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@ Introduction



A purely functional queue

We can implement an immutable queue using two lists front and rear:

type ‘'« queue ="« list X '« list

let snoc (front, rear) x =
(front, x :: rear)

let pop (front, rear) =
match front with
| x:: front" — Some (x, (front’, rear))
-
match List.rev rear with
| x:: front’ — Some (x, (front’, []))
| [] = None

insert into rear list

if front is non-empty...

...pop its head

otherwise...

...reverse rear to front (costly)...
...and pop head



Time cost of the purely functional queue

® snoc: worst time O(1)

® pop: worst time O(n)
Say that each function call “costs” $1; then:

® snoc costs $1 at worst

® pop costs $(n+ 1) at worst

Too pessimistic! The “banker’s method” (Tarjan, 1985) gives constant
amortized costs:

® snoc costs $2
we save $1 extra for each inserted element, covering for that ele-

ment’s reversal

® pop costs $1
reversal is pre-paid by snocs, so we only need $1 more for the call
to pop itself



Persistence?

Issue: we can’t spend time credits twice

let ¢ = snoc (snoc (snoc nil 1) 2) 3 in
let (x4, 1) = pop gin - we spend our savings here
let (x2, g2) = pop gin - wrong! we don’t have any savings anymore

— Amortized complexity breaks if an old version of the queue is used

Idea (Okasaki, 1999):

@ compute reversals once = memoize them
@® share reversals among futures = suspend them ahead of time

— Laziness! We use a stream, i.e., a list computed on-demand

type '« stream =« cell thunk
and '« cell = Nil | Cons of "o X ’« stream

Tradeoff: suspending too early would create too many thunks



The banker’s queue

type '« queue = int X '« stream X int X '« list
We enforce that [f| > |r|:

let rebalance ((lenf, f, lenr, r) as q) =
assert (lenf+1 > lenr) ;
if lenf > lenr then g else - re-establish inv. when r grows larger than f:
(lenf+lenr, Stream.append f (Stream.rev_of list r), 0, [])
— 1 create a thunk that will reverse r when forced

let snoc (lenf, f, lenr, r) x =
rebalance (...) — rebalance with element inserted into r

let pop (lenf, f, lenr, r) =
match Stream.pop f with - force the head thunk of f
... rebalance (...) ... — rebalance with head removed from f



Time cost of the banker’s queue

Reversing |r| elements is costly, but is done after |f| elements are popped
= We can anticipate the cost of reversal on that of the previous pops

, each pop absorbs a constant cost

= Because [f| > |r
= Everything is in constant amortized time:
® rebalance costs $1 at worst

® snoc costs $2 at worst

® pop costs (e.g.) $5 amortized



Why it works: credit vs. debit

The banker’s queue can be used persistently
Key idea:

® the non-lazy queue saves credit for an unknown future computation
= not duplicable (cannot forge money)

® the banker’s queue repays a debit for a known past computation
= duplicable (can waste money)

Soundness: you get nothing until you are done repaying (debit # loan)
Basic building blocks: thunks, holding debits:
isThunk t m ¢
Ownership is duplicable:
isThunk t m o —x isThunk t m ¢ % isThunk t m ¢
We can anticipate a debit:

isThunk t; my (Atp. isThunk t, m; )
€8 isThunk t+ (m: -+ m) (\t-. isThunk t- (m-> — m) ©)




Formal proof?

Danielsson (2008) gives a dependent type system (in Agda) for specifying
and verifying amortized costs of programs with thunks

® ad-hoc type system, not a general-purpose program logic

® explicit credit-consuming operations must be inserted in code

Mével et al. (2019) extend Iris with time credits = Iris®
Our contribution: thunks, streams and the banker’s queue (WIP) in Iris®

This talk: thunks



@ Iris® in a nutshell



Iris®

Iris extended with an assertion $n (n € N) satisfying a few laws:

F %0
$(m+n) = $m x $n

We can throw credits away, but not forge nor duplicate them

Each execution step consumes $1:

{$1 x L= v NV =V}

Realized as ghost state: $n 2 o n "™ in the monoid AuTH(N, +)

== E[\[WTC gives the total number of time credits in existence
(kept in an Iris invariant)



Soundness of Iris®

Theorem (Soundness)

If {$n} e {True} is derivable in Iris®, then program e is safe and terminates
in at most n steps.



