Micro-Policies

A Framework for Tag-Based Security Monitors

Benjamin C. Pierce
University of Pennsylvania
and Chalmers University

with Arthur Azevedo de Amorim, Silviu Chiarescu, Andre Dehon,
Maxime Dénes, Udit Dhawan, Nick Giannarakis, Catalin Hritcu, Antal
Spector-Zabusky, Andrew Tolmach

October, 2014

Where are we?

(with software security)

How did we get here?

Lots of reasons!

Among them...
— Legacy technology of the 1960s - 80s

* Expensive hardware

 Few computers, protecting a little, not networked
— =» Poor HW abstractions

What’'s Changed?

transistors
10,000,000,000
Dual-Core Intel® Itanium® 2 Processor
, . 1,000,000,000
| ' MOORES LAW e o
Nnj)securi ty more u rg ent... 100,000000
Intel* Pentium® Bl Proces: y
Intel* Pentium* II Processor 10,000,000
[] Intel* Pentium® Processor /
* Bigger software e =
mmmmmmmmmmmmm of /
286 /‘
[]
— (harder to get right) o
800! 8080
444444 -
970

* Ubiquitous networking
* Protecting more valuable stuff

But also...

e 4+ decades of Moore’s Law
— Hardware is cheap

Our Goals

Idea: Make hardware enforce more invariants
— (First, communicate invariants to the hardware!)

Approach: Micro-Policies

— Hardware-accelerated, instruction-level enforcement of
security policies based on checking and propagating rich
metadata

Win:
— Ubiquitous policy enforcement at all system levels

— Safety interlock: tolerate errors in operation (bugs in trusted
code, transient errors)

— Programmable hardware supports a wide range of policies
and allows rapid adaptation to threats

Origins

This work is an outgrowth of the DARPA-funded
CRASH/SAFE design
C

RASH/SAFE was a clean-slate, whole system
redesign

— ISA, hardware, OS, languages, compilers,
applications...

e Recent focus:

— Custom processor = extend conventional ISA

— Low-level information-flow-control =2 enforcement of

a range of micro-policies (including IFC among many
others)

(Potential)

Micro-Policies

Information-Flow Control
Signing

Sealing

Endorsement

Taint

Confidentiality

Low-Level Type Safety

Memory Safety

Control-Flow Integrity

Stack Safety

Unforgeable Resource Identifiers
Abstract Types

Immutability

Linearity

Software Architecture Enforcement
Numeric Units

Mandatory Access Control
Classification levels
Lightweight compartmentalization
Sandboxing

Access control

Capabilities

Provenance

Full/Empty Bits
Concurrency: Race Detection
Debugging

Data tracing

Introspection

Audit

Reference monitors

GC support

Bignum common cases

Status

Prototype implementations of several micro-policies
— dynamic sealing

— memory safety

— control-flow integrity

— compartmentalization

— information-flow control (IFC)

Experiments with simulated Alpha processor + micro-
policy hardware and low-level support software

Formalization of simplified hardware and proofs of
correctness for a few micro-policies

HARDWARE ARCHITECTURE

PUMP Architecture

(Programmable Unit for Metadata Processing)

Start with conventional processor architecture
(e.g. Alpha)

Add full word-sized tag to every word

— In memory, cache, register file...

— (Conceptual model: efficient implementations may
compress!)

Tagged word is indivisible atom in machine

Process tags in parallel with ALU operations
— Hardware rule cache

— Software policy monitor that fills hardware cache as
needed

10

Integrate PUMP into Conventional
RISC Processor Pipeline

PCtag|

PC -

, L1-D$ L1
L1-1I$ RF > Tags puMP —
Tags Tags

IF Decode Execute Memory PUMP Commit

Overheads

Experiments (using SPEC2006 benchmarks,
running on a simulated Alpha + PUMP, enforcing
a fairly rich policy) show...
— modest impact on runtime (typically <10%) and
power ceiling (<10%)

— significant (but bearable?) increase in energy
(typically <60%) and area for on-chip memory
structures (110%)

