Canonical typed representations — and synthesis?

Gabriel Scherer

Northeastern University, Boston

Talk to the Computer Assisted Programming Group, MIT
March 1, 2017

“Which types have a unique inhabitant (modulo program equivalence)?”

Understand fundamental properties of non-ambiguous code inference
mechanisms:

@ static overloading
@ type classes

e implicit parameters (maybe)

Idea: predictability corresponds to finding a program with a unique
solution.
(Program synthesis?)

In practice: | understand simple type systems and equivalence better,
more work to extend to realistic languages (first-class polymorphism).

Naive idea: enumerate programs, stop at two.

Problem: what about redundancies?
Redundancy: two (syntactically) distinct terms that are equivalent.

Goal: Enumerate programs without duplicates.

Define a representation of programs without redundancy — canonical.

Simply-typed A-calculus without polymorphism.

AB = A—>B|AxB|A+B|1]|0

If you have canonical representations, it's easy to decide equivalence.

Side-result: decision procedure for equivalence in this type system.
(Was an open problem because of 0.)

My poor understanding of program synthesis:
@ searching a large space until you find a solution

@ try to reduce the space by inverting the shape of the solution

Canonical forms reduce the search space by eliminating redundancies.
Obvious win?

Yes: many of Peter Michael-Osera and Steve Zdancewic's 2015 heuristics
are instances of focusing simplifications.

No: sometimes canonical forms require bookkeeping, or their normal forms
are too large, and it can hurt performance. (Same as proof search.)

In any case, understanding the relations between my theory and your
practice would be nice.

Section 2

Background

Nx:AFt: B lN-t:A—B N~u:A

lN-Xx.t:A— B Ftu:B
M-t1: A
M-ty A MEt: AL x A
rl—(tl,tg):Alez MEmt: A
r,X11A1|—U11C
Mt A; MN=t:A;1+ A Mxy: Ak u:C
lFot: AL+ A [b match t with 01 X1 — Uy
02 Xp — U
(x:A)erl r=t:0

r-(:1 NEx:A '+ absurd(t): A

8

Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

. 01 X1 — U1 .)
match o t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

M=t: A1+ A
match t with
t >y 01 X1 — 01 X1
03 X2 —» 02 X2

Simply-typed Bn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

o 01 X1 — U1 .)

match o; t with 0 Xa 5 Uy >g ui[t/xi]
t:A—=B MEt: A1 X A MN=t:1
t >y A (t x) t >, (71 t,m t) t oy ()

match t; with

?

FHt: A+ A (t1,t2) ~y | 01 X1 = (01 x1,12)
match t with 02 x2 = (02 X2, t2)

t >y 01 X1 — 01 X1
03 X2 —» 02 X2

Simply-typed Bn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

o 01 X1 — U1 .)

match o; t with 0 Xa 5 Uy >g ui[t/xi]
t:A—=B MEt: A1 X A MN=t:1
t >y A (t x) t >, (71 t,m t) t oy ()

match t; with

?

FHt: A+ A (t1,t2) ~y | 01 X1 = (01 x1,12)
match t with 02 x2 = (02 X2, t2)

t >y 01 X1 — 01 X1
03 X2 —» 02 X2

Simply-typed Bn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

o 01 X1 — U1 .)

match o; t with 0 Xa 5 Uy >g ui[t/xi]
t:A—=B MEt: A1 X A MN=t:1
t >y A (t x) t >, (71 t,m t) t oy ()

match t; with

?

FHt: A+ A (t1,t2) ~y | 01 X1 = (01 x1,12)
match t with o2 x2 = (02 X2, t2)

t >y 01 X1 — 01 X1
03 X2 —» 02 X2

Simply-typed [Sn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

o 01 X1 — U1 .)

match o; t with 0 Xa 5 Uy >g ui[t/xi]
t:A—=B MEt: A1 X A MN=t:1
t >y A (t x) t >, (71 t,m t) t oy ()

match t; with

?

FHt: A+ A (t1,t2) ~y | 01 X1 = (01 x1,12)
match t with o2 x2 = (02 X2, t2)

t >y 01 X1 — 01 X1

. def
72 Xo 5 T9 X2 ult1/y] with o = (y,t2)

Simply-typed Bn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

o 01 X1 — U1 .)

match o; t with 0 Xa 5 Uy >g ui[t/xi]
t:A—=B MEt: A1 X A MN=t:1
t >y A (t x) t >, (71 t,m t) t oy ()

match t; with

?

