
Control structures, fourth lecture

Continuations and control operators:
building blocks for control structures

Xavier Leroy
2024-02-15

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

The notion of continuation

Given a control point in a program, its continuation is

the sequence of computations that remain to be done
once the execution reaches the given control point
in order to finish the execution of the whole program.

Often, this continuation can be represented within the
programming language, as a command or a function.

2

Examples of continuations

In an imperative language with structured control.

Program Continuation of. . .

s1 ❶ ; s2 ❶ s2

(if be then ❶ s1 else ❷ s2); s3 ❶ s1; s3

❷ s2; s3

while be do ❶ s❷ ❶ s; while be do s
❷ while be do s

for i = 1 to 10 do ❶ s ❶ s; while i < 10 do

(i = i+ 1; s)

3

Continuations in functional languages

In languages based on expressions, esp. functional languages, we
talk about the continuation of a subexpression e in a program p:

the continuation of e in p is
the sequence of computations that remain to be done
once e is evaluated to its value ve
to finish the evaluation and produce the value vp of p.

The continuation can be viewed as the function ve 7→ vp

4

Examples of continuations

In a language of arithmetic expressions,
with left-to-right evaluation.

Consider the program p = (1 + 2)× (3 + 4) .

The continuation of 1 in p is λv. (v + 2)× (3 + 4) .

The continuation of 1 + 2 in p is λv. v × (3 + 4) .

The continuation of 3 + 4 in p is λv. 3× v (not λv. (1 + 2)× v).

Note that the continuation depends on the evaluation strategy!
(Right-to-left evaluation would result in different continuations.)

5

Continuations and jumps

Commands such as goto, break, return, or throw
can be viewed as switching continuations:
they continue not with the continuation of the control point that
follows syntactically, but with

goto L the continuation of the point labeled L
break the continuation of the enclosing loop
return the continuation of the current function invocation
throw the continuation of the catch clause of the nearest try

Example: the continuation of break in
while be do (break; s1); s2

is s2 and not s1; while . . . ; s2

6

In this lecture

Three ways to use continuations:

• as a semantic tool
(esp. to give semantics to non-local goto statements);

• as a functional programming idiom
writing programs in “continuation-passing style” (CPS);

• by adding control operators to the language
(like call/cc in the Scheme language).

7

Continuations as a semantic tool

Denotational semantics

(C. Strachey, D. Scott, C. Wadsworth, etc, since 1965.)

Let’s associate a mathematical object to each syntactic element
of a programming language (expression, command, function, . . .),
describing its meaning with mathematical precision.

Example: for the language of spreadsheet, we define

[[expr]] :

environment︷ ︸︸ ︷
(Var fin→ Val)→ Val

[[prog]] : ℘(Var fin→ Val) (set of solutions)

by induction on the structure of expr and prog.

8

Denotational semantics of spreadsheets

Expressions: [[expr]](Var fin→ Val)→ Val

[[cst]] ρ = cst

[[x]] ρ = ρ(x)

[[f (e1, . . . , en)]] ρ = f ∗([[e1]] ρ, . . . , [[en]] ρ)

Programs: [[prog]] : ℘(Var fin→ Val)

[[x1 = e1, . . . , xn = en]] = {ρ | ρ(xi) = [[ei]] ρ for i = 1, . . . , n}

9

Denotational semantics of assignment

What is the meaning of assignments such as x := x + 1 ?
Idea: it’s a store transformer (store = memory state).

[[stmt]] :

store “before”︷ ︸︸ ︷
(Var fin→ Val)→

store “after”︷ ︸︸ ︷
(Var fin→ Val)

Some representative cases:

[[x := e]] σ = σ[x← [[e]] σ]

[[s1; s2]] σ = [[s2]] ([[s1]] σ)

[[if be then s1 else s2]] σ =

[[s1]] σ if [[be]] σ = true

[[s2]] σ if [[be]] σ = false

10

Denotational semantics of loops

Idea: add a special denotation ⊥ for divergence.

[[stmt]] :

store “before”︷ ︸︸ ︷
(Var fin→ Val)→


store “after”︷ ︸︸ ︷

(Var fin→ Val) +

divergence︷︸︸︷
{⊥}


We then define

[[while be do s]] = lfp (λd.λσ.if [[be]] s then d([[s]]σ) else σ)

where “lfp” is the least fixed point of the given operator.

