
A graphical presentation

of MLF types with

a linear-time incremental

unification algorithm.

Didier Rémy

&

Boris Yakobowski

INRIA-Rocquencourt

Didier

Le Botlan

A tour of MLF

First-order terms

and unification
Syntactic types

Graphic types

Instance relation

Unification

Incrementality

Extended types

Type constraints

Type inference Futur works

Motivations 3(1)/30

First-class polymorphism is (sometimes) useful.

Today’s solutions

I Should we give up type inference? no!

I Local type inference? no! —very fragile to program transformations

I Algorithmically specified type-inference?

I Stratified type inference? —still a backup when better solutions fail.

I Boxy types?

no!

Improve System-F — regardless of type inference

I There is a gap between implicit and explicit type systems.

I Is System F the right choice? (think of Fη, F≤, F-bounded, etc.)

Motivations 3(2)/30

First-class polymorphism is (sometimes) useful.

Today’s solutions

I Should we give up type inference? no!

I Local type inference? no! —very fragile to program transformations

I Algorithmically specified type-inference?

I Stratified type inference? —still a backup when better solutions fail.

I Boxy types?

Improve System-F — regardless of type inference

I There is a gap between implicit and explicit type systems.

I Is System F the right choice? (think of Fη, F≤, F-bounded, etc.)

A key example for MLF 4(1)/30

let choose = λ(x) λ(y) if true then x else y : ∀α · α → α → α

let id = λ(z) z : ∀α · α → α

choose (λ(x) x) :







∀α · (α → α) → (α → α)

(∀α · α → α) → (∀α · α → α)

But

λ(x) x x : ill-typed Do not guess polymorphism!

λ(x : ∀ (α) α → α) x x : ∀ (β = ∀ (α) α → α) β → β

A key example for MLF 4(2)/30

let choose = λ(x) λ(y) if true then x else y : ∀α · α → α → α

let id = λ(z) z : ∀α · α → α

choose (λ(x) x) :







∀α · (α → α) → (α → α)

(∀α · α → α) → (∀α · α → α)

But

λ(x) x x : ill-typed Do not guess polymorphism!

λ(x : ∀ (α) α → α) x x : ∀ (β = ∀ (α) α → α) β → β

A key example for MLF 4(3)/30

let choose = λ(x) λ(y) if true then x else y : ∀α · α → α → α

let id = λ(z) z : ∀α · α → α

choose (λ(x) x) :







∀α · (α → α) → (α → α)

(∀α · α → α) → (∀α · α → α)







No better choice in F

But

λ(x) x x : ill-typed Do not guess polymorphism!

λ(x : ∀ (α) α → α) x x : ∀ (β = ∀ (α) α → α) β → β

A key example for MLF 4(4)/30

let choose = λ(x) λ(y) if true then x else y : ∀α · α → α → α

let id = λ(z) z : ∀α · α → α

choose (λ(x) x) :







∀α · (α → α) → (α → α)

(∀α · α → α) → (∀α · α → α)







No better choice in F

: ∀ (β ≥ ∀ (α) α → α) β → β in MLF

But

λ(x) x x : ill-typed Do not guess polymorphism!

λ(x : ∀ (α) α → α) x x : ∀ (β = ∀ (α) α → α) β → β

A key example for MLF 4(5)/30

let choose = λ(x) λ(y) if true then x else y : ∀α · α → α → α

let id = λ(z) z : ∀α · α → α

choose (λ(x) x) :







∀α · (α → α) → (α → α)

(∀α · α → α) → (∀α · α → α)







No better choice in F

: ∀ (β ≥ ∀ (α) α → α) β → β in MLF

6







∀ (β = ∀ (α) α → α) β → β

∀ (α) ∀ (β = α → α) β → β

But

λ(x) x x : ill-typed Do not guess polymorphism!

