
Compositional Compiler Verification
for a Multi-Language World

Amal Ahmed

Northeastern University & Inria Paris

One of the “big problems” of computer science

• since McCarthy and Painter 1967:
Correctness of a Compiler for Arithmetic Expressions

Compiler Verification

Compiler Verification since 2006…

Leroy ’06 : Formal certification of a compiler back-end or:
 programming a compiler with a proof assistant.

Lochbihler ’10 : Verifying a compiler for Java threads.

Myreen ’10 : Verified just-in-time compiler on x86.

Sevcik et al.’11: Relaxed-memory concurrency and verified
compilation.

Zhao et al.’13 : Formal verification of SSA-based
optimizations for LLVM

Kumar et al.’14 : CakeML: A verified implementation of ML

…

Problem: Whole-Program Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!

et

es

!

low-level
libraries

from
different

compiler &
source lang.

!

“Compositional” Compiler Verification
This Talk…
• why specifying compositional
compiler correctness is hard

• survey recent results

• generic CCC theorem

• lessons for formalizing linking
& verifying multi-pass compilers

• language design & control over
extra-linguistic features

et

es

!

Compiler Correctness

s! t =⇒ s ≈ t

compiles to same behavior

Compiler Correctness

s! t =⇒ s ≈ t

expressed how?

CompCert

Ps ! Pt =⇒ Ps ≈ Pt

Whole-Program Compiler Correctness

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .

R R R

“closed” simulations

Whole-Program Compiler Correctness

Ps ! Pt =⇒ Pt " Ps

behavior refinement

Tt

∀n. Pt "−→n P ′
t =⇒

∃m. Ps "−→m P ′
s ∧ Tt ≃ Ts

Ts

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

?

“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

expressed how?

?

Produced by
- same compiler,
- diff compiler for S,
- compiler for diff lang R,
- R that’s very diff from S?

Behavior expressible in S?

“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

 Definition should:

• permit linking with
target code of arbitrary
provenance

• support verification of
multi-pass compilers

If we want to verify realistic compilers…

Next: Survey of State of the Art
• Survey of “compositional” compiler correctness results

- how to express

• How does the choice affect:
- what we can link with (horizontal compositionality)
- how we check if some is okay to link with
- effort required to prove transitivity for multi-pass

compilers (vertical compositionality)

- effort required to have confidence in theorem
statement

eS ≈ eT

e′t

What we can link with

nothing

SepCompCert
Kang et al.’16

same
compiler

CompCert

diff compiler,
same S

Pilsner
Neis et al.’15

compiled from
diff lang R

Compositional CompCert
Stewart et al.’15

compiled from
very diff R

Multi-language ST
Perconti-Ahmed’14

What we can link with

nothing same
compiler

diff compiler,
same S

compiled from
diff lang R

compiled from
very diff R

CompCert
SepCompCert
Kang et al.’16 Pilsner

Neis et al.’15
Compositional CompCert

Stewart et al.’15
Multi-language ST
Perconti-Ahmed’14

Approach: Separate Compilation
SepCompCert
[Kang et al. ’16]

! ! !

Level A correctness:
exactly same compiler

Level B correctness:
can omit some intra-language
(RTL) optimizations

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Approach: Cross-Language Relations

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]

- [Hur-Dreyer POPL’11]

Cross-language relation

 No transitivity!

Parametric inter-language
simulations (PILS)
- [Neis et al. ICFP’15] Prove transitivity,

 but requires effort!

x : τ ′ ⊢ es : τ ! et =⇒ x : τ ′ ⊢ es ≃ et : τ

Cross-Language Relation (Pilsner)

 cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! Does the compiler
correctness theorem
permit linking with ?e′t

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′

• Need to come up with
 -- not feasible in practice!

• Cannot link with
 whose behavior cannot
 be expressed in source.

e′s

e′t

 cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t

Horizontal
Compositionality Linking

es

et e′t

e′s!

