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One of the “big problems” of computer science

• since McCarthy and Painter 1967:                         
Correctness of a Compiler for Arithmetic Expressions

Compiler Verification



Compiler Verification since 2006…

Leroy ’06 : Formal certification of a compiler back-end or:   
   programming a compiler with a proof assistant.

Lochbihler ’10 : Verifying a compiler for Java threads. 

Myreen ’10 : Verified just-in-time compiler on x86.

Sevcik et al.’11: Relaxed-memory concurrency and verified 
compilation. 

Zhao et al.’13 : Formal verification of SSA-based 
optimizations for LLVM

Kumar et al.’14 : CakeML:  A verified implementation of ML

…



Problem: Whole-Program Assumption
Correct compilation guarantee only applies to 
whole programs!

Ps

Pt

!

et

es

!

low-level
libraries

from 
different 

compiler &  
source lang.

!



“Compositional” Compiler Verification
This Talk… 
• why specifying compositional 
compiler correctness is hard 

•  survey recent results

•  generic CCC theorem

• lessons for formalizing linking 
& verifying multi-pass compilers

• language design & control over 
extra-linguistic features  

et

es

!



Compiler Correctness

s! t =⇒ s ≈ t

compiles to same behavior



Compiler Correctness

s! t =⇒ s ≈ t

expressed how?



CompCert 

Ps ! Pt =⇒ Ps ≈ Pt

Whole-Program Compiler Correctness

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .

R R R

“closed” simulations



Whole-Program Compiler Correctness

Ps ! Pt =⇒ Pt " Ps

behavior refinement

Tt

∀n. Pt "−→n P ′
t =⇒

∃m. Ps "−→m P ′
s ∧ Tt ≃ Ts

Ts



Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

?



“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

expressed how?

?

Produced by 
- same compiler, 
- diff compiler for S, 
- compiler for diff lang R, 
- R that’s very diff from S?

Behavior expressible in S?



“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

  Definition should: 

• permit linking with 
target code of arbitrary 
provenance

• support verification of 
multi-pass compilers

If we want to verify realistic compilers…



Next: Survey of State of the Art
• Survey of “compositional” compiler correctness results 

- how to express 

• How does the choice affect:
- what we can link with (horizontal compositionality)    
- how we check if some       is okay to link with
- effort required to prove transitivity for multi-pass 

compilers (vertical compositionality)

- effort required to have confidence in theorem 
statement

eS ≈ eT

e′t



What we can link with

nothing

SepCompCert
Kang et al.’16

same
compiler

CompCert

diff compiler, 
same S

Pilsner
Neis et al.’15

compiled from  
diff lang R

Compositional CompCert
Stewart et al.’15

compiled from  
very diff R

Multi-language ST
Perconti-Ahmed’14



What we can link with

nothing same
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diff compiler, 
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compiled from  
very diff R

CompCert
SepCompCert
Kang et al.’16 Pilsner
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Compositional CompCert
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Multi-language ST
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Approach: Separate Compilation
SepCompCert           
[Kang et al. ’16]                 

! ! !

Level A correctness:            
exactly same compiler

Level B correctness:          
can omit some intra-language 
(RTL) optimizations



diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14



Approach: Cross-Language Relations 

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]   

- [Hur-Dreyer POPL’11]

Cross-language relation

   No transitivity!

Parametric inter-language 
simulations (PILS)
- [Neis et al. ICFP’15]  Prove transitivity, 

  but requires effort!



x : τ ′ ⊢ es : τ ! et =⇒ x : τ ′ ⊢ es ≃ et : τ

Cross-Language Relation  (Pilsner)

        cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t



Cross-Language Relation  (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! Does the compiler
correctness theorem 
permit linking with     ?e′t



Cross-Language Relation  (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′

• Need to come up with  
   -- not feasible in practice!

• Cannot link with            
   whose behavior cannot 
   be expressed in source.  

e′s

e′t

        cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t



Horizontal
Compositionality Linking

es

et e′t

e′s!
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Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e

0
T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e

0
T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14



Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

e′t

Need a semantics
of source-target
interoperability:
- interaction semantics
- source-target multi-language



diff compiler, 
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Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking 

[Stewart et al. ’15]



Approach: Interaction Semantics
Compositional CompCert

• Language-independent linking
- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML), 
compilers with different source/target memory models

• Structured simulation:  support rely-guarantee 
relationship between the different languages while 
retaining vertical compositionality

- transitivity relies on compiler passes performing 
restricted set of memory transformations

[Stewart et al. ’15]



Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14



ST et

es

et e′t

! e′t
Specify semantics
of source-target 
interoperability:

T Ses

ST e′t

Approach: Source-Target Multi-lang.