λ(x : ∀ (α) α → α) x x : ∀ (β = ∀ (α) α → α) β → β

A key example for MLF 4(6)/30

let choose = λ(x) λ(y) if true then x else y : ∀α · α → α → α

let id = λ(z) z : ∀α · α → α

choose (λ(x) x) :







∀α · (α → α) → (α → α)

(∀α · α → α) → (∀α · α → α)







No better choice in F

: ∀ (β ≥ ∀ (α) α → α) β → β in MLF

6







∀ (β = ∀ (α) α → α) β → β

∀ (α) ∀ (β = α → α) β → β

But

λ(x) x x : ill-typed Do not guess polymorphism!

λ(x : ∀ (α) α → α) x x : ∀ (β = ∀ (α) α → α) β → β

Properties 5(1)/30

Principal types

Type inference, relies on first-order unification in the presence of second-order

types.

Convervative over both ML and System F

ML programs need no annotations

F programs need fewer annotations: type abstractions and type applications

are always inferred.

MLF is robust (to program transformations)

For example, if E[a1 a2] is typable so E[apply a1 a2] where apply is λ(f) λ(x) f x.

Generic Type System 6(1)/30

Var

x : σ ∈ Γ

Γ ` x : σ

Fun

Γ, x : τ ` a : τ ′

Γ ` λ(x) a : τ → τ ′

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Inst

Γ ` a : σ σ 6 σ′

Γ ` a : σ′

Gen

Γ ` a : σ dom (q) /∈ ftv(Γ)

Γ ` a : ∀ q · σ

Let

Γ ` a : σ Γ, x : σ ` a′ : σ′

Γ ` let x = a in a′ : σ′

Generic Type System 6(2)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

Generic Type System 6(3)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

(Q) binds free type variables of Γ.

(Q) could be interleaved with Γ as ΓQ and read back by restricting the domain

of ΓQ to type variables.

Generic Type System 6(4)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

ML
Types

τ ::= α | τ → τ

σ ::= τ | ∀ (q) σ

q ::= α

Instance relation 6

∀ (ᾱ) τ 6 ∀ (β) τ [τ̄ ′/ᾱ]

β /∈ ftv(∀ (ᾱ) τ)

Generic Type System 6(5)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

System F
Types

τ ::= α | τ → τ | ∀ (α) τ

σ ::= τ

q ::= α

Instance relation 6

∀ (ᾱ) τ 6 ∀ (β) τ [τ̄ ′/ᾱ]

β /∈ ftv(∀ (ᾱ) τ)

Generic Type System 6(6)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

System Fη

Types

τ ::= α | τ → τ | ∀ (α) τ

σ ::= τ

q ::= α

Instance relation 6

type containment :

deep, contra-variant, etc.

Generic Type System 6(7)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

Explicit MLF
Types

τ ::= α | τ → τ

σ ::= τ | ∀ (q) τ | ⊥

q ::= (α ≥ σ) | (α = σ)

Instance relation 6

v

Generic Type System 6(8)/30

Var

x : σ ∈ Γ

(Q) Γ ` x : σ

Fun

(Q) Γ, x : τ ` a : τ ′

(Q) Γ ` λ(x) a : τ → τ ′

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Inst

(Q) Γ ` a : σ (Q) σ 6 σ′

(Q) Γ ` a : σ′

Gen

(Q, q) Γ ` a : σ dom (q) /∈ ftv(Γ)

(Q) Γ ` a : ∀ q · σ

Let

(Q) Γ ` a : σ (Q) Γ, x : σ ` a′ : σ′

(Q) Γ ` let x = a in a′ : σ′

Implicit MLF
Types

τ ::= α | τ → τ | ∀ (α) τ

σ ::= τ | ∀ (q) τ | ⊥

q ::= (α ≥ σ)

Instance relation 6

v (simpler version)

A family of languages 7(1)/30

F (Plain) MLF

Standard ∀α· Flexible ∀ (α ≥ σ)

Graphical MLF

A family of languages 7(2)/30

F (Plain) MLF

ML Shallow MLF

Simple Types Simple MLF

Standard ∀α· Flexible ∀ (α ≥ σ)

+ let-∀

+ λ-∀

+ let-∀≥

+ λ-∀≥
+ ∀≥

Graphical MLF

Syntactic type instance relation 8(1)/30

A lot of administrative rules (See?)

