
Keryan Didier
INRIA, AOSTE2 team

12/4/17

A compilation-like approach to
real-time systems implementation

2

The need for automation

● Higher level program
specification

● Implementation
automation

Engineer struggling to keep her
code from crashing, 1969

3

Compilation of « high-level »
languages

Functionality
(C program)

Compiler
Linker

Sequential
executable code

4

Compilation of « high-level »
languages

Functionality
(C program)

Compiler
Linker

Sequential
executable code

Platform
model

(gcc internals,
linker scripts)

5

Data-flow (Lustre) compilation

Functionality
(Lustre program)

(Parallelization)
Lustre compiler

C compiler
Linker

Parallel or sequential
executable code

Platform model,
Allocation

6

Real-time data-flow compilation

Functionality
(Lustre program)

Parallelisation
Real-time scheduling

Lustre compiler
C compiler

Linker

Parallel real-time
executable code

Parallel
platform
model

Non-functional
requirements

(e.g. real-time)

7

Related work (1/2)

● « Classical » compilation
– Back-end and optimization

● Software pipelining
● Scheduling on VLIW architectures with exposed pipelines

– Precise timing models to achieve efficiency
● Timing of basic operations does not depend on allocation and scheduling

– Average-case optimization (vs. worst-case satisfaction)

● Off-line and time-triggered real-time scheduling
– SynDEx, Lustre2TTA, Giotto, Prelude, Lopht, Asterios Developer, etc.

– Front-end: Significant front-end work (we do not insist on it here)

– Back-end: Existing tools assume the existence of a timing
characterization satisfying some properties

● How to derive it?
● What is the cost of mapping choices and generated code?

8

Related work (2/2)

● Parallel, possibly real-time code generation
without schedulability guarantees
– Simulink Real-Time, SCADE KCG6 parallel

● Automatic parallelization, parallel compilation
● WCET analysis of parallel code

– Heptane, OTAWA

9

Outline

● Input: Data-flow programming in Lustre
– And timing extensions

● Output: Structure of an implementation
● Timing model
● Resource allocation and code generation

– Compilation-like

● Experimental results
● Conclusion

10

Data-flow programming in Lustre

node main () returns ()
var
 i : int; x : float;
 y : int; z : int;
 d : int;
let
 i = read_int();
 x = f(i);
 y = g(d);
 z = h(x,y);
 d = 0 fby z;
 () = write_int(z);
tel

f

g

h

fby

i

y

x

z

d

0

● Data-flow in textual form
– Cyclic execution

– State elements: fby

11

Data-flow programming in Lustre

node main () returns ()
var
 i : int; x : float;
 y : int; z : int;
 d : int;
let
 i = read_int();
 x = f(i);
 y = g(d);
 z = h(x,y);
 d = 0 fby z;
 () = write_int(z);
tel

f

g

h

fby

i

y

x

z

d

0

f

g

h

y

xi

0

f

g

h

y

x
i

d

z z

d

● Data-flow in textual form
– Cyclic execution

– State elements: fby

12

Data-flow programming in Lustre

node main () returns ()
var
 i : int; x : float;
 y : int; z : int;
 d : int;
let
 i = read_int();
 x = f(i);
 y = g(d);
 z = h(x,y);
 d = 0 fby z;
 () = write_int(z);
tel

f

g

h

fby

i

y

x

z

d

0

● Simple, deterministic concurrency
– Static Single Assignment form

● Each variable assigned exactly once

– Functions f, g, and h specified
externally in C or Lustre

● No recursion, no side-effects, no heap

● Well understood semantics,
analysis, compilation

● Integration specifications
– System-level, no further composition

● No input or output arguments
● I/O done through specific functions (e.g.

read/write of memory-mapped devices)

13

Non-functional requirements

period(3000)
node main () returns ()
var
 i : int; x : float;
 y : int; z : int;
 d : int;
let
 i = read_int();
 deadline(1500) x = f(i);
 y = g(d);
 z = h(x,y);
 d = 0 fby z;
 () = write_int(z);
tel

● Real-time requirements
– Period

– Release dates

– Deadlines

● Time unit: ms, µs, CPU cycle
● Other requirements

– Allocation constraints

f

g

h

i

y

x

z

d

0

3000

<1500

14

Structure of an implementation

● Multi-threaded C code
● Initialization
● Function calls
● Synchronization

– Between threads
– With real time

● Memory coherency

● Allocation of all code and data
● Node code, thread code, stacks, data-flow variables
● Linker scripts

