Full abstraction for multi-language systems
ML plus linear types

Gabriel Scherer, Max New, Nicholas Rioux, Amal Ahmed

INRIA Saclay, France
Northeastern University, Boston

November 22, 2017

@ Full Abstraction for Multi-Language Systems: Introduction

© Case Study: Unrestricted and Linear

© How Fully Abstract Can We Go?

Section 1

Full Abstraction for Multi-Language Systems:
Introduction

Multi-language systems

Languages of today tend to evolve into behemoths by piling features up:
C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the
feature space. (simpler?)

Multi-language system design may include designing new languages for
interoperation.

Full abstraction to understand graceful language interoperability.

Multi-language stories

Graceful interoperation? Abstraction leaks?

(Several expert languages: not (yet?) in this work)

A question worth asking

What does it mean for two languages to “interact well together'?

A question worth asking

What does it mean for two languages to “interact well together'?

@ no segfaults?

A question worth asking

What does it mean for two languages to “interact well together'?

@ no segfaults?

@ the type systems are not broken?
(correspondence between types on both sides)

A question worth asking

What does it mean for two languages to “interact well together'?

@ no segfaults?

@ the type systems are not broken?
(correspondence between types on both sides)

@ more?

A question worth asking

What does it mean for two languages to “interact well together'?

@ no segfaults?

@ the type systems are not broken?
(correspondence between types on both sides)

@ more?

rFL]_eIT

[_1: Types(L1) — Types(L2) M2 L1(e) : 7]

+ type soundness of the combined system

Full abstraction

[]:S— T fully abstract:

A p — [[a]] A CtX [[b]]

Full abstraction preserves (equational) reasoning.

Full abstraction for multi-language systems

Graceful interoperation: G LEN (G+E)

No abstraction leaks: T f—a> W

Which languages?

ML sweet spot hard to beat,
but ML programmers yearn for language extensions.

ML plus:
o low-level memory, resource tracking, ownership
o effect system
@ theorem proving

In this talk: a first ongoing experiment on ML plus linear types.

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

UL+

Proof: by translating L back into U in an inefficient but correct way.

10

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

UL+

Proof: by translating L back into U in an inefficient but correct way.

Note: extending U preserves this result.

10

Our case study

U (Unrestricted): general-purpose ML language
L (Linear): expert linear language.

UL+

Proof: by translating L back into U in an inefficient but correct way.
Note: extending U preserves this result.

Note: L — (U + L) not meant to be fully abstract.
(Not robust to extensions of U)

10

Section 2

Case Study: Unrestricted and Linear

11

Unrestricted language: syntax

Types o = a|orxoa|1l]|o1—02
o1+ 02 | pa.o | Va.o

Expressions e = x|
<e1,e2> ’ 1€ ‘ o € ‘
() [eriex |
A(x:0).e | e1 e |
injie | inj,e | casee’ of x3.e1 | x2. €2
foldya.c € | unfolde |
Aa.e | eo]

Typing contexts [, == - |l x|l «

12

Linear types: introduction

Resource tracking, unique ownership.
o lo r r
[FHe:o
We own e at type o (duplicable or not), e owns the resources in I'.
ou=01Q0 | 1] 01—02 |
oc1®oy | po.o | a

lo |

Box b o

13

Linear types: base
A simple but useful language with linear types.

MHe:l MHe:o

IM,x:obx:0 MH():1 FrYrrHee:o
ke :oq MoFe:ior ThHe:io1®os [Mxiio01,x:00H¢€ 10
1Yok (el,e2> 101X 02 FYF’] Iet(xl,x2>:eine’ o
Mx:oke:o THe:o —0o M e o
FH Ax:0).e:0—0 TYMHee:o
Fe:o; Fe:o1@o02 (rl,X,'ZU,'|—| 6;20')16{172}
[Hinje: o1 @ oo FY Tk caseeof xj.er [xo.e0: 0
fol
Mhe:o [He:lo unfold

po. o o__o olpa.o/a]

IT F sharee : lo MHicopy? e:o fold
pno.o

14

Applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

open : [(![Path] — Handle)
line : !(Handle — (Handle @ (![String] ® Handle)))
close : !(Handle —1)

(details about the boundaries come later)

Typestate.

15

(details about the boundaries come later)

open : I(![Path] — Handle)
line : !(Handle — (Handle @ (![String] @ Handle)))
close : !(Handle —1)

let concat_lines path : String = UL(
loop (open LU(path)) LU(Nil)
where rec loop handle LU(acc : List String) =
match line handle with
| EOF handle ->
close handle; LU(rev_concat "\n" acc)
| Next line handle ->
loop handle LU(Cons UL(line) acc))

(U values are passed back and forth, never inspected)

16

Linear types: linear locations

Box 1 o: full cell

Box 0 : empty cell

new unbox
1 —° Box0 Box1o __° (Box0)®o
free box

Applications: in-place reuse of memory cells.