I Hides the underlying principles

I Heavy proofs (in breadth more than in depth).

I Made extensions difficult.

Do we have the definition right?

i.e. the instance relation the best within the framework?

No!: An improvement was suggested by F. Pottier, but

it technically collapses the syntactic instance relation via dark corners,

to our surprise...

∀ (α ≥ σ) τ ≡ ∀ (β = s) ∀ (α ≥ ∀ (γ = σ) γ) τ

@− ∀ (β = s) ∀ (α ≥ ∀ (γ = β) γ) τ

≡ ∀ (β = s) ∀ (α ≥ β) τ

≡ ∀ (α = s) τ

Efficiency

Expensive unification (and type inference) algorithms.

Does it scale up to large, automatically generated, programs?

Syntactic type instance relation 8(2)/30

A lot of administrative rules (See?)

I Hides the underlying principles

I Heavy proofs (in breadth more than in depth).

I Made extensions difficult.

Do we have the definition right?

i.e. the instance relation the best within the framework?

No!: An improvement was suggested by F. Pottier, but

it technically collapses the syntactic instance relation via dark corners,

to our surprise...

Efficiency

Expensive unification (and type inference) algorithms.

Does it scale up to large, automatically generated, programs?

First-order terms and unification 9(1)/30

A tree

→

→

α β

→

α β

consistent : no symbol class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(2)/30

A tree dag

→

→

α

→

β

All occurrences of a variables are shared.

consistent : no symbol class,

but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(3)/30

A tree dag

→

→

⊥

→

⊥

Variables need not be represented.

consistent : no symbol class, but ⊥ is

a pseudo-symbol that never clashes

First-order terms and unification 9(4)/30

A tree dag

→

→

⊥ ⊥

Other nodes may be also shared.

consistent : no symbol class, but ⊥ is a

pseudo-symbol that never clashes

First-order terms and unification 9(5)/30

A dag τ is the superposition of

a tree τ̂ and an equivalence τ̃ on nodes of τ

→

→

⊥ ⊥

→

⊥ ⊥

consistent : no symbol class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(6)/30

A dag τ is the superposition of

a tree τ̂ and an equivalence τ̃ on nodes of τ

→

→
1

⊥

1

⊥

2

→
2

⊥

1

⊥

2

〈11, 21〉

Nodes may be named after the set of paths leading to them.

consistent :

no symbol class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(7)/30

A dag τ is the superposition of

a tree τ̂ and an equivalence τ̃ on nodes of τ

→

→
1

⊥

1

⊥

2

→
2

⊥

1

⊥

2

〈11, 21〉

〈1, 2〉

〈12, 22〉

name of merged nodes = union of merged names.

consistent : no symbol

class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(8)/30

Unification computes the smallest equivalence that is

congruent and consistent

→

→

→

⊥

⊥

→

⊥ →

⊥ ⊥

congruent: successors of merged nodes are merged

consistent : no symbol

class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(9)/30

Unification computes the smallest equivalence that is

congruent and consistent

→

→

→

⊥

⊥

→

⊥ →

⊥ ⊥

consistent : no symbol class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(10)/30

Unification computes the smallest equivalence that is

congruent and consistent

→

→

→

⊥

⊥

→

⊥ →

⊥ ⊥

consistent : no symbol class, but ⊥ is a pseudo-symbol that never clashes

First-order terms and unification 9(11)/30

Unification computes the smallest equivalence that is

congruent and consistent

→

→

→

⊥

→

⊥ ⊥

consistent : no symbol class, but ⊥ is a pseudo-symbol that never clashes

Drawn as a graph.

Representing binders 10(1)/30

Explicitly with forward pointers (as usual)

∀

∀

→

→

⊥

→

⊥

Problem: binders do not commute and cannot be removed implicitly.

Representing binders 10(2)/30

Implicitly with backward pointers (bindings edges)

→

→

⊥

→

⊥

∀ (β ≥⊥, γ ≥⊥) β → γ → β → γ

Binding edges point to the node where they (as variables) would have been

introduced.