Multi-language semantics:

a la Matthews-Findler ’07

[Perconti-Ahmed’14]



T S(es (ST e′t))
≈ctx et e′t

es

et e′t

! ST e′t

Approach: Source-Target Multi-lang.
[Perconti-Ahmed’14]



es

et

! eS ≈ eT
eS ≈ctx ST eT

def
=

Approach: Source-Target Multi-lang.
[Perconti-Ahmed’14]



SIT

Multi-Language Semantics Approach

S

I

T

SIeIISeS

IT eTT IeI

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness



Multi-Lang. Approach: Multi-pass 

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

SIeI ≈ctxSI(IT eT)
}eS ≈ctxSIT eT



Multi-Lang. Approach: Linking 

es

et e′t

e′sSIT e′t
T IS(es (SIT e′t))
≈ctx et e′t



Compiler Correctness: F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT



Combined language FCAT

• Boundaries mediate between 

   &           &             & 

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC

[Perconti-Ahmed’14]
[Patterson et al.’17]



Challenges
F+C:  Interoperability 
semantics with type abstraction 
in both languages

C+A:  Interoperability when 
compiler pass allocates code & 
tuples on heap

A+T:  What is    ?  What is   ? 
How to define contextual 
equiv. for TAL components?  
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
ve
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T Aτe
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e v

F+C:  Interoperability 
semantics with type abstraction 
in both languages

C+A:  Interoperability when 
compiler pass allocates code & 
tuples on heap

A+T:  What is    ?  What is   ? 
How to define contextual 
equiv. for TAL components?  
How to define logical relation?



Central Challenge:  interoperability between
high-level (direct-style) language & 

assembly (continuation style) 

FunTAL:  Reasonably Mixing a Functional Language
with Assembly [Patterson et al. PLDI’17]



Transitivity: 

- structured simulations        - all passes use multi-lang

Check okay-to-link-with:

- satisfies CompCert            - satisfies expected type 

  memory model                    (translation of source type)

Contexts:

- semantic representation     - syntactic representation

Requires uniform memory model across compiler IRs?

- yes                                    - no

CompCompCert vs. Multi-language

≈ctx



Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Allows linking with behavior
inexpressible in S



Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler, 
same S

SepCompCert
Kang et al.’16

Proving Transitivity

nothing same
compiler

compiled from  
diff lang R

compiled from  
very diff R

CompCert

Pilsner
Neis et al.’15

Transitivity
requires 
effort /
engineering



Vertical
Compositionality Transitivity

!
!

eS

eI =⇒ !
eS

eT

≈SI

≈IT

≈ST

eT



Transitivity
CompCompCert & Multi-lang

!
!

eT

eS

eI

≈SIT

≈SIT

=⇒ !
eS

eT

≈SIT



Vertical
Compositionality

Transitivity

Horizontal
Compositionality

Source-Independent 
Linking

Pilsner
Neis et al.’15

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14



Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

To Understand if Theorem is Correct…

Pilsner
Neis et al.’15

- source-target PILS

- interaction semantics
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).
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0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e

0
T TvT eT =) ⇣(e

0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).
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where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e
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0
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where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e
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T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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where ([·]T ,�[·]) 2 L (2)
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⇣([·]T ,�[·]) = [·]DS (4)
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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where ([·]T ,�[·]) 2 L (2)
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⇣([·]T ,�[·]) = [·]DS (4)
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ? ] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
D
S unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS ) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We
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3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS  eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT ) =) e

0
T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS  eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS  eT =) e
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
D
S unchanged source language S