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e

0
S eS n e

0
S

eT e

0
T eT n e

0
T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e

0
t

eT e

0
T eT n e

0
T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e

0
T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e

0
T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e

0
S eS n e

0
S

eT e

0
T eT n e

0
T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e

0
t

eT e

0
T eT n e

0
T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e

0
T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e

0
T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

=⇒
es

et
e′t

e′s

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e

0
S eS n e

0
S

eT e

0
T eT n e

0
T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e

0
t

eT e

0
T eT n e

0
T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e

0
T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e

0
T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Source-Independent
Linking

es

et e′t

!

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e

0
S eS n e

0
S

eT e

0
T eT n e

0
T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e

0
t

eT e

0
T eT n e

0
T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e

0
T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e

0
T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

=⇒
es

et
e′t

e′t

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e

0
S eS n e

0
S

eT e

0
T eT n e

0
T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e

0
t

eT e

0
T eT n e

0
T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e

0
T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e

0
T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

e′t

Need a semantics
of source-target
interoperability:
- interaction semantics
- source-target multi-language

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking

[Stewart et al. ’15]

Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking
- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML),
compilers with different source/target memory models

• Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

- transitivity relies on compiler passes performing
restricted set of memory transformations

[Stewart et al. ’15]

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14

ST et

es

et e′t

! e′t
Specify semantics
of source-target
interoperability:

T Ses

ST e′t

Approach: Source-Target Multi-lang.

Multi-language semantics:

a la Matthews-Findler ’07

[Perconti-Ahmed’14]

T S(es (ST e′t))
≈ctx et e′t

es

et e′t

! ST e′t

Approach: Source-Target Multi-lang.
[Perconti-Ahmed’14]

es

et

! eS ≈ eT
eS ≈ctx ST eT

def
=

Approach: Source-Target Multi-lang.
[Perconti-Ahmed’14]

SIT

Multi-Language Semantics Approach

S

I

T

SIeIISeS

IT eTT IeI

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

Multi-Lang. Approach: Multi-pass

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

SIeI ≈ctxSI(IT eT)
}eS ≈ctxSIT eT

Multi-Lang. Approach: Linking

es

et e′t

e′sSIT e′t
T IS(es (SIT e′t))
≈ctx et e′t

Compiler Correctness: F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT

Combined language FCAT

• Boundaries mediate between

 & & &

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC

[Perconti-Ahmed’14]
[Patterson et al.’17]

Challenges
F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
ve

Challenges

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

Challenges

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

Central Challenge: interoperability between
high-level (direct-style) language &

assembly (continuation style)

FunTAL: Reasonably Mixing a Functional Language
with Assembly [Patterson et al. PLDI’17]

Transitivity:

- structured simulations - all passes use multi-lang

Check okay-to-link-with:

- satisfies CompCert - satisfies expected type

 memory model (translation of source type)

Contexts:

- semantic representation - syntactic representation

Requires uniform memory model across compiler IRs?

- yes - no

CompCompCert vs. Multi-language

≈ctx

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Allows linking with behavior
inexpressible in S

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

Proving Transitivity

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Transitivity
requires
effort /
engineering

Vertical
Compositionality Transitivity

!
!

eS

eI =⇒ !
eS

eT

≈SI

≈IT

≈ST

eT

Transitivity
CompCompCert & Multi-lang

!
!

eT

eS

eI

≈SIT

≈SIT

=⇒ !
eS

eT

≈SIT

Vertical
Compositionality

Transitivity

Horizontal
Compositionality

Source-Independent
Linking

Pilsner
Neis et al.’15

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

To Understand if Theorem is Correct…

Pilsner
Neis et al.’15

- source-target PILS

- interaction semantics
 & structured simulations

- source-target multi-language

Is there a generic CCC theorem?

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

?

∈ L linking set

∈ Ŝ

source-target linking medium

! lift (from T to) Ŝ
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

Generic CCC Theorem

es

et e′t

!

eS ≈ eT
?