Commutation of binders come for free!

Representing binders 10(3)/30

→

→

→

int int

→

⊥

∀ (β = int → int, γ ≥⊥) β → γ → β → γ

Useless binders may be removed (GC).

Representing binders 10(4)/30

→

→

→

int int

→

⊥

∀ (β = int → int, γ ≥⊥) β → γ → β → γ

Representing binders 10(5)/30

→

→

⊥

→

⊥

∀ (β ≥⊥, γ ≥⊥) β → γ → β → γ

Representing binders 10(6)/30

Well-formed conditions (1)

→

→

⊥

→

⊥

∀ (β ≥⊥) β → γ → ∀ (γ ≥⊥) β → γ

(1) The binding of a node must be one of its dominators.

Representing binders 10(7)/30

Well-formed conditions (2)

→

→

⊥

→

⊥ →

⊥ ⊥

∀ (β1 ≥⊥) β1 → β1 → ∀ (β2 ≥⊥, β3 ≥⊥) ∀ (β4) β4 → β3 → β2

(2) Binding paths are upward closed.

Representing binders 10(8)/30

Well-formed conditions (2)

→

→

⊥

→

⊥ →

⊥ ⊥

∀

(

β1 ≥⊥, α1 = ∀
(

β2 ≥⊥, β3 ≥⊥, α2 = ∀ (β4) β4 → β3

)

β2 → α2

)

β1 → β1 → α1

Graphic-types 10(9)/30

Well-formed conditions (2)

→

→

⊥

→

⊥ →

⊥ ⊥

∀

(

β1 ≥⊥, α1 = ∀
(

β2 ≥⊥, β3 ≥⊥, α2 = ∀ (β4) β4 → β3

)

β2 → α2

)

β1 → β1 → α1

(2) Inverse binding edges form a tree (with the same root)

Graphic-types 10(10)/30

Well-formed conditions (3)

→

→

⊥

→

⊥ →

⊥ ⊥

∀
(

β1 ≥⊥, α2 = ∀ (β4) β4 → β3 , α1 = ∀ (β2 ≥⊥, β3 ≥⊥) β2 → α2

)

β1 → β1 → α1

(3) Binding edges cannot cross (to be made precise)

Graphic types 11(1)/30

A graphic type. . .

→

→

→ →

⊥ ⊥

∀ (β ≥⊥, α = ∀ (γ ≥⊥) β → γ, α′ = (β → β) → α) α′ → α′

Graphic types 11(2)/30

is a first-order term graph...

→

→

→ →

⊥ ⊥

Graphic types 11(3)/30

...plus a binding tree...

→

→

→ →

⊥ ⊥

Graphic types 11(4)/30

with relations between them.

→

→

→ →

⊥ ⊥

B(n) = {m | n ◦−→ m ◦−→ �n} where n �−→ �n.

If m ∈ B(n), then B(m) ⊆ B(n)

Graphic types 11(5)/30

with relations between them.

→

→

→ →

⊥ ⊥

B(n) = {m | n ◦−→ m ◦−→ �n} where n �−→ �n.

If m ∈ B(n), then B(m) ⊆ B(n)

Graphic types 11(6)/30

Two kinds of binding arrows

→

→

→ →

⊥ ⊥

≥

=
≥

— Flexible binding (≥ flag, dotted arrows): mean instances may be taken.

— Rigid (= flag, dashed arrows): mean no instance may not be taken.

