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“Solved Problem Syndrome”

We have been too successful 
with parallel computing, 
low-cost abstractions: users 
are actually comfortable with 
them now, with development 
environment support

“Challenge for PPoPP”

Missed opportunity for 
parallelism experts to reach 
out to users, applications, 
multidisciplinary research

“Systems People Still Care”

Bridging the abstraction wall: 
interaction and reuse across 
abstractions, e.g., with 
heterogeneous computing, 
scaling engineering efforts

Personal Background

https://scholar.google.com/citations?user=_KMsPngAAAAJ

https://research.google/people/106208

● Parallelizing compilation

● Polyhedral compilation

● Compiler construction

● Machine learning applied to compiler construction

● Data-flow and synchronous programming languages

● Task-parallel programming languages
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ML   ←?→   Compilers



ML is: Data, Algorithms and Compute

Data drives the continuous improvement
cycle for ML models

Researchers provide new algorithmic innovations 
unlocking new techniques and models

Compute allows it all to scale as datasets get larger 
and algorithms need to scale on that accordingly

Data
Algorithms

Compute
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ML is: Data, Algorithms, Compile and Compute

Compilation is key to ML systems 
performance and portability

Tensor compilers in particular

Diversity and competing requirements 
from users, and hardware

ML is key to solving future compilation 
problems

Data
Algorithms

Compute Compile
5



6

CNTK

Machine Learning
SW and HW



None of this is scaling

Relief from Programming Languages? 
Compiler Construction?
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MLIR:
Scaling Compiler Infrastructure for Domain Specific Computation
CGO, March 1, 2021

Chris Lattner1,2, Mehdi Amini1, Uday Bondhugula1,3, Albert Cohen1, Andy Davis1,
Jacques Pienaar1, River Riddle1, Tatiana Shpeisman1, Nicolas Vasilache1, Oleksandr Zinenko1

(and many more MLIR contributors)
1Google Inc.      2Now at SiFive modular.ai       3Indian Institute of Science, Bangalore 9



A collection of modular and reusable 
software components that enables the 

progressive lowering of ML operations, to 
efficiently target hardware in a common way

MLIR — Multi-Level Intermediate Representation
blog post - 9/9/2019

https://mlir.llvm.org
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Why build the (N+1)-th compiler 
infrastructure?



LLVM: Industry Standard for Compiler Infrastructure

LLVM IR is not enough for high-level 
representations

There is a huge abstraction gap between 
ASTs and LLVM IR, covered in a one-shot 
conversion in Clang

Clang has a representation parallel to 
ASTs used in static analyzers, advanced 
diagnostics

LLVM IR Machine IRGlobalISel MC IR

LLVM IR is not enough for 
low-level representations

Multiple lower levels of abstraction 
introduced over time

clang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

clang CFG
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LLVM: Industry Standard for Compiler Infrastructure

Newer languages/compilers define 
custom intermediate representations 
between AST and LLVM IR for 
language-specific analyses and 
transformations

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

13



Also Domain-Specific Languages…

LLVM IR Machine IRGlobalISel MC IR

Modern ML frameworks include 
domain-specific compilers

Yet there is no common 
infrastructure (and sometimes even 
understanding) to support this

clang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API, 
Keras
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How much code in this picture is unique?

LLVM IR Machine IRGlobalISel MC IR

● Type system support
● CSE, DCE and other 

“canonicalizations”
● Location tracking and diagnostics
● Pass management
● Regions, basic blocks, statements
● Conversions and validations
● Tooling for tests, benchmarks, etc

clang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API, 
Keras
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MLIR Design



Design principles

Parsimony Traceability Progressivity

In compilers, some things are intrinsically 
complex, avoid making easy things 
incidentally complex. A small set of 
versatile built-in concepts enables wide 
extensibility of the system.

It is almost always easier to preserve 
information than to recover it. Keep the 
compiler accountable: systematic 
verification and serializability of the IR. 
Declarative specification of IR elements 
and transformations.

In compilers, premature lowering is the 
predecessor of all evil. Preserve high-level 
abstractions as long as necessary, lower 
them consciously. Embrace diverging 
flows and extensibility. Intermediate state 
is important in an IR.



Design requirements

Parsimony Traceability Progressivity

- Everything extensible
- SSA graphs + regions

- Pervasive source location info 
- Declarative specification

- Support high-level abstractions
- Progressive lowering



IR Structure

Operation Region Block

Operation is the unit of semantics wrt 
execution. The semantics of operations 
specify what is computed and how. There 
is no fixed set of operations.