11

Denotational semantics of labels and jumps

(F. L. Morris, 1970; Wadsworth and Strachey, 1970; . . .)

Idea: the denotation of a command takes as an explicit argument
the continuation of this command. This makes it possible to
capture the continuation of a label and to associate it to the
label in an environment.

before stmt after stmt final
↓ ↓ ↙ ↘

[[stmt]] : Env → Store→ (Store→ Res)︸ ︷︷ ︸
continuation

→ Res

Store = Var fin→ Val

Res = Store+ {⊥}
Env = Label fin→ (Store→ Res)

12

Continuation-based denotational semantics

For commands that terminate normally: the continuation is
applied to the store after execution of the command, producing
the final result of the program.

[[x := e]] ρ σ k = k (σ[x← [[e]] σ])

[[s1; s2]] ρ σ k = [[s1]] ρ σ (λσ′. [[s2]] ρ σ′ k)

[[if be then s1 else s2]] ρ σ k =

[[s1]] ρ σ k if [[be]] σ = true

[[s2]] ρ σ k if [[be]] σ = false

13

Denotational semantics of labels and jumps

goto L ignores the current continuation; instead, it restarts the
continuation associated with L in the environment.

[[goto L]] ρ σ k = ρ(L) σ

A definition of a label L associates the continuation of the
definition with L in the environment.

[[begin s1; L : s2 end]] ρ σ k = [[s1; s2]] ρ
′ σ k

where ρ′ = ρ[L← k2]

and k2 = λσ′. [[s2]] ρ
′ σ′ k

14

Reduction strategies for a functional language

In lecture #3, we saw the need for defining and enforcing the
reduction strategy used to execute functional languages:

• Call by value: the function argument is reduced to a value
before being substituted in the function body.

• Call by name: the function argument is substituted
unevaluated in the function body. It will be evaluated every
time the function needs its value.

• Call by need (“lazy evaluation”):
like call by name, but evaluations are memoized. The
argument is evaluated the first time its value is needed,
and the value is reused if it is needed again later.

15

Denotational semantics for a functional language

Naively:

Val = Num+ (Val→ Val) + {⊥}

[[expr]] : (Var fin→ Val)→ Val

[[x]] ρ = ρ(x)

[[λx. e]] ρ = v 7→ [[e]] (ρ[x← v])

[[e1 e2]] ρ = ([[e1]] ρ) ([[e2]] ρ)

Problem 1: Val is ill-defined in set theory (cardinality issue).

Problem 2: it is not apparent which strategy is being implemented
by the semantic function application ([[e1]] ρ) ([[e2]] ρ).

16

Using Scott domains

Call by name:

Res ≈ Num+ Fun+ {⊥}+ {err} and Fun = Res cont→ Res

[[e1 e2]] ρ =


([[e1]] ρ) ([[e2]] ρ) if [[e1]] ρ ∈ Fun
⊥ if [[e1]] ρ = ⊥
err otherwise

Call by value:

Res ≈ Val+ {⊥}+ {err} and Val ≈ Num+ Fun and Fun = Val cont→ Res

[[e1 e2]] ρ =


([[e1]] ρ) ([[e2]] ρ) if [[e1]] ρ ∈ Fun and [[e2]] ∈ Val
⊥ if [[e1]] ρ = ⊥ or [[e1]] ρ ∈ Fun and [[e2]] ρ = ⊥
err otherwise

17

The CPS transformation

Specifying a reduction strategy using continuations

To make explicit the reduction strategy, we could add (semantic)
continuations to the denotational semantics of a functional
language.

However, a functional language has enough expressive power to
enable continuations to be materialized at the syntax level, by a
program transformation:

functional language→ “CPS fragment” of the language

18

The CPS transformation

The transform of an expression e is a function λk . . . that:

• takes as argument a function k (the continuation);
• reduces e to a value v (following a given strategy);
• finishes by applying k to v (tail call).

The resulting function is in continuation-passing style (CPS).

19

CPS transformation for call by value

V(cst) = λk. k cst

V(x) = λk. k x

V(λx. e) = λk. k (λx.V(e))
V(e1 e2) = λk.V(e1) (λv1.V(e2) (λv2. v1 v2 k))

Variables are bound to values, hence V(x) = λk. k x.

