CONCURRENT DATA
STRUCTURES LINKED IN TIME

i dea I TIF

INSTITUT

software DE RECHERCHE PPLV

EN INFORMATIQUE
FONDAMENTALE

German Delbianco

Aleks Nanevski llya Sergey Anindya Banerjee
INRIA Séminare Gallium: 18 Juin 2018

DATA STRUCTURES LINKED IN TIME

Concurrent Data Structures Linked in Time

LE»M ear E.,.Z,Q& LO b ?O E,M& S Germén Andrée Delbianco'®, llya Sorgey®, Aleksandar Naneveki',

end Anindya Dawrjoe!

1 INMDEA Softaurc lntitute, Madrid, Spais

= Pointers in Time i G R e e

L sergeySucl ac.uk
3 Universikind Politéenicn do Madsid, Spain

Adstrect
Argumpens about Seariaability of 1 concurnet deta einzecrs amw Hpioully carrind cut by
sgrevilyiag L Dieasivative puiuts of Ue dola sbioslwe povadaon Prools el we sud ape
diicuions ars often combexxne 45t Unea-izaiion poims’ xadion v time o de dmomic,
rencdoral and nnaosegurn!s £ oan depunet an e anteciere o runubene s bee aned sueers S

Y ° ° ° ta: pard, cr cvea Fatune, aoscer in pooccdusc caiies them 3¢ oac cczsidersd, and might be caly
n CO e Inea rlzatlon or er aS dedeiwiond dlla Le casikual proaluse bes i alsated
In ts paper we pronase 2 e methed. Dased an & MHoaeeye ogic, o raseing ot
it ahpacte with anet barar bt ym pemte We ambraoe She cipreoras rotomee® et
°1° M pesnta sad cydoce 2 m pars o the dete strscture’s aunliory slols, se 12t 3 can be dynaisally
a u X I I a ry State I n . modidd In place by sacliary oode, 2@ 2ocded whea some imgrupriase sun-lne event oomIs
We naxye the ldess fabmpM-afine >acaeaee It recduoes temmposil rexsozg to spanial reasonng.
Fer oxunple, modifying a temipaml pocten of 3 lawaricston poict cam be =odeled dmilarly to
a peivier updede in o beeg. W ilatraie tbe zuBod by vesifring en Bacizete cptimmal soapmnot

dxw Uuu e W Jaysui

1 Introduction

¢ Reasoning about (non-fixed, e e e e e e

ity [11]. Thic 50 stesrdond eoencencn eserion vhcrehy o conessed ooeution of an chjoet’s
[procedures & priowved equivalex., via a simulation argrent, (o =some sequential execaliom,
non- I oca I non-rediona I) L Ps The chents of o Ghest chn be vestfed macker tho sopaeatiality sasmmpticn, satier than by
| inliniw the peoocd uran exd ecesideriag Ac- isterloavingn Lincerisebility o cfics ctabiaded
by decriblig the ‘eartzzidon poirats (L) of the oaject. which ane polns o thme where
° . proceders tube plas, ‘cgical p. In oker wonds, evon # the geocedare plysicndly owcutex
re d u Ce d to p O I n te r— | I ke ociwe & Liwe istevel sxhiliting e Seeesisation paot enebles ose to geetend, fix reescuing
purpases, thay 1t oocurned inscentasously: brenoe, an nterfessd execaiion of 2 mznber of
procedures ca be roducid Lo w sogranoe of Incluy snecus evenls.

4 i oo [Jowewes reeasing with: Beeaticaliior, end about lisetication poise, vex be widhs.
m a n I p u | atl O n S O n a ux‘ I Ia ry state. Many umes 8 hnesnzeton pxant of & procedurs 1 rot jocal batl may appear 1o aoother
proxcom cr thresc. Kgauly bacd, u linesring oo poiats’ place in time sy nof e detiemiaed
stetivally, but muay vary basald ou the pest. and even futeze, raetine wfxsmtion Thas

evanplestion the crmnlatee arguments lesdms o sewwldy firme lnges] penofs
Tii papes pewsieds & novwd specificsting snd weilativa method ke conor~at objocts,
Lasad v “dosse logic I achiovss the aaue goel as Hosaricabdiny. lat o dies ok e
risce el of Howw thiples of L3 cbjoet’s procederes, roher (kan inline the procedure

* Mechanised a complex snapshot e e
coaxgis Fom Howro logics for sdared-memory coacursancy. M alsc pesmits better dqformetion

D Cormbs Andiis Dolannce sod Bym Seoges aad Asconnder ¥ answich and Aainden Daseries

algorithm by Jayanti.

LIEDES Plils Bagpiual - Toloalotacteem 15 TSomait Daguatd Tolio i e ey

(Delbianco, Sergey, Nanevski & Banerjee :ECOOP17)

CONCURRENT SNAPSHOTS

A[O] Al1]

|

3

* Fine-grained concurrent
object with a shared
memory object e.g. array.

scan = (5,3)
« WAIT FREE scan and write.
e Scan returns a memory
snapshot: a collection of
valued that co-existed in
scan =(2,8)

memory.

