Composite Abstract Domains for Shape Analysis

Antoine Toubhans

4

lrrzia —

INVENTEURS DU MONDE NUMERIQUE

Séminaire Gallium
October 14th, 2014

Introduction

The Problem

Programs from real world often manipulate many data structures

@ They may be heterogeneous
e.g. lists, trees, arrays, strings...

@ They may be more or less complex
e.g. trees, BST, B-trees, Red/Black trees ...

@ They may have complex interactions
e.g. be nested, be overlaid, share values ...

2 /45

Introduction

The Problem

Programs from real world often manipulate many data structures

@ They may be heterogeneous
e.g. lists, trees, arrays, strings...
@ They may be more or less complex
e.g. trees, BST, B-trees, Red/Black trees ...

@ They may have complex interactions
e.g. be nested, be overlaid, share values ...

There exist analyses for most data structures
— How to combine these into a new more expressive analysis

2/ 45

The MemCAD Analyzer

Outline

@ Introduction

© The MemCAD Analyzer

© Basic Memory Abstract Domains

@ Separating Product of Memory Abstract Domains
© Reduced Product of Memory Abstract Domains

@ Conclusion

3 /45

The MemCAD Analyzer

Outline

© The MemCAD Analyzer

4/ 45

The MemCAD analyzer (Memory Compositional Abstract Domains)

@ targets C programs manipulating complex memory states
o complex nested/overlaid/heterogeneous data structures

5 / 45

The MemCAD analyzer (Memory Compositional Abstract Domains)

@ targets C programs manipulating complex memory states
s complex nested/overlaid/heterogeneous data structures
@ proves safety (numeric) properties, e.g.

the absence of division by zero
the absence of out of bound array access
the absence of arithmetic overflow

¢ © ¢ ¢

5 / 45

The MemCAD analyzer (Memory Compositional Abstract Domains)

@ targets C programs manipulating complex memory states
s complex nested/overlaid/heterogeneous data structures
@ proves safety (numeric) properties, e.g.

the absence of division by zero
the absence of out of bound array access
the absence of arithmetic overflow

¢ © ¢ ¢

@ proves safety (memory) properties, e.g.
the absence of null pointer dereference
the absence of memory leak

the absence of incorrect memory freeing

¢ © e ¢

5 / 45

The MemCAD analyzer (Memory Compositional Abstract Domains)

@ targets C programs manipulating complex memory states
s complex nested/overlaid/heterogeneous data structures
@ proves safety (numeric) properties, e.g.

@ the absence of division by zero

@ the absence of out of bound array access
s the absence of arithmetic overflow

o ...

@ proves safety (memory) properties, e.g.

@ the absence of null pointer dereference
o the absence of memory leak

s the absence of incorrect memory freeing
o ...

@ automatically infers shape/numeric invariant, e.g.

e “i is an even integer”
@ "1 points to a linked list”
s "1 points to a linked list of even integers’

5 / 45

The MemCAD Analyzer

The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.]

L
[}
Concrete Memory States Concrete Transfer Functions
Concrete memory state s € S f:S—P(S)

6 / 45

The MemCAD Analyzer

The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.)

Abstract Memory States Concretization Function
Abstract memory state s e S? v : St — P(S)

6 / 45

The MemCAD Analyzer
The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs. J

Abstract Transfer Functions

fi. 8t ot

6 / 45

The MemCAD Analyzer
The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.)

That are Sound...

6 / 45

The MemCAD Analyzer
The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.)

:
,
Ay
,
,

That are Sound...

6 / 45

The MemCAD Analyzer
The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.)

s
g
R
]
(4

That are Sound...

6 / 45

The MemCAD Analyzer
The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.)

sfiiid

But not (necessarily) Complete...
U{f(s) | s € 7(s")} 2 7o fi(s")

6 / 45

The MemCAD Analyzer
The Abstract Interpretation Framework

A Theory for computing an over-approximation of semantics of programs.)

b

But not (necessarily) Complete...
U{f(s) | s € 7(s")} 2 7o fi(s")

6 / 45

Concrete Memory States
@ Memory State : environment + memory, i.e.
S=ExM S>s=(e,m)

o Values : V D Vaqar

@ Environments : maps program variables to addresses, i.e.
E =X — V.dar
@ Memories : maps addresses to values

read : Vpqar X Sizex M — V
write : V,qar X Size x VXM — M
alloc : Size x M — Vaqar X M