15

Multi-threaded C code

void* thread_cpu0(void* unused){
 lock_init_pe(0); init(); time_init(&time);
 for(;;){
 global_barrier_reinit(2);
 time+=3000; wait(time);
 global_barrier_sync(0);
 dcache_inval();
 f(i,&x);
 dcache_flush();
 lock_grant(1);
 lock_request(0,0);
 dcache_inval();
 h(x,y,&z);
 dcache_flush();
 }
}

void* thread_cpu1(void* unused){
 lock_init_pe(1);
 for(;;){

 global_barrier_sync(1);
 dcache_inval();
 g(z,&y);
 dcache_flush();
 lock_request(1,1);
 lock_grant(0);

 }
}

One thread per processor (no preemption, no OS)
Loops running in lockstep
One cycle of the loops = one cycle of the Lustre program

16

Multi-threaded C code

void* thread_cpu0(void* unused){
 lock_init_pe(0); init(); time_init(&time);
 for(;;){
 global_barrier_reinit(2);
 time+=3000; wait(time);
 global_barrier_sync(0);
 dcache_inval();
 f(i,&x);
 dcache_flush();
 lock_grant(1);
 lock_request(0,0);
 dcache_inval();
 h(x,y,&z);
 dcache_flush();
 }
}

void* thread_cpu1(void* unused){
 lock_init_pe(1);
 for(;;){

 global_barrier_sync(1);
 dcache_inval();
 g(z,&y);
 dcache_flush();
 lock_request(1,1);
 lock_grant(0);

 }
}

Global barrier synchronization ensures:
● lockstep execution
● real-time period

Global barrier

17

Multi-threaded C code

void* thread_cpu0(void* unused){
 lock_init_pe(0); init(); time_init(&time);
 for(;;){
 global_barrier_reinit(2);
 time+=3000; wait(time);
 global_barrier_sync(0);
 dcache_inval();
 f(i,&x);
 dcache_flush();
 lock_grant(1);
 lock_request(0,0);
 dcache_inval();
 h(x,y,&z);
 dcache_flush();
 }
}

f g

h

void* thread_cpu1(void* unused){
 lock_init_pe(1);
 for(;;){

 global_barrier_sync(1);
 dcache_inval();
 g(z,&y);
 dcache_flush();
 lock_request(1,1);
 lock_grant(0);

 }
}

x

y

f

g

h

i

y

x

z

d

0

All remaining code in threads
corresponds to data-flow nodes

Global barrier

z

18

Multi-threaded C code

void* thread_cpu0(void* unused){
 lock_init_pe(0); init(); time_init(&time);
 for(;;){
 global_barrier_reinit(2);
 time+=3000; wait(time);
 global_barrier_sync(0);
 dcache_inval();
 f(i,&x);
 dcache_flush();
 lock_grant(1);
 lock_request(0,0);
 dcache_inval();
 h(x,y,&z);
 dcache_flush();
 }
}

f g

h

void* thread_cpu1(void* unused){
 lock_init_pe(1);
 for(;;){

 global_barrier_sync(1);
 dcache_inval();
 g(z,&y);
 dcache_flush();
 lock_request(1,1);
 lock_grant(0);

 }
}

x

 y

f

g

h

i

y

x

z

d

0

Hardware lock operations enforce data
dependencies inside the cycle
● z not concerned

Global barrier

z

19

Multi-threaded C code

void* thread_cpu0(void* unused){
 lock_init_pe(0); init(); time_init(&time);
 for(;;){
 global_barrier_reinit(2);
 time+=3000; wait(time);
 global_barrier_sync(0);
 dcache_inval();
 f(i,&x);
 dcache_flush();
 lock_grant(1);
 lock_request(0,0);
 dcache_inval();
 h(x,y,&z);
 dcache_flush();
 }
}

f g

h

void* thread_cpu1(void* unused){
 lock_init_pe(1);
 for(;;){

 global_barrier_sync(1);
 dcache_inval();
 g(z,&y);
 dcache_flush();
 lock_request(1,1);
 lock_grant(0);

 }
}

x
 y

f

g

h

i

y

x

z

d

0

Explicit cache operations ensure
memory coherency

Global barrier

 z

20

Memory allocation
. = 0x80000 ;
.text_thread0 ALIGN(64) : {
 thread_cpu0.o(.text)
}
.data_thread0 ALIGN(32) : {
 thread_cpu0.o(.data)
 thread_cpu0.o(.bss)
 thread_cpu0.o(.rodata)
}
. = 0x9ffa8 ;
_user_stack_end0 = .;
. = 0xa0000 ;
_user_stack_start0 = .;

. = f_ALLOC ;