©® An API for thunks



Implementation of thunks

type ’a thunk ="« thunk_contents ref
and '« thunk_contents =

| Unevaluated of (unit — ’a)

| Evaluated of ’c

let create f =
ref (Unevaluated f)

let force t =
match ! t with
| Unevaluated f —
letv=/f()in — evaluate the thunk

t := Evaluated v; — memoize the result
v

| Evaluated v —
v

Note: no re-entrency detection (2 states only)

—> a static proof obligation will be needed



Desired logical API

We want a persistent assertion isThunk t m ¢ such that:

OVERESTIMATE PAY
isThunk t my ¢ m < m, isThunk t m ¢ $p
isThunk t my ¢ B isThunk t (m— p) ¢

ANTICIPATE+DEDUCE

isThunk t m ¢ Vv.$nxpv= v Vv. persistent(1) v)
B isThunk t (m+ n) 9

{($n — wp f() {}) * Vv. persistent(p v)} {isThunk t 0 v}
create f force t

{At. isThunk t n ¢} {Av. pv}



Desired logical API
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Desired logical API

We want a persistent assertion isThunk t m ¢ such that:

OVERESTIMATE PAY
isThunk t my ¢ m < m, isThunk t m ¢ $p
isThunk t my ¢ B isThunk t (m— p) ¢

ANTICIPATE+DEDUCE

isThunk t m ¢ Yv.$nxOev= OyYv
B isThunk t (m+ n) 9
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{At. isThunk t n ¢} {Av. Opv}



Desired logical API

We want a persistent assertion isThunk t m ¢ such that:

A thunk is evaluated only once:

OVERESTIMAT} these arrows need not be persistent
ISThunk t n] \// ri = 111} ISTTITarint n <70 $p

isThunk t my B isThunk t (m— p) ¢

ANTICIPATE+DEDUCE

isThunk t m ¢ Yv.$nxOev= OyYv
B isThunk t (m+ n) 9

{$n—wp f(){Oe}}  {isThunk t 0 ¢}
create f force t

{At. isThunk t n ¢} {Av. Opv}



Desired logical API

We want a persistent assertion isThunk t m ¢ such that:

OVERESTIMATE PAY
isThunk t my ¢ m < m, isThunk t m ¢ $p
isThunk t my ¢ B isThunk t (m— p) ¢

ANTICIPATE+DED| Re-entrency?
isThunk t m : pv=0Oyv

B isThunk t (m+ n) 9

{$n—wp f(){Oe}}  {isThunk t 0 ¢}
create f force t

{At. isThunk t n ¢} {Av. Opv}



Desired logical API

We want a persistent assertion isThunk t m ¢ such that:

OVERESTIMATE PAY
isThunk t my ¢ m < my isThunk t m $p
isThunk t my ¢ B isThunk t (m — p) ¢
ANTICIPATE+DEDUCE cANFoRCEExcL
isThunk t m ¢ Yv.$nxO¢ev= Oy v canForce canforce
B isThunk t (m+ n) False
{$n = wpf(){Op}}  {isThunk t 0 ¢ * canForce}
create f force t
{At. isThunk t n ¢} {A\v. O¢v * canForce}

where canforce is owned at the beginning of the world



Desired logical API

We want a persistent assertion isThunk t m ¢ such that:

