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“Which types have a unique inhabitant (modulo program equivalence)?”



Understand fundamental properties of non-ambiguous code inference
mechanisms:

@ static overloading
@ type classes

e implicit parameters (maybe)

Idea: predictability corresponds to finding a program with a unique
solution.
(Program synthesis?)

In practice: | understand simple type systems and equivalence better,
more work to extend to realistic languages (first-class polymorphism).



Naive idea: enumerate programs, stop at two.

Problem: what about redundancies?
Redundancy: two (syntactically) distinct terms that are equivalent.

Goal: Enumerate programs without duplicates.

Define a representation of programs without redundancy — canonical.



Simply-typed A-calculus without polymorphism.

AB = A—>B|AxB|A+B|1]|0

If you have canonical representations, it's easy to decide equivalence.

Side-result: decision procedure for equivalence in this type system.
(Was an open problem because of 0.)



My poor understanding of program synthesis:
@ searching a large space until you find a solution

@ try to reduce the space by inverting the shape of the solution

Canonical forms reduce the search space by eliminating redundancies.
Obvious win?

Yes: many of Peter Michael-Osera and Steve Zdancewic's 2015 heuristics
are instances of focusing simplifications.

No: sometimes canonical forms require bookkeeping, or their normal forms
are too large, and it can hurt performance. (Same as proof search.)

In any case, understanding the relations between my theory and your
practice would be nice.



Section 2

Background
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Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 . )
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()
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Section 3

High-level view
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What is a canonical form for equivalence of simply-typed terms?
Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

( stx) — (}gﬂn)
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What is a canonical form for equivalence of simply-typed terms?
Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

( stx) — (}gﬂn)

With only functions and pairs, there is a reasonable notion of 3-short
n-long normal form. It does not scale to sums.

Normal form (for reduction) # Canonical form (for equivalence)

(see also Watkins, Cervesato, Pfenning, Walker, 2002)
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Curry-Howard, again: programs as proofs.

The structure of
canonical forms
corresponds to the structure of

proof search

Restricting the search space restricts expression redundancy.

12



(existing work)
Gives a term representation (Fsoc).

Canonical for effectful programs.
(Noam Zeilberger's thesis, 2009)
Not canonical for pure programs (stronger equivalences).

Complete: any term can be focused.

MrM-==A — [Mfoc A
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(existing work)
Gives a term representation (Fsoc).

Canonical for effectful programs.
(Noam Zeilberger's thesis, 2009)
Not canonical for pure programs (stronger equivalences).

Complete: any term can be focused.
M-A = [Mfoc A

N=t: A — dvrg,t, [hiev:A

13



(my contribution)

Family of representations (Fsat.0)-

Canonical for pure programs.

Locally complete: for any finite set of terms,
there is a ® such that (Fgas.00) is complete.

14
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Section 5

Focusing
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r’-A T,BFC
A= BFC

MAFC M-A TFA
MALx A FC [ Ar x A

TALFC TLAKRC M- A
AL+ Ak C [ AL+ A
rorc . r-1

Invertible vs. non-invertible rules. Positives vs. negatives.
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[FFA rBFC

A-BFC
A+ C Fr-A, TFA
AL xAFC M Ap x Ay
FAFC T AFC M- A
F,A1+A2r—C FI—A1+A2
EOFC+ r-1

Invertible vs. non-invertible rules. Positives vs. negatives.

NM:=A—-B|AxB|1 P,Q:=A+B|0
AB:=P|N|« P, Qs =P |« Ny, My =N |«

17



Invertible phase

?
a+ Bk a
a+BF B+«
If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.
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?
a+ Bk a
a+BF B+«
If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

Imposing this restriction gives a single proof of (v — ) — (o — )
instead of two (Af.f and A\f. Ax.f x).