7 / 45

The MemCAD Analyzer

MemCAD is modular)

Layers of Abstract Domains :

ITER

@ Each box is an abstract domain with
& its concretization function
o its abstract transfer functions
@ implemented as OCaml modules

@ Edges are Functors

s implemented as OCaml functors
s offers modularity

8/ 45

The MemCAD Analyzer

MemCAD is modular)

Layers of Abstract Domains :

ITER Memory Abstract Domain M?

| @ abstract memories m! € M*

DISJ @ consists of predicates quantified on
| symbolic variables

@ symbolic variables denoted by Greek

ENV
letters «, B, ... € V¥, represents concrete
| values
AST @ valuations v € Val = Vf —» V

@ concretization vy : M# — P(Val x M)

@ simple abstract transfer functions

8 / 45

The MemCAD Analyzer

MemCAD is modular)

Layers of Abstract Domains :

ITER
DISJ . : “
Program Expressions Evaluation M?lst

| @ same abstract memories

ENV @ more complex abstract transfer functions
| that involves expressions with memory

operation e.g. (*a) - next
AST P g (xa)
MEM

8 / 45

The MemCAD Analyzer

MemCAD is modular)

Layers of Abstract Domains :

R Abstract States with Environment S*

| @ abstract states are abstract memories with

abstract environment, i.e. S = Ef x Mf

DISJ @ abstract environments Ef = X — V? map

| program variables to symbolic variables
o representing their addresses

| @ concretization g : Sf — P(S)

def

AST vs:(ef, mt) = {(voet, m) | (v, m) € yya(m")

| @ abstract transfer functions that involves
MEM program expressions e.g. (*x) - next

8 / 45

The MemCAD Analyzer

MemCAD is modular |

Layers of Abstract Domains :

ITER
DISJ Disjunctive Abstract Domain Sﬁv

| o §f = Phin(SH)
ENV @ concretization vy : St\i/ — P(S)

| def
AST (sh) = U{ye(sh) |s* € st}
MEM

8 / 45

The MemCAD Analyzer

MemCAD is modular)

Layers of Abstract Domains :

ITER
DISJ
| Fixed-Point engine
ENV
| o lterates over the control flow graph
AST
MEM

8 / 45

The MemCAD Analyzer

What is (so far) implemented in MemCAD 7

Basic Memory Abstract Domains :

@ the Bounded Memory Abstract Domain Mfg
s handles set of spatially-bounded memories

@ the List Memory Abstract Domain MlﬁSt
o handles linear, linked-list-like data structures
@ the Separating Shape Graphs Domain Mgsg

@ handles more complex data structures
@ relies on user-provided inductive definitions

o/ 45

The MemCAD Analyzer

What is (so far) implemented in MemCAD 7

Combination of Memory Abstract Domains :
@ a functor that add numerical constraints to memory abstractions

o constraints hold on symbolic variables
& APRON library (Intervals/Octogons/Polyhedra + Disequalities)

@ the Separating Product of two memory abstract domains

@ the Reduced Product of two memory abstract domains

10 / 45

Basic Memory Abstract Domains

Outline

© Basic Memory Abstract Domains

11 / 45

Basic Memory Abstract Domains

The bounded memory abstract domain :

o Points-to predicates « @ representing cells
o Combination with a numerical abstract domain

@ No summarization

o An abstract state (ef, m}) € Ef x M/

PO — o ABo=as A B =0x0
pl = a1
i = as A B2 € [0;100] A B3 > Ba

12 / 45

Basic Memory Abstract Domains

The bounded memory abstract domain :

o Points-to predicates « @ representing cells
o Combination with a numerical abstract domain
@ No summarization
o An abstract state (ef, m}) € Ef x M/
PO — o ABo=as A B =0x0
pl = a1
i = as A B2 € [0;100] A B3 > Ba

o Abstracting the concrete state (e, m) € y(ef, m}) :

p0 +— 0xa0 0xa0 0xb0 0xcO 0xdo
pl — 0xb0 IOch! ox0 | [0 | T[]
i — 0xdO

12 / 45

A bit of static analysis

Basic Memory Abstract Domains

To compute a post-condition of an assignment, the analysis :

