Choice Trees

Representing
Nondeterministic, Recursive, and Impure
Programs in Cog

Nicolas Chappe, Paul He, Ludovic Henrio,
Steve Zdancewic and Yannick ZakowsKki

y 4

Chpice Trees

Interaction

Representlng
-NoRgeterriste, Recursive, and Impure
Programs n Coqg (POPL'20)

Li-yao Xia, Yannick Zakowski, Paul He, Gregory Malecha,
Chung-Kil Hur, Benjamin Pierce, Steve Zdancewic

Introduction: Monadic Definitional Interpreters

Prior Work: Interaction Trees

Choice Trees: Tackling Non-Determinism

Modelling computations in a proof assistant

Why? How?

cilo—c |0

Many interesting properties: e o= cho, |0 Small-step
* Does a program respect its
specification? cilolo ¢ |6 |0o” Big-step
. . ci;6, | 0] 0”
* Are two syntactically different programs
equivalent? (o] o [} Denotational

composition of continuous functions over a CPO

* Does a compiler respect the meaning of
Its Input programs?

— Notions of equivalence and refinement

Modelling computations in a proof assistant

Why?

Many interesting properties:

* Does a program respect its
specification?

* Are two syntactically different programs
equivalent?

* Does a compiler respect the meaning of

Its Input programs?

— Notions of equivalence and refinement

How?
cilo—c |0
ACELRAL Small-step
cilolo ool o Big-step
ci;6, | 0] 0”
[ca] o e Denotational

composition of continuous functions over a CPO

The way we model impacts
the ways we can reason

,///

The Semantics Impacts the Reasoning

Compositionality: We can reason on parts of the program separately
- Simplifies the proof technique

Modularity: The semantics iIs made of several independent parts
- Improves maintainability

Executability: A complete reference interpreter can be derived from the semantics
of a language

— Helps with testing

Modelling, but how?

Let’s focus on executability

To model something as complex as C or LLVM IR, a
reference interpreter is very valuable!

Modelling, but how?

Let’s focus on executability

To model something as complex as C or LLVM IR, a
reference interpreter is very valuable!

ITrees take a simple route (back to the 70's with Reynolds)
Definitional Interpreters

Describe the language to model
via an interpreter written in your host language @

Modelling, but how?

Let’s focus on executability

To model something as complex as C or LLVM IR, a
reference interpreter is very valuable!

ITrees take a simple route (back to the 70's with Reynolds)
Definitional Monadic Interpreters

Describe the language to model
via an interpreter written in your host language @

10

Interpreter for a Modest Language

Imp=e|x:=c|cc
Commands map an initial environment (memory) to a final environment

interp (c ¢ com) (s : env) : env

We thread the state manually

interp (cl;c2) sl = let s2 := interp cl sl
in interp c2 s2

11

Monadic Interpreter for a Modest Language

Imp=e|x:=c|cc
Commands are stateful computations

interp (c : com) : state unit
T e

T

A
state X = env -> (env * X)

A .
maybestate X = env -> option (env * X)

Expressions can fail: does not leak
The monad tells us how to thread computations !nto the definition of the sequence

interp (cl;c2) £ Hdnterp cl ;; interp c2

12

or

Representing
Recursive, and Impure
Programs in Cog

13

|I'Tree |Idea 1: the Free Monad

Stateful computations map-initial-environments-to-final-environments
are computations performing reads and writes

free E =X +EX+EEX+ ...

.

My computation is a piece of syntax

able to perform operations specified in E

In order to compute a of type X

14

|I'Tree |Idea 1: the Free Monad

Stateful computations map-initial-environments-to-final-environments
are computations performing reads and writes

interp (c : com) : free Rd_Wr unit

free E =X +EX+EEX+ ...

i ot

/

My computation is a piece of syntax

able to perform operations specified in E

In order to compute a of type X

15

Programs as Irees

Imp=e|x:=c|c;c

rdy
rd o n
,/}L/l/ yn\\\\\ /////U :if\\\

wrx0 wrx1l ... WrxXn .
wrx0 wrx1l ... Wrxn .

