
Faster Reachability
Analysis for LR(1) Parsers

Frédéric Bour
Tarides & Inria
Paris, France

François Pottier
Inria

Paris, France

Plan

• The reachability problem for LR(1) automata
• State-of-the-art solution & performance comparison
• Main ideas of our contribution
• Conclusion

Reachability in LR(1) automata

What is the problem?

“Can the automaton reach a configuration (s,z) ?”
• s is the current state
• z is the first unconsumed symbol

What is the problem?

“Can the automaton reach a configuration (s,z) ?”
• s is the current state
• z is the first unconsumed symbol

In practice, we also want a minimal sentence that reaches this configuration.

Why solve it?

Why solve it?

• Test case generation

Why solve it?

• Test case generation

• Negative test cases (our main focus)
Enumerate sentences that cause errors in all states that can fail
(Jeffery 2003, Pottier 2016)

Why solve it?

• Test case generation

• Negative test cases (our main focus)
Enumerate sentences that cause errors in all states that can fail
(Jeffery 2003, Pottier 2016)

Assistance to write error message:

translation_unit_file: INT PRE_NAME VAR_NAME EQ XOR_ASSIGN
Ends in an error in state: 561.

Ill-formed init declarator.
At this point, an initializer is expected.

Why solve it?

• Test case generation

• Negative test cases (our main focus)
Enumerate sentences that cause errors in all states that can fail
(Jeffery 2003, Pottier 2016)

• Positive test cases
Cover all reductions for regression testing,
check compatibility between different grammar versions,
...

Why solve it?

• Test case generation

• Negative test cases (our main focus)
Enumerate sentences that cause errors in all states that can fail
(Jeffery 2003, Pottier 2016)

• Positive test cases
Cover all reductions for regression testing,
check compatibility between different grammar versions,
...

• Syntactic completion, syntactic error recovery, ...

State-of-the-art solution &
performance comparison

Pottier’s algorithm (2016)

Pottier’s algorithm (2016)

• Implemented in the Menhir parser generator

Pottier’s algorithm (2016)

• Implemented in the Menhir parser generator

• Applied to CompCert to obtain high-quality error messages

Pottier’s algorithm (2016)

• Implemented in the Menhir parser generator

• Applied to CompCert to obtain high-quality error messages

But it does not scale well!

Pottier’s algorithm (2016)

A few data points:
• CompCert (C): 25s and 529MB
• Unicon: 566s and 8.5GB

Problems:
• Too slow for interactive use
• Painful for grammar maintainers

Pottier’s algorithm (2016)

The algorithm works in two steps:

Pottier’s algorithm (2016)

The algorithm works in two steps:

1. For each transition, find the shortest input that allows taking it
(while satisfying constraints on lookahead tokens)

Pottier’s algorithm (2016)

The algorithm works in two steps:

1. For each transition, find the shortest input that allows taking it
(while satisfying constraints on lookahead tokens)

2. Generate minimal sentences by taking consecutive transitions

Pottier’s algorithm (2016)

The algorithm works in two steps:

1. For each transition, find the shortest input that allows taking it
(while satisfying constraints on lookahead tokens)

2. Generate minimal sentences by taking consecutive transitions

The bottleneck by far is step 1.
We propose a new algorithm to solve it.

Our contribution: speeding up the analysis!

Original algorithm.

Our contribution: speeding up the analysis!

First step: a “naïve” matrix-based formulation (faster! but memory hungry)

Our contribution: speeding up the analysis!

Second step: compact matrices, two to three orders of magnitude better, in time and space.

Our contribution: speeding up the analysis!

Updated data points:
• CompCert (C): 0.10s and 12MB (was 25s and 529MB)
• Unicon: 0.28s and 32MB (was 566s and 8.5GB)

Our contribution: speeding up the analysis!

Updated data points:
• CompCert (C): 0.10s and 12MB (was 25s and 529MB)
• Unicon: 0.28s and 32MB (was 566s and 8.5GB)

Can still take some time: a “rich” C++ grammar that takes 56s and 2.7GB.
(grammar from “Diff/TS: A tool for fine-grained structural change analysis” by Hashimoto and Mori)

Idea #1: costs with matrices

An example grammar

Let’s consider this LR(1) grammar:

S ::= T a
 | T b b

T ::= a
 | a a

The automaton

It turns into the following LR(1) automaton, with one SHIFT/REDUCE conflict

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a reduce T ::= a

s0

s5

s1

s3
b

T ::= a a . reduce T ::= a a

s6

b?