14 / 45

Basic Memory Abstract Domains

To compute a post-condition of an assignment, the analysis :

© evaluates |.h.s. to a symbolic variable (plus an offset)

14 / 45

Basic Memory Abstract Domains

To compute a post-condition of an assignment, the analysis :
© evaluates |.h.s. to a symbolic variable (plus an offset)

© evaluates r.h.s. to a numerical expression of symbolic variables

14 / 45

Basic Memory Abstract Domains

To compute a post-condition of an assignment, the analysis :
© evaluates |.h.s. to a symbolic variable (plus an offset)
© evaluates r.h.s. to a numerical expression of symbolic variables

© writes the cell at the abstract level

14 / 45

Basic Memory Abstract Domains

Assignment : i = i + *p0; J
PO = ag ABo=as A B =0%0
pre pl — o1
LR i as ’ A Ba € [0;100] A Bs > B

AST

MEM

post ,

Replace program variables by symbolic variables

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Evaluating left hand side a3

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *ap; J

PO = o ABo=as A By =0x0
ENV pre pl — a1 ,
| i — a3 A 52 S [0. 100] A 63 > 62
AST
MEM po — Qg
post pl —~ o1 ,
i — a3

Left hand side evaluated to a3

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Evaluating right hand side a3 + *aqg

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Evaluating right hand side a3

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

ENV

AST

a0 (po)
«

pO = Oéo 1 /\,BO:aQABI:OxO
pre pl = o1 ,
@2 A B2 € [0;100] A B3 > B2

i — Oé3 s

PO — oo
post pl —~ o1 ,
i — a3

Evaluating right hand side a3

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Right hand side a3 evaluated to (33

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Evaluating right hand side xagq

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Evaluating right hand side aq

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

ENV

AST

a0 (po)
«

pO = Oéo 1 /\,BO:aQABI:OxO
pre pl = o1 ,
@2 A B2 € [0;100] A B3 > B2

i — Oé3 s

PO — oo
post pl —~ o1 ,
i — a3

Evaluating right hand side aq

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Right hand side g evaluated to (3

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Evaluating right hand side (g

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

ENV

AST

a0 (po)
«

pO = Oéo 1 /\,BO:aQABI:OxO
pre pl = o1 ,
@2 A B2 € [0;100] A B3 > B2

i — Oé3 s

PO — oo
post pl —~ o1 ,
i — a3

Evaluating right hand side (g

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Right hand side 3y evaluated to [,

15 / 45

Basic Memory Abstract Domains

Assignment : a3 = a3 + *Qp; J

o (o)
P(l) = o o (p) ABo=o02 A fr=0x0
re =
ENV P p 1 702

A B2 € [0;100] A B3 > B2

AST
MEM PO — g
post pl —~ o1 ,
i — a3

Right hand side a3 + xaq evaluated to 83 + 3>

15 / 45

Basic Memory Abstract Domains

Assignment : a3 < 33 + fo; J

«
re p(l) : oo ar(p) No=aa A fL=0x0
«
ENV P p 1 7@2

i s o« A B2 € [0;100] A B3 > B2
P ()

AST

po = OZO /\ﬂ():(lg A ﬁ1:0x0
post pl —~ o1 ,
i = oo A B2 €]0;100] AIBE > 2%

Perform the assignment

15 / 45

Basic Memory Abstract Domains

Static Analysis

Abstract domains are also provided with :

@ abstract transfer functions for creating/removing new memory
blocks

@ guard operation for branching
@ inclusion test/join for loop invariant

@ widening for ensuring termination

16 / 45

Basic Memory Abstract Domains

Separating shape graphs with inductive definitions : MFf

SSg

(]

Shape graphs with points-to edges, and inductive edges

(]

Nodes denote concrete values, edges denote memory regions

@ Summarization, using inductive definitions

@ A separating shape graph mt € Mgsg :
o A\ __next M\ »
O & \/\-ljlist list®
data do >0

(]

An unfolded graph (partial concretization) :

@ ,/A-u\ next ,/A-l\ next ’Q next ’® @
%0 >0 data data data@ @

17 / 45

Basic Memory Abstract Domains

Separating shape graphs with inductive definitions : MFf

SSg

(]