JAYANTI'S SNAPSHOT

write (i, v) {
* Optimal O(m) wait-free . Ali] := v;
scan with non-trivial : if S

correctness. then B[:]:= v

scan : array nat {
S:= true;
for i =0..n do B[i]:
for i =0..ndo V[i]:
S:= false;

for:=0..n do

v = B[i];
if (v+# 1) then V[i]:= v;
return V

= o0 0NS Ok

—_

(Jayanti:STOC'05)

JAYANTI'S SNAPSHOT
write (7, v) {

)

* Optimal O(m) wait-free . Ali] := v;

scan with non-trivial : if S |
correctness. then B[:]:= v

e Shared arrays A and B,
shared bit S.

scan : array nat {
S:= true;
for i =0..n do B[i]:
for i =0..ndo V[i]:
S:= false;

for i =0..n do

v = B[i];

if (v# 1) then V[i]:= v;
return V

= o0 0NS Ok

—_

(Jayanti:STOC'05)

JAYANTI'S SNAPSHOT
write (7, v) {

)

* Optimal O(m) wait-free . Ali] := v;

scan with non-trivial : if S |
correctness. then B[:]:= v

e Shared arrays A and B,
shared bit S.

e Single scanner/writer. scan : array nat {

S:= true;
for:=0..ndo B[i]:
for:=0..ndo V[i]:
S:= false;

for i =0..n do

v = B[i];

if (v# 1) then V[i]:= v;
return V

= o0 0NS Ok

—_

(Jayanti:STOC'05)

JAYANTI'S SNAPSHOT

Optimal O(m) wait-free
scan with non-trivial
correctness.

Shared arrays A and B,
shared bit S.

Single scanner/writer.

write might forward the ’ |

written value. Or not.

= O © 0N O O

write (7, v) {
Alz] := v;

¥ if S
then B[] := v

scan : array nat {

B S:= true;

for 1 =0..ndo B[i]:
for:=0..ndo V[i]:

g S:= false;

for i =0..n do

v =B[il;

if (v# 1) then V[i]:= v;
return V

(Jayanti:STOC'05)

JAYANTI'S SNAPSHOT

Optimal O(m) wait-free
scan with non-trivial
correctness.

Shared arrays A and B,
shared bit S.

Single scanner/writer.

write might forward the |

written value. Or not.

Hows does scan
compute a snapshot? Is
it a valid snapshot?

= O © 0N O O

write (7, v) {
Alz] := v;

¥ if S
then B[] := v

array nat {

scan :

B S:= true;
for 2 =0..n do B[i]:
for . =0..ndo V[i]:

g S:= false;

for i =0..n do

v =B[il;

if (v# 1) then V[i]:= v;
return V

(Jayanti:STOC'05)

JAYANTI'S SNAPSHOTS

scan : array nat {
S:= true;
for s =0..n do B[i]:
for s =0..ndo V[i]:
S:= false;
for 2 =0..n do
v =BI[i];
if (v# 1) then V[i]:= v;
return V

4.
D.
6.
7.
8.
9.
0.
L.

1
1

JAYANTI'S SNAPSHOTS

scan : array nat {

S:= true;
for s =0..ndoB[i]:= L;
for s =0..ndo V[i]:= A[il];
S:= false;
for . =0..n do

v = B[i];

if (v# 1) then V[i]:= v;
return V

4.
D.
6.
7.
8.
9.
0.
L.

1
1

PRELUDE : COLLECT
(ICGrINAL VALUES FROM A

JAYANTI'S SNAPSHOTS

scan : array nat {
S:= true;
for s =0..n do B[i]:
for s =0..ndo V[i]:
S:= false;
for 2 =0..n do
v =BI[i];
if (v# 1) then V[i]:= v;
return V

4.
D.
6.
7.
8.
9.
0.
L.

1
1

JAYANTI'S SNAPSHOTS

scan : array nat {

S:= true;
for s =0..ndoB[i]:= L;
for s =0..ndo V[i]:= A[il];
S:= false;
for . =0..n do

v = B[i];

if (v# 1) then V[i]:= v;
return V

4.
D.
6.
7.
8.
9.
0.
L.

1
1

EPILOGUE @ UPDATE WITH
~ORWARDED VALUES FROM B

JAYANTI'S SNAPSHOTS

1l: write(x,2);
write(y,1)

c: scan() || r: write(x,3)

VX = ax = 2 vww=by=1 ret(vx,vy)

SCAN RETURNS (2,1) °

An Optimal Multi-Writer Snapshot Algorithm °

[Extended Abstract]

Prasad
Dartmouth

6211 Sudikoff Lab for Computer Science

prasad.jayanti@dartmouth.edu

ABSTRACT

An m-component, n-process snapshot object is an abstrac.
tion of shared memory that consists of m words and allows
up to n processes to concurrently execute the following two
types of operations: uwite(i,v), which writes v into the ith
word, and scan(). which returns the current values of all
m locations [1, 3. The snapshot prodlem s to design algo-
rithms for the write and scan operations that meet two chal-
lenging requirements: (1) operations appear to be afomic.
and (2) operations are waid free.

For any (m-component, n-process) snapshot algorithm,
which runs on hardware that supports only word-sized ob-
jects, (1) and)(m) are trivial lower bounds on the time
complexity of write(i,v) and scan(), respectively. But. are
these bounds tight?

For a restricted versson of the snapshot problem, known in
the literature as the single-writer snapshot problem, Riany,
Shavit and Touitou [18] showed that the answer is yes: they
designed an algorithm with O(1) and O{m) running times
for the write(i, v) and saan{) operations, respectively. (The
single-uriter snapshot problern nssumes that (i) the number
m of words of the snapshot object is equal to the number
n of processes, and (i) only the ith process may write into
the ith snapshot word.)