OVERESTIMATE PAY
isThunk t my ¢ m < my isThunk t m $p
isThunk t my ¢ B isThunk t (m — p) ¢
ANT'C'PATE”I How to force a thunk from another thunk? |‘3L
isThunk t @ VV.3n* 1@V = [JPV canForce canforce
B isThunk t (m+ n) False
{$n =+ wpf(){Op}}  {isThunk t 0 ¢ * canForce}
create f force t
{At. isThunk t n ¢} {Av. Opv * canForce}

where canforce is owned at the beginning of the world



Desired logical API

We want a persistent assertion isThunk t N m ¢ such that:

OVERESTIMATE PAY
isThunk t N" my ¢ m < my isThunk t N" m ¢ $p
isThunk t N" m; ¢ E isThunk t N' (m — p) ¢
ANTICIPATE+DEDUCE CANFORCEEXCL
isThunk t N" m ¢ Vv.$nxdev= OvYv canforce N canForce N,
B isThunk t N' (m+ n) ¢ (TM) N (TN,) = @
{$n - wp FO{Tp}} {isThunk t N0 ¢ * canForce N'}
create f force t
{\t. isThunk t N n o} {Av. Opv * canForce N'}

where canfForce T is owned at the beginning of the world



Desired logical API

We want a persistent assertion isThunk t N’ m ¢ such that:

OVERESTIMATE PAY
isThunk t N" my ¢ m < my isThunk t N" m ¢ $p
isThunk t N" m; ¢ E isThunk t N' (m — p) ¢
ANTICIPATE+D| ...But how to pass the token to the inner thunk?
isThunk t T VV- IMX TPV = [V CaTrorce /vy canForce N3
B isThunk t N' (m+ n) ¢ (TM) N (TN,) = @
{$n - wp FO{Tp}} {isThunk t N0 ¢ * canForce N'}
create f force t
{\t. isThunk t N n ¢} {Av. Opv * canForce N'}

where canfForce T is owned at the beginning of the world



Desired logical API

We want a persistent assertion isThunk t N' m R  such that:

OVERESTIMATE PAY
isThunk t N m; R ¢ my < my isThunk t N mR ¢ $p
isThunk t N my R ¢ B isThunk t N' (m— p) R ¢
ANTICIPATE+DEDUCE CANFORCEEXcCL
isThunk t N m R ¢ Vv.$nxOev= Oy v canforce N canfForce N\
B isThunk t N' (m+ n) R4 (M) N(tNR) =@
{$n*x R wpf(){Op*R}}  {isThunk t N O Ry % canForce N' * R}
create f force t
{At. isThunk t N n R ¢} {Av. Opv * canforce N' x R}

where canfForce T is owned at the beginning of the world



Remarks on anticipation

ANTICIPATE+DEDUCE

isThunk t m ¢ Yv.$nxOev= OyYv
B isThunk t (m+ n) ¢

The following is nonsensical, the thunk’s post-cond. must be persistent:
ANTICIPATE
isThunk t m ¢

EisThunk t (m+ n) ($n x )

= We bake deduction with anticipation

= n = 0 gives a deduction rule which allows ghost updates

Rules pAY and ANTICIPATE+DEDUCE allow to derive e.g.:

isThunk t; my (A\ty. isThunk t; my @)
B isThunk t; (m; + m) (Aty. isThunk t, (my — m) @)




O Thunks in Iris®, without anticipation



Tentative invariant

(assuming a ghost name -y, for each location ¢, by convenience)

f.t=> Uf « $p x ($n— wp F() {O¢})
dvit— Ev x Qpv

iSThunk tm (%2 é dn. iioi(f;:iniljry{ * thunkInV tn %2 (slightly wrong, see next slide)

thunkinv t n o = 3p. i:’:l;ﬂt « \/{

Ghost state in AuTH(N, max) records the number of accumulated credits:
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Tentative invariant

(assuming a ghost name -y, for each location ¢, by convenience)
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® ncredits are needed in total
® mcredits are apparently missing (our debit)