S ::= T a . reduce S ::= T a

s2

a

S ::= T b b . reduce S ::= T b b

s4

a?

b

reduce T ::= a
a

The automaton

It turns into the following LR(1) automaton, with one SHIFT/REDUCE conflict

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a reduce T ::= a

s0

s5

s1

s3
b

T ::= a a . reduce T ::= a a

s6

b?

S ::= T a . reduce S ::= T a

s2

a

S ::= T b b . reduce S ::= T b b

s4

a?

b

reduce T ::= a
a

T ::= a .
 | a . a

The automaton

It turns into the following LR(1) automaton, with one SHIFT/REDUCE conflict

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a reduce T ::= a

s0

s5

s1

s3
b

T ::= a a . reduce T ::= a a

s6

b?

S ::= T a . reduce S ::= T a

s2

a

S ::= T b b . reduce S ::= T b b

s4

a?

b

reduce T ::= a
a

T ::= a .
 | a . a

The automaton

It turns into the following LR(1) automaton, with one SHIFT/REDUCE conflict

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a reduce T ::= a

s0

s5

s1

s3
b

T ::= a a . reduce T ::= a a

s6

b?

S ::= T a . reduce S ::= T a

s2

a

S ::= T b b . reduce S ::= T b b

s4

a?

b

reduce T ::= a
a

T ::= a .
 | a . a

Conflict resolution

Let’s say we decide to SHIFT

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

reduce T ::= a
a?

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

Conflict resolution

Let’s say we decide to SHIFT

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

Conflict resolution

Let’s say we decide to SHIFT

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a
reduce T ::= a

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

cost(s0, T)

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

cost(s0, T)
 cost(s0, a)

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a
reduce T ::= a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

reduce T ::= a a

reduce T ::= a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

reduce T ::= a a

reduce T ::= a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)
 cost(s0, T) + cost(s1, a)
 cost(s0, T) + cost(s1, b) + cost(s3, b)

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

reduce S ::= T a

reduce S ::= T b b

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)
 cost(s0, T) + cost(s1, a)
 cost(s0, T) + cost(s1, b) + cost(s3, b)
= 2

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)
 cost(s0, T) + cost(s1, a)
 cost(s0, T) + cost(s1, b) + cost(s3, b)
= 2

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)
 cost(s0, T) + cost(s1, a)
 cost(s0, T) + cost(s1, b) + cost(s3, b)
= 2

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

 cost(s0, a)

 cost(s0, T) + cost(s1, a)

reduce S ::= T a

reduce T ::= a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)
 cost(s0, T) + cost(s1, a)
 cost(s0, T) + cost(s1, b) + cost(s3, b)
= 2

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

≠

 cost(s0, a)

 cost(s0, T) + cost(s1, a)

reduce S ::= T a

reduce T ::= a

cost(s0, T)
 cost(s0, a)
 cost(s0, a) + cost(s5, a)
= 1

cost(s0, S)
 cost(s0, T) + cost(s1, a)
 cost(s0, T) + cost(s1, b) + cost(s3, b)
= 2

Cost equations

A first attempt at finding costs

S ::= . T a
 | . T b b

S ::= T . a
 | T . b b

T

T ::= a .
 | a . a

S ::= T b . b

a

s0

s5

s1

s3
b

S ::= T a .

s2

a

S ::= T b b .

s4

b

reduce S ::= T a

reduce S ::= T b b

cost(s0, a) = 1
cost(s1, a) = 1
cost(s5, a) = 1
cost(s1, b) = 1
cost(s3, b) = 1

= min{

= min{

T ::= a a . reduce T ::= a a

s6

reduce T ::= ab?

a

≠

 cost(s0, a)

 cost(s0, T) + cost(s1, a)

Cost matrices in the (min, +) semiring

A single integer per edge is not sufficient to carry the cost information.

We use matrices indexed by terminals:
• the row index represents the lookahead token before taking the transition
• the column index represents the lookahead token after taking the transition

a

Cost matrices in the (min, +) semiring

A single integer per edge is not sufficient to carry the cost information.

We use matrices indexed by terminals:
• the row index represents the lookahead token before taking the transition
• the column index represents the lookahead token after taking the transition

... ...

... ...

ba

b

a

Cost matrices in the (min, +) semiring

A single integer per edge is not sufficient to carry the cost information.

We use matrices indexed by terminals:
• the row index represents the lookahead token before taking the transition
• the column index represents the lookahead token after taking the transition

... ...

... ...

ba

b

a

Cost matrices in the (min, +) semiring

A single integer per edge is not sufficient to carry the cost information.