∈ L

∈ Ŝ

! lift (from T to) Ŝ
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

Generic CCC Theorem50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

Generic CCC Theorem50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

 …and “lift” is inverse of “compile” on compiler output

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

CCC Properties
Implies whole-program compiler correctness &
correct separate compilation

Can be instantiated with different formalisms…

CCC with Pilsner

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
D
S unchanged source language S

DSnS unchanged source language linking

DS@S source language (whole program) observational equivalence

⇣(·) ⇣(eT , (eS , _)) = eS

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular
theorem allows us to link with, and what additional evidence do we need to provide in order to
know it is safe to link with them. We can then ask how hard it is to understand the way that target
components are lifted back and then interact with the source. For a multi-language, the lifting is
trivial, but the interaction requires understanding an entirely new language (which hopefully has
various properties that make it easier to understand, like preserving the semantics of purely source
or purely target programs).
Another appeal to this approach is that it allows us to abstract over the function ⇣ that lifts a

target component to be linked with back to the extended source DS . In the proof of the theorem,
clearly we need to exhibit such a function, but the reader of the theorem need not understand it. We
have used this to good e�ect for our easy-to-understand CCC theorem for fully abstract compilers.
If the reader needed to understand the back-translation, which is of comparable complexity to a
basic compiler, the whole approach would be a dead-end.

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

CCC with Multi-language

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
D
S unchanged source language S

DSnS unchanged source language linking

DS@S source language (whole program) observational equivalence
⇣(·) ⇣(eT , (eS , _)) = eS

L {(eT , _) | where eT is any target component }
D
S source-target multi-language ST

DSnS e STnST eS

DS@S run D
S according to multi-lang ST, compare with running S

⇣(·) ⇣(eT , _) = ST (eT)

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular
theorem allows us to link with, and what additional evidence do we need to provide in order to
know it is safe to link with them. We can then ask how hard it is to understand the way that target
components are lifted back and then interact with the source. For a multi-language, the lifting is
trivial, but the interaction requires understanding an entirely new language (which hopefully has

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

Vertical Compositionality for Free

eS
eT

eS

when =

i.e., when lift is a back-translation that maps every

 to some (or an approximate back-

translation that takes the interaction between

and some compiled into account).

Fully abstract compilers have such back-translations!

Bonus of vertical comp: can verify different passes
using different formalisms to instantiate CCC

!
eT ∈ L

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Fully Abstract Compilers

• ensure a compiled component does not interact with
any target behavior that is inexpressible in S

• Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

• We want both!

preserve equivalence

Linking types are about raising
programmer reasoning back to the

source level

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too

[Patterson-Ahmed SNAPL’17]

Stepping back…

Correct Compilation: Multi-Language

es

et e′t

! eS ≈ eT=⇒

inexpressible in S

!
Problem: programmer cannot
reason at source level!

Fully Abstract Compilation?

RustML Java

Target

Language specifications are incomplete!
Don’t account for linking

C FFI unsafe JNI
escape
hatches

Rethink PL Design with Linking Types

RustML Java
C FFI unsafe JNI

escape
hatches

Design linking types extensions that support
safe interoperability with other languages

PL Design, Linking Types

RustML Scheme
continuations

affine

fine-grained
capabilities

Only need linking types extensions to
interact with behavior inexpressible in

your language.

PL Design, Linking Types, Compilers

LLVM

Typed IR

RustML Scheme
continuations

affine

fine-grained
capabilitiesFully

abstract
compilers

! ! !
Gallina

type & effect
modal types /

PL Design, Linking Types, Compilers

RustML Scheme
continuations

affine

fine-grained
capabilities

Gallina

! ! ! !pure

+ pure
+ dependent types

LLVM

Typed IR

Fully
abstract
compilers

Linking Types
• Allow programmers to reason in almost their own

source languages, even when building multi-language
software

• Allow compilers to be fully abstract, yet support
multi-language linking

Compositional Compiler Verification
• CompCert started a renaissance in compiler verification

- major advances in mechanized proof

• Now we need: Compositional Compiler Correctness
- that applies to world of multi-language software…
- but source-independent linking and vertical

compositionality are at odds
- fully abstract compilation and linking types could help

improve multi-language software toolchains