Graphic types: flags and permissions . 12(1)/30

→

→

→

⊥

→

→

⊥

→

→

⊥

→

⊥

Binding path Permissions

≥∗ {≥, =}

=(≥|=)∗ {=}

Others {}

Graphic types: flags and permissions . 12(2)/30

→

→

→

⊥

→

→

⊥

→

→

⊥

→

⊥→
=+≥∗

Binding path Permissions

≥∗ {≥, =}

=(≥|=)∗ {=}

Others {}

Instance relation . 13(1)/30

Grafting

→

→

→

⊥

⊥

→

⊥ ⊥

(τB)

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(2)/30

Raising

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(3)/30

Weakening

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(4)/30

Raising

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(5)/30

Deletion (implicit)

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(6)/30

Raising

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(7)/30

Deletion (implicit)

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(8)/30

Merging

→

→

→

⊥

→

⊥ ⊥

Instance relation . 13(9)/30

→

→

→ →

⊥ ⊥

Instance relation 6 . 14(1)/30

Operation Relation Conditions

Graft(τ ′′, n) 6G
⊥

Merge(n1, n2) 6M

n1 n2

or

n1 n2

Weaken(n) 6W

Raise(n) 6R or

6
4
== (6G ∪ 6

M ∪ 6
W ∪ 6

R)∗

Similarity . 15(1)/30

6m is the subrelation of 6M that merges monomorphic nodes.

Similarity is the relation ≈ is (6m ∪ >m)∗.

→

→

1

⊥

→

2

⊥

2

→

→
1

⊥

→
2

→

2

⊥

We are interested in instance modulo similarity 6≈, which is (6 ∪ ≈)∗.

We compute instance up to deletion, but not up to similarity. . .

Commutation lemmas . 16(1)/30

Similarity is equal to 6m ; >m.

Instance modulo similarity 6≈ is equal to 6 ; >m are equal. Hence:

τ1 τ2 τ4
τ ′
1 τ ′

2 τ ′
4

τ3
τ ′
3

τ5
τ ′
5

Instance is equal to (6G ; 6R ; 6MW), where 6MW is (6M ∪ 6W)?.

Unification algorithm 17(1)/30

Definition A type τ ′ unifies nodes N of τ if τ ′ is an instance of τ and all

nodes in N are merged in τ ′.

Moreover τ ′ is a principal unifier is all other unifiers are an instance of τ ′.

The algorithm proceeds in three steps:

1) Computes τ̃u by performing first-order unification on the term-graph to

merge all nodes of N .

Cost O(n) (ou O(nα(n))).

2) Compute the binding tree
�τu: Given a node n of τ̃u, let n1, ..., nk be the

nodes of τ that are merged into n. The binding edges of n1, ..., nk are

raised until they are all bound at the same level. The flag for n is the best

flag common to n1, . . . , nk.

Cost O(n): a top down visit. The most

involved part of the algorithm. Uses a linear algorithm for computing

least-common ancestors.

3) Check permissions for all merges of τ̃u that are still polymorphic in
�τu.

Cost O(n), simple visit of τ̃u.

Unification algorithm 17(2)/30

Definition A type τ ′ unifies nodes N of τ if τ ′ is an instance of τ and all

nodes in N are merged in τ ′.

Moreover τ ′ is a principal unifier is all other unifiers are an instance of τ ′.

The algorithm proceeds in three steps:

1) Computes τ̃u by performing first-order unification on the term-graph to

merge all nodes of N . Cost O(n) (ou O(nα(n))).

2) Compute the binding tree
�τu: Given a node n of τ̃u, let n1, ..., nk be the

nodes of τ that are merged into n. The binding edges of n1, ..., nk are

raised until they are all bound at the same level. The flag for n is the best

flag common to n1, . . . , nk. Cost O(n): a top down visit. The most

involved part of the algorithm. Uses a linear algorithm for computing

least-common ancestors.

3) Check permissions for all merges of τ̃u that are still polymorphic in
�τu.

Cost O(n), simple visit of τ̃u.

Unification algorithm 18(1)/30

Correction τ ′ is a unifier of τ .

Completeness If there is a unifier of τ , this algorithm finds one.

Principality The unifier return by the algorithm is a principal one.

Proofs are involed. Relies a lot on commutation lemmas, but not only.

