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Introduction: Monadic Definitional Interpreters



Modelling computations in a proof assistant

5

Many interesting properties:

● Does a program respect its 
specification?

● Are two syntactically different programs 
equivalent?

● Does a compiler respect the meaning of 
its input programs?

How?

composition of continuous functions over a CPO

Small-step

Big-step

Denotational 

c1; c2 ∣ σ → c′￼1; c2 ∣ σ′￼

c1 ∣ σ → c′￼1 ∣ σ′￼

c1; c2 ∣ σ ↓ σ′￼′￼

c1 ∣ σ ↓ σ′￼ c2 ∣ σ′￼ ↓ σ′￼′￼

[c2] ∘ [c1]

Why?

→ Notions of equivalence and refinement



Modelling computations in a proof assistant
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Many interesting properties:

● Does a program respect its 
specification?

● Are two syntactically different programs 
equivalent?

● Does a compiler respect the meaning of 
its input programs?

How?

composition of continuous functions over a CPO

Small-step

Big-step

Denotational 

c1; c2 ∣ σ → c′￼1; c2 ∣ σ′￼

c1 ∣ σ → c′￼1 ∣ σ′￼

c1; c2 ∣ σ ↓ σ′￼′￼

c1 ∣ σ ↓ σ′￼ c2 ∣ σ′￼ ↓ σ′￼′￼

[c2] ∘ [c1]

Why?

The way we model impacts 
the ways we can reason→ Notions of equivalence and refinement



The Semantics Impacts the Reasoning

Compositionality: We can reason on parts of the program separately
→ Simplifies the proof technique

Modularity: The semantics is made of several independent parts
→ Improves maintainability
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Executability: A complete reference interpreter can be derived from the semantics 
of a language
→ Helps with testing



Modelling, but how?

8

Let’s focus on executability
To model something as complex as C or LLVM IR, a 

reference interpreter is very valuable!



Modelling, but how?

Interpreters 
ITrees take a simple route (back to the 70’s with Reynolds)

Definitional 

Describe the language to model 
via an interpreter written in your host language   
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Let’s focus on executability
To model something as complex as C or LLVM IR, a 

reference interpreter is very valuable!



Modelling, but how?

Interpreters 
ITrees take a simple route (back to the 70’s with Reynolds)

Definitional Monadic 

Describe the language to model 
via an interpreter written in your host language   
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Let’s focus on executability
To model something as complex as C or LLVM IR, a 

reference interpreter is very valuable!



Interpreter for a Modest Language

interp (c : com) (s : env) : env

Commands map an initial environment (memory) to a final environment

interp (c1;c2) s1  let s2 := ≜ interp c1 s1
                     in interp c2 s2

We thread the state manually

Imp ≜ ∙ ∣ x := e ∣ c1; c2
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Monadic Interpreter for a Modest Language

Commands are stateful computations

interp (c : com) : state unit

interp (c1;c2)  ≜ interp c1 ;; interp c2

The monad tells us how to thread computations

state X ≜ env -> (env * X)

maybestate X ≜ env -> option (env * X) 

Expressions can fail: does not leak
into the definition of the sequence

Imp ≜ ∙ ∣ x := e ∣ c1; c2
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Interaction Trees

Representing 
Recursive, and Impure

Programs in Coq

or

13



ITree Idea 1: the Free Monad

14

Stateful computations map initial environments to final environments
                                        are computations performing reads and writes

free E X

My computation is a piece of syntax

able to perform operations specified in E

in order to compute a value of type X

= X + E X + E E X + ...



ITree Idea 1: the Free Monad

15

Stateful computations map initial environments to final environments
                                        are computations performing reads and writes

interp (c : com) : free Rd_Wr unit

free E X

My computation is a piece of syntax

able to perform operations specified in E

in order to compute a value of type X

= X + E X + E E X + ...