Evaluation of an application e1 e2:
evaluate e1 to v1, then evaluate e2 en v2, then apply v1 to v2.

20

CPS transformation for call by name

N (cst) = λk. k cst

N (x) = λk. x k

N (λx. e) = λk. k (λx.N (e))

N (e1 e2) = λk.N (e1) (λv1. v1 (N (e2)) k))

Variables are bound to suspended computations,
hence N (x) = λk. x k or just N (x) = x.

Evaluation of an application e1 e2: evaluate e1 to v1, then apply v1

to the suspended computation N (e2).

21

Administrative reductions

CPS transformations produce terms that are more verbose than
we would write by hand. In the case of an application of a
variable to a variable, we get

V(f x) = λk. (λk1.k1 f) (λv1. (λk2.k2 x) (λv2. v1 v2 k))

instead of just λk. f x k .

This can be avoided by performing “administrative reductions”
adm→ on the result of the CPS transformation:
these are β-reductions that remove the “administrative redexes”
introduced by the translation. In particular, we can do

(λk. k v) (λx. a) adm→ (λx. a) v adm→ a[x← v]

whenever v is a value or a variable.
22

Examples of CPS transformations (after administrative reductions)

V(f (g x))
= λk. g x (λv. f v k)))

N (f (g x))

= λk. f (λv. v (λk′. g (λv′. v′ x k′)) k)

V(let rec fact = λn. if n = 0 then 1 else n ∗ fact(n− 1))
= let rec fact = λn. λk.

if n = 0 then k 1 else fact (n− 1) (λv. k (n ∗ v)))

23

Specifying a reduction strategy using operational semantics

As a set of head reductions e ε→ e′

and a set of reduction contexts C.

e ε→ e′

C[e]→ C[e′]

e e′

C C

reduction

head reduction
24

The usual strategies

Weak lambda-calculus: we can β-reduce anywhere but under a λ.

(λx. e) e′ ε→ e{x← e′}
C ::= [] | C e | e C

Call by name: no reductions in arguments to applications.

(λx. e) e′ ε→ e{x← e′}
C ::= [] | C e

Call by value: left-to-right reduction of applications;
β-reduction restricted to values v ::= cst | λx. e .

(λx. e) v ε→ e{x← v}
C ::= [] | C e | v C

25

Semantic correctness of CPS transformation

(G. Plotkin, Call-by-name, call-by-value and the lambda-calculus, TCS 1(2), 1975)

Executing a program e after CPS transformation CPS consists in
applying V(e) or N (e) to the initial continuation λx. x .

Theorem

If e ∗→ cst (resp. e diverges) in call by value,
then V(e) (λx. x) ∗→ cst (resp. V(e) (λx. x) diverges).
If e ∗→ cst (resp. e diverges) in call by name,
thenN (e) (λx. x) ∗→ cst (resp. N (e) (λx. x) diverges) .

26

Plotkin’s proof

A difficult proof, relying on this simulation diagram:

a b

V(a) k V(b) k

a : k b : k

one CBV reduction

CPS transformation CPS transformation

administrative
reductions

administrative
reductions

weak reductions

(no reductions,
in general)

a : k, the colon translation, is V(a) k where some administrative
redexes were reduced.

27

CPS terms

Terms produced by the CPS transformation have a very specific
shape, described by the following grammar:

Atoms: a ::= x | cst | λv. b | λx.λk. b
Function bodies: b ::= a | a1 a2 | a1 a2 a3

V(e) is an atom, and V(e) (λx. x) is a body.

Function applications (to 1 or 2 arguments) are always in tail
position.

28

Reducing CPS terms

Atoms: a ::= x | cst | λv. b | λx.λk. b
Function bodies: b ::= a | a1 a2 | a1 a2 a3

Theorem (Indifference to the evaluation order (Plotkin, 1975))
A CPS-transformed program evaluates identically in call by
name, in call by value, and in any weak reduction strategy.

Proof.
Starting from V(e) (λx.x), all reducts are closed bodies b, i.e. v or v1 v2

or v1 v2 v3. The only reductions possible in any weak strategy are
(λx.b) v2 → b[x← v2]

(λx.λk.b) v2 v3 → (λk.b)[x← v2] v3 → b[x← v2, k← v3].