A container attached to an operation that 
can (indirectly) contain other operations. 
Either SSA dominance-based CFG or 
graph. Lexically scoped, may be “isolated 
from above”.

A list of operations contained in a region 
with no control flow. The last operation in 
a block is a terminator that can transfer 
control flow to blocks or regions.

%res:2 = "mydialect.morph"(%input#3) { some.attribute : true, other_attribute : 1.5 }
       ({
       ^bb0:
         "mydialect.nested"() : () -> ()
         "mydialect.terminator"() : () -> ()
       })
       : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
       loc(callsite("foo" at "mysource.cc":10:8))
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IR Structure

Operation Region Block

Operation is the unit of semantics wrt 
execution. The semantics of operations 
specify what is computed and how. There 
is no fixed set of operations.

A container attached to an operation that 
can (indirectly) contain other operations. 
Either SSA dominance-based CFG or 
data-flow graph. Lexically scoped.

A list of operations contained in a region 
with no control flow. The last operation in 
a block is a terminator that can transfer 
control flow to blocks or regions.

%res:2 = "mydialect.morph"(%input#3) { some.attribute : true, other_attribute : 1.5 }
       ({
       ^bb0:
         "mydialect.nested"() : () -> ()
         "mydialect.terminator"() : () -> ()
       })
       : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
       loc(callsite("foo" at "mysource.cc":10:8))

20



IR Structure

Operation Region Block

Operation is the unit of semantics wrt 
execution. The semantics of operations 
specify what is computed and how. There 
is no fixed set of operations.

A container attached to an operation that 
can (indirectly) contain other operations. 
Either SSA dominance-based CFG or 
graph. Lexically scoped, may be “isolated 
from above”.

A list of operations contained in a region 
with no control flow. The last operation in 
a block may be a terminator that can 
transfer control flow to other blocks.
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%res:2 = "mydialect.morph"(%input#3) { some.attribute : true, other_attribute : 1.5 }
       ({
       ^bb0:
         "mydialect.nested"() : () -> ()
         "mydialect.terminator"()[^bb0] : () -> ()
       })
       : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
       loc(callsite("foo" at "mysource.cc":10:8))



IR Structure is Recursive
Operation

Region
Block

Operation
Region

Block

Block

Block

Region
Block

Operation
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IR Objects

Value Type Attribute

Values are units of runtime data. They are 
defined and used by operations. Values 
obey static single assignment (SSA) rule. 
Value names are transient.

Types describe compile-time information 
about a value. Each value has a type. 
Operation specifies types of defined and 
used values. The type system is open.

Attributes describe compile-time 
information about an operation. They may 
be optional or mandatory as per operation 
semantics. The attribute system is open.

%res:2 = "mydialect.morph"(%input#3) { some.attribute : true, other_attribute : 1.5 }
       ({
       ^bb0:
         "mydialect.nested"() : () -> ()
         "mydialect.terminator"() : () -> ()
       })
       : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
       loc(callsite("foo" at "mysource.cc":10:8))

23



IR Extensibility Hooks

Operation Type Attribute

No fixed set of operations. Examples:
- “machine” integer arithmetic;
- saturating integer arithmetic;
- LLVM IR intrinsics (first-class!);
- TensorFlow operations;
- affine loops and conditionals;
- semiconductor circuits, ...

The type system is open. Examples:
- nD “machine” vectors;
- ranked and unranked tensors;
- all of LLVM IR types;
- functions;
- Fortran types, ...

The attribute system is open. Examples:
- integer or string values;
- file:line:col locations;
- affine maps;
- opaque AST node pointers;
- binary blobs;
- containers of other attributes, ...