Programs as Trees
Imp ≜ ∙ ∣ x := e ∣ c1; c2

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt
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Programs as Trees

are the same

Imp ≜ ∙ ∣ x := e ∣ c1; c2

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt
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Programs as Trees

are the same

Imp ≜ ∙ ∣ x := e ∣ c1; c2

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt

≉
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≉

Programs as Trees

are the same

Indeed, they are not the same syntax
We fold over the tree to bring in the semantics

are the same

Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt
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Programs as Trees

Indeed, they are not the same syntax
We fold over the tree to bring in the semantics

Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt
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Programs as Trees

are the same

Indeed, they are not the same syntax
We fold over the tree to bring in the semantics

are the same

Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2Imp ≜ ∙ ∣ x := e ∣ c1; c2

p2 ≜ x := 0; x := y

wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

wr x 0 wr x nwr x 1

rd y

tt tt tt
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m{x ← 0}{x ← m(y)}m ↦ m{x ← m(y)}m ↦≈



But What About Loops?

What tree should we associate to p1?

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c

p1 ≜ while true do ∙

22



ITree Idea 2: Capretta’s Delay Monad

Something happened  internally
Here, the re-entrance of the loop

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c

p1 ≜ while true do ∙

later

later

later

23



ITree Idea 2: Capretta’s Delay Monad

We move onto a coinductive datatype, p1 is an infinite tree

Something happened  internally
Here, the re-entrance of the loop

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c

p1 ≜ while true do ∙

later

later

later

24



wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p2 ≜ x := 0; x := y

Programs as Stateful Infinite Trees

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c
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wr x 0

wr x 0 wr x nwr x 1

rd y

tt tt tt

p2 ≜ x := 0; x := y

Programs as Stateful Infinite Trees

wr x 0 wr x nwr x 1

rd y

tt tt tt

p3 ≜ x := y

up to later

later

later

later

m{x ← 0}{x ← m(y)}

m ↦

later

later

m{x ← m(y)}

m ↦

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c
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Interaction Trees

• a potentially diverging computation,
• which may return a value of type R, 
• while emitting during its execution visible events from the interface E.

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Later (t: itree E R)
| Vis {X: Type} (e: E X) (k: X -> itree E R).

A value of the datatype (itree E R) represents:

A domain of computations shallow embedded in Coq

27



Representing 
Nondeterministic, Recursive, and Impure

Programs in Coq

or

Choice Trees



Nondeterministic branching

Imp ≜ ∙ ∣ x := e ∣ c 1; c2 ∣ while b do c ∣ br c 1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

Sounds quite easy to model as an itree: let’s have a (toss : E bool) event

[c1]

toss

[c2]

true false[br c1 or c2] ≜

29



Nondeterministic branching

Imp ≜ ∙ ∣ x := e ∣ c 1; c2 ∣ while b do c ∣ br c 1 or c2 ∣ stuck ∣ print

 : either branch can be executedbr c1 or c2

Sounds quite easy to model as an itree: let’s have a (toss : E bool) event

[c1]

toss

[c2]

true false[br c1 or c2] ≜
[c2]

toss

[c1]

true false≉ At this stage, toss is not commutative
nor idempotent, nor associative

Question: what is the structure into which we should interpret toss?

30



Nondeterministic branching
Question: what is the structure into which we should interpret toss? 

An idea from Vellvm: sets of trees?
ℐ([br c1 or c2]) ≜ [c1] ∪ [c2] (In Coq:                            )itree E X -> Prop

We lose executability, monadic laws, everything becomes harder... 

31



Nondeterministic branching
Question: what is the structure into which we should interpret toss? 

An idea from Vellvm: sets of trees?
ℐ([br c1 or c2]) ≜ [c1] ∪ [c2] (In Coq:                            )itree E X -> Prop

This work: ctrees, what we believe to be the right structure

We lose executability, monadic laws, everything becomes harder... 

32



Nondeterministic branching: but what do we mean?

Can the above program p be stuck?