Principality
τ τg τr τu

τ ′
g τ ′

r τ ′
u

τ ′′
r τ ′′

u

τv

6G

6G

6R

ρ1

6G γ1

6MW

η1

6G γ′
1 6G γ′′

1

6R

ρ′
1

6R

6MW

η′
1

6R ρ2 6R ρ′
2

6MW

6MW

η′′
1

6MW η2
6

Unification algorithm 18(2)/30

Principality
τ τg τr τu

τ ′
g τ ′

r τ ′
u

τ ′′
r τ ′′

u

τv

6G

6G

6R

ρ1

6G γ1

6MW

η1

6G γ′
1 6G γ′′

1

6R

ρ′
1

6R

6MW

η′
1

6R ρ2 6R ρ′
2

6MW

6MW

η′′
1

6MW η2
6

Incrementality . 19(1)/30

→

→

⊥ →

⊥

→

→

→

nτ

=⇒

→

→

→

→

n

Merged

nodes

Added

Instance

edges

Merging

Incrementality . 19(2)/30

→

→

⊥ →

⊥

→

→

→

nτ

=⇒ →

→

→

→

n

Merged

nodes

Added

Instance

edges

Escaping edge

Incrementality . 19(3)/30

→

→

⊥ →

⊥

→

→

→

nτ

=⇒ →

→

→

→

n

Merged

nodes

Added

Instance

edges

Add virutal structure edge

Incrementality . 19(4)/30

→

→

⊥ →

⊥

→

→

→

nτ

=⇒ →

→

→

→

n

Merged

nodes

Added

Instance

edges

Now correct

Incrementality . 19(5)/30

→

→

⊥ →

⊥

→

→

→

nτ

=⇒ →

→

→

→

n

Merged

nodes

Added

Instance

edges

Cost linear in number of merged nodes plus number of added instance edges

From graphic types to graphic constraints . 20(1)/30

Key features

I Binding structure (and invariants)

I Instance relation

Type constraints

I Add new node to types, that are to be interpreted, especially as type

constraints.

I Preserve the invariants

I Introduce new transformations (beyond instantiation) to simplify them.

Focussing at a node . 21(1)/30

The interior dne of a node n is the set of nodes dominated by n when inverse

binding edges are added to structure edges.

The frontier of n is the set of nodes that are not interior nodes but reached

by structure edges from interior nodes.

→

→

⊥

→

→

⊥

→

⊥

→

⊥ →

⊥

Focussing at a node . 21(2)/30

The interior dne of a node n is the set of nodes dominated by n when inverse

binding edges are added to structure edges.

The frontier of n is the set of nodes that are not interior nodes but reached

by structure edges from interior nodes.

→

→

⊥

→

→

⊥

→

⊥

→

⊥ →

⊥

·

Focussing at a node . 21(3)/30

The interior dne of a node n is the set of nodes dominated by n when inverse

binding edges are added to structure edges.

The frontier of n is the set of nodes that are not interior nodes but reached

by structure edges from interior nodes.

→

→

⊥

→

→

⊥

→

⊥

→

⊥ →

⊥

→

→

Copying . 22(1)/30

→

A

⊥

→

A

∀

→

⊥ ⊥

⊥

⊥

Copying . 22(2)/30

→

A

∀

→

⊥

⊥

→

A

∀

→

⊥ ⊥

⊥

⊥

Copying . 22(3)/30

→

A

∀

→

⊥

⊥

→

→

⊥

⊥

⊥

Copying . 22(4)/30

→

→

⊥

→

→

⊥

⊥

⊥

Abbreviations . 23(1)/30

τ

letx

→

x x

Replace any occurrence of x by a copy.

Abbreviations . 23(2)/30

τ

letx

→

A

⊥

x

Replace any occurrence of x by a copy.

