathcal{R} - Q'$$

Question: when should two ctrees be deemed equivalent?

Answer: if their underlying LTSs are bisimilar!

 $sb \mathcal{R} s t \triangleq$ $\forall l, t, s, s', s \xrightarrow{l} s' \Rightarrow \exists t', s' \in$ and $\forall l, s, t, t', t \xrightarrow{l} t' \Rightarrow \exists s', s' \mathscr{R}t' \land s \xrightarrow{l} s'$

We tie the coinductive knot using Pous's coinduction library

$$\begin{array}{cccc} \mathcal{R}t' \wedge t \xrightarrow{l} t' & P - \mathcal{R} - Q \\ \mathcal{R}t' \wedge t \xrightarrow{l} t' & l \\ \mathcal{R}t' \wedge s \xrightarrow{l} s' & P' - \mathcal{R} - Q' \end{array}$$

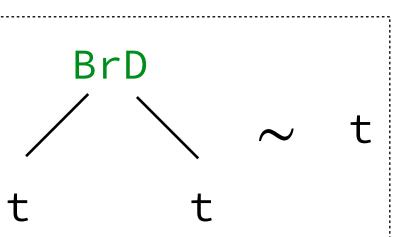
For Coq enthusiasts

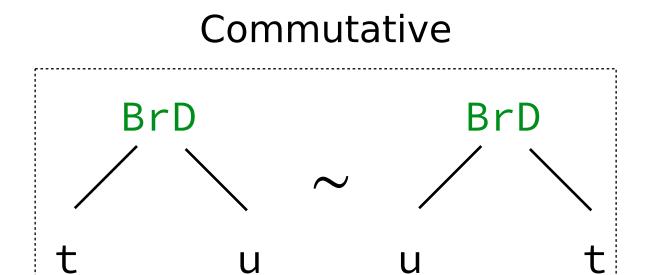
Question: when should two ctrees be deemed equivalent?

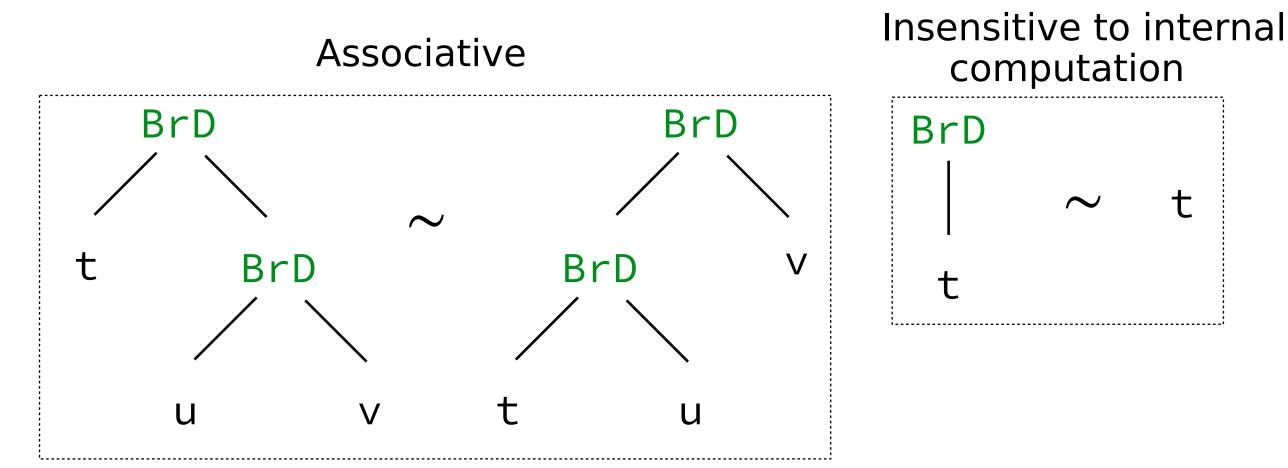
Answer: if their underlying LTSs are bisimilar!

We recover the right algebraic laws for non-determinism

Idempotent







Insensitive to internal computation BrD ~ t t

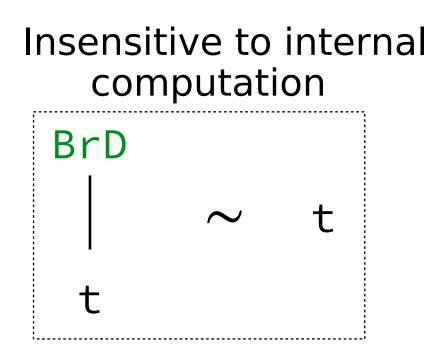
Do we have the same with BrS?

