
Big-step semantics for the strong λ-calculus

Nathanaël Courant

November 2, 2020

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 1 / 29

Motivation

Convertibility testing: an integral part of Coq typechecking

Some proofs need a lot of computation

To check convertibility, easiest is to compute strong normal form

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 2 / 29

Strong call-by-name λ-calculus

From call by name to call by need

Coq formalisation

Compiling the strong lambda-calculus

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 2 / 29

Flavours of λ-calculus

Common part of λ-calculus: (λx.t1) t2 → t1[x := t2].

Difference between flavours : free variables and handling of λ.

Weak: no free variables, no reduction under λ,
Open: free variables but no reduction under λ,
Strong: reduction under λ.

Most programming languages: weak reduction.

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 3 / 29

Normal forms of strong λ-calculus

For a normal form: no λ applied to an argument.

Separate inert terms from the rest.

r ::= i | λx.r
i ::= x | i r

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 4 / 29

Strong call-by-name

Key idea: to compute the normal form of t1 t2, if t1 →∗ λx.t3, we
don’t need the normal form of t1.

Two modes:

For ⇓d, values are normal forms, i | λx.r.
For ⇓s, values are i | λx.t.

Difference between the two modes: in mode ⇓s, if the result is a λ,
don’t reduce it to normal form.

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 5 / 29

Strong call-by-name

f is s or d

Values: i | λx.r for ⇓d, i | λx.t for ⇓s.

Var

x ⇓f x

Lam-S

λx.t ⇓s λx.t

Lam-D
t ⇓d r

λx.t ⇓d λx.r

App-λ
t1 ⇓s λx.t3 t3[x := t2] ⇓f v

t1 t2 ⇓f v

App-I
t1 ⇓s i t2 ⇓d r

t1 t2 ⇓f i r

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 6 / 29

Environment semantics

Replace substitutions with an environment

Values in environment are either free variable or thunks

Values for ⇓s are inert terms or closures

Var-F
e(x) = y

e ` x ⇓f y

Var-C
e(x) = (t, e′) e′ ` t ⇓f v

e ` x ⇓f v

Lam-S

e ` λx.t ⇓s (λx.t, e)

Lam-D
e+ x 7→ x ` t ⇓d r
e ` λx.t ⇓d λx.r

App-λ
e ` t1 ⇓s (e′, λx.t3) e′ + x 7→ (t2, e) ` t3 ⇓f v

e ` t1 t2 ⇓f v

App-I
e ` t1 ⇓s i e ` t2 ⇓d r

e ` t1 t2 ⇓f i r

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 7 / 29

Strong call-by-name λ-calculus

From call by name to call by need

Coq formalisation

Compiling the strong lambda-calculus

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 7 / 29

Call-by-need as memoizing call-by-name

Two ways to see call-by-need: lazy call-by-value, or memoizing
call-by-name

Here: we have a call-by-name semantics, memoize it

Problem: two evaluation modes, ⇓s and ⇓d
Don’t memoize independently:
let a = very long computation () in λx.a

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 8 / 29

Relation between shallow and deep evaluation

e ` t ⇓s i iff e ` t ⇓d i
If e ` t1 ⇓s λx.t2 and e ` λx.t2 ⇓d r, then e ` t1 ⇓d r
Can compute result of ⇓d from result of ⇓s
In the other direction: remember (λx.t, e) before reducing under the λ

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 9 / 29

Call-by-need semantics for the strong λ-calculus

Mutable memory for memoization

Environment contains memory locations

Possible values in memory:

Unevaluated thunks (t, e)
Inert terms i (including free variables)
Closures (λx.t, e)
Closures with normal form (λx.t, e, λx.r)

Result of ⇓s : i | (λx.t, e)
Result of ⇓d : i | (λx.t, e, λx.r)
Extract normal form from result of ⇓d: nf i = i,
nf (λx.t, e, λx.r) = λx.r

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 10 / 29

Call-by-need semantics for the strong λ-calculus

Applications mostly unchanged

Allocate a new memory location for the newly unevaluated thunk

App-λ
e,m1 ` t1 ⇓s (e′, λx.t3),m2

a /∈ m2 e′ + x 7→ a,m2 + a 7→ (t2, e) ` t3 ⇓f v,m3

e,m1 ` t1 t2 ⇓f v,m3

App-I
e,m1 ` t1 ⇓s i,m2 e,m2 ` t2 ⇓d r,m3

e,m1 ` t1 t2 ⇓f i (nf r),m3

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 11 / 29

Call-by-need semantics for the strong λ-calculus

Deep evaluation of λ-abstractions now return the closure as well

Lam-S

e,m ` λx.t ⇓s (λx.t, e),m

Lam-D
a /∈ m1 e+ x 7→ a,m1 + a 7→ x ` t ⇓d r,m2

e,m1 ` λx.t ⇓d (λx.t, e, λx.(nf r)),m2

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 12 / 29

Call-by-need semantics for the strong λ-calculus

If the variable refers to an unevaluated thunk, evaluate it and store
the result

If it refers to an inert term, then it is the result

Var-Thunk
e(x) = a m1(a) = (t, e′) e′,m1 ` t ⇓f v,m2

e,m1 ` x ⇓f v,m2[a := v]