Abbreviations . 23(3)/30

τ

letx

→

A

⊥

A

⊥

Remove unused letx —provided left-hand branch is consistent Reduce copies

as before

Abbreviations . 23(4)/30

τ

→

A

⊥

A

⊥

Encoding unification problems . 24(1)/30

Unification

=

τ1 τ2

=

τ12

τ12

More general constraints

→

→

⊥

∃

=

→

⊥ ⊥

→

⊥

→

→

⊥

∃

=

→

⊥

→

→

⊥ ⊥

Encoding unification problems . 24(2)/30

Unification

More general constraints

→

→

⊥

∃

=

→

⊥ ⊥

→

⊥

→

→

⊥

∃

=

→

⊥

→

→

⊥ ⊥

Type inference constraints. . 25(1)/30

Syntactically

(Q) Γ ` a : τ

Find pairs Q′, τ ′ such that Q′ 6 τ ′ and (Q′) τ 6 τ ′ and (Q′) Γ ` a : τ ′.

Graphically

letx1

τ1

letxn

τn

a

. . .

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are

instances.

Type inference constraints. . 25(2)/30

Syntactically

(Q) x1 : τ1, . . . xn : τn ` a : α

Find pairs Q′, τ ′ such that Q′ 6 τ ′ and (Q′) τ 6 τ ′ and (Q′) Γ ` a : τ ′.

Graphically

letx1

τ1

letxn

τn

a

. . .

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are

instances.

Type inference constraints. . 25(3)/30

Syntactically

(Q) x1 : τ1, . . . xn : τn ` a : α

Graphically

letx1

τ1

letxn

τn

a

. . .

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are instances.

Type inference constraints. . 25(4)/30

Graphically

letx1

τ1

letxn

τn

a

. . .

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are instances.

Type inference constraints. . 25(5)/30

Graphically

letx1

τ1

letxn

τn

a

. . .

Key

Some nodes of τn may actually be bound tighter, just as tightly as permitted.

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are instances.

Type inference constraints. . 25(6)/30

Graphically

letx1

τ1

letxn

τn

a

. . .

Of course, some bindings may also be rigid.

Find instances of the graph so

that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are instances.

Type inference constraints. . 25(7)/30

Graphically

letx1

τ1

letxn

τn

a

. . .

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are instances.

Type inference constraints. . 26(1)/30

Simplification

x

⇓

x

let x = a1

in a2

⇓

letx

∀

a1

a2

λ(x) a

⇓

→

letx

⊥

x

a

a1 a2

⇓

∃
=

a1 →

a2

⊥

Key feature

Types always kept as polymorphic as possible.

Interior application nodes will remain bound to interior nodes (hence

polymorphic) unless unified with some exterior node. [possible optimization]

Type inference constraints. . 26(2)/30

Simplification

x

⇓

x

let x = a1

in a2

⇓

letx

∀

a1

a2

λ(x) a

⇓

→

letx

⊥

x

a

a1 a2

⇓

∃
=

a1 →

a2

⊥

Type abbreviations

A key in MLF, but technically treated as coercion functions.

Futur works 27(1)/30

Unification is all formalized. (See papers on the web)

Type constraints need to be formlaized

Subject reduction: calls for a direct proof using graphical constraints.

Extensions of the core language

I Recursive types

I Fω (ı.e. allow quantification over type operators)

I Existential types:

. Encoding via universal types: encapsulation is explicitly, opening is

explicit but with no type information

. Can we infer positions of openings? (See work by Daan Leijen)

Appendices

Syntactic instance 30(1)/30

Type Equivalence

Eq-Refl
(Q) σ ≡ σ

Eq-Trans
(Q) σ1 ≡ σ2
(Q) σ2 ≡ σ3

(Q) σ1 ≡ σ3

Eq-Context-R
(Q, α � σ) σ1 ≡ σ2

(Q) ∀ (α � σ) σ1 ≡ ∀ (α � σ) σ2

Eq-Context-L
(Q) σ1 ≡ σ2

(Q) ∀ (α � σ1) σ ≡ ∀ (α � σ2) σ

Eq-Free
α /∈ ftv(σ1)

(Q) ∀ (α � σ) σ1 ≡ σ1

Eq-Comm
α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀ (α1�1σ1) ∀ (α2�2 σ2) σ

≡ ∀ (α2�2σ2) ∀ (α1�1σ1) σ

Eq-Var
(Q) ∀ (α � σ) α ≡ σ

Eq-Mono
(α � σ0) ∈ Q (Q) σ0 ≡ τ0

(Q) τ ≡ τ[τ0/α]