This paper shows that the same (optimal) running times
of O(1) for write(i,v) and O(m) for scan() are achievable
for the general problem, known in the literature as the mul-
tiwrifer snapshot problem. Our algorithm requires hacd.
ware support for the CAS (comparekswap) operation (in
comparison, Riany, Shavit and Touitou’s algorithm reqguires
hardware support for CAS, fetch®ine, and fetch&dec oper-
ations).

*We y acknowledge the equipment and system sup-
port the NSF grant EIA-SS02068.

Permission to make digital oc hard copies of all or par of this work for
personal or classroom use i granied without fee provaded that copees arc
=t made or distriteted for profit or commercial abvantage and Bt copees
Bear this notice and the full cration on e first page. To copy otherwae, o
republish, %0 post on servers or to radiseribute to lists, requires prior specific
permission andloe a fee.

STOC'0S, May 22.24, 2005, Baluemore, Maryland, USA.
Copyright 2005 ACM 1.58112.560- 2050005 __$5.00.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ityl: Miscellaneons

General Terms
Keywords

asynchronoes, concurrent algorithm Sait-tolerant | lock-See,
spapshot. wait-foee

1. INTRODUCTION

In a2 multiprocess system. the hardware allows concurrent
processes $0 execute atomEc reac anc wrie operatioms on
mdividua] words of memory. But what ¥ processes reguive
the capability to atomically scan 2 large chunk of memory
that consists of many words, even as other processes coo-
currently write into some of these words? Cleacly, such 2
capability can only be provided in software through the de-
sign of suitable algocithoes. This obseration motivates the
smapshot Sormuiated ancd Sxst solved by Ak ef al

An m-omponent, n-process snapsict oijert s an abstrac
tion of a shared memory that comsists of m words and 2l
lows up to n proceses to concurrently execute any of the
following two types of operationss wrife(i. v), which writes
v into the ith word, and soom{). which returns the corrent
valwes of all m locations. The problem = to Implement this
abstraction ie. design algocithms for the wrile(iv) and
scan{) operations. such that two challenging requirements
are met: (1) the wrile and soom operations mast be atommic
they mumst appear fo act imstantanecesly. or more techms-
cally, they must be Enearizable [12] and (2) the write and
scan operatiops mmxst be wasd-free a2y process should be
able to execute ether operation =n 2 bounded number of its
own steps, regandies of whether other processes (which may
be concurrently exscuting write anc scan operations) slow
down, speed Ep or even crashy

The zbove version, which = the grneral version of the
spapshot problem. = known In the Eterature as the mulh.
wriler snopshot problem. A smpler version, mown as the
single-writer snapshot problem. asumes that (1) m = n (the
number of words of the smapshot cbject = egual to the num-
ber of proceses). anc (=) the fth szapshot word may be

(Jayanti:STOC'05)

An Optimal Multi-Writer Snapshot Algorithm -

[Extended Abstract]

Prasad Jayanti
Dartmouth College
6211 Sudikoff Lab for Computer Science
Hanover, NH 03755

THEOREM 1. If Scan operations are executed one after

another, without overlap, and Write operations to the same
component are executed one after another, Wt H Qe e,
the algorithm in Figure 1 correctly implement£a lzneamzable
m-component snapshot for any number of DrotEISCswmedre
time complexity of Scan and Write operations are (m) and
O(1), respectively, and the space complexity is O(m).

e > ch
"We br“‘ uly \-“; owle l‘[the eq ‘-9‘_‘ t and system sup cally, they must be Enenrizable [12]. and (2) the wrife and
poct & ! 2068, "

P om the e A-O can operations mms free amy process should be
able to execute either operation n 2 bounded number of its
own steps. regardiess of whether other processes (which may
be concurrently exscuting write and scan operations) siow

P”mssu. o ~.xL..dg.11 hu copies of all or par of this work for UWE, Speec Ep o oven o==a

peronal < srooen use s granied without fee pee il that copees arc The abowve vernsSon, which = the grmeral version of the

ot made < *‘ triteted for prot or commercial "“‘-""'L*' and Tt copees spapshot problem. = known in the Eterature as the mull

bear this notice and the full Gration o e first page. To copy otherwine. 1o wriler snopshot problem A sSmpler version. mown as the
repu £03 0f to rediseribute 1o lists, requires prior specific , :
e ¢ O [POSR 0 SETvers OF i h..:x. 5, PEquines poor spe single-wriler snapshot problem. asumes that (i) m = n (the
perussion andied a fee. - ¢ words of _ - el
number of words of the smapshot cbject = egual to the sum
SToC ‘.1 4, 20 &m_." e, \.J\.....A. USA.)) ’
Copyri m u u\(g LSad. 2080008 S 00, Q€T O DrOCE=SES |, anc (D) O D sEEDsDol wOrc may e

(Jayanti:STOC'05)

Linearizability: A Correctness Condition for
Concurrent Objects

MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

(Herlihy-Wing:TOPLAS'90)

LINEARIZABILITY TO THE RESCUE

write (x,2);
write (y,1)

LINEARIZABILITY TO THE RESCUE

write (x,2);

write (y,1) scan () || write (x,3)

X

(2,1) was NOT a S (2.1)

sv\&pshaﬁ, but itk COULD
have been!

y

LINEARIZABILITY TO THE RESCUE

LINEARIZABILITY TO THE RESCUE

write(x,2); write(y,1); scan(); write (x,3)

S (2.1)

L? = Llogical, atomic, moment where action happev\s

[12] M. Heslihy snd J. Wing. Linenrzeability: A corsoctzass
ooaditice fe conourrent cbjecta. ACM TOPLAS,
123463 402, 1990,