Dialect
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Dialect ~ abstraction level:
LLVM IR, Fortran FIR, Swift SIL, XLA HLO, TensorFlow Graph, …

A dialect can define:
Operations
Type system(s)
Customization hooks: constant folding, decoding, …

An operation can define:
Invariants on # operands, types, results, attributes, …
Custom parser, printer, verifier, …
Canonicalization patterns, …

Dialects: families of attributes, operations, types
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Syntax In a Nutshell

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
             : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

Name of the
results

Op Id
Number of 

values returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location



Users and Uses



● Multiple internal representations 
(graph, protobuf)

● Conversions between TF 
ecosystem parts (TF, TFLite)

● Ad-hoc in-memory data structures

TensorFlow

LLVM IR Machine IRGlobalISel MC IRclang AST
C, C++, ObjC, 

CUDA, 
OpenCL, ...

swift AST

rust AST

julia AST

fortran AST

SIL

MIR

julia IR

FIR

Swift

Rust

Julia

Fortran

TF graph

XLA HLO

Tensor RT

TFLite

TF API, 
Keras
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TensorFlow Graphs

%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
               %arg2 : !tf.resource) {
  // Execution of these operations is asynchronous, the %control
  // return value can be used to impose extra runtime ordering,
  // for example the assignment to the variable %arg2 is ordered
  // after the read explicitly below.
  %1, %control = tf.ReadVariableOp(%arg2)
      : (!tf.resource) -> (tensor<f32>, !tf.control)
  %2, %control_1 = tf.Add(%arg0, %1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  %control_2 = tf.AssignVariableOp(%arg2, %2, %control)
      : (!tf.resource, tensor<f32>) -> !tf.control
  %3, %control_3 = tf.Add(%2, %arg1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}
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TensorFlow Graphs

%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
               %arg2 : !tf.resource) {
  // Execution of these operations is asynchronous, the %control
  // return value can be used to impose extra runtime ordering,
  // for example the assignment to the variable %arg2 is ordered
  // after the read explicitly below.
  %1, %control = tf.ReadVariableOp(%arg2)
      : (!tf.resource) -> (tensor<f32>, !tf.control)
  %2, %control_1 = tf.Add(%arg0, %1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  %control_2 = tf.AssignVariableOp(%arg2, %2, %control)
      : (!tf.resource, tensor<f32>) -> !tf.control
  %3, %control_3 = tf.Add(%2, %arg1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}

Tensors are SSA values: DCE, CSE, 
etc apply seamlessly

The Graph is an operation with an 
attached region (no traditional CFG)
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TensorFlow Graphs

%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
               %arg2 : !tf.resource) {
  // Execution of these operations is asynchronous, the %control
  // return value can be used to impose extra runtime ordering,
  // for example the assignment to the variable %arg2 is ordered
  // after the read explicitly below.
  %1, %control = tf.ReadVariableOp(%arg2)
      : (!tf.resource) -> (tensor<f32>, !tf.control)
  %2, %control_1 = tf.Add(%arg0, %1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  %control_2 = tf.AssignVariableOp(%arg2, %2, %control)
      : (!tf.resource, tensor<f32>) -> !tf.control
  %3, %control_3 = tf.Add(%2, %arg1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}

Resource modeling
(explicit state, I/O etc.)
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TensorFlow Graphs

%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
               %arg2 : !tf.resource) {
  // Execution of these operations is asynchronous, the %control
  // return value can be used to impose extra runtime ordering,
  // for example the assignment to the variable %arg2 is ordered
  // after the read explicitly below.
  %1, %control = tf.ReadVariableOp(%arg2)
      : (!tf.resource) -> (tensor<f32>, !tf.control)
  %2, %control_1 = tf.Add(%arg0, %1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  %control_2 = tf.AssignVariableOp(%arg2, %2, %control)
      : (!tf.resource, tensor<f32>) -> !tf.control
  %3, %control_3 = tf.Add(%2, %arg1)
      : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}

Execution ordering through 
token-typed values
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TensorFlow Graph Lowering: Mix and Match in a Single IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
    : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “xla_hlo.AllToAll"(%z)
          {split_dimension: 1, concat_dimension: 0, split_count: 2}
    : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = llvm.add %a, %b 
    : !llvm.float

Lo
w

er
in

g



Widely explored in compiler research
Great success in HPC and image processing kernels.
Tensor abstraction gives full control over memory layout.

Strong mathematical foundation
Powerful loop dependence analysis and loop transformations.

Simplified polyhedral form in MLIR
Brings all the benefits of SSA form, e.g., sparse analyses.
Accessible to compiler engineers without needing a PhD.
Avoids exponential algorithms.

