Formally verified incremental cycle detection

Armaél Guéneau

with].-H.Jourdan, A. Charguéraud and F. Pottier

In this talk

The story of a formally verified algorithm...

e initially motivated by Coq’s implementation...
(universe constraints)

e _.whichended upintegrated into the Dune build system.

(dependencies between build actions)

We verify at the same time correctness and complexity...

... and our implementation turns out to be 7x faster!

1/32

Context

Program verification framework: Coq and (extended) CFML

.ml

CFML generator

» .V

OCaml program

(generated)
characteristic
formulae ‘J

P

Vv

(hand written)
Specifications
and proofs

2/32

Separation Logic with Time Credits

Each function call (or loop iteration) consumes $1

$n asserts the ownership of n time credits

$(n+m) =3%n=*$m
Credits are notduplicable: $1 =& $1 « $1
Enables amortized analysis

Type of assertions, in the model:

e Standard Separation Logic: Heap — Prop
e Separation Logic with Time Credits: Heap x N — Prop

3/32

Example specifications using time credits

Complexity specification using explicit time credits:

VgG. {IsGraph g G = $(3 |edges G| + 5) } dfs(g) {IsGraphg G}

Asymptotic complexity specification:

I(f:Z — 7).
nonnegative f A monotonic f A f € Oz(Am.m)
AYgG. {IsGraphg G = $ f(|edges G|) } dfs(g) { IsGraphg G }

4/32

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/32

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/32

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/32

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/32

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/32

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/32

Naive algorithm: traverse the graph at each step.

Each arcinsertion costs O(m).

Cog and Dune implement a state-of-the-art algorithm by
Bender, Fineman, Gilbert and Tarjan (2016).

It runs in O(m - min(m'/2,n%3)) for m arcinsertions.

In particular, in a sparse graph, O(,/m) amortized for each
insertion.

6/32

Contributions

e Asimpleyet crucial improvement to make Benderetal’s
algorithm truly online;

e An OCamlimplementation as a standalone library;

e A machine-checked proof of both its functional
correctness and amortized asymptotic complexity;

e Time credits that are counted in Z (instead of N): this
leads to significantly fewer proof obligations (!).

7132

In the rest of this talk

Overview of the library: interface and specification
Bender et al’s algorithm: Key Ideas

Complexity Analysis

A taste of time credits: forward traversal analysis

Integer Time Credits

8/32

Overview of the library: interface and
specification

Implementation

~150 lines of (terse) hand written OCaml code

9/32

Minimal OCaml interface

module Make (G : Raw_graph) : sig
val add vertex :
G.graph -> G.vertex -> unit

type add _edge result =
| EdgeAdded
| EdgeCreatesCycle

val add edge or detect cycle :
G.graph -> G.vertex -> G.vertex ->
add edge result
end

10/32

Toplevel specification (functional correctness only)

Vg Guw. let m :=|edges G| in
let n := |vertices G| in
v, w € vertices G A (v,w) ¢ edges G =
{ IsGraphg G }
(add_edge_or_detect_cycle g v w)
Ares. match res with

| EdgeAdded = IsGraphg (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

Vg G.IsGraphg G I+ IsGraphg G = [Vz. z — [, 2]

11/32

Toplevel specification (functional correctness only)

Vg Guw. let m :=|edges G| in
let n := |vertices G| in
v, w € vertices G A (v,w) ¢ edges G =
{ IsGraphg G }
(add_edge_or_detect_cycle g v w)
Ares. match res with

| EdgeAdded = IsGraphg (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

IsGraph g G := IL M I. IsRawGraphg GL M I = [Inv G L I
InvGLI:= (Vo.o—}tx) ...

11/32

Toplevel specification (correctness and complexity)

Vg Guw. let m :=|edges G| in
let n := |vertices G| in
v, w € vertices G A (v,w) ¢ edges G =
{ IsGraphg G }
(add_edge_or_detect_cycle g v w)
Ares. match res with

| EdgeAdded = IsGraphg (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

IsGraphg G := 3L M I. IsRawGraphg GL M I = [Inv G L I| = $¢(G, L)
InvGLI:= (Vo.o—}tx) ...