We use matrices indexed by terminals:
• the row index represents the lookahead token before taking the transition
• the column index represents the lookahead token after taking the transition

... ...

... ...

ba

b

a

Cost matrices in the (min, +) semiring

A single integer per edge is not sufficient to carry the cost information.

We use matrices indexed by terminals:
• the row index represents the lookahead token before taking the transition
• the column index represents the lookahead token after taking the transition

... ...

... ...

ba

b

a

Cost matrices in the (min, +) semiring

A single integer per edge is not sufficient to carry the cost information.

We use matrices indexed by terminals:
• the row index represents the lookahead token before taking the transition
• the column index represents the lookahead token after taking the transition

In the (min, +) semiring, matrix product represents the cost of a sequence.

... ...

... ...

ba

b

Computing costs with matrices:

LR(1) matrix-based cost equations

Computing costs with matrices:

cost(s0, a) = cost(s1, a) = cost(s5, a) =

LR(1) matrix-based cost equations

Computing costs with matrices:

cost(s0, a) = cost(s1, a) = cost(s5, a) =

LR(1) matrix-based cost equations

1 1

∞ ∞

ba

b

a

Computing costs with matrices:

cost(s0, a) = cost(s1, a) = cost(s5, a) =

cost(s1, b) = cost(s3, b) =

LR(1) matrix-based cost equations

1 1

∞ ∞

ba

b

a

∞ ∞

1 1

ba

b

a

Computing costs with matrices:

cost(s0, a) = cost(s1, a) = cost(s5, a) =

cost(s1, b) = cost(s3, b) =

cost(s0, T) = min =

LR(1) matrix-based cost equations

cost(s0, a)
cost(s0, a) · cost(s5, a)

1 1

∞ ∞

ba

b

a

∞ ∞

1 1

ba

b

a

2 1

∞ ∞

ba

b

a{

Computing costs with matrices:

cost(s0, a) = cost(s1, a) = cost(s5, a) =

cost(s1, b) = cost(s3, b) =

cost(s0, T) = min =

cost(s0, S) = min =

LR(1) matrix-based cost equations

{ cost(s0, T) · cost(s1, a)
cost(s0, T) · cost(s1, b) · cost(s3, b)

cost(s0, a)
cost(s0, a) · cost(s5, a)

1 1

∞ ∞

ba

b

a

∞ ∞

1 1

ba

b

a

2 1

∞ ∞

ba

b

a

3 3

∞ ∞

ba

b

a

{

A |T|×|T| matrix for each transition and reduction step consumes a lot of space.

Big matrices?

A |T|×|T| matrix for each transition and reduction step consumes a lot of space.

It is often wasteful: lookahead terminals often behave the same.
This leads to identical columns in the cost matrix.

Big matrices?

A |T|×|T| matrix for each transition and reduction step consumes a lot of space.

It is often wasteful: lookahead terminals often behave the same.
This leads to identical columns in the cost matrix.

We can characterize and group lookahead tokens with identical behavior.

Big matrices?

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:
• T := a reduced when lookahead is b → {b}

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:
• T := a reduced when lookahead is b → {b}
• T := a a always reduced → {a,b}

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:
• T := a reduced when lookahead is b → {b}
• T := a a always reduced → {a,b}

• The cases to consider are given by the coarsest refinement of {a,b} and {b}:
{{a},{b}}

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:
• T := a reduced when lookahead is b → {b}
• T := a a always reduced → {a,b}

• The cases to consider are given by the coarsest refinement of {a,b} and {b}:
{{a},{b}}

{T := a a}

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:
• T := a reduced when lookahead is b → {b}
• T := a a always reduced → {a,b}

• The cases to consider are given by the coarsest refinement of {a,b} and {b}:
{{a},{b}}

{T := a a} {T := a, T := a a}

Classifying terminals

• The goto transition (s0, T) is followed when one of its productions is reduced:
• T := a reduced when lookahead is b → {b}
• T := a a always reduced → {a,b}

• The cases to consider are given by the coarsest refinement of {a,b} and {b}:
{{a},{b}}

Before starting to compute costs, we know what lookahead symbols to distinguish!