Case 1: Case 2:

br c1 or c2 → c1

p → stuck is possible p → stuck is not possible

c1 → c′￼1

br c1 or c2 → c′￼1

Imp ≜ ∙ ∣ x := e ∣ c1; c2 ∣ while b do c ∣ br c1 or c2 ∣ stuck ∣ print

p ≜ br (while true do print) or stuck

33

The system may 
become either branch

The system may take a transition 
offered by either branch



p ≜ br (while true do print) or stuck

br c1 or c2
true c1

p true stuck possible

Case 0 (itree):
Let’s take the perspective of an LTS

[c1]

toss

[c2]

true false
External event, 

we observe which event happened, 
what branch we took

br c1 or c2 → c1

p → stuck possible

Case 1:

c1 → c′  1
br c1 or c2 → c′  1

p → stuck not possible

Case 2:
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p ≜ br (while true do print) or stuck

br c1 or c2
true c1

p true stuck possible

Case 0 (itree):
Let’s take the perspective of an LTS

[c1]

toss

[c2]

true false
External event, 

we observe which event happened, 
what branch we took

br c1 or c2 → c1

p → stuck possible

Case 1:

[c1]

BrS

[c2]

Stepping branch, 
we observe that a branch 

has been taken

c1 → c′  1
br c1 or c2 → c′  1

p → stuck not possible

Case 2:
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p ≜ br (while true do print) or stuck

br c1 or c2
true c1

p true stuck possible

Case 0 (itree):
Let’s take the perspective of an LTS

[c1]

toss

[c2]

true false
External event, 

we observe which event happened, 
what branch we took

br c1 or c2 → c1

p → stuck possible

Case 1:

[c1]

BrS

[c2]

Stepping branch, 
we observe that a branch 

has been taken

c1 → c′  1
br c1 or c2 → c′  1

p → stuck not possible

Case 2:

[c1]

BrD

[c2]

Delayed branch, 
there’s a branch,  

but we don’t observe it
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Choice trees
A ctree E R models a computation as a potentially infinite tree made of:

r

Leaves,
pure computations

(of type R)

External events,
interaction with an environment

(as described by E)

t

e

u

x y

Stepping branches,
an internal choice which may

be observed

t

BrS

u
Delayed branches,

an internal choice that
only allows to try reaching

an observable action

t

BrD

u

CoInductive ctree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)
| Vis {X: Type} (e: E X) (k: X -> ctree E R)
| BrS {n: nat}           (k: fin n -> ctree E R)
| BrD {n: nat}           (k: fin n -> ctree E R)

37



CTrees, LTSs and Bisimulations



Bisimulation over ctrees

39

There has already been a lot of work on equivalence of LTSs,
Let’s build LTSs from ctrees!

Question: when should two ctrees be deemed equivalent?



Bisimulation over ctrees

label ::= val x ∣ obs e x ∣ τ

r

Leaves, 
pure computations 

(of type R)

t

e

u

x y

External events, 
interaction with an environment 

(as described by E)

t

BrS

u

Stepping branches, 
an internal choice which may 

be observed

t

BrD

u

Delayed branches, 
an internal choice that 

only allows to try reaching 
an observable action

val r ∅

obs e x t

τ t

l t′ 

if t l t′ 

40

Question: when should two ctrees be deemed equivalent?

(inductively)



ℛP Q

Let  be a LTS,  a relation on  is a simulation if:(𝒮, l ) ℛ

P′ 

l

Bisimulation over LTSs

41

Question: when should two ctrees be deemed equivalent?

𝒮



 Q′ ℛ

Similarity is then defined as the largest simulation 
A whole zoo have been studied: weak, complete, branching, …

l

ℛP Q

Let  be a LTS,  a relation on  is a simulation if:(𝒮, l ) ℛ 𝒮

P′ 

l

Bisimulation over LTSs

42

Question: when should two ctrees be deemed equivalent?



Bisimulation over ctrees

For Coq enthusiasts 

We tie the coinductive knot using Pous’s coinduction library

∀l, t, s, s′ , s l s′ ⇒ ∃t′  , s′ ℛt′ ∧ t l t′ 

∀l, s, t, t′ , t l t′ ⇒ ∃s′  , s′ ℛt′ ∧ s l s′ 

ℛP Q

P′ 

l

Q′ ℛ
and

sb ℛ s t ≜

43

Answer: if their underlying LTSs are bisimilar!