17

List reversal

type LList a = ut. 1 @ Box 1 (a ® t)

val reverse : LList a — LList a
let reverse list = loop (inl ()) list
where rec loop tail = function
| inl () — tail
| inr cell —
let (1, (x, xs)) = unbox cell in

let cell = box (1, (x, tail)) in
loop (inr cell) xs

18

List reversal (sweet)

type LList a = put. 1 @ Box 1 (a ® t)
pattern Nil = inl ()
pattern Cons 1 x xs = inr (box (1, (x, xs)))

val reverse : LList a — LList a
let reverse list = loop Nil list
where rec loop tail = function
| Nil — tail
| Cons 1 x xs — loop (Cons 1 x tail) xs

19

List reversal (sweet)

type LList a = put. 1 @ Box 1 (a ® t)
pattern Nil = inl ()
pattern Cons 1 x xs = inr (box (1, (x, xs)))

val reverse : LList a — LList a
let reverse list = loop Nil list
where rec loop tail = function
| Nil — tail
| Cons 1 x xs — loop (Cons 1 x tail) xs

type List a = pt. 1 + (a X t)
let reverse list = UL(share (reverse (copy (LU(1list)))))

(U values are created from the L side from a compatible type)

19

let partition p li = partition_aux p (Nil, Nil) 1i
partition_aux p (yes, no) = function
| Nil -> (yes, no)
| Cons 1 x xs ->
let (yes, no) =
if copy p x then (Cons 1 x yes, no) else (yes, Cons 1 x no)
in partition_aux p (yes, no) xs

let lin_quicksort 1li = quicksort_aux 1li Nil
let quicksort_aux 1i acc = match 1i with
| Nil -> acc
| Cons 1 head 1i ->
let p = share (fun x -> x < head) in
let (below, above) = partition p 1li in
quicksort_aux below (Cons 1 head (quicksort_aux above acc))

quicksort 1i UL(1li) = UL(share (lin_quicksort (copy 1i)))

20

Interaction: lump

Types o | o Expressions e | e
o e +u=--- | UL(e)
o +u=--| o] e +u=---| LU(e)
Contexts [= | [)x:io | T,a | Ix:i0
Mhye:o T Fy e o]

IT Fy LU(e) - o] IT by UL(e) o

21

Interaction: compatibility

Compatibility relation

Fu 01 > oy Ful o2 = 1o
Fal~!l Ful O'1><0'22!(0'1®O'2)

Fu o1 >~ log Fu o2 >~ lo) Foao~lo Fa o ~ 1o

Fa o1+ 02 = (01 B 0)) Fao—o ~1(lo—ld")

Fuo~lo Fuo~lo
Fu o~ o] Fuo~llo Fu o =~ !(Box 1 o)

Interaction primitives and derived constructs:

Zunlump

TLU(e) df o Zunlump LU(e)
UL (e) = def UL(lump? €)

o] o__o o when Fyo~o

lump?

22

Full abstraction

Theorem
The embedding of U into UL is fully abstract.

Proof: by pure interpretation of the linear language into ML.

23

Full abstraction

Theorem
The embedding of U into UL is fully abstract.

Proof: by pure interpretation of the linear language into ML.

o] 1o

Box 0] & 1

[Box 1 o] = 1x[o]
[o1®02] = [o1] x [o2]
(Cogent)

23

Remark on parametricity

(from Max New)

(Aa. A(x:). ULY(“LU(X))) [o] By A(x:0). UL (P LU(X))
Not well-typed!
(A Az). ULy 0] < Ax: o). UL cu(x))

Logical relation (Max New, Nicholas Rioux)

24

Questions?

25

Section 3

How Fully Abstract Can We Go?

26

| used to think of Full Abstraction as an ideal property that would never be
reached in practice.

| changed my mind. The statement can be weakened to fit many situations,
and remains a useful specification.

| will now present some (abstract) examples of this approach.

27

Weak Trick 1: restrict the interaction types
The no-interaction multi-language: always fully abstract!
Types restrict interaction: “only integers”, “only ground types".

Extend the scope of safe interaction by adding more types.
Design tool.

Idea: the idealist will still have a useful system.

28

Weak Trick 2: weaken the source equivalence

Full abstraction is relative to the source equivalence.

Contextual equivalence makes a closed-world assumption.
Good, sometimes too strong.

Safe impure language: forbid reordering of calls.
Safe impure language: add impure counters for user reasoning.

Or use types with weaker equivalence principles: linking types
(Daniel Patterson, Amal Ahmed)

Idea: full abstraction forces you to specify the right thing.

29

Questions

Compare different ways to specify a weaker equivalence for full abstraction?
@ through explicit term equations?
@ through types?
@ by adding phantom features?

Does our multi-language design scale to more than two languages?
(Yes, | think)

Are boundaries multi-language designs also convenience boundaries?
(good or bad?)

Your questions.
Thanks!

30

	Full abstraction for multi-language systems: introduction
	Case study: Unrestricted and Linear
	How fully abstract can we go?