Shape graphs with points-to edges, and inductive edges

(]

Nodes denote concrete values, edges denote memory regions

@ Summarization, using inductive definitions

@ A separating shape graph mt € Mgsg :
o A\ __next M\ »
O & \/\-ljlist list®
data do >0

(]

An unfolded graph (partial concretization) :

@ ,/A-u\ next ,/A-l\ next ’Q next ’® @
%0 >0 data data@ data@ @

Abstracting the concrete memory (v, m) € v(mt) :

]
o +— 0xal 0xa0 0xb0 0xc0 xd0 0xe0 0x£f0
A\ [oxbo] _™oxco] Ioxdo] Ioxe0] I o0x£0] I 0x0
o — 0xb0 | 24 12 32 7 11

17 / 45

Separating Product of Memory Abstract Domains

Outline

@ Separating Product of Memory Abstract Domains

18 / 45

Separating Product of Memory Abstract Domains

Separating product : Insight

@ In many cases, programs manipulate memories with completely
different data structures in disjoint memory regions.

© There exist memory abstractions handling each of these data
structures

© There is no memory abstraction handling all of them

190 / 45

Separating Product of Memory Abstract Domains

Separating product : Insight

@ In many cases, programs manipulate memories with completely
different data structures in disjoint memory regions.

© There exist memory abstractions handling each of these data
structures

© There is no memory abstraction handling all of them

Apply existing abstractions to disjoint part of the memory
and glue them together J

190 / 45

Separating Product of Memory Abstract Domains

A concrete memory with a list and a tree

|E|T|
Hi

&x1| 82
struct Tree { :
struct Tree x 1ft, * rgt; &p0 = =
int data; Ep1{0z9 -
| parE
}’ . &t0 33| =
struct List { ¥ 158
struct Tree * tree; V/ —
struct List x next; 4o 1] od Do
int data; 1|
h) %

20/ 45

Separating Product of Memory Abstract Domains

A concrete memory with a list and a tree

&x0

&p0

&p1

&t0
&tl

&10
&11

70

=]
8
o

N LN

Abstraction of

the whole
memory

21/ 45

Separating Product of Memory Abstract Domains

A concrete memory with a list and a tree

.)
&x0| 70 — Abstraction of
o - -
&x1|82 — 71
* ;J the stack
&p0 i | J

ot
&

]

&p1(0x0) = N
tJ p. Abstraction of
&t0 s3] s Y2

&tl

the BST

&10
&11

- Abstraction of

, V3
% the list

22 /45

Separating Product of Memory Abstract Domains

Discussion

Pros

v Use data-structure-specific abstract domains (and the most efficient
algorithms that come with them)

v/ Better modularity and Abstract domain re-uses

v/ Pay the cost of complex algorithms only where it is required

Challenges

X Set up abstract transfer functions for the combination

X Carefully describe the interface between memory regions (e.g. value
sharing)

23/ 45

Separating Product of Memory Abstract Domains

Abstracting the interface between memory regions

&x0 70 ; Abstraction of
&xi82 2] B T
= the stack

&p0 ~ 5: = J
&p1(020 . = ™
L] Y Abstraction of
0 r A m
] 88 B
&1 pu the BST

&10
&11

Abstraction of

, A 3
7 e it

24 / 45

Separating Product of Memory Abstract Domains

Abstracting the interface between memory regions

=)
&x0 70 —kﬂ Abstraction of
&xi82 2 B T
= the stack
&p0 = = J
55
&p1 (00| . = ™
L Y Abstraction of
&0 — s s 72
&l pu the BST
7 / — J
i, =
JT 1] A
. Abstraction of
¥11 V4
| 3
% II 7 the list
J
The product analysis must abstract crossing pointers J

24 / 45

Separating Product of Memory Abstract Domains

> Article at SAS'141

> Contributions of the paper :
@ Formalization of the separating product of memory abstract domains
@ An abstract domain for the interface between memory regions
@ Abstract transfer functions for the separating product

@ A heuristic to decide which abstract domain should handle which
memory chunk

@ Practical validation (integration into the MemCAD analyzer)

1. An Abstract Domain Combinator for Separately Conjoining Memory Abstraction

25 / 45

Separating Product of Memory Abstract Domains

Abstraction

26 / 45

Separating Product of Memory Abstract Domains

Separating product of memory abstract domains : M?) ® M?