(23] P. Jayanis. f-armys: sspleeseststion and sppdcaticas.
In Prooedings of the 218! Anuval Symposiun on
anplu of Dhatributed Conguting pages 270 - 279,

|14] 2. Imnu axd S, Petrovic. Efficient and prnctical
coastructions of LL/SC wrsbles. In Prooedings of
the £8nd ACM Syapastum on Priuciples of
Datributed Conguting, Jaly 2008,

[16] P. Jayants ssd S, Petrovice. Efficient wait-froe
implermentation of multiweed [se wriabies. In
Prooxdings of the 25tA Internstional Comference on
Dhatributed Conguting Spatems (ICDES), June 2006.

|16] L. Kircusia, P. Spéenkis, and P. Tuiges. Ronding many
varishdon in ome slomic operntion: solutioes with
lisumr or subizenr complexity. In Proceadings of the
SeA Internotiona Workshap on Distrebuted
Algvrithees, pages 229 241, 1991,

[17] M. Meir. Peactioal ssplemestations of sos-blocking
synchireaizntion peimitives. In Prooodings of the 160A
Annual ACM Symposiurs ou Princigies of Distributed
Croenpuling, jages 219 228, Acgust 1997,

|18] Y. Rinny, N. Shavit, and D. Touitos. Towasds
penctical sanpalot slgorithm, Theoretical Compuler
Scremor, 200(1-2):163 201, 2001

APPENDIX
A. PROOF OF CORRECTNESS OF

THE BASIC ALGORITHM

In this appesdx, we sketch the peool that the basic sl
gorithm = Figure | coerextly implemments a sanpdot object
if 20 two Senn operatices see comcurrent snd no two Weite
operaticas 10 Lhe suue componest are coocurrent. Bocause
of spacyr cotstrainta, we stetle the lemmes without peocls

Darxrmon 1 If S 1 oy Seel) operation and W isany
Wirite(1, o) operation, We ssy $hat S retams W for compo-
nent | f either of the fllowing two condidions 1 met: (1) S
mda.LfmuB{" fot Line 9) and W is the last speration o
write AW before S reads Al ot Line &, or (2) S reads 5 non-
L value from 3{¢ ‘ot Line 9) and W is the last speration to
write Bi] before § reads B)V

Notation: [f § ls any Scan() operation and W = any
Writedi, ») operation, STA (respectivdy, W]} demotes the
poEst i Line sl which S (nepoctividy, W) executes L k
of s slgorithm, Sinoe Lines 5 and 6 are oot alcmic acticas,
we refine the sotation furtber fie those two linec S5, de-
notex the Line st which S perfoerm the ith iterstion of the
for-koop ca Lize 5. S)6, 1] s similacly definal. S0, 1] denotes
the titee st which S pesforss Line 9 for the fth iterstion of
the for-locgs that begits st Line 8.

The firt Jeruma states that if & Write(1, v) opesstion W
completes before a Scan operstlon S performs ts Line 7,
then W takes eflect before S,

Lesna 1, Let S be any Scan speration and W be any
Wirite operstion to componend | such that W completes be.
fore SIT. Then, § does not return an older Wige than W
Jor component 1; Lo, if 5 retuns W for component §, then
W does not precede W,

The next Jemesa states that #f & Write(1, =) opesstion W
sturts befoer a Scan operation § starts, then W takes effect
befuee S,

LEMMA 2. et S b guy Scan operotion and W ke any
Write cperafion fo compeonest § suck that Wl < S4).
Then, S does no! referm au older Wiite than W for compo-
nent 10 e, if S reburme WY for component 1, tAen W does
nod precade W

The next Jemesa states that o & Write(1, v) opesstion W
sturty afler & Scan operstinon S pesforsss s Line 7, then
W otakes effoct efter § (in other wonds, W s too late o be
=otiond by S).

LEMMA 3. fet S b cuy Scan operution and W ke any
Write cperafion fo componest § suck that S[7] < Wl
Then, § refurns an older Write an W for component &
te, if § reburms WY for component 1, tAen W precedes W

Next we defize the linesrzeation points for Scan snd Write
opersticos. Lemmes 1 and 3 suggest S|7) as the natuml
choice e where s Scan operstion S shocdd be linesrieed
(Bocause the two lemmmas state Bat & Write operstion W is
taken into socoent by § i W completes bofore S|7 but nct
o = starts after S[71). A Write operation W', om the other
band, s linearizod ot W1l except i ome case: W overlaps
with & Scan S In soch » way that £ does not notice W, In
this case, we hacarize W Immedintdy after §° The precise
definitions are as follows, Henoefoeth, LP{OF denotes the
bacarization polnt of an operation OF,

Devxiniox 2 (Lincarization Points) For any Soenl)
operstion S, we define LIS) s S17)
For any Writali, ») operation W, LINW) s defined in two
coses’
Casg 1: There exists & Sean() operution § mch that
S4] < Wl] < S|7] ond, for compenest 1, § sefarns an
older Wnite shan W
In this cose, Lemms | guarontees that W completes
only after S17]. We define LINW) to be smmadiately
after LINS) = ST7]. More procisely, LITW') s defined
08 any point that Mes after S|T and within the intorvals
of both W end S.