Var-I
e(x) = a m(a) = i

e,m ` x ⇓f i,m

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 13 / 29

Call-by-need semantics for the strong λ-calculus

If the variable refers to a closure with normal form:

In deep mode, return it

In shallow mode, extract the closure from it

Var-DS
e(x) = a m(a) = (λx.t, e′, λx.r)

e,m ` x ⇓s (λx.t, e′),m

Var-DD
e(x) = a m(a) = (λx.t, e′, λx.r)

e,m ` x ⇓d (λx.t, e′, λx.r),m

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 14 / 29

Call-by-need semantics for the strong λ-calculus

If the variable refers to a closure without normal form:

In shallow mode, return it

In deep mode, compute the normal form, and update

Var-SS
e(x) = a m(a) = (λx.t, e′)

e,m ` x ⇓s (λx.t, e′),m

Var-SD
e(x) = a m1(a) = (λx.t, e′) e′,m1 ` λx.t ⇓d v,m2

e,m1 ` x ⇓s v,m2[a := v]

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 15 / 29

Properties

No reduction under a λ-abstraction before applying it

Efficient: complexity bilinear in the number of β-steps and the size of
the initial term (conjecture)

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 16 / 29

Strong call-by-name λ-calculus

From call by name to call by need

Coq formalisation

Compiling the strong lambda-calculus

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 16 / 29

Contents of formalisation

Proof of consistency of all semantics with β-reduction

Extensions to support constructors and (shallow) pattern matching

No proof of preservation of errors, preservation of divergence only for
the first semantics

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 17 / 29

Pretty-big-step semantics

Semantics using pretty-big-step instead of big-step

Extended terms: t̂ ::= t | app2(v, t2) | app3(i, v) | . . .

App-λ
t1 ⇓s λx.t3 t3[x := t2] ⇓f v

t1 t2 ⇓f v

App-I
t1 ⇓s i t2 ⇓d r

t1 t2 ⇓f i rwww�
App
t1 ⇓s v1 app2(v1, t2) ⇓f v2

t1 t2 ⇓f v2

App-λ
t3[x := t2] ⇓f v

app2(λx.t3, t2) ⇓f v

App-I
t2 ⇓d r app3(i, r) ⇓f v

app2(i, t2) ⇓f v

App-3

app3(i, r) ⇓f i r

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 18 / 29

Advantages of pretty-big-step

Easy to express divergence using the same semantics

De-duplication

Makes the execution order explicit

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 19 / 29

The proof

Current size: ≈ 6k lines

De Bruijn indices for input terms, named variables for outputs
(sharing)

Small library for proving stronger induction principles easily

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 20 / 29

Strong call-by-name λ-calculus

From call by name to call by need

Coq formalisation

Compiling the strong lambda-calculus

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 20 / 29

Objectives

Objective: compile to strict, weak language like OCaml (easy to
compile further)

Performance objective: efficient on weak, strict computations

Assume we’re not limited by the OCaml runtime: code pointers
allowed anywhere, ability to mutate tags

Ongoing work

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 21 / 29

Performance-sensitive code

Function application: should be fast

Application of inert terms: can be slow (number of applications ≤
size of result)

Minimize cost of repetitive use of lazy value

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 22 / 29

Compilation scheme

Each function, argument of a function, etc. is compiled into two code
pointers (shallow and deep)

Function application is compiled to function application

Need to encode lazy and inert terms

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 23 / 29

Closure layout

Layout of a closure:

header

shallow code pointer

deep code pointer

0

environment

or

header

shallow code pointer

deep code pointer

normal form

environment

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 24 / 29

Handling inert terms

For an inert term i, i t should evaluate t to normal form r and return
i r

accumulate t evaluates t to normal form r, and returns a identical
block with i r instead of i

header (tag = 0)

accumulate
accumulate

i

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 25 / 29

Handling laziness

Thunks are represented by a function that will evaluate the thunk
before applying it to the argument

Modify the block in place to put a forward block instead, which
delegates the application

Assuming we can modify the OCaml GC: can contract forward blocks

header (tag = 1)

lazy shallow
lazy deep

shallow code pointer

deep code pointer

environment

header (tag = 2)

forward shallow
forward deep

v

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 26 / 29

Another way?

Modify the semantics: deep reduction is always shallow reduction
followed by a deepening phase

Only one code pointer needed in every block

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 27 / 29

Further questions

Can OCaml efficient n-ary application be used?

Is it efficient? (Objective: speed comparable to native compute)

Can we do it without modifying the OCaml runtime?

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 28 / 29

Future work

Experiment with performance

Prove the compilation in Coq

Write a convertibility test

Nathanaël Courant Big-step for the strong λ-calculus November 2, 2020 29 / 29

	Strong call-by-name -calculus
	From call by name to call by need
	Coq formalisation
	Compiling the strong lambda-calculus

