A graphical presentation of ML^F types with a linear-time incremental unification algorithm.

INRIA-Rocquencourt

Instance relation Unification

Type constraints

Type inference

Extended types

Futur works

First-class polymorphism is (sometimes) useful.

Today's solutions

- ► Should we give up type inference? no!
- ► Local type inference? **no!** —very fragile to program transformations
- Algorithmically specified type-inference?
- Stratific inference? —still a backup when better solutions fail.
- Boxy types?

Improve System-F — regardless of type inference

- ► There is a gap between implicit and explicit type systems.
- ▶ Is System F the right choice? (think of F^{η} , F_{\leq} , F-bounded, *etc.*)

First-class polymorphism is (sometimes) useful.

Today's solutions

- ► Should we give up type inference? no!
- ► Local type inference? **no!** —very fragile to program transformations
- Algorithmically specified type-inference?
- ▶ Stratified type inference? —still a backup when better solutions fail.
- Boxy types?

Improve System-F — regardless of type inference

- ▶ There is a gap between implicit and explicit type systems.
- ▶ Is System F the right choice? (think of F^{η} , F_{\leq} , F-bounded, *etc.*)

A key example for ML^F

let choose = $\lambda(x) \ \lambda(y)$ if *true* then x else $y : \forall \alpha \cdot \alpha \to \alpha \to \alpha$ let $id = \lambda(z) \ z : \forall \alpha \cdot \alpha \to \alpha$

choose $(\lambda(x) x)$:

A key example for ML^F

let choose = $\lambda(x) \ \lambda(y)$ if true then x else $y : \forall \alpha \cdot \alpha \to \alpha \to \alpha$ let $id = \lambda(z) \ z : \forall \alpha \cdot \alpha \to \alpha$

choose
$$(\lambda(x) \ x)$$
 :

$$\begin{cases} \forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall \alpha \cdot \alpha \to \alpha) \to (\forall \alpha \cdot \alpha \to \alpha) \end{cases}$$

4(2)/30

A key example for ML^F

let choose = $\lambda(x) \ \lambda(y)$ if *true* then x else $y : \forall \alpha \cdot \alpha \to \alpha \to \alpha$

let $id = \lambda(z) \ z : \forall \alpha \cdot \alpha \to \alpha$

choose
$$(\lambda(x) x)$$
 :
$$\left\{ \begin{array}{l} \forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall \alpha \cdot \alpha \to \alpha) \to (\forall \alpha \cdot \alpha \to \alpha) \end{array} \right\}$$
No

No better choice in F

A key example for ML^F

let choose = $\lambda(x) \ \lambda(y)$ if *true* then x else $y : \forall \alpha \cdot \alpha \to \alpha \to \alpha$ let $id = \lambda(z) \ z : \forall \alpha \cdot \alpha \to \alpha$

choose
$$(\lambda(x) \ x)$$
 :
$$\begin{cases} \forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall \alpha \cdot \alpha \to \alpha) \to (\forall \alpha \cdot \alpha \to \alpha) \end{cases}$$

No better choice in F

:
$$\forall (\beta \ge \forall (\alpha) \ \alpha \to \alpha) \ \beta \to \beta$$
 in ML^F

A key example for ML^F

let choose = $\lambda(x) \ \lambda(y)$ if *true* then x else $y : \forall \alpha \cdot \alpha \to \alpha \to \alpha$ let $id = \lambda(z) \ z : \forall \alpha \cdot \alpha \to \alpha$

choose
$$(\lambda(x) \ x)$$
 :
$$\begin{cases} \forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall \alpha \cdot \alpha \to \alpha) \to (\forall \alpha \cdot \alpha \to \alpha) \end{cases}$$

No better choice in F

:
$$\forall (\beta \ge \forall (\alpha) \ \alpha \to \alpha) \ \beta \to \beta$$
 in ML^{F}
 $\leqslant \begin{cases} \forall (\beta = \forall (\alpha) \ \alpha \to \alpha) \ \beta \to \beta \\ \forall (\alpha) \ \forall (\beta = \alpha \to \alpha) \ \beta \to \beta \end{cases}$

A key example for ML^F

let choose = $\lambda(x) \ \lambda(y)$ if *true* then x else $y : \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$

let $id = \lambda(z) \ z : \forall \alpha \cdot \alpha \to \alpha$

choose
$$(\lambda(x) \ x)$$
 :

$$\begin{cases} \forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall \alpha \cdot \alpha \to \alpha) \to (\forall \alpha \cdot \alpha \to \alpha) \end{cases}$$

No better choice in F

$$: \quad \forall \left(\beta \ge \forall \left(\alpha\right) \alpha \to \alpha\right) \beta \to \beta \quad \text{in } \mathsf{ML}^{\mathsf{F}} \\ \leqslant \begin{cases} \forall \left(\beta = \forall \left(\alpha\right) \alpha \to \alpha\right) \beta \to \beta \\ \forall \left(\alpha\right) \forall \left(\beta = \alpha \to \alpha\right) \beta \to \beta \end{cases}$$

But

 $\begin{array}{ll} \lambda(x) \; x \; x & : & \text{ill-typed} & \text{Do not guess polymorphism!} \\ \lambda(x : \forall (\alpha) \; \alpha \to \alpha) \; x \; x & : & \forall \left(\beta = \forall (\alpha) \; \alpha \to \alpha\right) \; \beta \to \beta \end{array}$

Principal types

Type inference, relies on *first-order unification in the presence of second-order types*.