29

Programming in
continuation-passing style

Programming CPS

When writing code in a functional language, it can be useful to
perform the CPS transformation manually on selected parts of
the program.

This makes it possible to pass explicitly the continuation of a call
to a library function. This function can use the continuation to
implement advanced control structures: iterators, coroutines,
cooperative threads, . . .

30

“Internal” iteration on a binary tree

type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree

The usual “internal” iterator in OCaml:
let rec tree_iter (f: ’a -> unit) (t: ’a tree) =

match t with

| Leaf -> ()

| Node(l, x, r) -> tree_iter f l; f x; tree_iter f r

The same, partially transformed to CPS:
let rec tree_iter f t (k: unit -> unit) =

match t with

| Leaf -> k ()

| Node(l, x, r) ->

tree_iter f l (fun () -> f x; tree_iter f r k)

Benefit (?): the recursive traversal runs in constant stack space.
31

Towards an “external” iterator

A general data type to evaluate sequences of values on demand:

type ’a enum = Done | More of ’a * (unit -> ’a enum)

(See also: the type Seq.t in the OCaml standard library.)

Application: “external” iteration on a binary tree.

let rec tree_iter (t: ’a tree) (k: unit -> ’a enum) =

match t with

| Leaf -> k ()

| Node(l, x, r) ->

tree_iter l (fun () -> More(x, tree_iter r k))

let tree_iterator (t: ’a tree) : ’a enum =

tree_iter t (fun () -> Done)

32

Using external iterators

The “same fringe problem” mentioned in lecture #2.

let same_enums (e1: ’a enum) (e2: ’a enum) : bool =

match e1, e2 with

| Done, Done -> true

| More(x1, k1), More(x2, k2) ->

x1 = x2 && same_enums (k1 ()) (k2 ())

| _, _ -> false

let same_fringe (t1: ’a tree) (t2: ’a tree) : bool =

same_enums (tree_iterator t1) (tree_iterator t2)

33

A Python-style stateful generator

By adding local mutable state, this iterator becomes a
Python-style generator that returns the next value in the
enumeration at each call.

exception StopIteration

let tree_generator (t: ’a tree) : unit -> ’a =

let current = ref (fun () -> tree_iterator t) in

fun () ->

match !current () with

| Done -> raise StopIteration

| More(x, k) -> current := k; x

34

A library of cooperative threads

The natural interface (in “direct style”):

spawn: (unit -> unit) -> unit

Start a new thread.
yield: unit -> unit

Suspend the current thread;
switch to another runnable thread.

terminate: unit -> unit

Stop the current thread forever.

35

A library of cooperative threads

The CPS interface (with an explicit continuation):

spawn: (unit -> unit) -> unit

Start a new thread.
yield: (unit -> unit) -> unit

Suspend the current thread;
switch to another runnable thread.

terminate: unit -> unit

Stop the current thread forever.

35

Implementing the library

A queue of runnable threads (suspended, but ready to restart).

let ready : (unit -> unit) Queue.t = Queue.create ()

let terminate () =

match Queue.take_opt ready with

| None -> ()

| Some k -> k ()

let yield (k: unit -> unit) =

Queue.add k ready; terminate()

let spawn (f: unit -> unit) =

Queue.add f ready

36

Example of use

Print integers from 1 to count, yielding at every number:
let process name count =

let rec proc n =

if n > count then terminate () else begin

printf "%s%d " name n;

yield (fun () -> proc (n + 1))

end

in proc 1

Example of use:
let () =

spawn (fun () -> process "a" 5);

spawn (fun () -> process "b" 3);

process "c" 6

(Prints c1 a1 b1 c2 a2 b2 c3 a3 b3 c4 a4 c5 a5 c6.) 37

Backtracking with continuations

A continuation can be invoked several times. This can be useful
to implement backtracking.

Example: matching regular expressions.
type regexp = char list -> (char list -> bool) -> bool

The “contract” for a regular expression R:
R ℓ k invokes k l2 if l = l1.l2 and l1 matches R;
R ℓ k returns false if no prefix of l matches R.