tt tt tt tt
tt tt

16

Programs as Irees

Imp=e|x:=c|c;c

pzéx;:();x;:y are the same p3éx;:y

wr x 0

\
rd rdy
,/}L/l/ yn\\\\\ //9//ﬂ §i§\\\

wrx0 wrx1l ... WEX N e wrx0 wrx1l ... WEX N e

tt tt tt tt tt tt

17

Programs as Irees

Imp=e|x:=c|c;c

pzéx;:();x;:y are the same p3éx;:y

wr x 0

\
r rdy
,/}L/a/dyn\\\\\ X //9//ﬂ §if\\\

WEX0 Wrx1l .ooWrxn wrx0 wrx1l ... WEX N e

tt tt tt tt tt tt

18

Programs as Irees

Imp=e|x:=c|c;c

Indeed, they are not the same syntax
We fold over the tree to bring in the semantics

pzéx;: O;x;:y are the same p3éx;:y
wr x 0
rd y ~ rd y
N N N
wrx0 wrx1l ... WEX N oo wrx0 wrx1l ... Wr X n

tt tt tt tt tt tt

19

Programs as Irees

Imp=e|x:=c|c;c

Indeed, they are not the same syntax
We fold over the tree to bring in the semantics

A
P, =x:=0;x:=y P3é3€3=y
wr X 0
rdy rdy
wrx0 wrx1l ... WrEXN e wrx0 wrx1l .. WrEXnNn .-

tt tt tt tt tt tt

20

Programs as Irees

Imp=e|x:=c|c;c

Indeed, they are not the same syntax
We fold over the tree to bring in the semantics

pzéx:z O;x:=y are the same p3éx::y
wr X 0
rd y me mix <0} {x—m(y) & me mix—m®)) rdy
wrx0 wrxl1l ... WrEXN e wrx0 wrx1l .. WrEXnNn .-

tt tt tt tt tt tt

21

But What About Loops?

Imp=e|x:=e|cpc,| while b do c

p, = while true do s

What tree should we associate to p;?

22

ITree |dea 2: Capretta’s Delay Monad

Imp=e|x:=e|cpc,| while b do c

p, = while true do e

later
‘ \Something happened internally

later Here, the re-entrance of the loop

later

23

ITree |dea 2: Capretta’s Delay Monad

Imp=e|x:=e|cpc,| while b do c

p, = while true do e

later
‘ \Something happened internally

later Here, the re-entrance of the loop

later

We move onto a COINAuUctive datatype, p: is an infinite tree

24

Programs as Stateful Infinite Trees

Imp=e|x:=e|cpc,| while b do c

= - A L
pp=x:=0x:=y p3 =Xx1=Y
wr X 0
rd vy rd y
wr X 0 wr x 1. WE X N e wr X 0 wr x 1. Wr X n

tt tt "R tt tt tt

25

//rdy\\

wr X 0 wr x 1

tt Tt

Programs as Stateful Infinite Trees

Imp=e|x:=e|cpc,| while b do c

n =
later
‘ up to later
later A
later

mi{x < O}H{x <« m(y))

26

m —

later

later

mix < m(y)}

rd

T

wr X 0 wr x 1. Wr X n

tt tt tt

Interaction Trees (i

A domain of computations shallow embedded in Coq

CoInductive itree (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

| Later (t: itree E R)

| Vis {X: Type} (e: E X) (k: X -> 1itree E R).

A value of the datatype (itree £ R) represents:

* a potentially diverging computation,
* which may return a value of type R,
* while emitting during Its execution from the

27

or

Representing
Nondeterministic, Recursive, and Impure
Programs in Coq

Nondeterministic branching

Impé-\x:e\cl;@\whilebdoc\brc | OF C, | stuck | print

br ¢, or ¢, : either branch can be executed

Sounds quite easy to model as an itree: let’'s have a (toss : E bool) event

toss

[b},. ci Or C2] é truy ‘alse

[c1] [c2]

29

Nondeterministic branching

Impé-\x:e\cl;@\whiledeC\brc | OF C, | stuck | print

br ¢, or ¢, : either branch can be executed

Sounds quite easy to model as an itree: let’'s have a (toss : E bool) event

toss toss

[brc, orc,] 2t/ Newe & e /S Nfewe At this stage, toss is not commutative

[c1] [c2] [c2] [c1] nor idempotent, nor associative

Question: what is the structure into which we should interpret toss? |

30

Nondeterministic branching

Question: what is the structure into which we should interpret toss?

An Idea from Vellvm: sets of trees?

F([br c, orc,]) = lci]U el (In Coq: itree E X -> Prop)

Q We lose executability, monadic laws, everything becomes harder...

31

Nondeterministic branching

Question: what is the structure into which we should interpret toss?|

An Idea from Vellvm: sets of trees?

F([br c, orc,]) = lci]U el (In Coq: itree E X -> Prop)

Q We lose executability, monadic laws, everything becomes harder...

This work: ctrees, what we believe to be the right structure|

32

Nondeterministic branching: but what do we mean?

Imp=e|x:=e|cyc, | while bdoc|brc, orc,|stuck | print

p = br (while true do print) or stuck

Can the above program p be stuck?