Convervative over both ML and System F

ML programs need no annotations

F programs need fewer annotations: type abstractions and type applications are always inferred.

ML^F is robust (to program transformations)

For example, if $E[a_1 a_2]$ is typable so $E[apply a_1 a_2]$ where apply is $\lambda(f) \lambda(x) f x$.

Var	Fun	Арр			
$x:\sigma\in\Gamma$	$\Gamma, x: au dash a$	a: au' I	$\Gamma \vdash a_1 : \tau_2$ -	$ ightarrow au_1$	$\Gamma \vdash a_2 : \tau_2$
$\Gamma \vdash x : \sigma$	$\Gamma \vdash \lambda(x) \ a :$	au o au'	-	$\Gamma \vdash a_1 \ a_2 : \tau_1$	
Inst		Gen			
Γ F	$-a:\sigma$ $\sigma \leqslant \sigma'$	Γ	$r \vdash a : \sigma$	$\textit{dom}\left(q ight) \notin \mathbb{R}$	$ftv(\Gamma)$
	$\Gamma \vdash a : \sigma'$		$\Gamma \vdash a$	$a: \forall q \cdot \sigma$	
	Let				

$\Gamma \vdash a : \sigma$	$\Gamma, x: \sigma \vdash a': \sigma'$
$\Gamma \vdash let$	$x = a$ in $a' : \sigma'$

Var	Fun	Ap
$x:\sigma\in\Gamma$	$(Q) \ \Gamma, x : \tau \vdash a : \tau'$	$(\zeta$
$(Q) \ \Gamma \vdash x : \sigma$	$(Q) \ \Gamma \vdash \lambda(x) \ a : \tau \to \tau'$	

$$\begin{array}{l} \mathsf{App} \\ \underline{(Q) \ \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1} \qquad (Q) \ \Gamma \vdash a_2 : \tau_2 \\ \hline (Q) \ \Gamma \vdash a_1 \ a_2 : \tau_1 \end{array}$$

$$\label{eq:alpha} \begin{array}{l} \text{Inst} \\ \hline (Q) \ \Gamma \vdash a : \sigma \qquad (Q) \ \sigma \leqslant \sigma' \\ \hline (Q) \ \Gamma \vdash a : \sigma' \end{array}$$

$$\begin{array}{l} \text{Let} \\ (Q) \ \Gamma \vdash a: \sigma \qquad (Q) \ \Gamma, x: \sigma \vdash a': \sigma' \\ \hline (Q) \ \Gamma \vdash \text{let} \ x = a \ \text{in} \ a': \sigma' \end{array}$$

$$(Q) \ \Gamma \vdash \mathsf{let} \ x = a \ \mathsf{in} \ a' : \sigma'$$

(Q) binds free type variables of Γ .

(Q) could be interleaved with Γ as Γ_Q and read back by restricting the domain of Γ_Q to type variables.

Var	Fun	Арр
$x:\sigma\in\Gamma$	$(Q) \ \Gamma, x : \tau \vdash a : \tau'$	(Q)
$(Q) \ \Gamma \vdash x : \sigma$	$\overline{(Q)} \ \Gamma \vdash \lambda(x) \ a : \tau \to \tau'$	

$$\begin{array}{l} \mathsf{App} \\ \underline{(Q) \ \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1} \qquad (Q) \ \Gamma \vdash a_2 : \tau_2 \\ \hline (Q) \ \Gamma \vdash a_1 \ a_2 : \tau_1 \end{array}$$

$$\begin{array}{l} \text{Inst} \\ \underline{(Q) \ \Gamma \vdash a : \sigma} \qquad (Q) \ \sigma \leqslant \sigma' \\ \hline (Q) \ \Gamma \vdash a : \sigma' \end{array}$$

$$\begin{array}{ll} \operatorname{Gen} & \\ \underline{(Q,q)\;\Gamma\vdash a:\sigma} & \operatorname{dom}\left(q\right)\notin\operatorname{ftv}(\Gamma) \\ & \\ \hline & (Q)\;\Gamma\vdash a:\forall\,q\cdot\sigma \end{array}$$

$$\begin{array}{l} \text{Let} \\ (Q) \ \Gamma \vdash a: \sigma \qquad (Q) \ \Gamma, x: \sigma \vdash a': \sigma' \\ \hline (Q) \ \Gamma \vdash \text{let} \ x = a \ \text{in} \ a': \sigma' \end{array}$$