In the first case, the continuation k can itself return false to
signal that it did not match l2.

let string_match (r: bool regexp) (l: char list) : bool =

r l (fun l’ -> l’ = [])

38

Definition of the usual regular expressions

let epsilon : regexp = fun l k -> k l

let char (c: char) : regexp = fun l k ->

match l with c’ :: l’ when c’ = c -> k l’ | _ -> false

let seq (r1: regexp) (r2: regexp) = fun l k ->

r1 l (fun l’ -> p2 l’ k)

let alt (r1: regexp) (r2: regexp) = fun l k ->

r1 l k || r2 l k

let rec star (r: regexp) : regexp = fun l k ->

alt (seq r (star r)) epsilon l k

and plus (r: regexp) : regexp = fun l k ->

seq r (star r) l k
39

“Internal generators” and counting

An “internal generator” = a function that produces several
possible results, gives them in turn to a continuation k, and
combines the results returned by k.

let bool k = k false + k true

let rec int lo hi k =

if lo <= hi then k lo + int (lo + 1) hi k else 0

let rec avltree h k =

if h < 0 then 0 else if h = 0 then k Leaf else

avltree2 (h-1) (h-1) k

+ avltree2 (h-2) (h-1) k

+ avltree2 (h-1) (h-2) k

and avltree2 hl hr k =

avltree hl (fun l -> avltree hr (fun r -> k (Node(l, 0, r))))
40

“Internal generators” and counting

The continuation k plays the role of a measure: it says how much
each possibility contributes to the total.

Ex: counting AVL trees of height 4.
let n = avltree 4 (fun _ -> 1)

(* 315 *)

Ex: counting dice throws ≥ 16.
let _3d6 k =

int 1 6 (fun d1 ->

int 1 6 (fun d2 ->

int 1 6 (fun d3 -> k (d1,d2,d3))))

let n = _3d6 (fun (d1,d2,d3) ->

if d1+d2+d3 >= 16 then 1 else 0)

(* 10 *)

41

Control operators

Control operators

Constructs provided by some functional languages
enabling an expression to reify its continuation,
manipulate it as a first-class value,
and restart this continuation later.

Control operators make it possible to program one’s own control
structures without using CPS, keeping the program in “direct
style”.

42

ISWIM, Algol, and operator J

(P. J. Landin, The next 700 programming languages, CACM 9, 1966.)
(P. J. Landin, Correspondence between ALGOL 60 and Church’s Lambda-notation,
CACM 8, 1965.)

The ISWIM language: a precursor to Scheme and ML.

• Extended lambda-calculus with call by value.
• Operational semantics given via the SECD abstract machine.
• Static scoping of variables (̸= Lisp), implemented using closures.

An explanation of Algol by translation to extended ISWIM:

• Mutable state→ adding ML-style references.
• Non-local “goto”→ adding the J control operator.

43

The J control operator

The evaluation of J(λy. e′) v computes the value of e′{y ← v}
and returns it directly to f ’s caller, “jumping over” the remaining
computations in the body of f .

Special case: J (λx. x) v behaves like return v in C.

Using J to encode labels and goto:

begin s1; L : s2 end ⇝ λ . let rec L = J (λ . s2) in s1; L ()

goto L ⇝ L ()

44

The callcc operator (call with current continuation)

callcc (λk. e)

A construct of the Scheme language that captures its own
continuation, turns it into a function, and passes it to λk. e.

Appears in the literature under various names:

• J. Reynolds, 1972: escape.
• G. Sussmann and G. Steele, 1975: catch and throw.
• The Scheme language, from 1982:
call-with-current-continuation, shortened as call/cc.

45

Execution of callcc

The expression callcc(λk. e) evaluates as follows:

• The continuation of this expression is bound to variable k.

• e is evaluated; its value is the value of callcc(λk. e).

• If, during the evaluation of e or at any later time,
k is applied to a value v, evaluation continues as if
callcc(λk. e) had returned value v.

In other words, the continuation of the callcc expression is
restored and resumed with v as the value of this expression.

46

From an “internal” iterator to an “external” iterator

Assume given an “internal” iterator such as the following one for
binary trees:

type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree

let rec tree_iter (f: ’a -> unit) (t: ’a tree) =

match t with

| Leaf -> ()

| Node(l, x, r) -> tree_iter f l; f x; tree_iter f r

47

From an “internal” iterator to an “external” iterator

Using callcc, we can stop the traversal as soon as tree_iter
found one element, and return this element:

let tree_iterator (t: ’a tree) : ’a enum =

callcc (fun k ->

tree_iter

(fun x -> k (Some x))

t;

None)

The call k (Some x) stops the traversal and causes Some x to be
returned as result of callcc.