Polyhedral Optimization
Uday Bondhugula “High Performance Code Generation in MLIR: An Early Case Study with GEMM”,  arXiv:2003.00532



Polyhedral Optimization

func @matmul_square(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
  %zero = constant 0 : f32
  %n = dim %A, 0 : memref<?x?xf32>

  affine.for %i = 0 to %n {
    affine.for %j = 0 to %n {
      affine.store %zero, %C[%i, %j]   : memref<?x?xf32>
      affine.for %k = 0 to %n {
        %a    = affine.load %A[%i, %k] : memref<?x?xf32>
        %b    = affine.load %B[%k, %j] : memref<?x?xf32>
        %prod = mulf %a, %b            : f32
        %c    = affine.load %C[%i, %j] : memref<?x?xf32>
        %sum  = addf %c, %prod         : f32 
        affine.store %sum, %C[%i, %j]  : memref<?x?xf32> 
      }
    }
  }
  return
}



Polyhedral Optimization
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Leverages nD structure of standard types.



Polyhedral Optimization
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Leverages nD structure of standard types.
Affine loops are first-class operations; affine constraints are 
implemented in the verifier.



Polyhedral Optimization

func @matmul_square(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
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Affine loops are first-class operations; affine constraints are 
implemented in the verifier.
Load/store operations accept affine maps.



Polyhedral Optimization

func @matmul_square(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
  %zero = constant 0 : f32
  %n = dim %A, 0 : memref<?x?xf32>

  affine.for %i = 0 to %n {
    affine.for %j = 0 to %n {
      affine.store %zero, %C[%i, %j]   : memref<?x?xf32>
      affine.for %k = 0 to %n {
        %a    = affine.load %A[%i, %k] : memref<?x?xf32>
        %b    = affine.load %B[%k, %j] : memref<?x?xf32>
        %prod = mulf %a, %b            : f32
        %c    = affine.load %C[%i, %j] : memref<?x?xf32>
        %sum  = addf %c, %prod         : f32 
        affine.store %sum, %C[%i, %j]  : memref<?x?xf32> 
      }
    }
  }
  return
}

Leverages nD structure of standard types.
Affine loops are first-class operations; affine constraints are 
implemented in the verifier.
Load/store operations accept affine maps.
Introduce operations from other dialects for computation.



Unified Accelerator and Host Representation
  llvm.mlir.global internal @global(42 : i64) : !llvm.i64

  func @some_func(%arg0 : memref<?xf32>) {

    %cst = constant 8 : index

    gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst,

                                         %grid_z = %cst)

               threads(%tx, %ty, %tz) in (%block_x = %cst, %block_y = %cst,

                                          %block_z = %cst) {

      gpu.call @device_function() : () -> ()

      %0 = llvm.mlir.addressof @global : !llvm<"i64*">

      gpu.return

    }

    return

  }

  gpu.func @device_function() {

    gpu.call @recursive_device_function() : () -> ()

    gpu.return

  }

  gpu.func @recursive_device_function() {

    gpu.call @recursive_device_function() : () -> ()

    gpu.return

  }



Proprietary + Confidential

High-performance codegen approach based on keeping high-level information available in the IR 

● A way to represent operations in the IR that makes them easy to analyze and transform

○ e.g. matmul, kfac, conv, pointwise etc -> configurations of a “generic custom op”

■ TC/einsum-like definition encoded in the IR but much more powerful: 

● Matmul -> C(i, j) += A(i, k) + B(k, j)

● Conv1d ->  O(n, w, f) += I(n, w + kw, c) * K(kw, c, f)

Structured Ops
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○ e.g. matmul, kfac, conv, pointwise etc -> configurations of a “generic custom op”

■ TC/einsum-like definition encoded in the IR but much more powerful: 

● Matmul -> C(i, j) += A(i, k) + B(k, j)

● Conv1d ->  O(n, w, f) += I(n, w + kw, c) * K(kw, c, f)

● A way to decouple op specification from the data type it operates on:
○ matmul(%a: sparse_tensor<4x?xf32, #CSC>, %b: tensor<?x8xf32>, c: tensor<4x8xf32>)-> (tensor<4x8xf32>)

○ matmul(%a: buffer<4x?xf32>, %b: buffer<?x8xf32>, c: buffer<4x8xf32>)

○ matmul(%a: vector<4x16xf32>, %b: vector<16x8xf32>, c: vector<4x8xf32>)-> (vector<4x8xf32>)

Structured Ops
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High-performance codegen approach based on keeping high-level information available in the IR 

● A way to represent operations in the IR that makes them easy to analyze and transform