ML

Types

Instance relation *≤*

 $\tau ::= \quad \alpha \mid \tau \to \tau$

 $\forall (\bar{\alpha}) \tau \leqslant \forall (\beta) \tau [\bar{\tau}' / \bar{\alpha}]$

 $\beta \notin \mathsf{ftv}(\forall (\bar{\alpha}) \tau)$

 $q ::= \alpha$

Var	Fun	Арр
$x:\sigma\in\Gamma$	$(Q) \ \Gamma, x : \tau \vdash a : \tau'$	(Q)
$(Q) \ \Gamma \vdash x : \sigma$	$\overline{(Q)} \ \Gamma \vdash \lambda(x) \ a : \tau \to \tau'$	

$$\begin{array}{l} \mathsf{App} \\ \underline{(Q) \ \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1} \qquad (Q) \ \Gamma \vdash a_2 : \tau_2 \\ \hline (Q) \ \Gamma \vdash a_1 \ a_2 : \tau_1 \end{array}$$

$$\begin{array}{l} \text{Inst} \\ \underline{(Q) \ \Gamma \vdash a : \sigma} \qquad \underline{(Q) \ \sigma \leqslant \sigma'} \\ \hline (Q) \ \Gamma \vdash a : \sigma' \end{array}$$

$$\begin{array}{l} \operatorname{Gen} \\ \underline{(Q,q)\;\Gamma\vdash a:\sigma} \quad & \operatorname{dom}\left(q\right)\notin\operatorname{ftv}(\Gamma) \\ \hline \\ (Q)\;\Gamma\vdash a:\forall\,q\cdot\sigma \end{array}$$

Let

$$\frac{(Q) \ \Gamma \vdash a : \sigma \qquad (Q) \ \Gamma, x : \sigma \vdash a' : \sigma'}{(Q) \ \Gamma \vdash \text{let } x = a \text{ in } a' : \sigma'}$$

System F

Types

Instance relation \leq

 $\forall (\bar{\alpha}) \tau \leqslant \forall (\beta) \tau [\bar{\tau}'/\bar{\alpha}]$

- $\tau ::= \quad \alpha \mid \tau \to \tau \mid \forall (\alpha) \tau$
- $\sigma ::= -\tau$

 $q ::= \alpha$

 $\beta \notin \mathsf{ftv}(\forall \left(\bar{\alpha} \right) \, \tau)$

Var	Fun	App
$x:\sigma\in\Gamma$	$(Q) \ \Gamma, x : \tau \vdash a : \tau'$	(Q)
$(Q) \ \Gamma \vdash x : \sigma$	$\overline{(Q)} \ \Gamma \vdash \lambda(x) \ a : \tau \to \tau'$	

$$\begin{array}{l} \mathsf{App} \\ \underline{(Q) \ \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1} \qquad (Q) \ \Gamma \vdash a_2 : \tau_2 \\ \hline (Q) \ \Gamma \vdash a_1 \ a_2 : \tau_1 \end{array}$$

$$\label{eq:alpha} \begin{array}{l} \text{Inst} \\ \underline{(Q) \ \Gamma \vdash a : \sigma} \qquad (Q) \ \sigma \leqslant \sigma' \\ \hline (Q) \ \Gamma \vdash a : \sigma' \end{array}$$

$$\begin{array}{ll} \text{Gen} \\ \underline{(Q,q)\;\Gamma\vdash a:\sigma} & \textit{dom}\,(q)\notin \mathsf{ftv}(\Gamma) \\ \hline & (Q)\;\Gamma\vdash a:\forall\,q\cdot\sigma \end{array}$$

$$\begin{array}{l} \text{Let} \\ (Q) \ \Gamma \vdash a : \sigma \qquad (Q) \ \Gamma, x : \sigma \vdash a' : \sigma' \\ \hline (Q) \ \Gamma \vdash \text{let} \ x = a \ \text{in} \ a' : \sigma' \end{array}$$

System \mathbf{F}^{η}

Т	Ъ	р	es
---	---	---	----

Instance relation \leq

- $\tau ::= \quad \alpha \mid \tau \to \tau \mid \forall (\alpha) \ \tau$
- $\sigma ::= \quad \tau$

type containment :

deep, contra-variant, etc.