M-t A+ A ultr/y] ~y | O1X1 = (01 X1, 82)
match t with 02 X2 = (02 X2, t2)

t >y 01 X1 — 01 X1

. def
T ultr/y] with u% (y, 1)

Simply-typed [Sn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x] i (t1,t2) Dg t;
o 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1
t >y A (t x) t >, (71 t,m t) t oy ()
, match t; with
Mt A+ A ulti/y] =y | 01 x1 = uoy x1/y]
match t with o2 X2 u[02 Xz/y]
fon | 1 o1 ults/y] with u= (y.t5)

092 X — 02 X2

Simply-typed [Sn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

01 X1 — U1

match o; t with
02 X2 — U

>3 U,'[t/X,']

N-t:A—B M-t: A1 x A M-t:1
t >y A (t x) t >, (71 t,m t) t oy ()

match t; with

Mt A+ A ulti/y] =y | 01 x1 = ufoy x1/y]
match t with 02 x2 = ulo2 x2/y]
fon | oA oL /] with w® (y, 1)

092 X — 02 X2

Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

Nl=t: A1+ A MNy:Ai+AtFu:C
match t with
ult/yl >y | o1 x1 — ulo1 x1/y]
o9 X2 = U[oa x2/y]

Simply-typed Bn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

MFt:Ai+A Ty Ai+hdtu.c THE0 Ty 0Fu:C
match t with ult/y] >y, absurd(t)
ult/y] ey | o1 x1 = ulo1 x1/y]
02 X2 — ufoa x2/y]

Simply-typed [Sn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

MFt:Ai+A Ty Ai+hdtu.c THE0 Ty 0Fu:C
match t with ult/y] >y, absurd(t)
ult/y] ey | o1 x1 = ulo1 x1/y]
02 X2 — ufoa x2/y]

Derived rules :

Simply-typed [Sn-equivalence; Why is it difficult?
(Ax.t) u pg tlu/x] i (t1,t2) Dg t;

) . 01 X1 — U1 .)
match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1

t >y A (t x) t >, (71 t,m t) t oy ()

MFt:Ai+A Ty Ai+hdtu.c THE0 Ty 0Fu:C
match t with ult/y] >y, absurd(t)
ult/y] ey | o1 x1 = ulo1 x1/y]
02 X2 — ufoa x2/y]

Derived rules :
MEty Ryt 1
9

Simply-typed [Sn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x]

01 X1 — U1

T (tl,tg) gt

match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1
t >y A (t x) t >, (71 t,m t) t oy ()

Nl=t: A1+ A MNy:Ai+AtFu:C

MN=t¢:0 My:0Fu:C

match t with
ult/yl >y | o1 x1 — ulo1 x1/y]
o9 X2 = U[oa x2/y]

Derived rules :

rl—t’l%ntzil

9

ult/y] >y, absurd(t)

N=t:0 MNEwug,un: A

Fur~yu: A

Simply-typed [Sn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x]

01 X1 — U1

T (tl,tg) gt

match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1
t >y A (t x) t >, (71 t,m t) t oy ()

Nl=t: A1+ A MNy:Ai+AtFu:C

F=t:0 Ly:0Fu:C

match t with
ult/yl >y | o1 x1 — ulo1 x1/y]
o9 X2 = U[oa x2/y]

Derived rules :

rl—t’l%ntzil

9

ult/y] >y, absurd(t)

N=t:0 MNEwug,up: A

Fur~yu: A

Simply-typed [Sn-equivalence; Why is it difficult?

(Ax.t) u pg tlu/x]

01 X1 — U1

T (tl,tg) gt

match o; t with 0 Xa 5 Uy >g ui[t/xi]
N-t:A—B M-t: A1 x A M-t:1
t >y A (t x) t >, (71 t,m t) t oy ()

Nl=t: A1+ A MNy:Ai+AtFu:C

MN=t¢:0 My:0Fu:C

match t with
ult/yl >y | o1 x1 — ulo1 x1/y]
o9 X2 = U[oa x2/y]

Derived rules :

rl—t’l%ntzil

9

ult/y] >y, absurd(t)

N=t:0 MNEwug,un: A

Fur~yu: A

Section 3

High-level view

10

What is a canonical form for equivalence of simply-typed terms?
Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(stx) — (}gﬂn)

11

What is a canonical form for equivalence of simply-typed terms?
Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(stx) — (}gﬂn)

With only functions and pairs, there is a reasonable notion of 3-short
n-long normal form.