SSg

Abstract memories are triples (mg, m, i") e Mf) ® Mgsg :
@ Two abstract sub-memories abstracting disjoint part of the memory

@ An abstract interface i € I' representing equalities

@ An abstract memory (mﬁ, mé, it) € Mfg ® Mgsg 1

&p0 &x0(f2) &10(54 next /))
5 = Ao
A Po = &x0 A (1 = 0x0 y data 6 >0 !
A B2 € [0;100] A B3 > fBa _

@ Abstracting the concrete memory m € fy@(mﬁ, m, i*) :

27 / 45

Separating Product of Memory Abstract Domains

Separating product of memory abstract domains : Mﬁ ® M?

Ssg

Abstract memories are triples (mg, m, i") e Mf) ® Mgsg :
@ Two abstract sub-memories abstracting disjoint part of the memory

@ An abstract interface i € I' representing equalities

@ An abstract memory (mﬁ, mé, it) € Mfg ® Mgsg 1

&p0 &x0(f2) &10(54 next /))
5 = Ao
A Po = &x0 A (1 = 0x0 y data 6 >0 !
A B2 € [0;100] A B3 > fBa _

@ Abstracting the concrete memory m € fy@(mﬁ, m, i*) :

%10 |ox. .. &p0 | & &x0 | 70 ¢
Z11 |ox. .. &pl | 0x0 ex1 | 82 € Yo(my)
o« o« o« | 0x0 ¢
€ vs(mi)

24 42 32 7 11

27 / 45

Separating Product of Memory Abstract Domains

Separating product of memory abstract domains : Mﬁ ® M?

Ssg

Abstract memories are triples (mg, m, i") e Mf) ® Mgsg :
@ Two abstract sub-memories abstracting disjoint part of the memory

@ An abstract interface i € I' representing equalities

@ An abstract memory (mﬁ, mé, it) € Mfg ® Mgsg 1

&p0 &x0(f2) &10(54 next /))
5 = Ao
A Po = &x0 A (1 = 0x0 y data 6 >0 !
A B2 € [0;100] A B3 > fBa _

@ Abstracting the concrete memory m € fy@(mﬁ, m, i*) :

%10 | o &p0 [«”| ax0 | 70 ¢
w1 [» epl [ox0 | axt | 82 € 1w(my)
« « o« o« 0x0 ¢
€ vs(mi)

24 42 32 7 11

27 / 45

Separating Product of Memory Abstract Domains

Analysis

28 / 45

Separating Product of Memory Abstract Domains

Memory allocation

Creation of new memory cells occurs in programs.
> Basic Memory abstract domains handle them.
> In separating product Mf; ® Mgsg :

@ Sub-domains M{i, Mgsg could both handle them

@ The analysis must decide which one will do

C types are examined, to guide the choice J

C struct declaration

struct List { 0: inti;
struct List x next; 1: struct List x 1;
int data; 2: 1 =

= malloc(sizeof(List));

¥

20 / 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : simple case

Post

&pO &xO &10
&x1 ﬂg

AB[)—&XO/\Bl—OXO

() [xp0 = x1—x0;]*

Evaluating l.h.s, in Mﬁ : content of cell &p0 is [y

30/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : simple case

Post

&pO &xO &10
&x1 ﬂg

AB[)—&XO/\Bl—OXO

() [xp0 = x1—x0;]*

Evaluating l.h.s, in Mﬁ > as By = &x0, Lh.s is cell at address (&x0, 0)

30/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : simple case

Post

&pO &xO &10
&x1 ﬂg

AB[)—&XO/\Bl—OXO

() [xp0 = x1—x0;]*

Evaluating r.h.s, in Mﬁ : r.h.s is expression 83 — B

30/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : simple case

Post
&pos &xo' &10' &pO &xog &10
x| ﬂs &pl &xl &11
ABU—&XO/\Bl—OXO A Bo=8&x0 A fBi = 0x0 A
L) By=Ps=PBaA .
() [xp0 = x1—x0;]*

Writing the cell, in Mﬁ - write 33 — (7 into cell at address (&x0,0)