Type Abstraction

A-Equiv
(Q) σ1 ≡ σ2

(Q) σ1 @− σ2

A-Trans
(Q) σ1 @− σ2
(Q) σ2 @− σ3

(Q) σ1 @− σ3

A-Context-R
(Q, α � σ) σ1 @− σ2

(Q) ∀ (α � σ) σ1 @− ∀ (α � σ) σ2

A-Hyp
(α1 = σ1) ∈ Q

(Q) σ1 @− α1

A-Context-L
(Q) σ1 @− σ2

(Q) ∀ (α = σ1) σ @− ∀ (α = σ2) σ

Type Instance

I-Abstract
(Q) σ1 @− σ2

(Q) σ1 6 σ2

I-Trans
(Q) σ1 6 σ2
(Q) σ2 6 σ3

(Q) σ1 6 σ3

I-Context-R
(Q, α � σ) σ1 6 σ2

(Q) ∀ (α � σ) σ1 6 ∀ (α � σ) σ2

I-Hyp
(α1 ≥ σ1) ∈ Q

(Q) σ1 6 α1

I-Context-L
(Q) σ1 6 σ2

(Q) ∀ (α ≥ σ1) σ 6 ∀ (α ≥ σ2) σ

I-Bot
(Q) ⊥ 6 σ

I-Rigid

(Q) ∀ (α ≥ σ1) σ 6 ∀ (α = σ1) σ

Syntactic instance 30(2)/30

Type Equivalence

Eq-Refl

(Q) σ ≡ σ

Eq-Trans

(Q) σ1 ≡ σ2

(Q) σ2 ≡ σ3

(Q) σ1 ≡ σ3

Eq-Context-R

(Q, α � σ) σ1 ≡ σ2

(Q) ∀ (α � σ) σ1 ≡ ∀ (α � σ) σ2

Eq-Context-L

(Q) σ1 ≡ σ2

(Q) ∀ (α � σ1) σ ≡ ∀ (α � σ2) σ

Eq-Free

α /∈ ftv(σ1)

(Q) ∀ (α � σ) σ1 ≡ σ1

Eq-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀ (α1�1σ1) ∀ (α2�2 σ2) σ

≡ ∀ (α2�2σ2) ∀ (α1�1σ1) σ

Eq-Var

(Q) ∀ (α � σ) α ≡ σ

Eq-Mono

(α � σ0) ∈ Q (Q) σ0 ≡ τ0

(Q) τ ≡ τ [τ0/α]

Syntactic instance 30(3)/30

Type Abstraction

A-Equiv

(Q) σ1 ≡ σ2

(Q) σ1 @− σ2

A-Trans

(Q) σ1 @− σ2

(Q) σ2 @− σ3

(Q) σ1 @− σ3

A-Context-R

(Q, α � σ) σ1 @− σ2

(Q) ∀ (α � σ) σ1 @− ∀ (α � σ) σ2

A-Hyp

(α1 = σ1) ∈ Q

(Q) σ1 @− α1

A-Context-L

(Q) σ1 @− σ2

(Q) ∀ (α = σ1) σ @− ∀ (α = σ2) σ

Syntactic instance 30(4)/30

Type Instance

I-Abstract

(Q) σ1 @− σ2

(Q) σ1 6 σ2

I-Trans

(Q) σ1 6 σ2

(Q) σ2 6 σ3

(Q) σ1 6 σ3

I-Context-R

(Q, α � σ) σ1 6 σ2

(Q) ∀ (α � σ) σ1 6 ∀ (α � σ) σ2

I-Hyp

(α1 ≥ σ1) ∈ Q

(Q) σ1 6 α1

I-Context-L

(Q) σ1 6 σ2

(Q) ∀ (α ≥ σ1) σ 6 ∀ (α ≥ σ2) σ

I-Bot

(Q) ⊥ 6 σ

I-Rigid

(Q) ∀ (α ≥ σ1) σ 6 ∀ (α = σ1) σ