Insensitive to internal computation (?)

BrS

|

t



Three main equivalences over ctrees

(Coinductive) structural equality

Do we have the same with BrS?

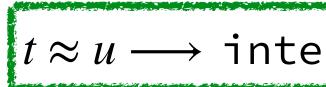
Insensitive to internal computation (?) BrS Ø t \approx t

Strong bisimilarity (~)

Weak bisimilarity (\approx)

And trace equivalence, simulations, and potentially all their variants

CTrees and Interpretation



They of course themselves still support interpretation

(targets must explain how they internalise branching nodes)

Branching nodes can be « interpreted » as well

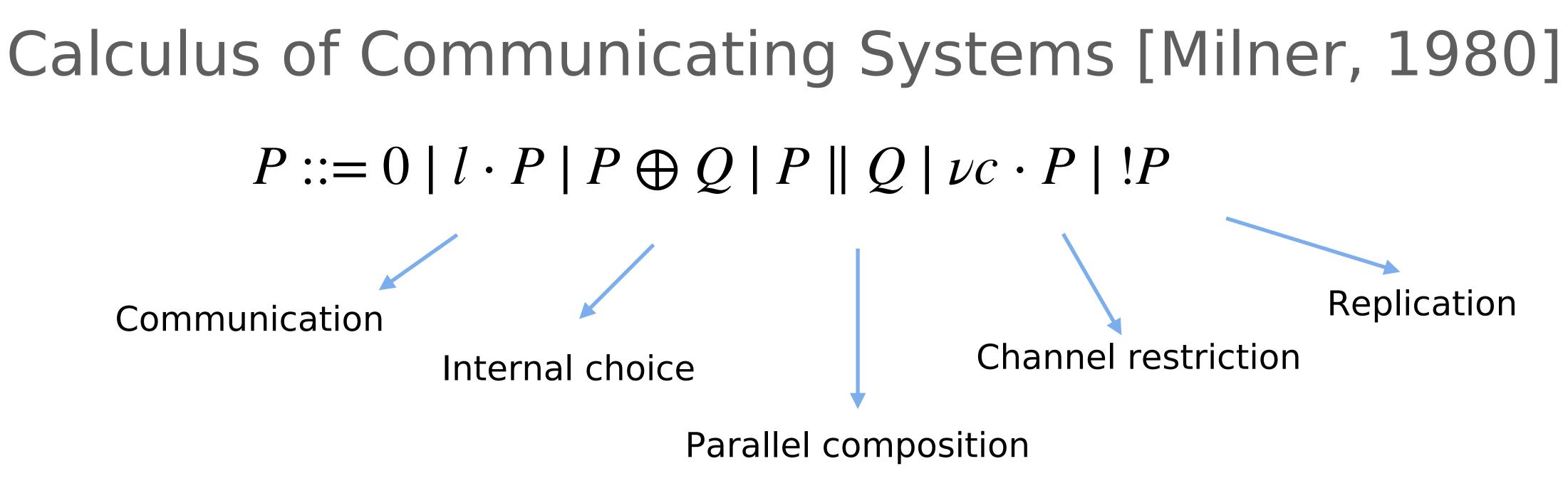
→ low level notion of scheduler \rightarrow formal refinements (complete simulations) in Coq → practical testing in OCaml

- CTrees are an adequate *target* monad into which one can interpret toss
 - $h(toss) \triangleq BrD 2$
 - interp h : itree (Toss + E) ~> ctree E
 - $t \approx u \longrightarrow interp h t \sim interp h u$

Communication

Internal choice

Goal: build a computable model of ccs using ctrees



Calculus of Communicating Systems [Milner, 1980]

Our model is computable: we can execute by extraction \rightarrow With a caveat: restriction kills branches,

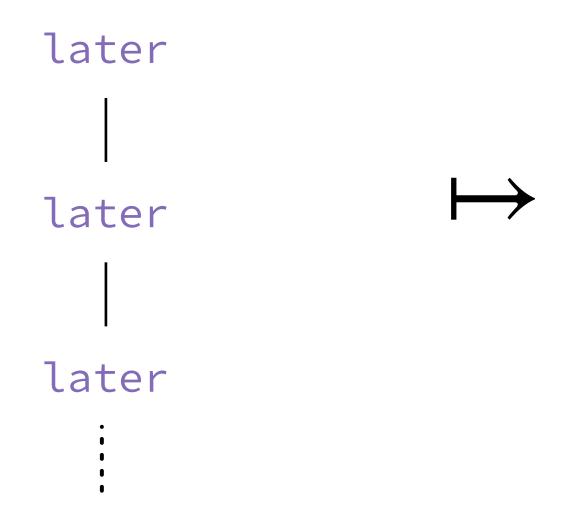
- $P ::= 0 \mid l \cdot P \mid P \oplus Q \mid P \parallel Q \mid vc \cdot P \mid P$
- We establish ccs's traditional equational theory w.r.t. ~ on our model
- We prove an adequacy result against ccs's operational semantics
 - $[P] \sim [Q] \text{ iff } P \sim_{op} Q$
 - one needs to avoid these dead branches