.f_text ALIGN(ICACHE_LINE_SIZE) : {
 f.o(.text)
}
.f_data ALIGN(DCACHE_LINE_SIZE) : {
 f.o(.data)
 f.o(.bss)
 f.o(.rodata)
}

x = 0x88e88;

● Code placement entirely
controled
– Threads

● Code and local data
contiguously at start of the bank

● Stack at the end of the bank

– Nodes
● Code and local data

contiguously

– Data-flow variables placed in
the remaining space

21

Platform API

● Cache coherency
– dcache_flush – force the write of all dirty lines in the cache/write buffer to

memory

– dcache_inval – invaldate all data cache lines

● Lock synchronization
– lock_request – request the hardware lock (blocking)

– lock_grant – grant the hardware lock (non-blocking)

● Time synchronization
– wait – wait for a specific date

● Global barrier synchronization
– global_barrier – global barrier of all processors. Exited on all processors

at the same time (± a bounded number of CPU cycles)

22

Timing model

● Analysis of sequential pieces of code
– In isolation

● No interferences from concurrent code
– Need mapping-independent worst-case

guarantees
– Hypotheses on memory allocation, that must

be respected during allocation
● Interference model

23

Analysis of sequential code

● Worst-case execution time (WCET) analysis
– In our case: aiT from AbsInt

– Static analysis of sequential functions
● Assumes no external interferences (timing, synchronization)
● Can be applied to dataflow nodes

– For a sequential function f, aiT can compute:
● WCET(f) = upper bound on the execution time, from function call to return

– Does not include building the call context

● WCAT(f,m) = upper bound on the number of memory accesses by f to a
memory area m

– At memory bank input (takes into account cache behavior)

● WCCAL(f,g) = upper bound on the number of times f calls a library
function g

– Mandatory for us, due to software implementation of division

● WCSTACK(f) = upper bound on the stack size

24

Analysis of sequential code

● WCET analysis constraints
– Analysis is done on statically-allocated code with

well-known stack

– We need allocation-independent values
● Cache partitioning through strong, architecture-dependent

hypotheses on the way mapping is done.
● Examples on Kalray MPPA256:

– Allocation of nodes is done with cache line alignment
– Code and data of all library functions are smaller than 4kbytes
– Nodes with code or data larger than 4kbytes are aligned on

4kbytes…
– Specific memory allocation by gcc and custom-made analysis

scripts for aiT

25

Analysis of sequential code

● Remaining thread code is not analyzed using aiT
– Code snippets

● Call construction (putting arguments on stack)
● Cache coherency
● Synchronization code
● Global barrier
● Optional tracing code

– Instructions not covered or difficult to automate

– Manual analysis of the code to derive WCET(s), WCAT(s)
● Hypotheses: No call to library functions, no stack increase
● Most complex for call construction

26

• Request-response protocol
– Arbitration: Memory requests from multiple sources

are arbitrated using a Round Robin policy
– Atomicity: Once accepted by the arbiter, requests

are treated atomically

Memory interferences

RoRo arbiterRoRo arbiter

PE1
PE1

PE2
PE2

M
U

X
M

U
X

RAM
bank
RAM
bank

a

b

c

D
E

M
U

X
D

E
M

U
X

27

RoRo arbiterRoRo arbiter

PE1
PE1

PE2
PE2

M
U

X
M

U
X

RAM
bank
RAM
bank

a

b

c

Memory interferences

• Reads are bursty
– One-word packet request, 8-word packet response
– The atomic operation lasts for 8 cycles

• Write operations last for 1 cycle

D
E

M
U

X
D

E
M

U
X

28

RoRo arbiterRoRo arbiter

PE1
PE1

PE2
PE2

M
U

X
M

U
X

RAM
bank
RAM
bank

a

b

c

…

…

…

Memory interferences

● Worst-case interference scenario for two
communications

D
E

M
U

X
D

E
M

U
X

29

Memory interferences

● Worst-case interference scenario for two
communications
– Tasks t1, t2 acceding concurrently to a memory bank

– Assume ti makes ri(B) read accesses and wi(B) write
accesses to bank B, with ai(B)=ri(B)+wi(B)

– An upper bound on the delay t2 imposes on t1 due to
interferences on bank B is:

– An upper bound for the full interferences on t1 is:

30

Architecture description

● Functional specifications alone
are not enough for a real-time
implementation

● Specification-dependent input
– WCET in isolation (pessimistic

without context but no
interferences)

– Code size
● Text
● Static data
● Stack usage

– Number of memory accesses
● Code, data and stack
● Triple for code read, data read, and

data write

Architecture

Cores:2

Memory Excluded
[Start:0x000000 End:0x060000]
[Start:0x0c0000 End:0x1ff000]
[Start:0x1ff000 End:0x200000]

Function f :
Text : 104 Data : 0 Stack : 16
WCET : 1174
WCAT :
 Text : [2 0 0]
 Data : [0 0 0]
 Stack : [0 203 103]

bur
sty

 ac
ces

ses

non
 bu

rst
y

31

The real-time mapping problem

● Cyclic dependency between mapping and timing
analysis
– How to break this cycle?