30/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : simple case

Post
1\ 4) 1\
&pO' &XO' &10 &pO &xog £10(B4)
&pl &x1| B3| &11 &pl &xi| B3| &11
ABgflsz/\BlfOxO A Bo=8&x0 A 1 = 0x0 A
L A) L By=Bs—PaA...)
() [« p0 = x1 —x0;]* (
nex nex ()
@ list list list @ list list list
data 6o >0 data 6 >0
(& J (& J
Ba =
Bs = A

Writing the cell, in Mgsg : nothing to do

30/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : simple case

Post
1\ 4 1\
&pos &xoﬁ &10(B4 &p0(By | &x0| B5) &10
&p1 ux1(Bs) &11 &p1 ux1(Bs) &11
Aﬂg—&xO/\Bl—OxO A Bo =&x0 A B1 = 0x0 A
L) L By =PBs—P2A.)
4 N\ . 4
[« p0 = x1 —x0;]"
nex nex ()
@ list list list @ list list list
data 5o >0 data 6 >0
(& J (& J
Ba= A3 Bi= A3
B5 = Ao Bs = Ao

Writing the cell, in I! : nothing to do

30/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

P Post

re
'd N\
2p0(fo) axo(Ba) w10(Bs)
&p1 ot %11
A o = &x0 A [= 0x0
A

Vs
nex
@ ° list list @ list

dat a 6 >0

J

[x1 = (x11)-data;]"

Bi= X3
B5 = o

Evaluating l.h.s, in M% : Lh.s is cell at address (&x1,0)

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

P Post

re
'd N\
2p0(fo) axo(Ba) w10(Bs)
&p1 ot %11
A o = &x0 A [= 0x0
A

Vs
nex
@ ° list list @ list

dat a 6 >0

J

[x1 = (x11)-data;]"

Bi= X3
B5 = o

Evaluating r.h.s, in ME} : content of cell &11 is (s

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

P Post

re
'd N\
2p0(fo) axo(Ba) w10(Bs)
&p1 ot %11
A o = &x0 A [= 0x0
A

Vs
nex
@ ° list list @ list

dat a 6o >0

J

[x1 = (x11)-data;]"

Bi= X3
B5 = o

Evaluating r.h.s, in M% : there is no cell at address (s, data)

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

Post

4 1\
&pO &xo(B &10
&p1 axi(Bs) &11

/\ﬂgf&xo A [)’170x0

N
J

[x1 = (x11)-data;]"

Evaluating r.h.s, in I! : retrieve another symbolic name 85 = \g

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

Post

4 1\
&p0(Bo) &x0| B2) &10(Sa
&pl axi| B3| &1t

/\,BU—&XO/\ﬂl—OXO

Vs
nex
@ ° list list @ list.

dat a 6 >0

J

[x1 = (x11)-data;]*

Bi= A3
B5 = o

Evaluating r.h.s, in Mgsg : content of cell (A\g,data) is dg

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

P Post

re
~ Y &p0 &x0 %10
&po &x0(3 &10 P ﬁ * g
&p1 11685 &11
&p1 x1 %11 P il B
= = 0
A Bo = &x0 A B = 0%0 A Bo=8x0 A By =0x
Ao,
Ae.

Vs

nex
@ ° list list @ list

J

[x1 = (x11)-data;]"

data 6 >0
N\ J
Bi= X3
B5 = o

Writing the cell, in M% : write fresh S5 in cell at address (&x1,0)

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

Post
1) (o) ax0(Bs) 210(8s) |
&poﬁ &xoﬁ #10(B P s * s 8
&p1 ax1 &11
&pl &x1| f3) &l1 3
/\,BU—&XO/\ﬂl_OxO A Bo =&x0 A 31 = 0x0
A...
J
'd N\ ﬁ (0
[x1 = (*11)-data;] D56
Q25500 0o list list Chst
list list list @
data 5o >0 data 920
N\ Y, - J
Ba= A3
B5 = Ao

Writing the cell, in Mgsg : nothing to do

31/ 45

Separating Product of Memory Abstract Domains

Assignment in a separating product : a more complex case

P Post

re
f) (&Poﬁ &xoﬁ &10')
&p0| By | &xO| B2 | &10| Ba
&Pls &x18 &11' kpt gy et
A Bo=&x0 A By = 0x0 A flo = &x0 A fy = 0x0
A A