 $q ::= \alpha$

Var	Fun	Арр
$x:\sigma\in\Gamma$	$(Q) \ \Gamma, x : \tau \vdash a : \tau'$	(Q)
$(Q) \ \Gamma \vdash x : \sigma$	$\overline{(Q)} \ \Gamma \vdash \lambda(x) \ a : \tau \to \tau'$	

$$\begin{array}{l} \mathsf{App} \\ \underline{(Q) \ \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1} \qquad (Q) \ \Gamma \vdash a_2 : \tau_2 \\ \hline (Q) \ \Gamma \vdash a_1 \ a_2 : \tau_1 \end{array}$$

$$\label{eq:alpha} \begin{array}{l} \text{Inst} \\ \underline{(Q) \ \Gamma \vdash a : \sigma} \qquad (Q) \ \sigma \leqslant \sigma' \\ \hline (Q) \ \Gamma \vdash a : \sigma' \end{array}$$

$$\begin{array}{l} \text{Let} \\ (Q) \ \Gamma \vdash a: \sigma \qquad (Q) \ \Gamma, x: \sigma \vdash a': \sigma' \\ \hline (Q) \ \Gamma \vdash \text{let} \ x = a \ \text{in} \ a': \sigma' \end{array}$$

Explicit MLF

Types

Instance relation \leq

- $\tau ::= \quad \alpha \mid \tau \to \tau$
- $\sigma ::= \quad \tau \mid \forall (q) \ \tau \mid \bot$
- $q ::= \quad (\alpha \geq \sigma) \mid (\alpha = \sigma)$

Var	Fun	Ар
$x:\sigma\in\Gamma$	$(Q) \ \Gamma, x : \tau \vdash a : \tau'$	$(\mathcal{Q}$
$\overline{(Q)\;\Gamma\vdash x:\sigma}$	$\overline{(Q)\ \Gamma \vdash \lambda(x)\ a: \tau \to \tau'}$	

$$\begin{array}{l} \mathsf{App} \\ \underline{(Q) \ \Gamma \vdash a_1 : \tau_2 \rightarrow \tau_1} \qquad (Q) \ \Gamma \vdash a_2 : \tau_2 \\ \hline (Q) \ \Gamma \vdash a_1 \ a_2 : \tau_1 \end{array}$$

$$\begin{array}{l} \text{Inst} \\ \underline{(Q) \ \Gamma \vdash a : \sigma} \qquad \underline{(Q) \ \sigma \leqslant \sigma'} \\ \hline (Q) \ \Gamma \vdash a : \sigma' \end{array}$$

$$\begin{array}{ll} \text{Gen} \\ \underline{(Q,q) \ \Gamma \vdash a: \sigma} & \textit{dom} \left(q\right) \notin \mathsf{ftv}(\Gamma) \\ \hline & (Q) \ \Gamma \vdash a: \forall \, q \cdot \sigma \end{array}$$

$$\begin{array}{l} \text{Let} \\ (Q) \ \Gamma \vdash a : \sigma \qquad (Q) \ \Gamma, x : \sigma \vdash a' : \sigma' \\ \hline (Q) \ \Gamma \vdash \text{let} \ x = a \ \text{in} \ a' : \sigma' \end{array}$$

Implicit MLF

Types

Instance relation \leq

$$\tau ::= \quad \alpha \mid \tau \to \tau \mid \forall (\alpha) \ \tau$$

$$\sigma ::= \quad \tau \mid \forall \, (q) \; \tau \mid \bot$$

 $q ::= (\alpha \ge \sigma)$

$$\subseteq$$
 (simpler version)

A family of languages

Flexible $\forall (\alpha \geq \sigma)$

A family of languages

Syntactic type instance relation

A lot of administrative rules (See?)

Hides the underlying principles

No!: An improvement was suggested by F. Pottier, but it technically collapses the syntactic instance relation via dark corners, to our surprise...

A lot of administrative rules (See?)

- Hides the underlying principles
- ▶ Heavy proofs (in breadth more than in depth).
- Made extensions difficult.

Do we have the definition right?

i.e. the instance relation the best within the framework?

No!: An improvement was suggested by F. Pottier, but it technically collapses the syntactic instance relation via dark corners, to our surprise...

Efficiency

Expensive unification (and type inference) algorithms.

Does it scale up to large, automatically generated, programs?

9(1)/30

A tree

9(2)/30

A tree dag

All occurrences of a variables are shared.

9(3)/30

A tree dag

Variables need not be represented.

9(4)/30

A tree dag

Other nodes may be also shared.

A dag τ is the superposition of a tree $\hat{\tau}$ and an equivalence $\tilde{\tau}$ on nodes of τ

A dag τ is the superposition of a tree $\hat{\tau}$ and an equivalence $\tilde{\tau}$ on nodes of τ

Nodes may be named after the set of paths leading to them.

A dag τ is the superposition of a tree $\hat{\tau}$ and an equivalence $\tilde{\tau}$ on nodes of τ

name of merged nodes = union of merged names.

Unification computes the smallest equivalence that is congruent and consistent

congruent: successors of merged nodes are merged

Unification computes the smallest equivalence that is congruent and consistent

consistent : no symbol class, but \perp is a pseudo-symbol that never clashes

Unification computes the smallest equivalence that is congruent and consistent

consistent : no symbol class, but \perp is a pseudo-symbol that never clashes

Unification computes the smallest equivalence that is congruent and consistent

Drawn as a graph.