Mapping and
compilation

Mapping and
compilation

Timing analysis,
schedulability

analysis

Timing analysis,
schedulability

analysis

ImplementationImplementation

Timing
characterization

Timing
characterization

32

The real-time mapping problem

Solutions:
– Implement using unsafe characteristics, then

determine if implementation satisfies requirements
– Use over-approximated timing characterization that

cover all possible mappings

Mapping and
compilation

Mapping and
compilation

Timing analysis,
schedulability

analysis

Timing analysis,
schedulability

analysis

ImplementationImplementation

Timing
characterization

Timing
characterization

33

The real-time mapping problem

● Solutions:
– Implement using unsafe characteristics, then

determine if implementation satisfies requirements
● Choosing unsafe characteristics may be difficult

– Dependence on mapping may be important (e.g. FFT)

● What to do in case of non-satisfaction?

– Use over-approximated timing characterization that
cover all possible mappings

● Produces a safe implementation
– Our choice

● Over-approximation costs
– Need precise timing models for efficient resource allocation

34

Mapping heuristic

● The base heuristic : list scheduling
– Consider the nodes of the dataflow graph in an order compatible with

the intra-cycle data dependencies

– When considering a node:
● allocate all data and code it uses onto memory banks
● allocate it to one of the processing cores
● choose its start date to ensure that its data dependencies and real-time

requirements are met

– What we need to tune :
● Choice of a node to schedule between those available at one moment
● Choice of mapping (allocation and schedule) of the chosen node
● Ensure that timing accounting remains correct throughout the scheduling

process
– With respect to code generation

● Intuitive optimization choices are not the best ones

35

Scheduling table

● Reserve time intervals for all function
– Respect all data dependencies of a

cycle

f

h

barrier

CPU0 CPU1

T
im

e

g

36

Scheduling table

● Reserve time intervals for all function
– Respect all data dependencies of a

cycle

– Reserved(f) =
WCET(f) + overheads(f)

– Legend
● Node call WCET
● Interferences
● Memory coherency
● Synchronization
● Global barrier

f

h

barrier

CPU0 CPU1

T
im

e

g

37

Scheduling table

● Reserved space for a node
must account for all overheads
– Need worst-case bounds on :

● Synchronization costs
● Coherency costs
● Interferences

– Including by nodes that are not yet
scheduled

f

h

barrier

CPU0 CPU1

T
im

e

g

38

Synchronization construction

● Objective: Preserve data dependencies and interference pattern
– Two nodes interfere if they overlap in time and access the same

memory bank

● Synchronization synthesis is done after scheduling
● First attempt: minimal synchronization, maximal asynchrony

– Algorithm based on Lamport clocks

– Massive use-case paralellism => too many hardware resources needed

39

Synchronization construction

● Problem of resources
– Many locks live at the same time

– Many requests on not granted locks

– Main reason : nodes with larges fan-ins, fan-outs

● Heavy optimizations involving both improved analysis and
modifications to scheduling to improve locality of locks
– Reduction, but not nearly enough. No guarantee of

implementability

40

Synchronization construction

● Solution: sequentialize synchronizations
– Chains of request-grant before or after

node call (plus some optimization)
● Easy to validate correctness
● Significantly less synchronization operations
● Sequencing of operations does not seem

penalizing, even for our « fine-grain »
parallelism

● average node WCET = 1000 cycles,
hundreds/thousands of nodes

– Static bound on synchronization overhead:
● At most two lock requests and two lock grants

per node call

f

h

barrier

CPU0 CPU1

T
im

e

g

41

Memory coherency

● First attempt: per-data flush and inval operations,
with smart ways of optimizing them
– High cost in code, data, and complexity

● Solution: use the global data cache invalidation
and write buffer flush routines
– Systematic cache invalidation and flush before and

after node call respectively

– (Small) bound on cache coherency costs

– Architecture-dependent solution!