11/32

Toplevel specification (correctness and complexity)

Vg Guw. let m :=|edges G| in
let n := |vertices G| in

v, w € vertices G A (v,w) ¢ edges G =
{ IsGraph g G * $(¢ (m + 1,n) — o (m, n)) }
(add_edge_or_detect_cycle g v w)

Ares. match res with
| EdgeAdded = IsGraphg (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

IsGraphg G := 3L M I. IsRawGraphg GL M I = [Inv G L I| = $¢(G, L)
InvGLI:= (Vo.o—}tx) ...

¥ € O(m - min(m'/? n?3) + n)

11/32

Using the specification

let g = create graph () in

add vertex g 1; $(1(0,1) — +(0,0))
add vertex g n; $((0,n) —(0,n — 1))
add edge or detect cycle g 1 2; $((1,n) —1(0,n))
add_edge or_detect cycle g 2 3; $(v(2,n) —9(1,n))

add_edge_or_detect_cycle g (m-1) m; $(¢p(m,n) —(m —1,n))

Total cost: +(m,n) — 1(0,0)

12/32

Using the specification

let g = create graph () in

add vertex g 1; $(1(0,1) — +(0,0))
add vertex g n; $((0,n) —(0,n — 1))
add edge or detect cycle g 1 2; $((1,n) —1(0,n))
add_edge or_detect cycle g 2 3; $(v(2,n) —9(1,n))

add_edge_or_detect_cycle g (m-1) m; $(¢p(m,n) —(m —1,n))

Total cost: +(m,n) —(0,0) € O(m - min(ml/Z, n2/3) +n)

12/32

Bender et al’s algorithm: Key Ideas

Idea1: Levels

Each vertex v is given a level L(v).

Invariant: v —gw = L(v) < L(w)

Can accelerate the search, but needs to be maintained:

e Q..
Q/%OK! !

13/32

Idea1: Levels

Each vertex v is given a level L(v).

[nvariant: v —gw = L(v

Can accelerate the search, but needs to be maintained:

O—O—0—0

13/32

Idea1 (bis): Tradeoff on the number of levels

~

//O Q ~
(O 7-0k T TO—0—0

(cheap) (expensive)

e Too many levels: the expensive case triggers often,
outweights the cheap case

e Too few levels: similar to the naive algorithm, no gain
from the cheap case

14/32

Idea 2: Two-way Search

?
---------------- *—0--0—0
B — —_—
backward search forward search

The backward search is:

o restricted at the same level
e bounded by a predetermined number of edges F

The forward search restores the invariant on levels as it goes.

15/32

Not explained at this point: when do new levels get created?

Let’s see: Demo!

16/32

https://agueneau.gitlabpages.inria.fr/incremental-cycles/webapp/

Main complexity invariant: levels are “replete”

For every node z at level k + 1 there is at least k co-accessible
edges at level .

A levels

= k edges

Corollary: there is at least k edges at level . 17/32

Complexity Analysis

Vg Gow.
let m,n :=|edges G|, |vertices G| in
v, w € vertices G A (v, w) ¢ edges G =

{ IsGraph g G + $(¢ (m + 1,n) — 3 (m, n)) }
(add_edge or detect cycle g v w)

Ares. match res with
| EdgeAdded = IsGraphg (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

18/32

VYgG LM Ivw.
let m,n := |edges G|, |vertices G| in
v, w € vertices G A (v,w) ¢ edges G =

IsRawGraphg GLM I « [Inv G L I] * $¢(G, L)
& $(1/J (m + 17”) - w (man))
(add_edge or_detect cycle g v w)
Ares. match res with
| EdgeAdded = let G’ := G + (v,w) in IL" M' I".
IsRawGraph g G’ L' M' I's«[InvG L' '] = $0(G', L)
| EdgeCreatesCycle = [w —§ v])

18/32

A sketch of the complexity analysis

Backward traversal (bounded by F): O(F)

Forward traversal: O(1) amortized (!) using ¢
Adding the new edge: O(1)

Potential for the new edge: O(¢)(m + 1,n) — ¥(m,n))

Good choice for F
— Main complexity invariant (levels are “replete”)
— F e O(p(m+1,n)—p(m,n)) A ¢ € O(m-min(m/2, n?/3)+n)

In Bender et al., F depends on the final graph; we give an
alternative definition that works on the current graph.