Tentative invariant
(assuming a ghost name -y, for each location ¢, by convenience)

f.t=> Uf « $p x ($n— wp F() {O¢})
dvit— Ev x Qpv

ISThunk tm Y = 3” ‘707(75:7”7751}7[ * thunkInV tn %2 (slightly wrong, see next slide)

thunkinv t n o = 3p. i:’:l;ﬂt « \/{

Ghost state in AuTH(N, max) records the number of accumulated credits:

° Ei):}% asserts that exactly p credits have been paid already

° Lo (n—m) 7" witnesses that at least n—m credits have been paid

® ncredits are needed in total
® mcredits are apparently missing (our debit)



Re-entrency and non-atomic invariants

Problem: an Iris invariant can only stay opened around one atomic step

isThunk t  my £ 3n. E@;:lg:ljj% * |thunklnv t n ¢



Re-entrency and non-atomic invariants
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Solution: use a “non-atomic invariant” (Iris’ convenience library)



Re-entrency and non-atomic invariants

Problem: an Iris invariant can only stay opened around one atomic step

isThunk t  my = 3n. iioi(iﬁ:fn:ljj}% * | thunklnv t n ¢

canForce = nalnvTok

Solution: use a “non-atomic invariant” (Iris’ convenience library)

A NA invariant is guarded by an exclusive token



Re-entrency and non-atomic invariants

Problem: an Iris invariant can only stay opened around one atomic step

N : namespace

=T, T TN t N
isThunk t N"'m o 2 3n. 1o (n—m) " * [thunkinv t n

canForce N' = nalnvTok (1N

Solution: use a “non-atomic invariant” (Iris’ convenience library)
A NA invariant is guarded by an exclusive token

F  nalnvlok @
nalnvTok (E1W&,) = nalnvTok & * nalnvTok &,



Re-entrency and non-atomic invariants

Problem: an Iris invariant can only stay opened around one atomic step

N : namespace

=T, T TN t N
isThunk t N"'m o 2 3n. 1o (n—m) " * [thunkinv t n

canForce N' = nalnvTok (1N

Solution: use a “non-atomic invariant” (Iris’ convenience library)
A NA invariant is guarded by an exclusive token

F  nalnvlok @
nalnvTok (E1W&,) = nalnvTok & * nalnvTok &,

Thus, it can stay opened for as long as we want:
NA-INV-ACC

N nalnvTok (T\) tNVCE
EEE >P % (|> P 535 nalnvTok (TN’))




persistence ¥
OVERESTIMATE

PAY ¥
ANTICIPATE+DEDUCE %
CANFORCEEXCcL ¥/
spec of create ¥

spec of force ¥

Proving the API



@ Thunks in Iris®, with anticipation



f
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Example scenario

create a thunk with debit 5
and post-cond. ¢y

isThunk t 5 g
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Example scenario
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Example scenario
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Example scenario

f
I
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Example scenario
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Example scenario
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Example scenario
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Example scenario
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Example scenario
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Example scenario
W
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Example scenario

isThunk t 5 g
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Example scenario
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Example scenario
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pay $10

Example scenario

isThunk t 5 g

—$2

sThunk t

[}

—$3

unkt(5—|—2+3)

(5+2) ©1

¥2

1S

Thunk t (04 0) ¢



pay $10

1

sThunk t

(%5 are wasted)

Example scenario

isThunk t 5 g

isThunk t (5 + 2) ¢;