○ e.g. matmul, kfac, conv, pointwise etc -> configurations of a “generic custom op”

■ TC/einsum-like definition encoded in the IR but much more powerful: 

● Matmul -> C(i, j) += A(i, k) + B(k, j)

● Conv1d ->  O(n, w, f) += I(n, w + kw, c) * K(kw, c, f)

● A way to decouple op specification from the data type it operates on:
○ matmul(%a: sparse_tensor<4x?xf32, #CSC>, %b: tensor<?x8xf32>, c: tensor<4x8xf32>)->(tensor<4x8xf32>)

○ matmul(%a: buffer<4x?xf32>, %b: buffer<?x8xf32>, c: buffer<4x8xf32>)

○ matmul(%a: vector<4x16xf32>, %b: vector<16x8xf32>, c: vector<4x8xf32>) -> (vector<4x8xf32>)

● A way to decouple op specification from the control flow required to implement it
○ matmul(%a: buffer<4x?xf32>, %b: buffer<?x8xf32>, c: buffer<4x8xf32>)->(buffer<4x8xf32>)

■ Implies a 3-D control-flow iteration space of size 4x?x8

Structured Ops



Proprietary + Confidential

What does this look like?
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Proprietary + Confidential

Transformations 

Tile, Fuse, Interchange, Multi-Level Vectorize, Bufferize, Pipeline, etc etc etc 
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Transformations 

Tile, Fuse, Interchange, Multi-Level Vectorize, Bufferize, Pipeline, etc etc etc 

The result of each transformation is materialized in the IR and composes with all the rest.

● Avoids “C++ in-memory”-only representation fishiness and action at a distance



Proprietary + Confidential

Transformations 

Tile, Fuse, Interchange, Multi-Level Vectorize, Bufferize, Pipeline, etc etc etc 

The result of each transformation is materialized in the IR and composes with all the rest.

● Avoids “C++ in-memory”-only representation fishiness and action at a distance

Every value is a tunable knob



● Tensor Linear Algebra Compiler 
(TACO)

● Particularly interesting for its 
flexibility in sparse code 
generation

Sparse code generation

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
The tensor algebra compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (October 2017)



Sparse code generation in MLIR: Sparsity as a Property

#trait_matvec = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>,  // A
    affine_map<(i,j) -> (j)>,    // x
    affine_map<(i,j) -> (i)>     // b
  ],
  // Per-tensor, per-dimension annotation
  sparse = [
    [ "D", "S" ],  // A
    [ "D" ],       // x
    [ "D" ]        // b
  ],
  iterator_types = [
    "parallel",
    "reduction"
  ],
  doc = "b(i) += A(i,j) * x(j)”
}

func @matvec(%argA: tensor<16x32xf32>,
             %argx: tensor<32xf32>,
             %argb: tensor<16xf32>)
                       -> tensor<16xf32> {
  %0 = linalg.generic #trait_matvec
 ins(%argA, %argx :
        tensor<16x32xf32>,
        tensor<32xf32>)
     init(%argb : tensor<16xf32>) {
        ^bb(%A: f32, %x: f32, %b: f32):
            %0 = mulf %A, %x : f32
            %1 = addf %0, %b : f32
            linalg.yield %1 : f32
      } -> tensor<16xf32>
    return %0 : tensor<16xf32>
}



MLIR Pattern Matching and Rewrite
~ Instruction Selection problem.



MLIR Pattern Matching and Rewrite
An MLIR dialect to manipulate MLIR IR

func @matcher(%0 : !Operation) {

^bb0:

  CheckArgCount(%0) [^bb1, ^ex0] {count = 2}

       : (!Operation) -> ()

^bb1:

  CheckOpName(%0) [^bb2, ^bb5] {name = "add"}

       : (!Operation) -> ()

^bb2:

  %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

  %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

  ValueEqualTo(%1, %2) [^rr0, ^bb3] : (!Value, !Value) -> ()

^rr0:

  // Save x

  RegisterResult(%1) [^bb3] {id = 0} : (!Value) -> ()

^bb3:

  %3 = GetDefiningOp(%2) : (!Value) -> !Operation

  CheckOpName(%3) [^bb4, ^bb5] {name = "mul"}

       : (!Operation) -> ()

^bb4:

  CheckArgCount(%3) [^rr1, ^bb5] {count = 2}

       : (!Operation) -> ()

^rr1:

  // Save x, y, and z

  %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value

  %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value

  RegisterResult(%1, %4, %5) [^bb5] {id = 1}

       : (!Value, !Value, !Value) -> ()

^bb5:

  // Previous calls are not necessarily visible here

  %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

  %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

  ValueEqualTo(%6, %7) [^bb6,  ^ex0] : (!Value, !Value) -> ()

^bb6:

  CheckOpName(%0) [^rr2, ^ex0] {name = "mul"}

       : (!Operation) -> ()

^rr2:

  // Save x

  RegisterResult(%6) [^ex0] {id = 2} : (!Value) -> ()

^ex0:

  return

}



Implications of MLIR Design



Designing Abstractions for Reuse

Traits Interfaces Passes

Many transformations need not care 
about specific operations, but can be 
expressed on generic traits.
Establish operation/transform contracts.

Good old OOP is helpful to specialize pass 
behavior for specific operations. E.g., 
operations that know how to constant- 
fold themselves implement an interface.

Generic passes may be expressed on 
traits and interfaces. Dialect-specific 
passes are a great tool to perform 
domain-specific transformations.



Example: Loop-Invariant Code Motion

Top-Level Op Structure “Loop-Like” Op Interface Nested Op Traits

An operation with regions.
No need to know if it’s an affine “for”,
a C-like “while”, or anything else.

Functions to:
- check if a value is defined outside the 
loop (not necessarily a flat SSA CFG);
- get the loop body region;
- hoist operations out of the body.

- Has no side effects
  (extensible to side-effects interface);
- Has recursive side effects.
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Designing Abstractions for Composition

Mixing Dialects External Interoperability

Dialects are not necessarily hermetic. 
Reuse other abstractions when possible 
and deconstruct larger dialects if needed.
Always assume abstractions co-exist.

External formats are messy, often binary 
or otherwise hard to test. Map them to a 
dialect and make the translation as simple 
as possible, then transform within MLIR.
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What the future holds



Driving HW/SW Research

Domain and HW-specific IRs Extensible Type Systems Built for Optimization

Domain-specific constructs represented 
as MLIR dialects, leveraged by advanced 
transformations. No separation between 
“instructions” and “intrinsics”, support 
entire ISAs as target dialects. Hardware 
design as software problem.

Build and experiment with unconventional 
data types (quantized numbers or 
mixed-precision floating point).
More expressive type systems from 
functional languages, separation logic, 
borrow checking.

Transformation-driven IR abstractions:
algorithm specifications vs. schedules.
Fast sub-polyhedral abstractions. Various 
parallelism models, including 
asynchronous. Search-based program 
optimization.



Search and ML for Compilers

Expose Compiler Knobs Tackle NP-hard Problems

Separate implementations of program 
transformations from compiler heuristics. 
Give control to the expert user or to 
external tools to enable cross-pollination 
between compiler and ML research.

Replace handwritten heuristics, which are 
often suboptimal and expensive to deploy, 
with learned transformation strategies. 
Prepare for the “jungle” of upcoming 
hardware by automating (re)optimization.



Summary



MLIR Is Changing Compiler Construction

Minimalist Principles Flexible Core Concepts Reusable Transformations

MLIR is a novel compiler infrastructure 
based on the principles of:

- Parsimony;
- Traceability;
- Progressivity

supporting unprecedented extensibility.

The built-in IR concepts:
- Nested structure of operations, 

regions, blocks;
- Operating on typed (SSA) values 

and attributes
allow for expressing various abstractions.

Rethink compiler transformations in terms 
of abstract properties of operations rather 
than exhaustive lists.

Mix-and-match different abstractions, 
easy to experiment.
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Getting involved
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MLIR is available
Code: https://mlir.dev/src
Forum: https://mlir.dev/forum
Chat: https://mlir.dev/chat
Main: https://mlir.dev

MLIR is designed for out-of-tree users
Most examples in this presentation are out of LLVM code tree.

Interested? mlir-hiring@google.com

MLIR is Open-Source within LLVM project

https://mlir.dev/src
https://mlir.dev/forum
https://mlir.dev/chat
https://mlir.dev


Google Brain PAR/ZRH — C2L2C

Compile to Learn
High-performance ML layers, generated automatically
Compilation algorithms tailored for tensor computing

Learn to Compile
Automatic construction of profitability models, heuristics

Heuristics, performance auto-tuning