11

What is a canonical form for equivalence of simply-typed terms?
Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(stx) — (}gﬂn)

With only functions and pairs, there is a reasonable notion of 3-short
n-long normal form. It does not scale to sums.

11

What is a canonical form for equivalence of simply-typed terms?
Redundancy: two (syntactically) distinct terms that are equivalent.

Canonical representation: a syntax of programs with no redundancy:

(stx) — (}gﬂn)

With only functions and pairs, there is a reasonable notion of 3-short
n-long normal form. It does not scale to sums.

Normal form (for reduction) # Canonical form (for equivalence)

(see also Watkins, Cervesato, Pfenning, Walker, 2002)

11

Curry-Howard, again: programs as proofs.

The structure of
canonical forms
corresponds to the structure of

proof search

Restricting the search space restricts expression redundancy.

12

(existing work)
Gives a term representation (Fsoc).

Canonical for effectful programs.
(Noam Zeilberger's thesis, 2009)
Not canonical for pure programs (stronger equivalences).

Complete: any term can be focused.

MrM-==A — [Mfoc A

13

(existing work)
Gives a term representation (Fsoc).

Canonical for effectful programs.
(Noam Zeilberger's thesis, 2009)
Not canonical for pure programs (stronger equivalences).

Complete: any term can be focused.
M-A = [Mfoc A

N=t: A — dvrg,t, [hiev:A

13

(my contribution)

Family of representations (Fsat.0)-

Canonical for pure programs.

Locally complete: for any finite set of terms,
there is a ® such that (Fgas.00) is complete.

14

) @ W W W W D

Jean-Marc Andreoli. “Logic Programming with Focusing Proof in Linear Logic”.
Vol. 2. 3. Journal of Logic and Computation, 1992.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. “Canonical Sequent Proofs
via Multi-Focusing”. |FIP TCS, 2008.

Noam Zeilberger. “The Logical Basis of Evaluation Order and Pattern-Matching” .
PhD thesis. Carnegie Mellon University, 2009.

Peter-Michael Osera and Steve Zdancewic. “Type-and-Example-Directed Program
Synthesis”. PLDI, 2015.

Gabriel Scherer and Didier Rémy. “Which simple types have a unique
inhabitant?” |CFP, 2015.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic.
“Example-directed synthesis: a type-theoretic interpretation”. POPL, 2016.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. “Program synthesis
from polymorphic refinement types”. PLDI, 2016.

Gabriel Scherer. “Which types have a unique inhabitant? Focusing on pure
program equivalence.” PhD thesis. Université Paris-Diderot, 2016.

Gabriel Scherer and Amal Ahmed. “Search for Program Structure”. SNAPL,
2017.

15

Section 5

Focusing

16

r’-A T,BFC
A= BFC

MAFC M-A TFA
MALx A FC [Ar x A

TALFC TLAKRC M- A
AL+ Ak C [AL+ A
rorc . r-1

Invertible vs. non-invertible rules. Positives vs. negatives.

17

[FFA rBFC

A-BFC
A+ C Fr-A, TFA
AL xAFC M Ap x Ay
FAFC T AFC M- A
F,A1+A2r—C FI—A1+A2
EOFC+ r-1

Invertible vs. non-invertible rules. Positives vs. negatives.

NM:=A—-B|AxB|1 P,Q:=A+B|0
AB:=P|N|« P, Qs =P |« Ny, My =N |«

17

Invertible phase

?
a+ Bk a
a+BF B+«
If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

18

?
a+ Bk a
a+BF B+«
If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

Imposing this restriction gives a single proof of (v —) — (o —)
instead of two (Af.f and A\f. Ax.f x).

After all invertible rules, negative context I',,,, positive goal P,.