Coss £ Core [does not hold.
In this oose, we define LITW) s W(T]

To peove 3o sdgueithm ocerect, we =oed to argue two
pointe (1) LP comtainment: the linearizstion point of eech
operation Is within the Interval of that operation, and (2)
Coerectness of Scan: If o Scem operation £ returns W for
component ¢, then W is the Intest Write operstion to comr
ponest | 1o be boearized befoce §© These two polnts are
proved in the next two kemmas,

Lesua 4 (LP coxvamaext). For sny operstion OF,
which may b2 o Soem or & Wnite, LIYOP) les within the
interved of OF

Lesma & (Conneciaess or Scax). If s Scan opero-
ton S retwrne W for component |, then (1) LW < LIS),
ond [2) f W s slso 5 Wnite 20 component | and is exeosted
after W, hem LAWY > LINS)

Theoeem 1 of Section 2, is immediate from Lemamas 4, 5

(Jayanti:STOC'05)

[12] M. Heslihy sed J. Wing. Linenrzeability: A corsectzase
conditicn fe conourrent cbjecta. ACM TOPLAS,
123463 402, 19940

[13] P Jaynnts. foarmyx sspleesest stion and sppdcations.
In Prooeedings of the 20! Anuval Symposun ou
Privcples of Duotributed Conguting pages 270 - 279,
2002

[14] P. Jayants asd S, Petrovic. Efficient and penctical
coastructions of LL/SC warsbles. In Proosedings of
the £8nd ACM Sympastum on Privciypdes of
Doatribuled Conguting, Jaly 2008.

[16] P. Jaynnts asd S, Petrovic. Efficient wait-froe
implesmentation of multiwoeed e wrabiles. In
Prooeedings of the 850A Internstional Congference on
Diatriduted Congating Seatems (TCDCS), June 2006.

[16] L. Kircusiy, P. Sgéenks, and P. Thiges. Rending many
varinhdos in ome slomic operntion: solutioes with
linemr or sublisr csuplexity. In Proceadings of the
A luternotiona Workslop on Distrabuted
Alguritheer, pages 229 241, 1991,

[17] M. Meir. Peactioal splemestations of sos-blocking
synchroaizntion peimitives. I Proooedings of the 164
Annual ACM Symposiurs ou Princigdes of Distributed
Crompuling, poages 219 28 Acgust 1997.

|18] Y. Riny, N. Shavit, and D. Touitos. Towards o
penctical sanpbot slgorithm,. Theorefical Compuler
Seremer, 2000(1-2):163 201, 2001

APPENDIX

A. PROOF OF CORRECTNESS OF
THE BASIC ALGORITHM
In this appesdx, we sketch the peool that the bhasic)
gorithm &= Figure | correctly implemmentis a sanpsdot objoct
if =0 two Soun operatices sev comcurrent and no two Weite
peralicas 10 Lhe s componest are concurrent. Bocasse
of spacy: cotstraints, we state Lhe lommes without peocs

DerixmaoN L If S o ouy Seawl) operation and W i any
Wire(1, o) operation, We ssy $hat § retams W for compo
neat | \f either of the fGllowing two conditions s met: (1) S
resds L from 3{¢ fot Line 9) and W s the last speration fo
urite A% before § reads Ald ot Line &, or (2) S reads 5 non
L value from 3¢ fot Line 9) and W is the last speration 2o
write B] before § reads B)J

Notation: [f 5 s any Scan() operation and W s any
Writedd, ») operation, ST (respectivddy, Wk]) demotes the
pomst = Linne ml 1 S [repoctively, W) executes Lisw k
of nx slgorithm. Sinoe Lines 5 and 6 are nol alomic actioas,
we refine the sotation furtber foe those two linec 516, ¢ de-
notes the Line st which S perfoers the ith iterstion of the
for-doop on Liswe 5. S)6 1] b sémilacly definad. S| 1] denotes
the Litne st which S perforsss Line 9 for the 8t flerstion of
the for-locgs that begins st Line 5.

The Ert Jemnma states that if & Write(1, v) operstion W
completes before & Scan operstiom § performs Its Line 7,
then W takes ofect before S

Lesana 1, Let 5 be any Scan speration and W be any
Wirite operstion to compenend | sweh that W completes be
fore SIT. Then, S does not return an older Wide than W
Jor component 1: Lo, f § returms W for component 1, then
WY does not precede W

The next demesa siates Lthat @ & Write(1, =) operstion W
sturty befoer a Scan operation § starts, then W takes effect
befuee 5.

LEMMA 2. fet S 5 ouy Scan operution and W be any
Write cperafion fo compones! ¢ suck that Wil < S4).

s DEFINITION 2 (Linearization Points). For aeny Scan()
operation S, we define LP(S) as S[7].
For any Write(i, x) operation W, LP(W) is defined in. two
cases:

The nex
sturtx afle
W Ladoes of
soticed Ly

LEsMMA

Case 1: There erists a Scan() operation S such that
S[4] < W1] < S[7] and, for component i, S returns an
older Write than W'.

In this case, Lemma 1 guarantees that W completes
only after S[7]. We define LP(W') to be immediately
ajter LP(S) = S|7]. More precisely, LP(W) s defined
For ang as any point that lies after S’ 7| and within the intervals
™ of both W and S

S|4 «

Next we

operniaons

choice ke
[bocmse ¢
tnkon ito

definitions
bmoarizatic

Deyixn
opersiion

‘ Case 2: Case 1 does not hold.

o In this case, we define LP(W) as W1].