19/32

A sketch of the complexity analysis

Backward traversal (bounded by F): O(F)

Forward traversal: O(1) amortized (!) using ¢
Adding the new edge: O(1)

Potential for the new edge: O(¢)(m + 1,n) — ¥(m,n))

Good choice for F
— Main complexity invariant (levels are “replete”)
— F e O(p(m+1,n)—p(m,n)) A ¢ € O(m-min(m/2, n?/3)+n)

In Bender et al., F depends on the final graph; we give an
alternative definition that works on the current graph.

19/32

A taste of time credits: forward traversal
analysis

The graph potential ¢

The potential ¢ stores Time Credits for edges depending on
their current level (lower level = more credits).

Credits are received at each edge insertion, and spent when
raising nodes.

highest level

$2

¢(G,L) := Y. (highest_level G L — L(u))
(u,v)e@
20/32

Forward traversal economics

e Traversing an edge (u,v) costs 1

e Raising v releases card({w | (v, w) € G}) from ¢
(this pays for exploring all the successors of v)

e Thestack holds credits for the next edges to explore

The traversal stack contains credits representing the
“working capital” of the traversal.

21/32

out(v) := card({w| (v,w) € G})
‘Smdﬂ 2= Zvestack Out(”)

let rec visit forward g new level visited stack =
match stack with
| [1->0)
| u :: stack ->
let stack = List.fold left (fun stack v ->

set level g v new level;
v :: stack
) stack (get outgoing g u) in
visit forward g new level visited stack

22/32

out(v) := card({w| (v,w) € G})

|Sta0k| = ZUEStaCk OUt(v)

$o(G,L)
let rec visit forward g new level visited stack =
match stack with
: LE] | :>Si;Ck >‘/ $(out(u) +|stack|)
let stack = List.fold left (fun stack v ->
$|stack|

set level g v new level;
$(out(v) + |stack|)

v :: stack
) stack (get outgoing g u) in
visit forward g new level visited stack

$|stack|

22/32

Proof methodology, in practice

In practice, credit counts involve multiplicative constants:

(G, L) = C- X ec(highest_level G L — L(u))
‘Stacm = - Zvestack out (U)

3C". 0 < C" A Vg nl vs stack
{$C" x $|stack| = ...} visit_forward g nl vs stack {\(). ...}

C, ¢’ and C” depend on specifics of the implementation.

We develop tactics to make the proofs independent from
their exact expression, and avoid writing it explicitly by hand.

23/32

Integer Time Credits

Time Credits and redundant proof obligations

Originally, Time Credits are counted in N:

$0 = true
$(m+n) = 3m = $n
$n - true
Corollary:
$n=$(n—m) = $m if m<n

24/32

Time Credits and redundant proof obligations (2)

Starting with $n then paying for operations with costs m;,
ma, ..., my, produces redundant proof obligations:

$n

pay $m; ~ n—mq =0
$(n—m1)

pay $ms ~n—mi—mg =0
$(n—m1—m2—...—mk_1)

pay $my, ~n—mp—mo—...—myg =0

25/32

Time CreditsinZ

We work in a variant of SL with credits counted in Z:

$0 = true
$(m+n) = 3m = 3$n
$n « [n=0] I true

Corollaries (forany n,m € Z!):

$0 = $n = $(—n)

$n = $(n—m) = $m

Negative credits are not affine!

26/32

Time CreditsinZ (2)

Paying for a sequence of operations produces a single final
proof obligation:

$n

pay $m; ~> no proof obligation
$(n — ml)

pay $mso ~» 1o proof obligation
$(n—m1 —‘..—mk_l)

pay $my ~» no proof obligation

discard $(n —mq —...—mg) ~> n—mi—...—myp =0

27/32

Pre/Post-condition duality

With integer time credits, these two specifications are
equivalent (using the frame rule):

{$n} fn {A(). emp}
{emp} £ n {A(). $(—n)}

Bonus: returning negative credits allow the complexity to
depend on the result of the function! Example:

{emp} collatz_stopping time n {A\i. $(—i)}

28/32

Interaction with loops

From the proof of the forward traversal:

/] $¢(G,L) * [Inv G L I]
List.fold left ... (fun ... ->
// 3AL. $¢(G, L)
[extract credits from $¢(G,L/)]

)
1/ $6(G,L") % [Inv G L" I

(Difficult) Lemma: VG LI.Inv G LI — ¢(G,L) >0

Time Credits in N would require a nontrivial strengthening of
the loop invariant.