{T := a a} {T := a, T := a a}

Idea #2: compacting matrices

Compacting columns

Let’s assume that:

• we want to compact a matrix m
• we have 4 terminals, a, b, c and d
• our characterization found the partition {{a,b}, {c}, {d}}.

a b c d

a 1 1 2 3

b ∞ ∞ ∞ ∞

c ∞ ∞ 3 ∞

d 1 1 1 1

m =

Compacting columns

a b c d

a 1 1 2 3

b ∞ ∞ ∞ ∞

c ∞ ∞ 3 ∞

d 1 1 1 1

m =

Compacting columns

a b c d

a 1 1 2 3

b ∞ ∞ ∞ ∞

c ∞ ∞ 3 ∞

d 1 1 1 1

m =

Compacting columns

a b c d

a 1 1 2 3

b ∞ ∞ ∞ ∞

c ∞ ∞ 3 ∞

d 1 1 1 1

m =

Compacting columns

{a, b} {c} {d}

a 1 2 3

b ∞ ∞ ∞

c ∞ 3 ∞

d 1 1 1

m =

Compacting columns

{a, b} {c} {d}

a 1 2 3

b ∞ ∞ ∞

c ∞ 3 ∞

d 1 1 1

m =

Compacting rows

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

= r·

a b c d

a naa

b nba

c nca

d nda

raa =

Compacting rows

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

= r·

a b c d

a naa

b nba

c nca

d nda

raa =

Compacting rows

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

= r·

a b c d

a naa

b nba

c nca

d nda

x ∧ y = min{x,y}(maa + naa) ∧ (mab + nba) ∧ (mac + nca) ∧ (mad + nda)

raa =

Compacting rows

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

= r·

a b c d

a naa

b nba

c nca

d nda

(maa + naa) ∧ (mab + nba) ∧ (mac + nca) ∧ (mad + nda)

raa =

Compacting rows

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

= r·

a b c d

a naa

b nba

c nca

d nda

(maa + naa) ∧ (mab + nba) ∧ (mac + nca) ∧ (mad + nda)

(maa + naa) ∧ (mab + nba) = maa + (naa ∧ nba)

raa = (maa + naa ∧ nba) ∧ (mac + nca) ∧ (mad + nda)

Compacting rows

= r·

a b c d

a naa

b nba

c nca

d nda

raa = (maa + naa) ∧ (mab + nba) ∧ (mac + nca) ∧ (mad + nda)

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

raa = (maa + naa ∧ nba) ∧ (mac + nca) ∧ (mad + nda)

Compacting rows

= r·

a b c d

a naa

b nba

c nca

d nda

raa = (maa + naa) ∧ (mab + nba) ∧ (mac + nca) ∧ (mad + nda)

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

raa = (maa + naa ∧ nba) ∧ (mac + nca) ∧ (mad + nda)

Compacting rows

= r·

a b c d

a naa

b nba

c nca

d nda

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

a b c d

{a,b}
naa

∧
nba

...
∧
...

...
∧
...

...
∧
...

{c} nca

{d} nda

Compacting rows

= r·

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

raa = (maa + naa ∧ nba) ∧ (mac + nca) ∧ (mad + nda)

a b c d

{a,b}
naa

∧
nba

...
∧
...

...
∧
...

...
∧
...

{c} nca

{d} nda

Compacting rows

= r·

{a,b} {c} {d}

a
maa

mab
... ...

b

c

d

raa = (maa + naa ∧ nba) ∧ (mac + nca) ∧ (mad + nda)

{a} {b} {c} {d}

{a,b}
naa

∧
nba

...
∧
...

...
∧
...

...
∧
...

{c} nca

{d} nda

Compacting rows

= r·

{a,b} {c} {d}

{a} maa

mab
... ...

{b}

{c}

{d}

On average, compaction of rows and columns reduces
space consumption of matrices by 5 orders of
magnitude!

In practice...

In practice...

• Grammars are recursive objects.
We need to solve mutually recursive and monotonous equations.

In practice...

• Grammars are recursive objects.
We need to solve mutually recursive and monotonous equations.

• Lots of partitions are computed: efficient data representations (bit sets) and algorithms
are needed

In practice...

• Grammars are recursive objects.
We need to solve mutually recursive and monotonous equations.

• Lots of partitions are computed: efficient data representations (bit sets) and algorithms
are needed

• Re-ordering of matrix product chains
• Maximal sharing of intermediate matrices
• ...

In practice...

• Grammars are recursive objects.
We need to solve mutually recursive and monotonous equations.

• Lots of partitions are computed: efficient data representations (bit sets) and algorithms
are needed

• Re-ordering of matrix product chains
• Maximal sharing of intermediate matrices
• ...

You will find these explained in our paper!

Conclusion

Conclusion

A new algorithm that provides a significant speed-up to LR(1) reachability by:
• Reframing the problem. Solving a set of mutually recursive equations on matrices.
• Compacting matrices in a sound way.

The implementation gives good results and is available in the current release of Menhir.