If the tree is empty, the continuation k is not called and callcc

returns None as a result.

48

From an “internal” iterator to an “external” iterator

Using two callcc, we can define an “external” iterator
(enumerating all elements of the tree on demand) on top of
tree_iter.

type ’a enum = Done | More of ’a * (unit -> ’a enum)

let tree_iterator (t: ’a tree) : ’a enum =

callcc (fun k ->

tree_iter

(fun x -> callcc (fun k’ -> k (More(x, k’))))

t;

Done)

If x1 is the leftmost element of t, tree_iterator t returns
More(x1, k1). When k1 is called, the traversal restarts where it left,
and moves to the next element of t, or terminates.

49

Implementing structured exceptions with callcc

Using an imperative stack of exception handlers.

let handlers : (exn -> unit) Stack.t = Stack.create()

let raise exn =

match Stack.pop_opt handlers with

| Some hdlr -> hdlr exn

| None -> fatal_error "uncaught exception"

let trywith body hdlr =

callcc (fun k ->

Stack.push (fun e -> k (hdlr e)) handlers;

let res = body () in

Stack.drop handlers;

res)

50

Implementing structured exceptions with callcc

The construct

try e with p1 → en | . . . | pn → en

translates into

trywith

(fun () -> e)
(fun exn ->

match exn with

| p1 -> e1 | . . . | pn -> en
| _ -> raise exn)

51

Implementing advanced control structure in direct style

Adding control operators such as callcc to a functional
language

• make it possible to implement advanced control structures
as libraries (coroutines, exceptions, cooperative threads, . . .),

• while keeping the main program written in “direct style”
(no CPS conversion required).

52

Semantics and implementation of callcc

Semantics:

• by CPS transformation;
• directly, using reduction contexts.

Implementation:

• by CPS transformation on the whole program;
• using multiple call stacks

(capturing the current continuation = stack copy;
restarting a captured continuation = stack switching)

• using a persistent data structure to represent the call stack
(→ 2022-2023 course).

53

CPS transformation for callcc

V(callcc f) = λk. V(f) (resume k) k

resume k0 = λv. λk. k0 v

The standard CPS transformation uses continuations linearly:
every k parameter is used exactly once.

For callcc f , we duplicate the continuation k:
it is used once as argument to f (within resume k),
and once as continuation for f .

For resume k0, we ignore its continuation k:
execution continues with k0.

54

Continuations and reduction contexts

e e′

C C

reduction

head reduction

Consider a program p that decomposes as p = C[e],
where C is a reduction context and e can head-reduce.

Then, the continuation of e in p is exactly λv. C[v],
that is, the context C reified as a function. (v not bound in C)

55

Reduction rules for callcc

C[callcc(λk. e)] → C[(λk. e) (λv. resume C v)]

C[resume C0 v] → C0[v]

These are not head-reductions under a context ε→,
but whole-program reductions→ .

The rule for callcc duplicates the current context C.

The rule for resume replaces it by the captured context C0.

56

Delimited continuations

Continuations captured by callcc are undelimited and abortive:
they execute to the end of the program and never return.

For some applications (backtracking, counting), we need
continuations that are delimited and composable. For example:

2× delim (1 + capture (λk. k(k 0)))
+→ 2× (let k = λv. 1 + v in k(k 0))
+→ 2× ((1 + (1 + 0))) +→ 4

(The captured continuation “goes from capture to delim”.)

(Additional benefit: delimited continuations are smaller than
undelimited continuations, so capturing them can be less costly.)

57

Semantics of delimited continuations

Head-reduction rules under a context C, but with a sub-context D
that does not mention delim:

delim(D[capture (λk. e)]) ε→ . . .

C[delim(D[capture (λk. e)])]→ C[. . .]

Head reductions: (4 variants!)

delim(D[capture (λk. e)]) ε→

delim(

(λk. e) (λv. resume D v)

)

resume D v ε→

delim(

D[v]

)

Variant: -ctrl-

58

Semantics of delimited continuations

Head-reduction rules under a context C, but with a sub-context D
that does not mention delim:

delim(D[capture (λk. e)]) ε→ . . .