DSnS unchanged source language linking

DS@S source language (whole program) observational equivalence

⇣(·) ⇣(eT , (eS , _)) = eS

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular
theorem allows us to link with, and what additional evidence do we need to provide in order to
know it is safe to link with them. We can then ask how hard it is to understand the way that target
components are lifted back and then interact with the source. For a multi-language, the lifting is
trivial, but the interaction requires understanding an entirely new language (which hopefully has
various properties that make it easier to understand, like preserving the semantics of purely source
or purely target programs).
Another appeal to this approach is that it allows us to abstract over the function ⇣ that lifts a

target component to be linked with back to the extended source DS . In the proof of the theorem,
clearly we need to exhibit such a function, but the reader of the theorem need not understand it. We
have used this to good e�ect for our easy-to-understand CCC theorem for fully abstract compilers.
If the reader needed to understand the back-translation, which is of comparable complexity to a
basic compiler, the whole approach would be a dead-end.
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Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
D
S unchanged source language S

DSnS unchanged source language linking

DS@S source language (whole program) observational equivalence
⇣(·) ⇣(eT , (eS , _)) = eS

L {(eT , _) | where eT is any target component }
D
S source-target multi-language ST

DSnS e STnST eS

DS@S run D
S according to multi-lang ST, compare with running S

⇣(·) ⇣(eT , _) = ST (eT )

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular
theorem allows us to link with, and what additional evidence do we need to provide in order to
know it is safe to link with them. We can then ask how hard it is to understand the way that target
components are lifted back and then interact with the source. For a multi-language, the lifting is
trivial, but the interaction requires understanding an entirely new language (which hopefully has
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9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e )) =) eI InI CSI (e ) I@S ⇣SI (eI ) SnS e

where [·]T I 2 LI

8e . CSI (e ) 2 LI

⇣SI ([·]I ) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS ) =) ⇣SI (eI ) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e )) =) eT TnT CIT (e ) T@I ⇣IT (eT ) InI e

where [·]T 2 LT
8e . CIT (e ) 2 LT

⇣IT ([·]T ) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI ) =) ⇣IT (eT ) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e )) =) eT TnT CST (e ) T@S ⇣ST (eT ) SnS e

where [·]T 2 LT
8e . CST (e ) 2 LT

⇣ST ([·]T ) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS ) =) ⇣ST (eT ) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e )) =) eT TnT CST (e ) T@S ⇣ST (eT ) SnS e

First we instantiate (2) with CSI (eS ) and eT to get:

eT TnT CIT (CSI (eS )) T@I ⇣IT (eT ) SnS CSI (eS )
We next instantiate (1) with eS and ⇣IT (eT ) to get:

⇣IT (eT ) InI CSI (eS ) I@S ⇣SI ( ⇣IT (eT )) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS ) =) ⇣ST (eT ) SvS eS
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Fully Abstract Compilers

• ensure a compiled component does not interact with 
any target behavior that is inexpressible in S

• Do we want to link with behavior inexpressible in S?    
Or do we want fully abstract compilers? 

• We want both!  

preserve equivalence



Linking types are about raising 
programmer reasoning back to the 

source level

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too 

[Patterson-Ahmed SNAPL’17]



Stepping back…



Correct Compilation: Multi-Language

es

et e′t

! eS ≈ eT=⇒

inexpressible in S

!
Problem: programmer cannot 
reason at source level!



Fully Abstract Compilation?

RustML Java

Target

Language specifications are incomplete!
Don’t account for linking

C FFI unsafe JNI
escape
hatches



Rethink PL Design with Linking Types

RustML Java
C FFI unsafe JNI

escape
hatches

Design linking types extensions that support 
safe interoperability with other languages



PL Design, Linking Types

RustML Scheme
continuations

affine

fine-grained
capabilities

Only need linking types extensions to 
interact with behavior inexpressible in 

your language.



PL Design, Linking Types, Compilers

LLVM

Typed IR

RustML Scheme
continuations

affine

fine-grained
capabilitiesFully

abstract
compilers

! ! !
Gallina

type & effect
modal types /



PL Design, Linking Types, Compilers

RustML Scheme
continuations

affine

fine-grained
capabilities

Gallina

! ! ! !pure

+ pure 
+ dependent types

LLVM

Typed IR

Fully
abstract
compilers



Linking Types
• Allow programmers to reason in almost their own 

source languages, even when building multi-language 
software

• Allow compilers to be fully abstract, yet support 
multi-language linking



Compositional Compiler Verification
• CompCert started a renaissance in compiler verification

- major advances in mechanized proof 

• Now we need: Compositional Compiler Correctness 
- that applies to world of multi-language software…
- but source-independent linking and vertical 

compositionality are at odds
- fully abstract compilation and linking types could help 

improve multi-language software toolchains