Cooperative scheduling

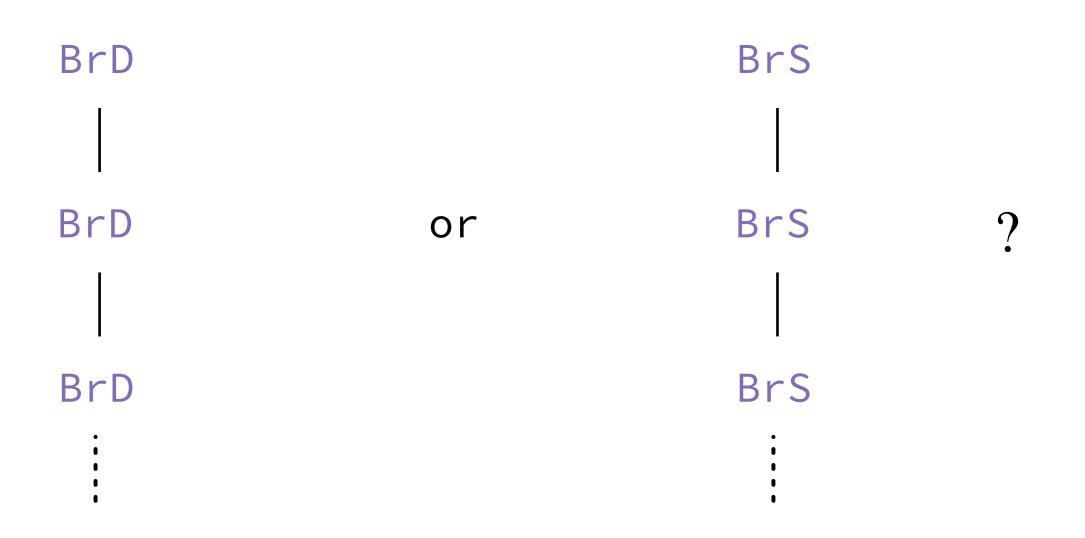
- Two layered computable model: - compositional construction with explicit fork and yield events - top-level interleaving combinator
- Combination of non-determinism with stateful computations
- Selected set of algebraic equations (further work needed there)

 $com ::= \bullet | x := e | c_1; c_2 | while b do c | fork c_1 c_2 | yield$

Ctrees Open Question 1: BrD or BrS?

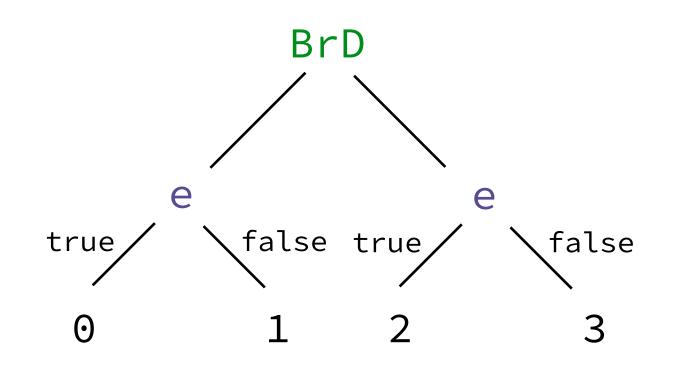


More generally: BrD and strong bisimulation or BrS and weak?



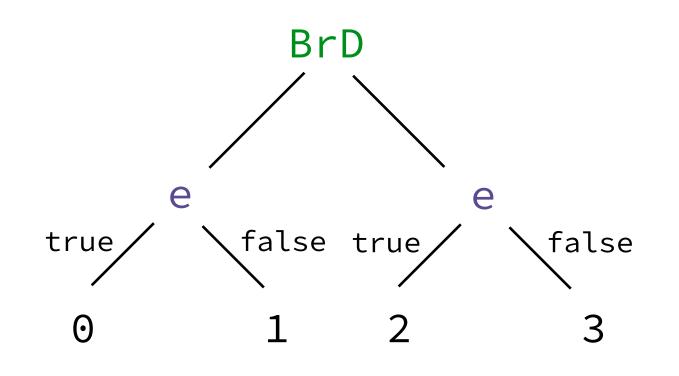
CTrees Open Question 2: Do we have the right LTS?