Representing binders

Explicitly with forward pointers (as usual)

Problem: binders do not commute and cannot be removed implicitly.

Representing binders

Implicitly with backward pointers (bindings edges)

$\forall \ (\beta \geq \bot, \gamma \geq \bot) \ \beta \to \gamma \to \beta \to \gamma$

Binding edges point to the node where they (as variables) would have been introduced.

Commutation of binders come for free!

$$\forall \ (\beta = \mathsf{int} \to \mathsf{int}, \gamma \geq \bot) \ \beta \to \gamma \to \beta \to \gamma$$

Useless binders may be removed (GC).

 $\forall \ (\beta = \mathsf{int} \to \mathsf{int}, \gamma \ge \bot) \ \beta \to \gamma \to \beta \to \gamma$

$\forall \ (\beta \ge \bot, \gamma \ge \bot) \ \beta \to \gamma \to \beta \to \gamma$

Well-formed conditions (1)

$$\forall \ (\beta \ge \bot) \ \beta \to \gamma \to \forall \ (\gamma \ge \bot) \ \beta \to \gamma$$

(1) The binding of a node must be one of its dominators.

Well-formed conditions (2)

$$\forall \ (\beta_1 \ge \bot) \ \beta_1 \to \beta_1 \ \to \ \forall \ (\beta_2 \ge \bot, \beta_3 \ge \bot) \ \forall \ (\beta_4) \ \beta_4 \to \beta_3 \ \to \beta_2$$

(2) Binding paths are upward closed.

Well-formed conditions (2)

$$\forall \left(\beta_1 \ge \bot, \alpha_1 = \left[\forall \left(\beta_2 \ge \bot, \beta_3 \ge \bot, \alpha_2 = \left[\forall \left(\beta_4\right) \ \beta_4 \to \beta_3\right]\right) \ \beta_2 \to \alpha_2\right]\right) \left[\beta_1 \to \beta_1\right] \to \alpha_1$$

Well-formed conditions (2)

$$\forall \left(\beta_1 \ge \bot, \alpha_1 = \left[\forall \left(\beta_2 \ge \bot, \beta_3 \ge \bot, \alpha_2 = \left[\forall \left(\beta_4\right) \ \beta_4 \to \beta_3\right]\right) \ \beta_2 \to \alpha_2\right]\right) \left[\beta_1 \to \beta_1\right] \to \alpha_1$$

(2) Inverse binding edges form a tree (with the same root)

Well-formed conditions (3)

$$\forall \left(\beta_1 \ge \bot, \alpha_2 = \left[\forall (\beta_4) \ \beta_4 \to \beta_3\right], \alpha_1 = \left[\forall (\beta_2 \ge \bot, \beta_3 \ge \bot) \ \beta_2 \to \alpha_2\right]\right) \left[\beta_1 \to \beta_1\right] \to \alpha_1$$

(3) Binding edges cannot cross (to be made precise)

11(1)/30

A graphic type...

 $\forall \left(\beta \geq \bot, \alpha = \forall \left(\gamma \geq \bot\right) \, \beta \to \gamma, \alpha' = \left(\beta \to \beta\right) \to \alpha\right) \, \alpha' \to \alpha'$

is a first-order term graph...

11(3)/30

...plus a binding tree...

with relations between them.

$$\mathcal{B}(n) = \{m \mid n \leftrightarrow m \leftrightarrow \check{n}\} \text{ where } n \rightarrowtail \check{n}.$$

If $m \in \mathcal{B}(n)$, then $\mathcal{B}(m) \subseteq \mathcal{B}(n)$

with relations between them.

$$\mathcal{B}(n) = \{m \mid n \leftrightarrow m \leftrightarrow \check{n}\} \text{ where } n \rightarrowtail \check{n}.$$

If $m \in \mathcal{B}(n)$, then $\mathcal{B}(m) \subseteq \mathcal{B}(n)$

Two kinds of binding arrows

— Flexible binding (\geq flag, dotted arrows): mean instances may be taken.

— Rigid (= flag, dashed arrows): mean no instance may not be taken.

Graphic types: flags and permissions

Binding path	Permissions
\geq^*	$\{\geq,=\}$
$=(\geq =)^{*}$	{=}
Others	{}

▷ 12(1)/30

Graphic types: flags and permissions

Binding path	Permissions	
\geq^*	$\{\geq,=\}$	
$=(\geq =)^*$	{=}	
Others	{}	
$=^+\geq^*$		

▷ 12(2)/30

Grafting

Raising

Weakening

Raising

Deletion (implicit)

Raising

Deletion (implicit)

Merging

Operation	Relation	Conditions
$Graft(\tau'',n)$	\leqslant^G	
$Merge(n_1, n_2)$	\leqslant^M	n_1 n_2 or n_1 n_2
Weaken(n)	\leqslant^W	
Raise(n)	\leqslant^R	or or

 $\leqslant \quad \stackrel{\triangle}{=} \quad (\leqslant^G \cup \leqslant^M \cup \leqslant^W \cup \leqslant^R)^*$

Similarity

 \leq^m is the subrelation of \leq^M that merges monomorphic nodes.

