Compositional Compiler Verification
for a Multi-Language World

Amal Ahmed

Northeastern University & Inria Paris

Compiler Verification

One of the “big problems” of computer science

* since McCarthy and Painter 1967
Correctness of a Compiler for Arithmetic Expressions

Compiler Verification since 2006...

Leroy "06 : Formal certification of a compiler back-end or:
brogramming a compiler with a proof assistant.

Lochbihler °1 0 : Verifying a compiler for Java threads.

Myreen °1 0 : Verified just-in-time compiler on x86.

Sevcik et al’l I: Relaxed-memory concurrency and verified
combpilation.

Zhao et al’l 3 : Formal verification of SSA-based
optimizations for LLVM

Kumar et al’l4 : CakeML: A verified implementation of ML

Problem: Whole-Program Assumption

Correct compilation guarantee only applies to

whole programs!
i from
dlfferent

compiler &

source laneg.
low-leve
libraries

Ps

“Compositional” Compiler Verification

* survey recent results

i * generic CCC theorem

* lessons for formalizing linking

This Talk...

* why specifying compositional
compiler correctness is hard

& verifying multi-pass compilers

* language design & control over
extra-linguistic features

Compiler Correctness

S ~> T > S =1

T T

compiles to same behavior

Compiler Correctness

S ~> T > S =1

T

expressed how!

Whole-Program Compiler Correctness

PSWPt >PS%P75
T

expressed how!
“closed” simulations

CompCert

Pi— ...+— P+ P

Whole-Program Compiler Correctness

PSWPt > Pt:PS
T

behavior refinement

Correct Compilation of Components?

€g ~ €T

T

expressed how!

€t ’
r j et

“Compositional” Compiler Correctness

€g ~ €T
& |

expressed how!

Cs

~Produced by

/- same compiler,
e, »; - diff cqmpiler fgr S,
€: - compiler for diff lang R,

- R that’s very diff from S?

Behavior expressible in S?

“Compositional” Compiler Correctness

If we want to verify realistic compilers...

€g ~ €T

|

Definition should:

Cs

e permit linking with
target code of arbitrary

provenance
Ct o support verification of
t multi-pass compilers

Next: Survey of State of the Art

* Survey of “compositional” compiler correctness results

- how to express €9 =~ €T

* How does the choice affect:

what we can link with (horizontal compositionality)
: / . : :
how we check if some €, is okay to link with

effort required to prove transitivity for multi-pass
compilers (vertical compositionality)

effort required to have confidence in theorem
statement

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Separate Compilation

SepCompCert
[Kang et al.’| 6]

Level A correctness:
exactly same compiler

i i i Level B correctness:
can omit some intra-language

. . . (RTI_) OPtimiZGtiOnS

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Cross-Language Relations

Cross-language relation

!
€g ~ €T

Compiling ML-like langs:

Logical relations

[No transitivity!]

j o’ Parametric inter-language
t simulations (PILS)

\

"1 Prove transitivity,
but requires effort!

. J

Cross-Language Relation (Pilsner)

X:T Fe:7T~e = x:7T'Fe~ei:T

T

cross-language relation

Vel,ei. Fel~el : 7 = Feglel/x] ~eife]/x]:T

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
Cs
4)

Does the compiler
i correctness theorem
permit linking with e ?

_ _J
Ct ’

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
-y]

cross-language relation

Vel,ei. Fel~el: 7 = Fegel/x| ~eie]/x]:T

SN,
* Need to come up with €
j , -- not feasible in practice!
€ . .
t | e Cannot link with e,'c

whose behavior cannot
be expressed in source.

Horizontal
Compositionality Linking

e/

Linking

"“T

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

Correct Compilation of Components?

€g ~ €T
e; T

expressed how!

Need a semantics

of source-target
e , in.terope.rability: |
€t |- interaction semantics

- source-target multi-language

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Interaction Semantics

Compositional CompCert
[Stewart et al.’| 5]

* Language-independent linking

at_external

Q0

initial core ——>» running interference

VAN

halted after external

Semantlcs (G C M : Type) : Type £

initial_core : G —>V —listV — option C
at_external : C — option (F X list V)

{ after_external : optionV — C — option C
halted : C — option V

| corestep : G>C—>M-—>C— M — Prop

Figure 2. Interaction semantics interface. The types G (global
environment), C' (core state), and M (memory) are parameters to
the interface. JF is the type of external function identifiers. V is the

type of CompCert values.

Approach: Interaction Semantics

Compositional CompCert
[Stewart et al.’| 5]

* Language-independent linking

e Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

Approach: Source-Target Multi-lang.

[Perconti-Ahmed’14]

Specify semantics
of source-target

interoperability:

S Tet TS S

Multi-language semantics:
a la Matthews-Findler °07

/
t

Approach: Source-Target Multi-lang.
TS (es (STe)

[Perconti-Ahmed’14]
STe
%ctaz et et
€t ’
r j et

Approach: Source-Target Multi-lang.