42

Interferences

● Need to provision acceptable interferences before scheduling
– Bound on interferences by not yet scheduled functions

● Increase each WCET by a percentage (e.g. 10%)
provisioning interferences
– Lopht compiler parameter

● When mapping a fonction during list scheduling, check that its
interferences and those of all already mapped functions
remain within the predefined bound
– If not, search for a later date

– Percentage = 0% => accept no interferences (old Lopht [Carle at al.
2012])

● Low parallelization

– Choosing the right value is important for efficiency

43

Experimental results

● Avionics use-case (Airbus flight controller, DAL A)
– ~5k unique nodes

– ~36k variables

● Multi-periodic application
– Sequential implementation

– Repeating pattern formed of 5ms « tasks »

– Each « task » can be represented as a single-period
dataflow program

● Our problem:
– Parallelize each « task »

44

Experimental results

● One task : 779 nodes, 7943 variables
● Speed-up bound given by critical path: 9.42x

– Sequential cycle duration/Parallelized cycle duration

– Infinite number of CPUs, no interferences, no overheads

● Parallelization:
– 2 CPU: 1.76x

– 4 CPU: 3.26x

– 8 CPU: 5.48x

– 12 CPU: 7.41x

(cannot use more CPUs due to memory limit, even though
we were careful not to waste it)

45

Experimental results

● Estimating the various overheads:
– Baseline parallelization on 8 CPU: 5.48x

– Parallelize while assuming:
● no interference costs: 6.84x
● no synchronization overhead: 5.74x
● no coherency overhead: 5.51x

no interference or overhead: 7.99x
Embarassingly parallel?

46

Experimental results

● Estimating the various overheads:
– Baseline parallelization on 8 CPU: 5.48x

– Parallelize while assuming:
● no interference costs: 6.84x
● no synchronization overhead: 5.74x
● no coherency overhead: 5.51x
● no interference or overhead: 7.99x

– Embarassingly parallel?

47

Experimental results

● Embarassingly parallel?
– Yes – there is a lot of parallelism (9.42x in theory)

– But exploiting it has a cost in synchronization and (mostly)
interferences

– « embarassingly parallel » is not easy to define
● Depends on application, architecture, mapping

– E.g. increasing locality using local copies at certain dates reduces
interferences

48

Conclusion

● First real-time implementation method that fully automates timing analysis,
in addition to mapping and code generation
– Real-time systems compilation

– Relies on strong integration of timing analysis, mapping, code generation,
compilation around a precise timing model

– Works on shared memory multi-cores satisfying certain hypotheses
● One tile of Kalray MPPA256

– Good practical results for industrial case studies

● Future work
– Other platforms

● Full Kalray MPPA256 chip - code and data overlays and scheduling over NoC
● Tricore ?

– More native multi-rate support

– Optimizations

– Formal validation

49

Other approaches to code
generation

● Time-triggered
– Our first code generation approach for

MPPA (dec. 2016)

– Simpler code

– Depending on architecture, fine-grain
time synchronization may be expensive

● less overhead on Kalray MPPA256

– Code is functionally less robust
● Minor timing errors break the whole

execution
– Functional simulation is impossible with the

same code on a different architecture

● Gains on some functions cannot
compensate timing errors on other functions

f

h

barrier

CPU0 CPU1

T
im

e

g

wait wait

wait

50

Other approaches to code
generation

● Bulk synchronous parallel (BSP)
– Separate computations and communications into non-

overlapping phases, executed cyclically

– Timing analysis of computation phases is easy if full
spatial isolation is ensured

● No two processors use the same memory bank => no
interferences

● Full spatial isolation => memory&communication costs

– WCET analysis of communication phases remains
complicated

– Scheduling dataflow specifications for BSP is non-trivial
● Trade-off between parallelization and latency in the

construction of computation phases

51

Heuristics vs « exact » methods

● Constraint solving, SMT, ILP
– Popular in real-time scheduling

● Our problem can be put in this form
– Previous attempts on simpler problems

[FORMATS'15] – not scalable
– Recent advances in solver technology
– Problem far more complex: allocation of code data,

interferences, scheduling, etc.
● Difficult to predict how much time it will take (or if it

terminates)
– What to do when it does not?

52

Reused results

● Previous work
– [Carle et al. 2012] – Mapping into shared-memory

many-cores without memory interferences

– [Puaut&Potop 2013] – WCET analysis of
synchronous parallel code without memory
interferences

– [Rihani et al. 2016] – Timing analysis on Kalray
MPPA256 in the presence of memory interferences

53

Cannot use OS-like semaphores due to HW
abstraction with high cost (e.g. critical sections,

etc.)

54

Hypotheses on platform and
external code (nodes+libs)

● Platform API
– dcache_flush, dcache_inval

– lock_request, lock_grant

– wait

– global_barrier

● Node call conventions
● Memory allocation conventions for nodes and libs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Memory interferences
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	The real-time mapping problem
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