Similarity is the relation \approx is $(\leqslant^m \cup \geqslant^m)^*$.

We are interested in instance modulo similarity \leq_{\approx} , which is $(\leq \cup \approx)^*$. We compute instance up to deletion, but not up to similarity... **Similarity** is equal to \leq^m ; \geq^m .

Instance modulo similarity \leq_{\approx} is equal to \leq ; \geq^m are equal. Hence:

Instance is equal to $(\leq^G; \leq^R; \leq^{MW})$, where \leq^{MW} is $(\leq^M \cup \leq^W)^*$.

> 16(1)/30

Definition A type τ' unifies nodes N of τ if τ' is an instance of τ and all nodes in N are merged in τ' .

Moreover τ' is a principal unifier is all other unifiers are an instance of τ' .

The algorithm proceeds in three steps:

- 1) Computes $\tilde{\tau}_u$ by performing first-order unification on the term-graph to merge all nodes of N.
- 2) Compute the binding tree $\overleftarrow{\tau}_u$: Given a node n of $\overbrace{\tau}_u$, let $n_1, ..., n_k$ be the nodes of τ that are merged into n. The binding edges of $n_1, ..., n_k$ are raised until they are all bound at the same level. The flag for n is the best flag common to $n_1, ..., n_k$.

3) Check permissions for all merges of $\tilde{\tau_u}$ that are still polymorphic in $\overleftarrow{\tau_u}$.

Definition A type τ' unifies nodes N of τ if τ' is an instance of τ and all nodes in N are merged in τ' .

Moreover τ' is a principal unifier is all other unifiers are an instance of τ' .

The algorithm proceeds in three steps:

- 1) Computes $\tilde{\tau}_u$ by performing first-order unification on the term-graph to merge all nodes of N. Cost O(n) (ou $O(n\alpha(n))$).
- 2) Compute the binding tree $\check{\tau}_u$: Given a node n of $\check{\tau}_u$, let $n_1, ..., n_k$ be the nodes of τ that are merged into n. The binding edges of $n_1, ..., n_k$ are raised until they are all bound at the same level. The flag for n is the best flag common to $n_1, ..., n_k$. Cost O(n): a top down visit. The most involved part of the algorithm. Uses a linear algorithm for computing least-common ancestors.
- 3) Check permissions for all merges of $\tilde{\tau}_u$ that are still polymorphic in $\tilde{\tau}_u$. Cost O(n), simple visit of $\tilde{\tau}_u$.

Correction τ' is a unifier of τ .

Completeness If there is a unifier of τ , this algorithm finds one.

Principality The unifier return by the algorithm is a principal one. Proofs are involed. Relies a lot on commutation lemmas, but not only.

Principality

Merging

Escaping edge

Add virutal structure edge

Now correct

Cost linear in number of merged nodes plus number of added instance edges

Key features

- Binding structure (and invariants)
- ► Instance relation

Type constraints

- Add new node to types, that are to be interpreted, especially as type constraints.
- Preserve the invariants
- ▶ Introduce new transformations (beyond instantiation) to simplify them.

Focussing at a node

The *interior* $\lceil n \rceil$ of a node n is the set of nodes dominated by n when inverse binding edges are added to structure edges.

The *frontier* of n is the set of nodes that are not interior nodes but reached by structure edges from interior nodes.

Focussing at a node

The *interior* $\lceil n \rceil$ of a node n is the set of nodes dominated by n when inverse binding edges are added to structure edges.

21(2)/30

The *frontier* of n is the set of nodes that are not interior nodes but reached by structure edges from interior nodes.

Focussing at a node

The *interior* $\lceil n \rceil$ of a node n is the set of nodes dominated by n when inverse binding edges are added to structure edges.

The *frontier* of n is the set of nodes that are not interior nodes but reached by structure edges from interior nodes.

Abbreviations

Replace any occurrence of x by a copy.

Abbreviations

Replace any occurrence of x by a copy.

Remove unused let_x —provided left-hand branch is consistent Reduce copies as before

Abbreviations

Encoding unification problems

Unification

 \triangleright

24(1)/30

Unification

More general constraints

▷ 25(1)/30

Syntactically

$(Q) \ \Gamma \vdash a : \tau$

Find pairs Q', τ' such that $Q' \leq \tau'$ and $(Q') \tau \leq \tau'$ and $(Q') \Gamma \vdash a : \tau'$.