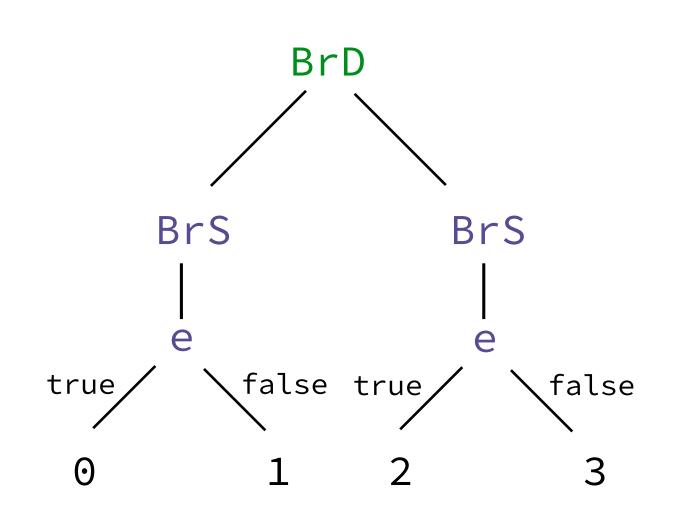
?~

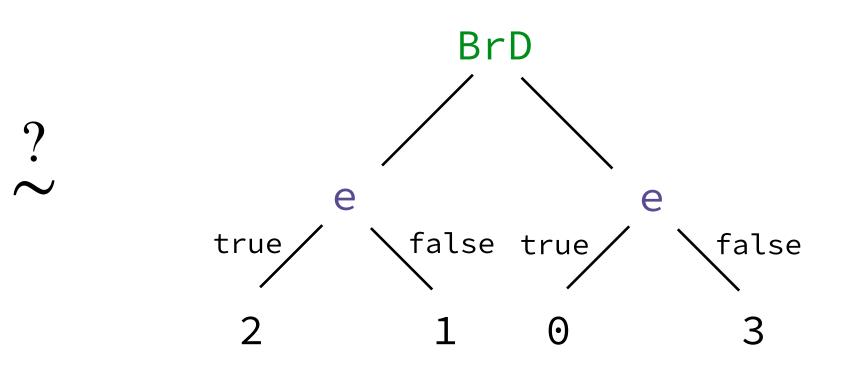




CTrees Open Question 2: Do we have the right LTS?

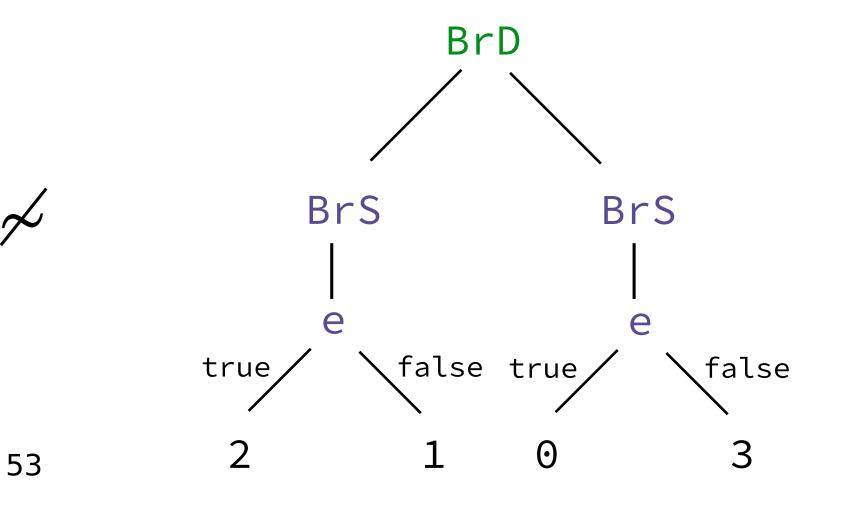






 $t \sim u$

interp h t ~ interp h u



Conclusion

Choice Trees in a Nutshell

Modelling non-determinism and concurrency as monadic interpreters

- We stick to the tree structure, with two new kinds of branching nodes
- Looking at the tree as an LTS sheds light to reason on their equivalence: the tools from the process algebra literature can be brought in
- Case studies suggest that the approach is viable!
- The representation still feels too large: avenue for improvement?

Accepted at POPL'23: https://perso.ens-lyon.fr/yannick.zakowski/papers/ctrees.pdf

Implemented as a Cog library: https://github.com/vellvm/ctrees/