Cass 2
, , ,
/ ’ v

In this case, we define LITW) e W1 L

To peove 2e slgorithin ccerect, we zoed to amgue two
potnte (1) LP ctminment: the lineasization point of ench
operation Is within the Interval of that operation, and (2)
Coerectness of Scan: If a Scem operation § returns W for
component ¢, then W is the Intest Write operstion to com
poacst | 10 be haecarized before S0 These two polnts are
proved in the next two kemmas

Lesya 4 (LP coxtamsaexrt). For sny operstion OF,
which may b2 0 Soem or & Wnite, LITOF) lies within the
interved of OF

Lesya & (Conneciaess or Scax), If s Soon opero
fon S redurne W _(.-.- component |, then (1) LMW < LINS),

ond [2) f W s slso 5 Wite 2o component | and 1s ezeosde
after W, hem LIMWT) > LINS)

Theoeem 1 of Soction 2, is immediate from Lesnanas 4, 5

(Jayanti:STOC'05)

scan : array nat {
S:= true;
for 1 =0..n do B[i]:
fort:=0..ndo V[i]:
S:= false;
for ;. =0..n do
v =B[il;
if (v# 1) then V[i]:= v;
return V

= o © 00N o ok

1
1

write (7, v) {
Alz] := wv;
if S
then B[] := v

13

scan : array nat {
S:= true;

if (v# 1) then V[i]:= v;

return V

write (7, v) {
Ali] := wv;
if S

then B[] := v

Scam’s LP is fixed!

13

scan : array nat {
S:= true;

if (v# 1) then V[i]:= v;
return V

J

Wriktes LP is here...
somelbimwes

13

scan : array nat {
S:= true;

if (v# 1) then V[i]:= v;

return V

write (7, v) {
Ali] := wv;
if S
then B[] := v

Or here!

13

scan : array nat {
S:= true;
for i =0..n do B[i]:
_ {01 ‘ o.do VIi]:

S:= false;

0 ! — 'm_s “ 7

> ’02[1,

if (v # 1) then V[i] e

return V

Even amjwhére here!

LINEARIZATION POINTS FOR WRITE

LINEARIZATION POINTS FOR WRITE

* Non-fixed: LP determined by dynamic, run- time information.

LINEARIZATION POINTS FOR WRITE

* Non-fixed: LP determined by dynamic, run-time information.

* Non-local: LP might be in write’s code. Or not.

14

LINEARIZATION POINTS FOR WRITE

* Non-fixed: LP determined by dynamic, run-time information.
* Non-local: LP might be in write’s code. Or not.

* Future-dependent: the position of the LP depends on future

events.

14

LINEARIZATION POINTS FOR WRITE

* Non-fixed: LP determined by dynamic, run-time information.
* Non-local: LP might be in write’s code. Or not.

* Future-dependent: the position of the LP depends on future

events.

* Non-regional (Far-Future): which (potentially) take place after

write has finished.
¢ 4 &

Linearizakbion Poinks = Poinkers in Time

L0GICS FOR CONCURRENCY

Owicki-Gries (1976) —™—,
Rely-Guarantee (1983) CSL(2004)

v Bornat-al (2005) RGSep (2007)\

SAGL (2007)
Hobor-al (2008) l <

— Deny-Guarantee (2b/09) Gotsman-al (2007)

LRG (2009)
/— CAP2201 0) Jacobs-Piessens (2011)
SCSL(2013) /

HLRG (2010)
RGSim (2012) HOCAP (2013

/ / RSL(2013)
rengiaons iCAP(2014) TaDA(2014 l
CaReSL(2013)
/ N ~l ‘«//// v FSL(2016)
' CoLoSL(2015)
GPS (2014) Iris (2015) FCSL (2014)

\4

Li-Li (2016)

17

FCSL: FINE-GRAINED
CONCURRENT
SEPARATION LOGIC

* Subjective Auxiliary State:
PCMs identify thread-
specific contributions

o State-Transition Systems:
user-defined concurrent
protocols.

* Types: mechanization and
compositionality.

Communicating State Transition Systems
for Fine-Gralned Concurrent Resources

Aleksandar Nanevsci |, Ruy T 2y-Wild’ Tlya Serpey’ and Germdn Aadnés Delhianco

' IMDEA Sofiware Insttuze, Spaln
|aleks.ranevski,ilya.sergay, german. de_bianco @imiea.org
* LogicBlox, USA
ruy. leyw:li¥lcg:cblox. con

Abstract, We present a novel model of concurrent compatations with shared
memory and provice a smple, yet powerful, logical framework for uniform Hoare-
sty'e rewsonng eboul parial comresiness of coanse- and fne-gruined concurrent
programs. The key id=a ixto speeify arkitrary resource protocels as commuricat.
ing suate wansition systews (STS) that describe valid states of a resource and the
transitions the resodrce is alowed w mike, ncludiag transter of deap ownenhp,

We demenstrate how reasoning intesms of communicating STS makes it ey
o erystallize behavierdd invarlants of a rescurce. We alse provide ersanglement
Operutons to build lange sysiems from an arbitrary nureber of STS components,
by inercenrecting their lines of communication. Furhermore. we show how the
classical rules from the Corcurren: Scparaton Logic (CSL), such as sconcd re-
source allacation, can be geacralized to fise-grained resowrce management. This
tllows ax to give spacificaions o powerfil as Rely-Guarantes, in 2 concise,
souped way, and yel regain the conpositivnalily of CSL-siyle rovurce masage-
ment We provec the scundness of our logic with sespect to the denctationzl se-
mantcs of sctioa trees (variaton cn Brockes™ action truces). We formalired the
logic as & shallow cibeddiag in Coyg and snplenented & mumber of caanples,
including a construction of coarse-grained CSL resources as a modular composi-
tion of various legioal and semrantic components