(04+040) ¢z

1S

Thunk t (04 0) ¢



Example scenario
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Example scenario

isThunk t 5 g
sThunk t(5+2) ¢ Thunk t (04 0) ¢}

isThunk t (04 0+ 0) ¢,



Example scenario

isThunk t 5 g
/sThunk t(5+2) ¢4 Thunk t (0+0) ¢}

i1sThunk t (04 0+ 0) ¢



Example scenario

isThunk t 5 g

sThunk t(5+2) ¢4 Thunk t (0+0) ¢}

isThunk t (0 + 0 +0) ¢,



Tower of invariants

Idea: stack a new invariant each time ANTICIPATE+DEDUCE is used
— Tower of invariants
(assuming a ghost name -y, 4 for each location t, and integer d, by convenience)
If. t—=Uf *$p * ($n—wp f(){Oy
dv.t—Ev x Qev

csins £ 2 3p. ap {20 2 (ST VY

isThunk t0mp 2 3p.n. 0 < m—p<n * [qféj%’o *
isThunk td m o 2 Tp, 260 < m—p < n x [op™

* isThunk t (d—1) (m—n+p) ¢

thunkinv t n p = 3p. i:’:l;j%o N \/{

Each level (d € N) has its own vault (v 4) for filling a debit



® Streams



Implementation of streams

type ‘'« stream =« cell thunk — a stream is computed on-demand
and '« cell = Nil | Cons of *a X ’« stream

let pop (xs : '« stream) =
match Thunk.force xs with
| Cons (x, xs') — Some (x, xs')
| Nil — None

let rev_of list (xs:’« list) : ’av stream =

let rec rev_app (xs: "« list) (ys : '« cell) = — rev_app reverses the list eagerly
match xs with — | these new thunks have cost 0
| x::xs' — rev_app xs' (Cons (x, Thunk.create@@fun()— ys))
[ = ysin

Thunk.create@@fun()— rev_app xs Nil — this leading thunk is costly

let rec append (xs : ’a stream) (ys : ’a stream) =
Thunk.create@@fun()— — this thunk has a constant overhead
match Thunk.force xs with
| Cons (x, xs’) — Cons (x, append xs' ys)
| Nil — Thunk.force ys



Stream predicate (simplified)

A stream is a thunk which computes a value and another thunk (its tail)
A stream has a list of debits, those required for computing the successive

elements of the stream:

isStream s [mg, ..., m,] [vi, ..., va] 2
isThunk s mg (Acy. 3s1. ¢ = Cons(vy, s1) *

isThunk s1 my (Acy. 3sp. ¢ = Cons(vy, 52) *

isThunk s, m, (Acpt1. cpr1 = Nil)...))



Logical API of streams

PAYSTREAM
isStream s [my, ..., my] [v1, ..., Vi $p
isStream s [mg, ..., m; — p, ..., mp] [v1, ..., Vp]

ANTICIPATE+OVERESTIMATESTREAM

isStream s [mg, ..., my] [v1, ..., Vn] Vk. Z m; < Z m

i<k i<k
B> isStream s [my, ..., m))] [vi, ..., V]
{isStream s [my, ..., my] [v1, ..., va] * isStream s’ [m),...,m ] [v},...,V]}
append s s
{At. isStream t [A+ mg, ..., A+ m, + my, my, ..., m ] [vi, ..o, v, vp, s V] )

{isList £ [vq, ..., vqa|}
rev_of _list ¢
{As. isStream s [B - n, 0, ...,0] [vq, ..., v1]}



Generations

We address nested thunks with generations g € N:

isStream s [my, ..., my] [vi, ..., va] =
3go. isThunk s N'(go) mo (nalnvTok £(go)) (Aci. Is1. ¢ = Cons(vy, s1) *
E]g1 < £o- isThunk s, N(g1) m (nalanok g(g1)) ()\Cz. dsy. ¢ = CO”S(Vz

g, < gn1. isThunk s, N'(g,) m, (nalnvTok £(g,)) (Acnt1- Cop1 =

where:

£(g) = T\ tN(g)
E(g) S &(g+1)
TN (g+1) CTN(g)



Conclusion

Highlights of the proof of the banker’s queue:

® anticipation of debit
not obvious to state
even less obvious to ensure

® generations for nested thunks

https://gitlab.inria.fr/gmevel/iris-time-proofs


https://gitlab.inria.fr/gmevel/iris-time-proofs
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