12

EXAMPLE:
TAINT TRACKING

13

Tags for Taint Tracking

secret

<

public

14

user code

add rl r2 r3
add r6 r4 r5

software

rule cache manager

symbolic rules

add(L1l,L2) = max(L1l,L2)

hardware

secret

rule cache

add(public,public)
- public

add(secret,secret)
- secret

ALU

ground rules

PUMP

user code rule cache manager

.o symbolic rules
add rl r2 r3

add r6 r4 r5 add(L1l,L2) - max(L1l,L2)

software install
hardware tra p l
rule cache
add(public,public)
- public
add (secret,secret)
- secret

add(public,secret)
- secret

ground rules

ALU PUMP

user code rule cache manager

.o symbolic rules
add rl r2 r3

add r6 r4 r5 add(L1l,L2) - max(L1l,L2)

software

hardware

rule cache

add(public,public)
- public

add (secret,secret)
- secret

add(public,secret)
- secret

secret

ground rules

ALU PUMP

Scaling up to Full Dynamic
Information-Flow Control

e Use tag on PC to track implicit flows

 Word-sized tags can hold pointers to arbitrary
data structures
- labels can represent, for example, sets of
principals
— N.b.: tags are still just bit patterns as far as the
hardware is concerned!

18

Protecting the Protector

Q: How does all this work when the code that’s running
is the rule cache manager itself?

A: Very carefully!

19

Protecting the Protector

Kernel tag

Predefined bit pattern used (only) to tag micro-policy code and
private data structures

On rule cache misses, store current machine state, set PC tag to
Kernel, and start executing cache manager code at fixed
location

When cache manager finishes, return to user code (resetting PC
and its tag to previous values)

Ground rules

Installed at boot time (by trusted boot sequence)

Allow instructions to proceed only when both PC and current
instruction are tagged Kernel

Allow tag-manipulating instructions only when PC is tagged
Kernel

20

MICRO-POLICIES

21

Anatomy of a Micro-Policy

e Set of tags for labeling registers, memory, PC

* Rules for propagating tags as the machine
executes each instruction

* Monitor services for performing larger / more
global operations involving tags

22

Symbolic Rules

input tags

opcode : (PC,CI, OP1,0P2, MR)
— (PCrew, Rnew) if allow?

N\ / \

output tags side condition

23

Dynamic Sealing

Tags: Data | Key(k) | Sealed(k)

Monitor services:
— NewKey generates a new key k and returns O tagged with Key(k)

— Seal takes arguments v@Data and _@Key(k) and returns v@Sealed(k)
— Unseal takes v@Sealed(k)and _@Key(k) and returns v@Data

Rules:
— Data movement instructions (Mov, Load, Store) preserve tags.

— Data manipulation instructions (indirect jumps, arithmetic, ...) fault on
tags other than Data

Store : (Data,Data,Data,ts,., —) — (Data,tsy.)
Jal : (Data,Data,Data,—,—) — (Data,Data)

24

Control-Flow Integrity

* Tags: Each instruction that can be the source

or target of a control-flow edge is tagged (by
compiler) with a unique tag

* Rules:

— On a jump, call, or return, copy tag of current
instruction onto tag of PC

— Whenever PC tag is nonempty, compare it with
current instruction tag (and abort on mismatch)

25

Memory Safety

* Tags:
— Each call to malloc generates a fresh tag T
— Newly allocated memory cells tagged with T
— Pointer to new region tagged “pointer to T”

* Rules:

— Load and store instructions check that their targets
are tagged “pointer to T” and that the referenced
memory cell is tagged T (for the same T)

— Pointer arithmetic instructions preserve “pointer to T”
tags

26

Compartmentalization
a la SFI

Idea:
— Divide memory into finite set of compartments

— Each compartment can jump and write only to predetermined set of
addresses in other compartments

Tags:
— PC tagged with current compartment

— Each memory location is tagged with the set of compartments that are
allowed to affect it

Rules:

— On each write and after each branch, compare PC tag with tag of
memory location being written or executed

Monitor services:

— NewCompartment splits the current compartment into two
subcompartments (legal jump and write targets are provided as
parameters—must be a subset of parent compartment’s)

27

Composition

Current topic: How do we compose micro-policies??

Some policies are essentially orthogonal:

— E.g., memory safety and CFl or sealing

— Compose by tupling

— Just need to designate a default tag for each policy

But some are not...

— E.g. memory safety and compartmentalization

* (because newly allocated regions need their compartment tags reset)

Possible approaches:

— ldentify a small set of primitive operations like memory
allocation that need special treatment

— And/or compose policies “in series” rather than “in parallel” (in
the style of Haskell monad transformers or “algebraic effects”)

28

PROOF ARCHITECTURE

29

Some things to prove...

Q: The interplay between the hardware rule cache,
the software rule cache manager, the ground rules,
and the symbolic policy is somewhat intricate...