C[delim(D[capture (λk. e)])]→ C[. . .]

Head reductions: (4 variants!)

delim(D[capture (λk. e)]) ε→

delim(

(λk. e) (λv. resume D v)

)

resume D v ε→ delim(D[v])

Variant: -ctrl-, -ctrl+

58

Semantics of delimited continuations

Head-reduction rules under a context C, but with a sub-context D
that does not mention delim:

delim(D[capture (λk. e)]) ε→ . . .

C[delim(D[capture (λk. e)])]→ C[. . .]

Head reductions: (4 variants!)

delim(D[capture (λk. e)]) ε→ delim((λk. e) (λv. resume D v))

resume D v ε→

delim(

D[v]

)

Variant: -ctrl-, -ctrl+, +ctrl-

58

Semantics of delimited continuations

Head-reduction rules under a context C, but with a sub-context D
that does not mention delim:

delim(D[capture (λk. e)]) ε→ . . .

C[delim(D[capture (λk. e)])]→ C[. . .]

Head reductions: (4 variants!)

delim(D[capture (λk. e)]) ε→ delim((λk. e) (λv. resume D v))

resume D v ε→ delim(D[v])

Variant: -ctrl-, -ctrl+, +ctrl-, +ctrl+.

58

A menagerie of delimited control operators

(D. Hillerström, citation in references.)

A.2. Controlling continuations 235

Name Continuation behaviour Canonical reference

J Abortive Landin [161]

escape Abortive Reynolds [240]

catch Abortive Sussman and Steele [257]

callcc Abortive Clinger et al. [50]

F Composable Felleisen et al. [85]

C Abortive Felleisen and Friedman [83]

callcomp Composable Flatt and PLT [93]

Table A.1: Classification of first-class undelimited control operators (listed in chrono-

logical order).

Name Taxonomy Continuation behaviour Canonical reference

control/prompt +ctrl� Composable Felleisen [81]

shift/reset +ctrl+ Composable Danvy and Filinski [62]

spawn �ctrl+ Composable Hieb and Dybvig [116]

splitter �ctrl� Abortive, composable Queinnec and Serpette [234]

fcontrol �ctrl� Composable Sitaram [250]

cupto �ctrl� Composable Gunter et al. [111]

catchcont �ctrl� Composable Longley [177]

effect handlers �ctrl+ Composable Plotkin and Pretnar [228]

Table A.2: Classification of first-class delimited control operators (listed in chronolo-

gical order).

them in a l-abstraction. Obviously, this trick does not work for operators that reify the

caller continuation.

To study the control operators we will make use of a small base language.

A small calculus for control To look at control we will use a simply typed fine-

grain call-by-value calculus. Although, we will sometimes have to discard the types,

as many of the control operators were invented and studied in a untyped setting. The

calculus is essentially the same as the one used in Chapter 7, except that here we

will have an explicit invocation form for continuations. Although, in practice most

systems disguise continuations as first-class functions, but for a theoretical examination

it is convenient to treat them specially such that continuation invocation is a separate

59

Summary

Summary

Continuations are a powerful concept

• to understand and formalize the semantics of non-local
jumps;

• to program in functional languages with full control over the
ordering and interleaving of computations

• in continuation-passing style
• or in direct style, using control operators.

See also: the seminar talks by Andrew Kennedy (22/02) and
Olivier Danvy (29/02).

See also: lectures #5 and #6 on effect handlers, a modern, elegant
presentation of delimited control.

60

References

References

Programming with continuations:

• Daniel P. Friedman and Mitchell Wand, Essentials of Programming
Languages, MIT Press, 2008. Chapters 5 and 6.

The menagerie of control operators:

• Daniel Hillerström, Foundations for Programming and
Implementing Effect Handlers, PhD, Edinburgh, 2021.
Appendix A, Continuations.

A history of the notion of continuation:

• John C. Reynolds, The Discoveries of Continuations,
LISP and Symbolic Computation 6(3–4), 1993.

61

	Continuations as a semantic tool
	The CPS transformation
	Programming in continuation-passing style
	Control operators
	Summary
	References