1 Introduction

There are two maia styles of program logics for shared-memory concurrency, customas-
ily divided eccord.ng to the supported kind of granularity of program interfereace. Log-
ics for coarse-grained concurrency such as Concurrent Separetion Logic (CSL) [12,14]
restrict the interference to critical sections only. but generally lzad to mere modular
specifications aad simpler proofe of program correctness. Logics for fine grained cor

currency, suck as Rely-Guarartee (RG) |8 admut artatrary mterference, tul their spec-
ificatiors have traditicnally been rore moaclithic, as we shall illuctrata, In thic paper,
we idzriify thre essemial ingredients required for compositional specification of con-
current progrems, aad corabine them in a novel way o recoacile the two aporoaches.
We presert a semeniic model énd & logic that enables specification and reasoning about
fine-grainad peograms, but ia the style of CSL. To deseribe our contribution more pre-
cisely, we first compare the rekevant propesties of CSL and RG.

Z. Shoo (B4 x BESO2 011, INCS S0 . 200 210,200 4
@ Sprirger Verkg Beorlir Hosdeltery 2014

(Nanevski, Ley-Wild, Sergey & Delbianco:ESOP14)

18

18

Atomic write evenks

18

Colors encode
runtime “visibility” of
evenks

18

X = Xs + Xo
Subjective History'

18

Xo

18

18

Change logical order, atomically:

<L

«|

el | |«]

Xo

Change logical order, atomically:

<L

Xo

Change logical order, atomically:

<L

Xo

Change Logical order,

Thalk’s Lk!

a&ami&attvj!

<L

Xo

AUXILIARY STATE INVARIANTS

21

AUXILIARY STATE INVARIANTS

Color invariant: At all times, many greens in the head,
at most one yellow, any reds in the tail.

G+ 2 Rx

21

AUXILIARY STATE INVARIANTS

Color invariant: At all times, many greens in the head,
at most one yellow, any reds in the tail.

G+ 2 Rx

E(t) End times: preserve ordering of non-overlapping

events.
E(tl) <ty — 11 <y, 19

as Limearizabitiévf

22

1
1

4.
D.
6.
7.
8.
9.
0.
L.

INSTRUMENTED SCAN

scan : array nat {
(8:= true; scanPrelude());
for i =0..n do (B[i]:= L; clear(z))
for i =0..ndo V[i]l:= A[i];
(S:= false; scanEpilogue());
for : =0..n do
v = B[i];
if (v# 1) then V[i]:= v;
{relink(); return V')

22

1
1

4.
D.
6.
7.
8.
9.
0.
L.

INSTRUMENTED SCAN srosete

&uxitiarv
code
mebhods

scan : array nat {
(8:= true; scanPrelude());
for i =0..n do (B[i]:= L; clear(z))
for i =0..ndo V[i]l:= A[i];
(S:= false; scanEpilogue());
for : =0..n do
v = B[i];
if (v# 1) then V[i]:= v;
{relink(); return V')

INSTRUMENTED SCAN srosete

o\u,xi,i.mrv
code
mebhods

scan : array nat {
(8:= true; scanPrelude());
for i =0..n do (B[i]:= L; clear(z))
for i =0..ndo V[i]l:= A[i];
(S:= false; scanFEpilogue());
for : =0..n do
v = B[i];
if (v# 1) then V[i]:= v;
{relink(); return V)

4.
D.
6.
7.
8.
9.
0.
L.

1
1

Fix Order before return!

BEFORE RELINK

BEFORE RELINK

(rx, ry)

BEFORE RELINK

NOT A VALID
SNAPSHOT!

AFTER RELINK

AFTER RELINK

AFTER RELINK

Color pa&&erms
praservec{!

Real Time
Ordering
presarvedf

SMQFSkOE!

SPEC FOR WRITE

write (p:ptr,n: int)

SPEC FOR WRITE

{Xs — @}

write (p:ptr,n: int)

SPEC FOR WRITE

Self-history Xs is

em[a&3 \

{Xs — @}

write (p:ptr,n: int)

SPEC FOR WRITE

{Xs — @}

write (p:ptr,n: int)

Tt xs=t—(p,v)
A dom(x,) U scanned 2 (€2 [t)}

SPEC FOR WRITE

Seixf”HLs&orv Xs’
accounts for a

{:resk write event {XS = O }
& write (p:ptr,n: int)

N
Tt xs=t—(p,v)
A dom(x,) U scanned 2 (€2 [t)}

25

SPEC FOR WRITE

Setf*HLs&orv Xs’
accounts for a

{resk write event {XS = O }
& write (p:ptr,n: int)

{Ft.x; =t — (p, V)
A dom(x,) U scanned 2 (€2 [t)}
ALl obther (environment)
write events

25

SPEC FOR WRITE

Self-History Xs’
accounks for a

ﬂfresh write event {XS = O }
& write (p:ptr,n: int)

N
Tt xs=t—(p,v)
A dom(x,) U scanned 2 (€2 [t)}

/ A

ALl obther (environment)
wrikte evenks Crlobal sktable order...