Syntactically

$$(Q) x_1 : \tau_1, \dots x_n : \tau_n \vdash a : \alpha$$

 $\geq 25(2)/30$

Find pairs Q', τ' such that $Q' \leq \tau'$ and $(Q') \tau \leq \tau'$ and $(Q') \Gamma \vdash a : \tau'$.

Syntactically

 $(Q) x_1 : \tau_1, \dots x_n : \tau_n \vdash a : \alpha$

 $\geq 25(3)/30$

▷ 25(4)/30

Graphically

▷ 25(5)/30

Graphically

Key

Some nodes of τ_n may actually be bound tighter, just as tightly as permitted.

▷ 25(6)/30

Graphically

Of course, some bindings may also be rigid.

▷ 25(7)/30

Graphically

Find instances of the graph so that constraints are satisfied.

Their is a smaller solution if any, of which all other solutions are instances.

▷ 26(1)/30

Simplification

Key feature

Types always kept as polymorphic as possible.

Interior application nodes will remain bound to interior nodes (hence polymorphic) unless unified with some exterior node. [possible optimization]

▷ 26(2)/30

Simplification

Type abbreviations

A key in ML^F , but technically treated as coercion functions.

Unification is all formalized. (See papers on the web)

Type constraints need to be formlaized

Subject reduction: calls for a direct proof using graphical constraints.

Extensions of the core language

- Recursive types
- \blacktriangleright F^{ω} (i.e. allow quantification over type operators)
- Existential types:
 - Encoding via universal types: encapsulation is explicitly, opening is explicit but with no type information
 - Can we infer positions of openings? (See work by Daan Leijen)

Appendices

Syntactic instance

Type Equivalence

Eq-Refl $(Q) \sigma \equiv \sigma$	Eq-Trans $(Q) \sigma_1 \equiv \sigma_2$ $(Q) \sigma_2 \equiv \sigma_3$ $(Q) \sigma_1 \equiv \sigma_3$	Eq-Context-F $(Q, \alpha \diamond \sigma) \alpha$ $(Q) \forall (\alpha \diamond \sigma) \sigma_1 =$	$\sigma_1 \equiv \sigma_2$	Eq-Context- $(Q) \sigma_{1}$ $(Q) \forall (\alpha \diamond \sigma_{1}) \sigma_{2}$	$\equiv \sigma_2$	$Eq-Free \\ \alpha \notin ftv(\sigma_1) \\ \hline (Q) \forall (\alpha \diamond \sigma) \sigma_1 \equiv \sigma_1 \\ \hline \end{cases}$
$ \begin{array}{c} Eq-Comm \\ \underline{\alpha_1 \notin ftv(\sigma_2)} & \alpha_2 \notin ftv(\sigma_1) \\ \hline (Q) \forall (\alpha_1 \diamond_1 \sigma_1) \forall (\alpha_2 \diamond_2 \sigma_2) \sigma \\ \equiv \forall (\alpha_2 \diamond_2 \sigma_2) \forall (\alpha_1 \diamond_1 \sigma_1) \sigma \end{array} $		$(\alpha_2 \diamond_2 \sigma_2) \sigma$	Eq-Var (Q) \forall ($\alpha \diamond \sigma$	$(Q) \ \forall \ (\alpha \diamond \sigma) \ \alpha \equiv \sigma \qquad \qquad$		$\begin{array}{c} (Q) \ \sigma_0 \equiv \tau_0 \\ \\ \tau[\tau_0/\alpha] \end{array}$

Type Abstraction

A-Equiv	A-Trans (Q) $\sigma_1 \in \sigma_2$	A-Context-R	A-Hyp	A-Context-L
$(Q) \ \sigma_1 \equiv \sigma_2$	$\begin{array}{c} (Q) & \sigma_1 = -2 \\ (Q) & \sigma_2 \in \sigma_3 \end{array}$	$(Q, \alpha \diamond \sigma) \ \sigma_1 \equiv \sigma_2$	$(\alpha_1 = \sigma_1) \in Q$	$(Q) \ \sigma_1 \equiv \sigma_2$
$(Q) \ \sigma_1 \in \sigma_2$	$(Q) \ \sigma_1 \in \sigma_3$	$(Q) \; \forall \; (\alpha \diamond \sigma) \; \sigma_1 \; \vDash \; \forall \; (\alpha \diamond \sigma) \; \sigma_2$	$(Q) \ \sigma_1 \equiv \alpha_1$	$(Q) \; \forall (\alpha = \sigma_1) \; \sigma \in \forall (\alpha = \sigma_2) \; \sigma$