18

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

19

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

19

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

ao, B1EA
Qo X a3, ﬂlFA
ar X3, P1xpr FA

011XOé2XOz3,B1><B2|—A

19

This was focusing:
@ invertible as long as a rule matches, until '\, F P,
@ then pick a formula

@ then non-invertible as long as a rule matches, until polarity change

Completeness:

Nr-A — [Mfoc A

20

Section 6

Focused M-calculus

21

B-normal forms (negative)

B-short normal forms:

vV, w
n,m :

m (t,u) =t

= Ax.v|(v,w)]|n
= min|nv|x

22

B-normal forms (negative)

B-short normal forms:

m (t,u) =t
v,w = Ax.v|(v,w)|n
n,m = min|nv|x

[B-short n-long:

(yia—=p)=Xx:a.(yx:p)

22

B-normal forms (negative)

B-short normal forms:

m (t,u) =t
v,w = Ax.v|(v,w)|n
n,m = min|nv|x

[B-short n-long:
(y:a—=pB)=Ix:a.(yx:pB)
v,w o= v (v,w) | (n: a)

n,m = min|nv|x

22

What about sums?

v,w = v (v,w) |oiv|(n:a)

n,m == min|nv||match nwith

01Yy1— Vi | x
02 Yy — V2

Does not work:
match n with match n with

01y1 = Az. vy v 01X — 02 X
02 Yo = AZ. V2 02 X — 01 X

23

Focusing to the rescue

v,w = Ax.v | (v,w) | (n:a)
n,m = mn|nv|x
vow = Ax. v | (v,w) | ()
| absurd(x) | (match xwith | V1TV >
02 Y2 =7 V2
| (Tha 12 Pa)
nm:z=m;n|np|x
p,q =0 pl(v:Na)

f =m:a)|(p:P)|letx=(n:P)inv

24

Focusing to the rescue

v,w = v (v,w) | (n:«)
n,m = min|nv|x
v,w = Ax.v | (v,w) | ()
| absurd(x) | (match xwith | Y1 >
02 Y3 V2
| (Tha b F:P3)
nm:i=min|npl|x
p,q x=o0;p|(v:N,)
f =m:a)|(p:P)|letx=(n:P)inv
Remark: “broken neutrals” are gone
T (match X with o1y = m)
a2y — Ny

24

Completeness of focusing

Logic:

MN=A - [foc A

25

Completeness of focusing

Logic:

MN=A -

Programming:

Mr-t: A ==

25

[foc A

MFeoc VA
V%Ignt

Focused normal forms are canonical for the impure A-calculus.

Proof in Noam Zeilberger's thesis (2009), using ideas from ludics.

26

Section 7

Saturation

27

Focusing is still not canonical — for pure languages.

letX:ninC[letX’:n/inv]

let X' = n’ in C[let x = n in V]

28

Focusing is still not canonical — for pure languages.

letX:ninC[letX’:n/inv]

let X' = n’ in C[let x = n in V]

We want the let x = n to be “as early as possible” — maximal
multi-focusing. “Split neutrals early”.

28

Focusing is still not canonical — for pure languages.
letX:ninC[letX’:n/inv]

let X' = n’ in C[let x = n in V]

We want the let x = n to be “as early as possible” — maximal
multi-focusing. “Split neutrals early”.

Is v ~g, w ? Pull the let-bindings to the roots and compare. Works for
sums.

28

| wanted to enumerate the canonical inhabitants at a given type.

No existing term to start with.

Saturation: split on all possible neutrals.

29

vow = Ax.v | (v, w) | ()

| () | absurd(x) | <matchxwith 1YLV >
02 Yy = V2
| (Tha b 2 Pa)
nmuz=m;n|np|x
p:q =o0ip|(v:Na)
f u=letx=ninv|(n:a)|(p:P)

Plus side-condition on the let X = n:
@ they are a set (no duplicates)
o freshness: must use a variable of the preceding invertible phase v

e saturation: n | p can only be chosen if no fresh variable

30

Which 1 to split in a given context [?

“All of them” = infinite set (x : N — P ...)

Parameter: a selection function ®(I') returning the (finite) 7.
For unicity: “at most two at each type”

Local completeness:

31

Which 1 to split in a given context [?

“All of them” = infinite set (x : N — P ...)

Parameter: a selection function ®(I') returning the (finite) 7.
For unicity: “at most two at each type”

Local completeness:

/.
(r l_foc |V A) —_— EICD, V/7 r l_sat:':l) v ,, A
"4 %677 v

Idea: ®(I') D {l F¢oc n: P | n € v} suffices.
dUd = complete for finite sets of terms.

31

Canonicity

r l_sat:¢ Vv, W A

v W — v &g, w

32

Thanks

Questions?

33

	Motivation
	Background
	High-level view
	Focusing
	Focused -calculus
	Saturation

