Big-step semantics for the strong A-calculus

Nathanaél Courant

November 2, 2020

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 1/29

o Convertibility testing: an integral part of Coq typechecking
@ Some proofs need a lot of computation

@ To check convertibility, easiest is to compute strong normal form

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 2/29

Strong call-by-name A-calculus

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 2/29

Flavours of \-calculus

e Common part of A-calculus: (Ax.t1) to — t1[z := to].

@ Difference between flavours : free variables and handling of A.
o Weak: no free variables, no reduction under A,

o Open: free variables but no reduction under A,
e Strong: reduction under \.

@ Most programming languages: weak reduction.

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 3/29

Normal forms of strong A-calculus

@ For a normal form: no A applied to an argument.

@ Separate inert terms from the rest.

ru=i| Az.r

in=wx|ir

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 4/29

Strong call-by-name

@ Key idea: to compute the normal form of t1 to, if t1 —=* Ax.t3, we
don’t need the normal form of ¢;.
@ Two modes:
e For |4, values are normal forms, i | Az.r.
o For |5, values are i | Ax.t.
o Difference between the two modes: in mode g, if the result is a A,
don't reduce it to normal form.

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 5/29

Strong call-by-name

@ fissord
e Values: i | A\x.r for g, i | Ax.t for {s.

VAR
zlyx
LAM-D
LamMm-S g
Ar.t s Azt Ax.t g Az.r
ApPP-)\ App-1
tl Us)\a?.tg t3[$ = tQ] llf v tl Us /) t2 l}d T
tltgllfv tthU«fiT

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 6/29

Environment semantics

@ Replace substitutions with an environment
@ Values in environment are either free variable or thunks

@ Values for |l are inert terms or closures

VAR-F VaAr-C L g
e(r) =y e(r) = (t,€) et Jro AM-
eFxlry eFxlyv ek Ax.tlls (M.t e)
LAM-D ApPP-)\
etxz—axbtlgr ety s (€, \r.t3) e’+xr—>(t2,e)|—t3llfv
et Ax.t g \z.r ettty
App-1

ekt st ety dar
el—t1 tglﬁfi’l”

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 7/29

From call by name to call by need

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 7/29

Call-by-need as memoizing call-by-name

@ Two ways to see call-by-need: lazy call-by-value, or memoizing
call-by-name

@ Here: we have a call-by-name semantics, memoize it
@ Problem: two evaluation modes, |5 and {4

@ Don't memoize independently:
let a = very_long_computation () in Azx.a

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Relation between shallow and deep evaluation

ebtlsiiffetlqi
If e t1 s Ax.to and e - Ax.to Yq v, then e t1 g r
Can compute result of |4 from result of |

In the other direction: remember (Ax.t, e) before reducing under the A

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 9/29

Call-by-need semantics for the strong A-calculus

Mutable memory for memoization

Environment contains memory locations

Possible values in memory:

Unevaluated thunks (¢, e)

Inert terms 4 (including free variables)
Closures (A\x.t, €)

Closures with normal form (Az.t,e, Az.r)

Result of |5 : i | (Ax.t,€e)
Result of {4 : i | (Az.t,e, A\x.1)

Extract normal form from result of |l4: nf ¢ = 1,
nf (\z.t,e, Ax.r) = \x.r

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Call-by-need semantics for the strong A-calculus

@ Applications mostly unchanged

@ Allocate a new memory location for the newly unevaluated thunk

ApPpP-)\
e,my bty Us (¢/, Az.t3), mo
a ¢ ma e’+xr—>a,m2—|—ar—>(t2,e)l—tgllfv,mg

e,my =ty ta by v, ms

App-1
e,m1 =t s i, mo e,ma - ta g r,m3

€, mq F t1 to Uf’i (nf T‘),mg

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Call-by-need semantics for the strong A-calculus

@ Deep evaluation of A-abstractions now return the closure as well

LaM-S

e,mb Azt s (Az.t,e),m

LaM-D
a ¢ my et+x—amit+a—xzttlqgr,ms

e,mi F Azt g (A\zr.t,e, A\x.(nf 7)), mo

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 12/29

Call-by-need semantics for the strong A-calculus

@ If the variable refers to an unevaluated thunk, evaluate it and store
the result

o If it refers to an inert term, then it is the result

VAR-THUNK
e(x) =a mi(a) = (t,€) e,mi bty v,mo

e;mi Fa |y v,mala = v]

VAR-I
e(r)=a m(a) =1

e,mbxllyi,m

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Call-by-need semantics for the strong A-calculus