Type Instance

$I-Abstract$ $(Q) \sigma_1 \in \sigma_2$	$I-Trans(Q) \sigma_1 \leqslant \sigma_2(Q) \sigma_2 \leqslant \sigma_3$	$\underbrace{ \text{I-Context-R}}_{(Q, \ \alpha \ \diamond \ \sigma) \ \sigma_1 \ \leqslant \ \sigma_2}$	$I-Hyp$ $(\alpha_1 \ge \sigma_1) \in Q$	$\underbrace{ \text{I-Context-L}}_{(Q) \ \sigma_1 \leqslant \sigma_2}$	
$(Q) \ \sigma_1 \leqslant \sigma_2$	$(Q) \ \sigma_1 \leqslant \sigma_3$	$(Q) \; \forall (\alpha \diamond \sigma) \; \sigma_1 \leqslant \forall (\alpha \diamond \sigma) \; \sigma_2$	$(Q) \ \sigma_1 \leqslant \alpha_1$	$(Q) \; \forall \; (\alpha \geq \sigma_1) \; \sigma \leqslant \forall \; (\alpha \geq \sigma_2) \; \sigma$	
	I-Bot (Q) ⊥ ≤		Rigid		
	$(\mathbb{Q}) \perp \leqslant 0$		$(Q) \; \forall \; (\alpha \geq \sigma_1) \; \sigma \leqslant \forall \; (\alpha = \sigma_1) \; \sigma$		

Type Equivalence

Eq-Trans

$$(Q) \ \sigma_{1} \equiv \sigma_{2}$$

$$(Q) \ \sigma_{1} \equiv \sigma_{2}$$

$$(Q) \ \sigma_{2} \equiv \sigma_{3}$$

$$(Q) \ \sigma_{1} \equiv \sigma_{3}$$

 $\begin{aligned} & \mathsf{Eq-Context-R} \\ & (Q, \alpha \diamond \sigma) \; \sigma_1 \equiv \sigma_2 \\ \hline & (Q) \; \forall \, (\alpha \diamond \sigma) \; \sigma_1 \equiv \forall \, (\alpha \diamond \sigma) \; \sigma_2 \end{aligned}$

Eq-Context-L

$$\frac{(Q) \ \sigma_1 \equiv \sigma_2}{(Q) \ \forall (\alpha \diamond \sigma_1) \ \sigma \equiv \forall (\alpha \diamond \sigma_2) \ \sigma}$$

 $\begin{aligned} & \mathsf{Eq}\text{-}\mathsf{Free} \\ & \frac{\alpha \notin \mathsf{ftv}(\sigma_1)}{(Q) \; \forall \, (\alpha \diamond \sigma) \; \sigma_1 \equiv \sigma_1} \end{aligned}$

Eq-Comm

$$\frac{\alpha_1 \notin \mathsf{ftv}(\sigma_2) \qquad \alpha_2 \notin \mathsf{ftv}(\sigma_1)}{(Q) \forall (\alpha_1 \diamond_1 \sigma_1) \forall (\alpha_2 \diamond_2 \sigma_2) \sigma} \\
\equiv \forall (\alpha_2 \diamond_2 \sigma_2) \forall (\alpha_1 \diamond_1 \sigma_1) \sigma$$

Eq-Var
(Q)
$$\forall (\alpha \diamond \sigma) \ \alpha \equiv \sigma$$

Eq-Mono

$$\frac{(\alpha \diamond \sigma_0) \in Q \qquad (Q) \ \sigma_0 \equiv \tau_0}{(Q) \ \tau \equiv \tau [\tau_0 / \alpha]}$$

Type Abstraction

A-Context-L

$$\frac{(Q) \ \sigma_1 \equiv \sigma_2}{(Q) \ \forall \ (\alpha = \sigma_1) \ \sigma \equiv \forall \ (\alpha = \sigma_2) \ \sigma}$$

Type Instance

	I-Trans			
I-Abstract	$(Q) \ \sigma_1 \leqslant \sigma_2$	I-Context-R		І-Нур
$(Q) \ \sigma_1 \equiv \sigma_2$	$(Q) \ \sigma_2 \leqslant \sigma_3$	$(Q, \alpha \diamond \sigma)$	$\sigma_1 \leqslant \sigma_2$	$(\alpha_1 \ge \sigma_1) \in Q$
$(Q) \ \sigma_1 \leqslant \sigma_2$	$(Q) \ \sigma_1 \leqslant \sigma_3$	$(Q) \forall (\alpha \diamond \sigma) \sigma_1$	$\leqslant \forall (\alpha \diamond \sigma) \sigma_2$	$(Q) \ \sigma_1 \leqslant \alpha_1$
I-Context-L $(Q) \ \sigma_1 \leqslant \sigma_2$ $(Q) \ \forall (\alpha \ge \sigma_1) \ \sigma \leqslant \forall (\alpha \ge \sigma_2) \ \sigma$		I-Bot $(Q) \perp \leqslant \sigma$	I-Rigid	
			$(Q) \forall (\alpha \ge \sigma_1)$	$\sigma \leqslant \forall \left(\alpha = \sigma_1 \right) \sigma$