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Multi-language systems

Languages of today tend to evolve into behemoths by piling features up:
C++, Scala, GHC Haskell, OCaml...

Multi-language systems: several languages working together to cover the
feature space. (simpler?)

Multi-language system design may include designing new languages for
interoperation.

Full abstraction to understand graceful language interoperability.
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Full abstraction for multi-language systems

J K : S → T fully abstract:

a ≈ctx b =⇒ JaK ≈ctx JbK

Full abstraction preserves (equational) reasoning.

S1

full abs.   

interop
S2

full abs.~~
T

Mixed S1,S2 programs preserve (equational) reasoning of their fragments.
Graceful multi-language semantics.
(or vice versa)
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Which languages?

ML sweet spot hard to beat,
but ML programmers yearn for language extensions.

ML plus:

low-level memory, resource tracking, ownership

effect system

theorem proving

. . .

In this talk: a first ongoing experiment on ML plus linear types.
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Linear types: base
A simple but useful language with linear types.

Γ1 ` σ1 Γ2 ` σ2

Γ1 . Γ2 ` σ1⊗σ2

Γ ` σ1⊗σ2 ∆, σ1, σ2 ` σ

Γ . ∆ ` σ

!Γ ` 1

Γ ` 1 ∆ ` σ

Γ . ∆ ` σ

Γ, σ ` σ′

Γ ` σ(σ′
Γ ` σ′(σ ∆ ` σ′

Γ . ∆ ` σ

!Γ ` σ

!Γ ` !σ

Γ ` !σ

Γ ` σ
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Applications

Protocol with resource handling requirements.

“This file descriptor must be closed”

Typestate.
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Linear types: linear locations

Box 1 σ: full cell

Box 0 σ: empty cell

1

new
−(›−
free

Box 0 σ Box 1 σ

unbox
−(›−
box

Box 0 σ⊗σ
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Applications

In-place reuse of memory cells.
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List reversal

type LList a = µt. 1 ⊕ Box 1 (a ⊗ t)
pattern Nil = inl ()
pattern Cons l x xs = inr (box ( l , (x, xs )))

val reverse : LList a ( LList a
let reverse list = loop Nil list

where rec loop tail = function
| Nil → tail
| Cons l x xs → loop (Conx l x tail) xs

(∗ use reverse internally ∗)

(∗ on the ML side ∗)
type List a = µt. 1 + (a × t)
let reverse list = UL(share (reverse (copy (LU( list )))))
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Full abstraction
The ML language can be compiled into a linear language.

LU (σ)
def
= !bσc

bσ1 × σ2c
def
= Box 1 (bσ1c⊗ bσ2c)

b1c def
= 1

bσ1→ σ2c
def
= LU (σ1)(LU (σ2)

This gives a direct multi-language semantics.
Full abstraction by pure interpretation of the linear language in ML.

d!σe def
= dσe

dBox 1 σe def
= dσe

dBox 0 σe def
= 1

dσ1⊗σ2e
def
= dσ1e × dσ2e

(Cogent)
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Going further

Polymorphism not formalized yet.

Implementation?
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