Vs

J

([x1 = (x11)-data;]"

J
N
nex r ()
@ nex 1' — 1. - . ..list list ~—list
ist lis is
data data 6 >0

do >0

\ J
\ J
Ba = \s Bi= A3
Bs = o Bs =
N B4 = do

Writing the cell, in T : write equality 85 = &

31/ 45

Separating Product of Memory Abstract Domains

Integration into the MemCAD analyzer
o A ML functor : MEM_DOM -> MEM_DOM -> MEM_DOM

@ Can be iteratively applied, to cope with more than 2 sub-domains

Target of the analysis :

o C Programs ~100LOC
@ Manipulation of list and Tree data structures, e.g.
s insertion/removal routines
o search in trees
@ ...
@ Interactions between data structures, e.g.
@ search in trees data from lists
@ insert in lists data from trees
e sort a list using a BST

Goals of the analysis :
@ Detect (potential) null pointer dereferences
@ Data structure invariant

32 /45

Separating Product of Memory Abstract Domains
Results

Mem. Abstract Domain | t(s) | tSP(s) | #R | #RA

I<list,tree> 0.330 = 172 =
I<list> ® I<tree> 0.364 | 0.031 | 172 48
B ® I<list,tree> 0.194 | 0.035 | 172 70

B ® I<list> ® I<tree> | 0.231 | 0.071 | 172 70

@ Memory abstract domains :
@ B : Bounded Memory Abstract domain
e I<iy,...,tx> : Separating Shape graphs with inductive definitions
@ t(s) : Analysis time (in sec.)
@ tSP(s) : Time spent in the separating product functor (in sec.)
@ #R : Number of abstract read operations
@ #RA : Number of abstract read operations crossing sub-domains

33 /45

Separating Product of Memory Abstract Domains
Results

Mem. Abstract Domain | t(s) | tSP(s) | #R | #RA

I<list,tree> 0.330 = 172 =
I<list> ® I<tree> 0.364 | 0.031 | 172 48
B ® I<list,tree> 0.194 | 0.035 | 172 70

B ® I<list> ® I<tree> | 0.231 | 0.071 | 172 70

@ Memory abstract domains :
@ B : Bounded Memory Abstract domain
e I<iy,...,tx> : Separating Shape graphs with inductive definitions
@ t(s) : Analysis time (in sec.)
@ tSP(s) : Time spent in the separating product functor (in sec.)
@ #R : Number of abstract read operations
@ #RA : Number of abstract read operations crossing sub-domains

v No loss in precision with a separating product

v/ Faster analysis when sub-domains are efficient

33 /45

Reduced Product of Memory Abstract Domains

Outline

© Reduced Product of Memory Abstract Domains

34 / 45

Reduced Product of Memory Abstract Domains

Reduced Product : Insight

Programs sometime manipulate memories with complex data structures
@ that can not be described using a single inductive definition

@ that can be easily described as a conjunction of properties

For instance :
o a doubly linked list, that is sorted, and whose elements have a
static pointer to the head of the list;
@ linked list and tree data structures overlaid;

next]

35 / 45

Reduced Product of Memory Abstract Domains

Reduced Product : Insight

Programs sometime manipulate memories with complex data structures
@ that can not be described using a single inductive definition

@ that can be easily described as a conjunction of properties

For instance :
o a doubly linked list, that is sorted, and whose elements have a
static pointer to the head of the list;
o linked list and tree data structures overlaid ;

Apply several time existing abstractions to whole memory
and take the conjunction of them

3577745

Reduced Product of Memory Abstract Domains

Discussion

Pros

v/ Properties about data structures could be understood separately by
programmers/analyzers

v Increased expressiveness

v Better modularity

Potential issues

X It could be less efficient as it runs several analysis simultaneously

X To remain precise, Memory Abstract Domains must be able to
exchange information

36 / 45

Reduced Product of Memory Abstract Domains

Reduced Product of abstract domains [CC, POPL'79]

Cartesian product : Df X Dg

@ conjunction of properties : 'y(xf,xg) i= 'yl(xf) ﬁw(xﬁ)

Loss of precision during the analysis !

t €10,3] t =1 mod 2

is not verified in any component

is expressed by the conjunction
The information “t # 0" is verified by second component