— How do we know that it works correctly in all cases?
Q: For each micro-policy, how do we know that its
realization in terms of tags and rules corresponds to

some intended high-level constraint on program
behavior?

— |.e., how do we know that the symbolic policy is what
the user intends?

30

provided by framework

————— provided by micro-policy designer
e gssembled from both

Coomorer>

Symbolic
machine

Generic
miss handler

Concrete
machine

Generic framework

Complete
machine

Symbolic machine
instance for P

refines

Concrete machine

running policy
monitor for P

|

! Abstract machine
. specification

\ for micro-policy P
|

-————

,~ Symbolic micro-
policy (tags,
transfer function,
and monitor
*_services) for P -

~ 7

\

~—
— - -

-—— —
- - .

—-—en - - o - -

\

/
/

;2 Monitor code >,

(transfer function
and monitor
‘. services) forP -/

-~ -
e - -

Micro-policy

[}
/

Results

* Last year: (ropL14]
— noninterference for a simple symbolic IFC policy

— correct implementation of this policy by a rule-table
compiler and rule cache handler routine

— on a simplified SAFE architecture
* This year:

— four diverse micro-policies (sealing, compartmentalization,
memory safety, CFl)

— proofs of correctness (refinement) of symbolic policies
wrt. high-level abstract machines

— protection and compartmentalization of kernel code
— ...on a simple RISC + PUMP

32

EMPIRICAL EVALUATION

33

Runtime Overhead

O Misshandler
B L2 PUMP-$
O DRAM

| L2-$
@ | misfetch

1 e
%S BT | %9559,

PESYIan0 |dD %

Simulated Alpha+PUMP running SPEC2006 benchmark suite with
composite micro-policy (memory safety + CFl + taint tracking)

34

Energy Overhead

O L1 PUMP-$

O Tag Translate O DRAM
B L2-5
| L1-$

O Misshandler
O CTAG-$
B UCP-$
B L2 PUMP-$

PEBYIANO |dT %

35

Absolute Power

O Baseline
O Tagged

(8109A9/pd) Jemod

36

Area

* Significant on-chip area overhead (mostly for
memory structures)

— around 110%
e Existing optimization techniques (Mondriaan

Memory, etc.) should help for off-chip
memory

37

FINISHING UP...

38

Related Work

Prop- Outputs Inputs
Tag Bits | agate? allow? | R (result) | PC || PC | CI | OP1 | OP2 | MR || Usage (Example)
2 X soft X Xl x| x| X X v || memory protection (Mondrian [66])
word X limited prog. X X X | X | X X v/ || memory hygiene, stack, isolation (SECTAG [5])
32 X limited prog. X X X | X | X X v/ || unforgeable data, isolation (Loki [70])
2 X fixed fixed X X | X]| X X v || fine-grained synchronization (HEP [60])
1 v fixed X X X | X| v X X || capabilities (IBM System/38 [33], Cheri [67])
2-8 v fixed fixed X X | X| v v X || types (Burroughs B5000, B6500/7500 [50], LISP Machine [43], SPUR [63])
128 v fixed copy X X | x| v X v/ || memory safety (HardBound [26], Watchdog [45,46])
0 v software defined X propagate only one invariant checking (LBA [15])
1 v fixed | fixed X X | x| v/ v v/ || taint (DIFT [62], [13], Minos [19])
4 v limited programmability | X X | X| v/ v X || taint, interposition, fault isolation (Raksha [23])
10 v limited prog. | fixed X X | x| v v v/ || taint, isolation (DataSafe [16])
unspec. v software defined X X | X | v v v || flexible taint (FlexiTaint [65])
32 v software defined X X | X| v/ v v/ || programmable, taint, memory checking, reference counting (Harmoni [25])
0-64 v software defined V| v v/ || information flow, types (Aries [11])
Unbounded | / software defined V|V v v/ || fully programmable, pointer-sized tags (PUMP)

39

Future Work

More uPolicies!

Policy composition?

User-defined policies?

Pure-software or hybrid implementation?
Zero-kernel OS?

40

Conclusion

* Host of security problems arise from violation
of well-understood low-level invariants

* Spend modest hardware to check
— Ubiquitously enforce in parallel with execution

* Programmable PUMP Model
— Richness and flexibility of software enforcement...

— ...with the performance of hardware!

— Reduce or eliminate security/performance
tradeoff

41