29/32

Interruptible Iteration

let rec interruptible iter f 1 =
match 1 with
| [1 -> true
| x :: 1" -> f x & interruptible iter f 1’

30/32

Interruptible Iteration

let rec interruptible iter f 1 =
match 1 with
| [1 -> true
| x :: 1" -> f x & interruptible iter f 1’

Integer time credits allow for an intuitive specification:

VIlf.
(Val'. prefix 'l = {IU'} fx {\b.1(x:10)}) =
{181}
interruptible iter f
{Ab.if bthen I lelse A 1" TV «$|"| = [l =1+ 1"]}

30/32

Conclusion

Challenges

¢ Understanding the algorithm (!)
¢ (Re)inventing the complexity invariants

e Designing robust and generic invariants for
(interruptible) graph traversals

e Designing Coq tactics for interactive reasoning using
integer time credits

31/32

Thank you!

Code, proofs, paper and demo available at:

https://gitlab.inria.fr/agueneau/incremental-cycles

32/32

https://gitlab.inria.fr/agueneau/incremental-cycles

Idea 3: Policy for raising nodes to a new level

w and its descendants need to be raised to L(v) or higher.
Benderetal’s policy:

¢ |fthe backward search from v was not interrupted:
raised to L(v)

e Otherwise, raised to L(v) + 1 (possibly creating a new
level).

Idea 4: choice of F

Recall: backward search is bounded to visit at most F edges.

The choice of Fis crucial to get the correct complexity.

In Benderetal.:

F = min(m'? n?/3), form and n of the final graph
(hard to know in practice).

In our modified algorithm:

F = L(v), in the current graph
(this makes the algorithm truly online).

Low-level Data Structure

IsRawGraph g G L M I: a SL predicate that asserts the
ownership of a data structure at address g, with logical
model G, L, M, I.

G: a mathematical graph

L: levels, as a map vertex — Z

M: marks, as a map vertex — mark

I: horizontal incoming edges, a map vertex — set vertex

Functional Invariant

Inv G L I: a pure proposition that relates G with L and I.

InvG LI :=
acyclicity : Ve. z— Sz
positive levels: Ve, L(z) =1
pseudo—topological levels: Yxy. © — gy = L(z) < L(y)
incoming edges: Vey. x€l(y) < v —cgy A L(z) = L(y)
replete levels : Vz. enough_edges_below G L x

enough_edges_below G L x :=
|coacc_edges_at_level G L k x| = k where k = L(z) — 1

coacc_edges_at_level G L k x =
{(1,2) | y—c2—%x A L(y) = L(2) =k}

Potential and Advertised Cost (formally)

Potential of an edge (u, v): max_level m n — L(u).

(G, L)
net G L

spent G L

received m n

max_level m n

C-(net G L) where m = |edges G|
received m n — spent G L and n = |vertices G|
2 L(u)

(u,v) € edges G

m - (max_level m n + 1)

min([(2m)"?], [(3n)*7]) + 1

¢(m,n)

C" - (received mn + m + n)

Proof methodology

Specification excerpt for the backward traversal:

Jab.0<a A VFgow
{$(a- F +b) = ...} backward_search F g v w {)\res. ...}

Future Work

Well-behaved credits inference with integer credits

Credit synthesis requires solving heap entailments of the form:

$(7¢c) = $potential |- $costy * ... * Scosty, * TF

(functions returning credits makes solving these even more tricky)

Integer credits would allow turning these into:
$(7c) = $potential * $(—costy) * ... * $(—cost,) I 7F

Is this useful?...

Automation for processing synthesized cost expressions

Credit synthesis produces in the end goals of the form:

dab. ...a...b...

Where “...” usually:

e are complex expressions unwieldy to handle manually;

e contain symbolic expressions (abstract cost functions or
constants).

	Context
	Overview of the library: interface and specification
	Bender et al.'s algorithm: Key Ideas
	Complexity Analysis
	A taste of time credits: forward traversal analysis
	Integer Time Credits
	Conclusion
	Appendix
	Future Work

