
Frozen inference constraints
for type-directed disambiguation

Olivier Martinot, Gabriel Scherer

Partout, Inria Saclay, France

August 21, 2021

1

Type-directed disambiguation

Many language support type-directed disambiguation of names.
How to combine this with type inference?

Type classes (qualified types):
nice inference through constraint abstraction
excellent approach for operator overloading.

2

Type-directed disambiguation

Many language support type-directed disambiguation of names.
How to combine this with type inference?

Type classes (qualified types):
nice inference through constraint abstraction
excellent approach for operator overloading.

2

Type-directed disambiguation outside qualified types

A feature where type classes are not enough:
data constructor disambiguation.

f (K t)
match t with K x -> u

1 We do not want to abstract over K .

2 The type of K may not be expressible as a class argument
(existentials, etc.; data constructors are not functions.)

3 Different constructors K may have vastly different typing rules.

3

Type-directed disambiguation outside qualified types

A feature where type classes are not enough:
data constructor disambiguation.

f (K t)
match t with K x -> u

1 We do not want to abstract over K .

2 The type of K may not be expressible as a class argument
(existentials, etc.; data constructors are not functions.)

3 Different constructors K may have vastly different typing rules.

3

Constructor disambiguation and type inference

f (K t)
match t with K x -> u

Need program types to disambiguate K .
Need the type of K to infer program types.

HM type inference:
propagation by unification (within generalization boundaries).

Bidirectional type inference (commonly used for disambiguation):
leafward propagation from annotations (robust)
+ some lateral propagation (fragile): t u

This Work In Progress explores unification-based type disambiguation
frozen constraints.

4

Constraint-based type inference: a primer

implicitly-typed t
generate

=⇒ constraint C
solve
=⇒ explicitly-typed t ′

Constraint for application t u with return type variable α:

Jt uKα
def
= ∃βt .∃γu. ((βt = γu → α) ∧ JtKβt ∧ JuKγu)

5

Frozen constraints

〈α〉f
α: type inference variable
f : function from partial types to constraints

waits on a type unification variable α:
when α becomes (partly) defined as τ ,
the constraint f (τ) must be solved.

Constructor constraint (non-GADT case):

JK tKα
def
= ∃βt . (JtKβt ∧ 〈α〉(λτ. βt = arg type(τ,K)))

Principled (and principal) inference with type-disambiguation.
(Maybe too restrictive?)

Difficult to combine with generalization!

6

Practical difficulty: generalization (1/2)

If 〈α〉f remains unsolved “at the end”, type inference fails.

But when is the end?

How does 〈α〉f interact with let-generalization?

7

Practical difficulty: generalization (1/2)

If 〈α〉f remains unsolved “at the end”, type inference fails.

But when is the end?

How does 〈α〉f interact with let-generalization?

7

Practical difficulty: generalization (2/2)

Generalization: which inference variables α are local and and can be
generalized into polymorphic variables?

Frozen generalization of τ :
if a variable β of τ is “blocked” by a frozen constraint,
it must be tracked during instantiation and possibly generalized later.

Partially-frozen schemas:

On generalization: store β as a blocked schema variable.

On instantiation: track the instance of the partially-frozen schema.

When β gets unblocked: continue generalization, update tracked
instances.

Delicate to implement. Difficult to implement efficiently.

8

Practical difficulty: generalization (2/2)

Generalization: which inference variables α are local and and can be
generalized into polymorphic variables?

Frozen generalization of τ :
if a variable β of τ is “blocked” by a frozen constraint,
it must be tracked during instantiation and possibly generalized later.

Partially-frozen schemas:

On generalization: store β as a blocked schema variable.

On instantiation: track the instance of the partially-frozen schema.

When β gets unblocked: continue generalization, update tracked
instances.

Delicate to implement. Difficult to implement efficiently.

8

Theoretical difficulty: semantics (1/3)

Constraints are given meaning by a solution relation V C .

A good constraint generator has correct solutions.

A good constraint solver (big-step function or small-step rewrites)
preserves solutions.

τ [V] =ty τ
′[V]

V τ = τ ′
V C [T/α]

(T ,V) ∃α.C

How to specify frozen constraints?

9

Theoretical difficulty: semantics (2/3)

Natural approach:

V f (α[V])

V 〈α〉f

This specification allows “out of thin air” behaviors.

[α 7→ int] 〈α〉(λτ. α = int)

Our solver does not: the specification is not precise enough.

10

Theoretical difficulty: semantics (3/3)

We want to express that α[V] is determined “without looking inside f ”.
How can we do this?

Morally:

C [>] determines α V C [f (α[V])]

V C [〈α〉f]

11

Summary

Frozen constraints: interesting but difficult constraint combinator.

Work in progress.

Thanks! Questions?

12