Ty T
| c| = ¢

br ¢y or ¢c; = ¢ | | br ¢y or ¢, — ¢y

p — stuck is possible | | p — stuck is not possible !

The system may The system may take a transition
become either branch offered by either branch

33

p = br (while true do print) or stuck

|Case O (itree):

stuck
print

()

=
br
P true @

l) lrue
rcy Orcy— Cy

f

br
alse

rue

p — stuck possible

| Case 1: ?

br cy or c5 = ¢

p — stuck possible

| Case 2: ¢, = | :

/
br cy or ¢4 = €]

| p — stuck not possible |

34

truy \\false

[c1]

toss

[c2]

Let's take the perspective of an LTS

External event,
we observe which event happened,
what branch we took

p = br (while true do print) or stuck

|Case O (itree):

l) frue
I’Cl 01’6‘2—>Cl

rue

p — stuck possible

' Case 1: f’

br c, or c, = ¢,

p — stuck possible

| Case 2: ¢, = | :

/
br c, or c, = i

| p — stuck not possible |

35

Let's take the perspective of an LTS

toss External event,
truy \\false we observe which event happened,
what branch we took
[c1] [c2]

Brs Stepping branch,
/ \ we observe that a branch
has been taken
[cl] [c2]

p = br (while true do print) or stuck

Let's take the perspective of an LTS

| Case 0 (itree):
| @
print toss External event,

E: () truy Yalse we observe which event happened,

B " what branch we took
br @ [cl] [c2]
p
true
@ orint BrsS Stepping branch,

() / \ we observe that a branch

l) frue
I’Cl 01’6‘2—>Cl

rue

p — stuck possible

' Case 1: f’

brc, or c, =

- M has been taken
. [cl] [c2]
p — stuck possible P} 0
| Case 2: ¢, — c| } |
| ' print

/
brc, orc, = cj BrD Delayed branch,

/ \ there’s a branch,

()
print — but we don’t observe it
Ors@ @
36

| p — stuck not possible |

Choice trees

A E R models a computation as a potentially infinite tree made of:
e BrS BrD
r RN RN RN
t u t U t u
Leaves, External events, Stepping branches, Delayed branches,
pure computations interaction with an environment an internal choice which may an internal choice that
(of type R) (as described by E) be observed only allows to try reaching

an observable action

CoInductive (E: Type -> Type) (R: Type): Type :=
| Ret (r: R)

Vis {X: Type} (e: E X) (k: X —=> E R)

BrS {n: nat} (k: fin n -> E R)

BrD {n: nat} (fin n -> E R)

Bisimulation over ctrees

Question: when should two ctrees be deemed equivalent?

There has already been a lot of work on equivalence of LTSs,
Let’s build LTSs from ctrees!

39

Bisimulation over ctrees

Question: when should two ctrees be deemed equivalent?

val r
I 3
Leaves,
pure computations
(of type R)

)/ey obsex)
T u

External events,
Interaction with an environment
(as described by E)

label ::=valx|obsex |t

40

2N

Stepping branches,
an internal choice which may
be observed

/N

Delayed branches,
an internal choice that
only allows to try reaching
an observable action

t,

: [
ift >t
(Inductively)

Bisimulation over LTSS

Question: when should two ctrees be deemed equivalent?]

l
Let (&, —») be a LTS, &£ a relation on & is a simulation if:

P—%— O

[

P/

41

Bisimulation over LTSS

Question: when should two ctrees be deemed equivalent?

l
Let (&, —») be a LTS, &£ a relation on & is a simulation if:

P—%— O

PG O

Similarity Is then defined as the largest simulation
A whole zoo have been studied: weak, complete, branching, ...

42

Bisimulation over ctrees

Question: when should two ctrees be deemed equivalent?

sb R st2
/

/ / / / / l /
Vit,s,s,s—> s =3t SRARIANt>t
and

l l '

Vi,s, t,t. t -t = ds’, SRAR'ANs > s’ PR O

For Coq enthusiasts |
We tie the coinductive knot using Pous’s coinduction library |

43

Bisimulation over ctrees

Question: when should two ctrees be deemed equivalent?]

Answer: if the LTSs are bisimilar!

We recover the right algebraic laws for non-determinism

Insensitive to internal
computation

ldempotent Commutative Associative

..