SNAPSHOT OBJECT SPECIFICATION

STABLE DYNAMIC ORDER

aflb= a=0
v F(a) <b
v a<pba C(a)=green

SNAPSHOT OBJECT SPECIFICATION

STABLE DYNAMIC ORDER

Nonwoveria[ﬁping
write evenks

aflb= a=2b /
v F(a)<b 4

v a<pba C(a)=green

26

SNAPSHOT OBJECT SPECIFICATION

STABLE DYNAMIC ORDER

Nov\wmvertapping
write evenks

aflb= a=2b /
v F(a)<b 4

v a<pba C(a)=green

Crreen &Lmes&s /

are fixed on the left
of < L

26

SNAPSHOT OBJECT SPECIFICATION

STABLE DYNAMIC ORDER

Nom-woveri.&pping
write evenks

aflb= a=2b /
v F(a)<b 4

v a<pba C(a)=green

Crreen &Lmes&s /

are fixed on the left
of < L

Skable: () - Q/

SNAPSHOT OBJECT SPECIFICATION

SCANNED PREFIX

scanned Q) = {t| (Q |t)=(<p |1t
AVse(]t). C(s) = green}

SNAPSHOT OBJECT SPECIFICATION

SCANNED PREFIX

Prefix of <L up to t

scanned Q) = {t| (Q |t)=(<p |1t
AVse(]t). C(s) = green}

SNAPSHOT OBJECT SPECIFICATION

SCANNED PREFIX

Prefix of <L up to t

scanned Q) = {t| (Q |t)=(<p |1t
AVse(]t). C(s) = green}

///"

ALl events are green (= fixed)

27

SNAPSHOT OBJECT SPECIFICATION

SCANNED PREFIX

Prefix :} <L up to b
scanned Q) = {t| (Q |t)=(<p |1t
AVse(]t). C(s) = green}

/

ALl events are green (= fixed)

A growing
*Linearizationx of the scannedQ < scanned &

daka skructure!

SPEC FOR WRITE

{Xs — @}

write (p:ptr,n: int)

Tt xs=t—(p,v)
A dom(x,) U scanned 2 (€2 [t)}

SPEC FOR WRITE

{Xs — @}

write (p:ptr,n: int)

Tt xs=t—(p,v)
A dom(x,) U scanned 2 (€2 [t)}

ALL previous, ‘/
Finished

Writes...

28

SPEC FOR WRITE

{ye = &) ... and all previcusly

scanhed evewnks...

write (p:ptr,n: int)

Ftxs =t —(p,v)
A dom(x,) U scanned Q (2 |t)}

ALL previous, ‘/
Finished

Writes...

28

SPEC FOR WRITE

{ye = &) ... and all previcusly

scanhed evewnks...

write (p:ptr,n: int)

Ftxs =t —(p,v)
A dom(x,) U scanned Q (2 |t)}

ALl previous, ‘/ 4
inished

Writes...]

...are sorted before the
hew write event

SPEC FOR SCAN

scan() : array A

SPEC FOR SCAN

{Xs — @}
scan() : array A

SPEC FOR SCAN

{Xs — @}

scan() : array A

fr.dt.x. = Ar= eval t QY
A dom(x) =(2' [t) At € scanned 2’}

29

SPEC FOR SCAN

scan observes
xobher* Ehreads’
conkributions {Xs — @}

& scan() : array A
~

fr.dt.xi = Ar= eval t QY
A dom(x) =(2' [t) At € scanned 2’}

29

SPEC FOR SCAN

E umiquetfj
scan observes debermines a
xobther &[M”Q&dS, sy\apskoﬁ i Fhe
contributions {Xs — @} Ms&orj,

L ~ scan() : array A /

fr.dt.xi = Ar= eval t QY
A dom(x) =(2' [t) At € scanned 2’}

29

SPEC FOR SCAN

k umiquetfj
scan observes determines a
obher threads’ smapsko% i the
contributions {Xs — @} kis&orj,

L ~ scan() : array A /

fr.dt.xi = Ar= eval t QY
A dom(x) =(2' [t) At € scanned 2’}

. which considered
otk least all prﬁvious
wrikes...

29

SPEC FOR SCAN

k umiquebj
scan observes determines a
obher threads’ smapsko% i the
contributions {Xs — @} kis&or:;,

L ~ scan() : array A /

fr.dt.xi = Ar= eval t QY
A dom(x) =(2' [t) At € scanned 2’}

... which considered ..and, ik cannot be
abk leask all previous tavalidated n the
wrikes... future

SNAPSHOT OBJECT SPECS

{Xs — @}
write (p: ptr,n : int)

Ftxg=t— (p,v)
A dom(x,) U scanned 2 <(€2' | t)}

{Xs — @}

scan() : array A

{fr.dt.xi = Ar= eval t QY
A dom(x) <(€2' [t) At € scanned 2’}

31

DATA STRUCTURES LINKED IN TIME

* Reasoning about concurrent objects is tricky, and
tracking linearization points can be cumbersome.

* Creating a new program logic/technique for each new
corner case/consistency criteria does not scale up.

 Introduced Linking-in-time as an alternative to explicit
reasoning about non-fixed , non-local, LPs.

* Mechanized in Coq, including the first formal
correctness proof of Jayanti's snapshot object.

THANKS

CoPYRIGHT DISCLAIMERS

LoGICS FOR CONCURRENCY The CSL family tree slide is a

Pely 5 ,_l‘:_;ﬁ‘?'\f? (2004] e\?\ . . I/
P el NN variation of I.Iya Sergey'’s
T ag;e? onbesmany) | original:
/:20 RGS/' o/// "f’C/\F 1)) \\5-& N.SRS'.CIﬁH) . .
(|/ s et | \| T http://ilyasergey.net/other/CSL-
g R Family-Tree.pdf

The Mighty Rooster is due to
Lilia Asiminova
http://www.liliaanisimova.com/
Handle with caution!

http://ilyasergey.net/other/CSL-Family-Tree.pdf
http://www.liliaanisimova.com/