[Perconti-Ahmed’14]

Multi-Language Semantics Approach

Compiler Correctness

eS‘

i €g ~ClT SIGI

Multi-Lang. Approach: Multi-pass v’

Compiler Correctness

eS‘

i €g S SZGI

€1 |H

i STey = ZTET er)

GT‘

€g S SITQT

Multi-Lang. Approach: Linking v’

4
S ¥
€t ’

r j et

TLS (es (SITei’:))

tha: et et

Compiler Correctness: F to TAL

CF

Closure Conversion 7€

€C

Allocation T

€A

Code Generation T

er

X
X
X

Combined language FCAT

[Perconti-Ahmed’14]
[Patterson et al.’17]

e Boundaries mediate between
T&T & A T &TT

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Central Challenge: interoperability between
high-level (direct-style) language &
assembly (continuation style)

FunTAL: Reasonably Mixing a Functional Language
with Assembly [Patterson et al. PLDI’l 7]

CompCompCert vs. Multi-language

Transitivity:

- structured simulations i - all passes use multi-lang ~°**

Check okay-to-link-with:

- satisfies CompCert - satisfies expected type
memory model i (translation of source type)

Contexts:

- semantic representation : - syntactic representation

Requires uniform memory model across compiler IRs!?

- yes i - Nno

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

i EHEN IH I = H H = H = H =H H = = =H = = =H I g,

Allows linking with behavior JMuIti—Ianguage ST
inexpressible in S + Perconti-Ahmed’1 4

Proving Transitivity

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner -
+ Neis et al’l 5
Transitivity Compositional CompCert
requires E Stewart et al’l 5 :
effort / E Multi-language ST :

engineering ™. Perconti-Ahmed’| 4 .

Vertical
Compositionality Transitivity

eS‘

S1

1'r

i ~

Y
GI‘

$ ~
GT‘

Transitivity
CompCompCert & Multi-lang

Horizontal
Compositionality

Source-Independent
Linking

Compositional CompCert

Pilsner Stewart et al.’ | 5
Neis et al.’l 5
Multi-language ST
Perconti-Ahmed’| 4
Vertical Transitivity

Compositionality

Pilsner
Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

To Understand if Theorem is Correct...

Pilsner
. , - source-target PILS
Neis et al’l 5 5
Compositional CompCert - interaction semantics
Stewart et al.’l 5 & structured simulations

Multi-language ST

Perconti-Ahmed’ | 4 - source-target multi-language

4)

Is there a generic CCC theorem!?

\ J

Generic CCC Theorem?

[source-target linking med:um]

eSNeT

T

expressed how!

«—{hft (from T to 5)]

" o [REygurr
T [>< T

Generic CCC Theorem

3$
l!‘:es o

T — lift (from T to S')

€t
.‘iea cr
T><T

Generic CCC Theorem

EH: Veg,eT. g YW e —

V(er,p) € L. ok (er,e7) =

er 1< er 5 Ter, @) g<g es

Generic CCC Theorem

EM: Veg,eT. g YW e —

V(er,p) € L. ok (er,e7) =
63« P71 er T|:§ ?(6}, (P) sg é€s

...and "“lift” is inverse of “compile” on compiler output

V(er, @) € L. Ves,er.es v~ er —

, N

ér r=1 €T — ?(eTa‘P) Sl=s €S

CCC Properties

Implies whole-program compiler correctness &
correct separate compilation

Can be instantiated with different formalisms...

CCC with Pilsner

L {(er,¢) | ¢ = source component es & proof that e ~ e}

o~

S unchanged source language S

< ¢ unchanged source language linking

s[C ¢ source language (whole program) observational equivalence

?() Aer,(es,) = es

CCC with Multi-language

L {(er,_) | where er is any target component }

AN

S source-target multi-language ST

sXs € g7Pgr €5

sC ¢ run S according to multi-lang ST, compare with running S

?() A(er,_) = ST (er)

Vertical Compositionality for Free

when Fgr = Fgrofrr

i.e., when lift T is a back-translation that maps every
er € L tosome €g (or an approximate back-
translation that takes the interaction between €7

and some compiled €g into account).

Fully abstract compilers have such back-translations!

Bonus of vertical comp: can verify different passes
using different formalisms to instantiate CCC

Fully Abstract Compillers

preserve equivalence

el

compile

el

~oCtX

~S

~oCtX

~T

e2

compile

e2

* ensure a compiled component does not interact with

any target behavior that is inexpressible in S

* Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers!?

* We want both!

Linking types are about raising
programmer reasoning back to the
source level

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too

[Patterson-Ahmed SNAPL'[7]

Stepping back...

Correct Compilation: Multi-Language

r* > eg &

7 SNeT

.
Problem: programmer cannot

reason at source level!
_
/
St
A

|nexpre55|ble in S]

Fully Abstract Compilation?

hatches

s R
Language specifications are incomplete!

Don’t account for linking
N y

Rethink PL Design with Linking Types

hatches

Design linking types extensions that support
safe interoperability with other languages

PL Design, Linking Types

&"~

. affne -

cobtlnuathns

$

~-‘

Only need linking types extensions to
interact with behavior inexpressible in
your language.

PL Design, Linking Types, Compilers

2 3
Y,)

1

 affine

cohtinuatians
4

Fully ~==°
abstract i i i

compilers

Type d IR modal types /

LLVM

PL DeS|gn Linking Types, Compilers

. affne .

co(’ntlnuathnsn oure .

Fully R e
abstract i j/ i \f/

compilers

+ pure
+ dependent types

LLVM

Typed IR

Linking Types

Allow programmers to reason in almost their own

source languages, even when building multi-language
software

Allow compilers to be fully abstract, yet support
multi-language linking

Compositional Compiler Verification

* CompCert started a renaissance in compiler verification

- major advances in mechanized proof

* Now we need: Compositional Compiler Correctness

that applies to world of multi-language software...

but source-independent linking and vertical
compositionality are at odds

fully abstract compilation and linking types could help
improve multi-language software toolchains