After all invertible rules, negative context I',,,, positive goal P,.
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After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.
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Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.
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After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

ao, B1EA
Qo X a3, ﬂlFA
ar X3, P1xpr FA

011XOé2XOz3,B1><B2|—A

19



This was focusing:
@ invertible as long as a rule matches, until '\, F P,
@ then pick a formula

@ then non-invertible as long as a rule matches, until polarity change

Completeness:

Nr-A — [Mfoc A

20



Section 6

Focused M-calculus
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B-normal forms (negative)

B-short normal forms:

vV, w
n,m :

m (t,u) =t

= Ax.v|(v,w)]|n
= min|nv|x
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B-normal forms (negative)

B-short normal forms:

m (t,u) =t
v,w = Ax.v|(v,w)|n
n,m = min|nv|x

[B-short n-long:

(yia—=p)=Xx:a.(yx:p)
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B-normal forms (negative)

B-short normal forms:

m (t,u) =t
v,w = Ax.v|(v,w)|n
n,m = min|nv|x

[B-short n-long:
(y:a—=pB)=Ix:a.(yx:pB)
v,w o= v (v,w) | (n: a)

n,m = min|nv|x
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What about sums?

v,w = v (v,w) |oiv|(n:a)

n,m == min|nv||match nwith

01Yy1— Vi | x
02 Yy — V2

Does not work:
match n with match n with

01y1 = Az. vy v 01X — 02 X
02 Yo = AZ. V2 02 X — 01 X
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Focusing to the rescue

v,w = Ax.v | (v,w) | (n:a)
n,m = mn|nv|x
vow = Ax. v | (v,w) | ()
| absurd(x) | (match xwith | V1TV >
02 Y2 =7 V2
| (Tha 12 Pa)
nm:z=m;n|np|x
p,q =0 pl(v:Na)

f =m:a)|(p:P)|letx=(n:P)inv
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Focusing to the rescue

v,w = v (v,w) | (n:«)
n,m = min|nv|x
v,w = Ax.v | (v,w) | ()
| absurd(x) | (match xwith | Y1 >
02 Y3 V2
| (Tha b F:P3)
nm:i=min|npl|x
p,q x=o0;p|(v:N,)
f =m:a)|(p:P)|letx=(n:P)inv
Remark: “broken neutrals” are gone
T (match X with o1y = m )
a2y — Ny
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Completeness of focusing

Logic:

MN=A - [foc A

25



Completeness of focusing

Logic:

MN=A -

Programming:

Mr-t: A ==

25

[foc A

MFeoc VA
V%Ignt



Focused normal forms are canonical for the impure A-calculus.

Proof in Noam Zeilberger's thesis (2009), using ideas from ludics.
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Section 7

Saturation
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Focusing is still not canonical — for pure languages.

letX:ninC[letX’:n/inv]

let X' = n’ in C[let x = n in V]
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Focusing is still not canonical — for pure languages.

letX:ninC[letX’:n/inv]

let X' = n’ in C[let x = n in V]

We want the let x = n to be “as early as possible” — maximal
multi-focusing. “Split neutrals early”.
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Focusing is still not canonical — for pure languages.
letX:ninC[letX’:n/inv]

let X' = n’ in C[let x = n in V]

We want the let x = n to be “as early as possible” — maximal
multi-focusing. “Split neutrals early”.

Is v ~g, w ? Pull the let-bindings to the roots and compare. Works for
sums.

28



| wanted to enumerate the canonical inhabitants at a given type.

No existing term to start with.

Saturation: split on all possible neutrals.

29



vow = Ax.v | (v, w) | ()

| () | absurd(x) | <matchxwith 1YLV >
02 Yy = V2
| (Tha b 2 Pa)
nmuz=m;n|np|x
p:q =o0ip|(v:Na)
f u=letx=ninv|(n:a)|(p:P)

Plus side-condition on the let X = n:
@ they are a set (no duplicates)
o freshness: must use a variable of the preceding invertible phase v

e saturation: n | p can only be chosen if no fresh variable

30



Which 1 to split in a given context [?

“All of them” = infinite set (x : N — P ...)

Parameter: a selection function ®(I') returning the (finite) 7.
For unicity: “at most two at each type”

Local completeness:
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Which 1 to split in a given context [?

“All of them” = infinite set (x : N — P ...)

Parameter: a selection function ®(I') returning the (finite) 7.
For unicity: “at most two at each type”

Local completeness:

/.
(r l_foc |V A) —_— EICD, V/7 r l_sat:':l) v ,, A
"4 %677 v

Idea: ®(I') D {l F¢oc n: P | n € v} suffices.
dUd = complete for finite sets of terms.

31



Canonicity

r l_sat:¢ Vv, W A

v W — v &g, w

32



Thanks

Questions?
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