The information “t > 0" : {

37 / 45

Reduced Product of Memory Abstract Domains

Reduced Product of abstract domains [CC, POPL'79]

Cartesian product : Df X Dg

@ conjunction of properties : 'y(xf,xg) i= 'yl(xf) ﬁw(xﬁ)

Loss of precision during the analysis !

t €10,3] t =1 mod 2

is not verified in any component

is expressed by the conjunction
The information “t # 0" is verified by second component

The information “t > 0" : {

Reduction

t € [1,3] t =1 mod 2

37 / 45

Reduced Product of Memory Abstract Domains

A generic reduction operator construction

Communication between two memory abstract domains M?, Mﬁ2
@ a universal language of constraints C
@ a concretisation function : y¢

@ two operators handling communications with abstract domains :

rd;, M? — C reads constrains Mﬂ
vi(mf) € ye(rd(m?))

wr;, : Cx Mt} — Mt} writes constraints { WI2
yi(m?) N yc(e) € vi(wr(c, m?)) M;

Reduction functions

p1—>2(m§7 mﬁ):=<m§7 Wr2(rd1(m§)7 mg)

paa(mh, mb):=(wri(rdy(mf), mb), m

38 / 45

Reduced Product of Memory Abstract Domains

> Article at VMCAI'132
> Contributions of the paper :

@ Formalization of a reduced product of memory abstract domains
@ Abstract transfer functions for the reduced product

@ Formalization of a universal language of constraints for
communication between memory abstract domains

@ Static (pre)analysis of inductive definition for constraints
extraction

@ Practical validation (integration into the MemCAD analyzer)

2. Reduced Product Combination of Abstract Domains for Shapes

390 /45

Reduced Product of Memory Abstract Domains

Universal Language of Constraints

Path predicate

a-p>p {

a and (8 denote symbolic variables
p is a regular expression of fields

@ Predicate o - (£)* > 8 means :
@ Read operator :
rd(@%‘@) = {a-(1ft+rgt)* >S5}

@ Sound unbounded path predicates for inductive predicate are
automatically inferred

40 / 45

Reduced Product of Memory Abstract Domains

Universal Language of Constraints

Path quantification

« denotes a symbolic variable, S denotes a set of s.v.
Svlp, a[X]](«, S) p is a regular expression on fields
a[X] is a path predicates with a free variable X

In the right figure, green nodes y :
@ are characterized by :

> they can be reached from ¢,
following path expression
(1ft 4+ rgt)*;

> they cannot be reached from (3,
following path expression
(1ft 4+ rgt)*;

o satisfy the property x -t >4 ;

Sv[(1ft+rgt)*, X -t>d](«, {6})J

41 / a5

Reduced Product of Memory Abstract Domains

Implementation : reduction strategies

When do we trigger reduction?
@ Only when the analysis is about to run out all the information :
Minimal strategy
@ At each computed abstract states :
Maximal strategy
@ When the location of a cell is about to be lost :

On-read strategy

Empirical notion of strategies J

42 / a5

Reduced Product of Memory Abstract Domains

Practical verification

Integration into the MemCAD analyzer
@ A ML functor : MEM_DOM -> MEM_DOM -> MEM_DOM

@ Can be iteratively applied, to cope with more than 2 sub-domains

Program : Strategy | Time | Red.calls
C programs manipulating minimal | 0.120 4
overlaid data structures. maximal | 0.095 32
Random traversal + routines on-read | 0.086 9
on-read strategy is a good balance J

Between 2X and 3X slower than the analysis with a monolithic memory
abstract domain (when it is possible).

43 / a5

Conclusion

Conclusion

MemCAD analyzer
@ Great Modularity in the choice of the Memory Abstraction

Generic framework for Separately Conjoining Memory Abstractions

@ Modular Spatial combination of memory abstract domains

@ Abstraction of the interface between memory regions

Generic framework for Reduced Product of Memory Abstractions

@ Modular combination of memory abstract domains

@ Mechanism for extracting constraints from inductive definitions

44 / a5

The End.

	Introduction
	The MemCAD Analyzer
	Basic Memory Abstract Domains
	Separating Product of Memory Abstract Domains
	Reduced Product of Memory Abstract Domains
	Conclusion