Question: when should two ctrees be deemed equivalent?



Bisimulation over ctrees

Answer: if their underlying LTSs are bisimilar!

We recover the right algebraic laws for non-determinism

t

BrD

u u

BrD

tt

BrD

t
t∼ ∼

t

BrD

u

BrD

v

BrD

t

BrD

u

v
∼

BrD

t

∼ t

Idempotent Commutative Associative Insensitive to internal 
computation

44

Question: when should two ctrees be deemed equivalent?



Bisimulation over ctrees

BrD

t

∼ t

Insensitive to internal 
computation

BrS

t

∼ t

Insensitive to internal 
computation (?)

Do we have the same with BrS?

45



Bisimulation over ctrees

BrD

t

∼ t

Insensitive to internal 
computation

BrS

t

∼ t

Insensitive to internal 
computation (?)

Do we have the same with BrS?

Three main equivalences over ctrees

(Coinductive) structural equality Strong bisimilarity (~) Weak bisimilarity (≈)

≈

And trace equivalence, simulations, and potentially all their variants
46



CTrees and Interpretation

h(toss)   BrD 2≜

interp h : itree (Toss + E) ~> ctree E

interp h interp h t ≈ u ⟶ t ∼ u

CTrees are an adequate target monad into which one can interpret toss

They of course themselves still support interpretation  
            (targets must explain how they internalise branching nodes)

Branching nodes can be « interpreted » as well 
             low level notion of scheduler 
             formal refinements (complete simulations) in Coq 
             practical testing in OCaml

⇝
⇝
⇝
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Calculus of Communicating Systems [Milner, 1980]

Communication
Internal choice

Parallel composition

Channel restriction
Replication

Goal: build a computable model of ccs using ctrees

P ::= 0 ∣ l ⋅ P ∣ P ⊕ Q ∣ P ∥ Q ∣ νc ⋅ P ∣ !P

48



Calculus of Communicating Systems [Milner, 1980]

 With a caveat: restriction kills branches,  
                                one needs to avoid these dead branches
⇝

We establish ccs’s traditional equational theory w.r.t. ~ on our model

We prove an adequacy result against ccs’s operational semantics

[P] ∼ [Q] iff P ∼op Q

Our model is computable: we can execute by extraction

49



Cooperative scheduling

Two layered computable model:  
- compositional construction with explicit fork and yield events 
- top-level interleaving combinator

Combination of non-determinism with stateful computations

Selected set of algebraic equations (further work needed there)

com ::= ∙ ∣ x := e ∣ c 1; c2 ∣ while b do c ∣ fork c1 c2 ∣ yield

50



Ctrees Open Question 1: BrD or BrS?

BrD

BrD

BrD

or

p1 ≜ while true do ∙

later

later

later

↦
BrS

BrS

BrS

?

More generally: BrD and strong bisimulation or BrS and weak?
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CTrees Open Question 2: Do we have the right LTS?

e
true false

e
true false

BrD

e
true false

e
true false

BrD

0 01 2 3 312

∼?
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CTrees Open Question 2: Do we have the right LTS?

e
true false

e
true false

BrD

e
true false

e
true false

BrD

0 01 2 3 312

∼?

t ∼ u

interp h t ≁ interp h u

53

e
true false

e
true false

BrD

e
true false

e
true false

BrD

0 01 2 3 312

∼ BrS BrSBrS BrS



Conclusion



Choice Trees in a Nutshell
Modelling non-determinism and concurrency as monadic interpreters

Implemented as a Coq library: https://github.com/vellvm/ctrees/

Accepted at POPL’23: 
https://perso.ens-lyon.fr/yannick.zakowski/papers/ctrees.pdf

We stick to the tree structure, with two new kinds of branching nodes
Looking at the tree as an LTS sheds light to reason on their equivalence:
the tools from the process algebra literature can be brought in
Case studies suggest that the approach is viable!
The representation still feels too large: avenue for improvement?
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