44

Bisimulation over ctrees

Insensitive to internal Insensitive to internal
. Computaton computation (?)
BrD 5 BrsS j
~ t Do we have the same with BrS? ~ ot
t : : t :

45

Bisimulation over ctrees

Insensitive to internal Insensitive to internal
__Computation computation (?)
BrD 5 BrsS j
~ t Do we have the same with BrS? ot
+ i i " ~ ’

Three main equivalences over ctrees

(Coinductive) structural equality Strong bisimilarity (~) Weak bisimilarity (=)

And trace equivalence, simulations, and potentially all their variants

46

CTrees and Interpretation

® CTrees are an adequate target monad into which one can interpret toss
h(toss) 2 BrD 2

interp h : 1tree (Toss + E) ~> ctree E
‘t%u—> interp h t~ interp h ul

They of course themselves still support interpretation

(targets must explain how they internalise branching nodes)

Branching nodes can be « interpreted » as well

~> low level notion of scheduler
~> formal refinements (complete simulations) in Coqg
~> practical testing in OCaml|

47

Calculus of Communicating Systems [Milner, 1980}

P::=0|[-P|P®QO|P||Q|vc-P|!'P

Replication
Internal choice Channel restriction

Communication

Parallel composition

48

Calculus of Communicating Systems [Milner, 1980}

P:=0|1l-P| PeQ | P|Q| vec-P |!P

® \We establish ccs’s traditional equational theory w.r.t. ~ on our model|
® We prove an adeqguacy result against ccs’s operational semantics

[P] ~ [Q] Iff P ~op Q

® Our model iIs computable: we can execute by extraction

> \WIith a caveat: restriction kills branches,
one needs to avoid these dead branches

49

Cooperative scheduling

com:=e|x:=¢e|c;c |whilebdoc| forkc, ¢, | yield

Two layered computable model:
- compositional construction with explicit fork and yield events

- top-level interleaving combinator

Combination of non-determinism with stateful computations

Selected set of algebraic equations (further work needed there)

50

Ctrees Open Question 1: BrD or BrS?

p, = while true do e

later BrD BrS
‘ \ \

later —> BrD or BrsS
‘ \ \

later BrD BrS

More generally: BrD and strong bisimulation or BrS and weak?

51

CTrees Open Question 2: Do we have the right LTS?

BrD BrD

e e e e
truy yalse truy {alse truy ‘alse truy xalse
0] 1 2 3 2 1 0 3

52

CTrees Open Question 2: Do we have the right LTS?

BrD BrD

e e e e
tru7 Xalse truy Yalse truy xalse truy Yalse
0] 1 2 3 2 1 0 3

[~ U

interp h t ~ interp h u

BrD BrD

/N /N

BrsS BrsS 74 BrsS BrsS

l l ‘e ‘e
truy Yalse truy Yalse truy Yalse truy Yalse
0] 1 2 3 2 1 © 3

53

Choice Trees In a Nutshell

Modelling non-determinism and concurrency as monadic interpreters

We stick to the tree structure, with two new kinds of branching nodes

Looking at the tree as an LTS sheds light to reason on their equivalence:
the tools from the process algebra literature can be brought in

Case studies suggest that the approach is viable!

The representation still feels too large: avenue for improvement?

llmplemented as a Coq library: hﬁps:[/github.com7vell{/m/ctrees/s

Accepted at POPL'23:
https://perso.ens-lyon.fr/yannick.zakowski/papers/ctrees.pdf

55

	Choice Trees
	Choice Trees (2)
	Introduction: Monadic Definitional Interpreters
	Introduction: Monadic Definitional Interpreters (2)
	Modelling computations in a proof assistant (1)
	Modelling computations in a proof assistant (2)
	The Semantics Impacts the Reasoning
	Modelling, but how? (2) (1)
	Modelling, but how? (2) (2)
	Modelling, but how? (2) (3)
	Interpreter for a Modest Language
	Monadic Interpreter for a Modest Language
	Slide: 10
	ITree Idea 1: the Free Monad (1)
	ITree Idea 1: the Free Monad (2)
	Programs as Trees (1)
	Programs as Trees (2)
	Programs as Trees (3)
	Programs as Trees (2) (1)
	Programs as Trees (2) (2)
	Diapo 21
	But What About Loops?
	ITree Idea 2: Capretta’s Delay Monad (1)
	ITree Idea 2: Capretta’s Delay Monad (2)
	Programs as Stateful Infinite Trees (1)
	Programs as Stateful Infinite Trees (2)
	Interaction Trees
	Slide: 18
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 20 (1)
	Slide: 20 (2)
	Nondeterministic branching: but what do we mean? (2)
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 23
	Slide: 24
	Slide: 25
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 32
	Slide: 33
	Slide: 34
	Slide: 35
	Slide: 36
	Slide: 37 (1)
	Slide: 37 (2)
	Slide: 38
	Slide: 39