If the variable refers to a closure with normal form:
@ In deep mode, return it
@ In shallow mode, extract the closure from it
VAR-DS
e(r) =a m(a) = (\z.t, e, \z.r)

e,mbxlls (At e),m

VAR-DD
e(z)=a m(a) = (\z.t, e, \x.r)

e,mbxllg (A\x.t, e, z.r),m

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Call-by-need semantics for the strong A-calculus

If the variable refers to a closure without normal form:
@ In shallow mode, return it

@ In deep mode, compute the normal form, and update

VAR-SS
e(r) =a m(a) = (Ax.t,e)

e,mbxlls (At e),m

VAR-SD
e(r)=a mi(a) = (\x.t,e) e ,mi F Ax.t g v,mo

e,mi Ex s v,mala = v]

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

@ No reduction under a A-abstraction before applying it

o Efficient: complexity bilinear in the number of 3-steps and the size of
the initial term (conjecture)

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 16 /29

Coq formalisation

Nathanaél Courant Big-step for the strong A-calculus November 2, 16 /29

Contents of formalisation

@ Proof of consistency of all semantics with S-reduction
@ Extensions to support constructors and (shallow) pattern matching

@ No proof of preservation of errors, preservation of divergence only for
the first semantics

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 17 /29

Pretty-big-step semantics

@ Semantics using pretty-big-step instead of big-step
o Extended terms: £ ::=t | appa(v,t2) | apps(i,v) | ...

APP-)\ Aprp-1
tl Us)\m’.tg tg[x = tQ] Uf v tl ‘Us 7 tg Ud T
tita v trtapir
App APP-)\
t1 Js 11 appz(v1,t2) Uf vo talr :=to] Jr v
t1 t2 by vo appa(Ax.ts, ta) | v
Aprp-1
. APP-
todbar apps(i,7) 5 v pp-3

appz(i,t2) Iy v

Nathanaél Courant

apps(i,7) Yy i

Big-step for the strong A-calculus

November 2, 2020

Advantages of pretty-big-step

@ Easy to express divergence using the same semantics
@ De-duplication

@ Makes the execution order explicit

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 19 /29

The proof

@ Current size: =~ 6k lines

@ De Bruijn indices for input terms, named variables for outputs
(sharing)

@ Small library for proving stronger induction principles easily

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Compiling the strong lambda-calculus

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 20/29

Objective: compile to strict, weak language like OCaml (easy to
compile further)

Performance objective: efficient on weak, strict computations

@ Assume we're not limited by the OCaml runtime: code pointers
allowed anywhere, ability to mutate tags

Ongoing work

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Performance-sensitive code

@ Function application: should be fast

@ Application of inert terms: can be slow (number of applications <
size of result)

@ Minimize cost of repetitive use of lazy value

November 2, 2020 22/29

Nathanaél Courant Big-step for the strong A-calculus

Compilation scheme

@ Each function, argument of a function, etc. is compiled into two code
pointers (shallow and deep)

@ Function application is compiled to function application

@ Need to encode lazy and inert terms

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 23/29

Closure layout

Layout of a closure:

header header
shallow code pointer shallow code pointer
deep code pointer |or| deep code pointer
0 normal form
environment environment

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 24/29

Handling inert terms

@ For an inert term 7, ¢ t should evaluate ¢ to normal form r and return
i r

@ accumulate t evaluates t to normal form r, and returns a identical
block with ¢ 7 instead of ¢

header (tag = 0)

accumulate

accumulate
i

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020

Handling laziness

@ Thunks are represented by a function that will evaluate the thunk
before applying it to the argument

@ Modify the block in place to put a forward block instead, which
delegates the application

@ Assuming we can modify the OCaml GC: can contract forward blocks

header (tag = 1)
lazy_shallow header (tag = 2)
lazy_deep forward_shallow
shallow code pointer forward_deep
deep code pointer v
environment

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 26 /29

@ Modify the semantics: deep reduction is always shallow reduction
followed by a deepening phase

@ Only one code pointer needed in every block

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 27/29

Further questions

@ Can OCaml efficient n-ary application be used?
e Is it efficient? (Objective: speed comparable to native_compute)

@ Can we do it without modifying the OCaml runtime?

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 28/29

Future work

@ Experiment with performance
@ Prove the compilation in Coq

@ Write a convertibility test

Nathanaél Courant Big-step for the strong A-calculus November 2, 2020 29/29

	Strong call-by-name -calculus
	From call by name to call by need
	Coq formalisation
	Compiling the strong lambda-calculus

