A graphical presentation

 of $M L^{F}$ types witha linear-time incremental unification algorithm.

Didier Rémy \&

Boris Yakobowski

INRIA-Rocquencourt

A tour of ML^{F}

First-class polymorphism is (sometimes) useful.

Today's solutions

- Should we give up type inference? no!
- Local type inference? no! -very fragile to program transformations
- Algorithmirally specified type-inference?
- Stratifi no!, Inference? -still a backup when better solutions fail.
- Boxy types?

Improve System-F - regardless of type inference

- There is a gap between implicit and explicit type systems.
\Rightarrow Is System F the right choice? (think of $\mathrm{F}^{\eta}, \mathrm{F}_{\leq}, \mathrm{F}$-bounded, etc.)

First-class polymorphism is (sometimes) useful.

Today's solutions

- Should we give up type inference? no!
- Local type inference? no! -very fragile to program transformations
- Algorithmically specified type-inference?
- Stratified type inference? -still a backup when better solutions fail.
- Boxy types?

Improve System-F - regardless of type inference

- There is a gap between implicit and explicit type systems.
- Is System F the right choice? (think of $\mathrm{F}^{\eta}, \mathrm{F}_{\leq}, \mathrm{F}$-bounded, etc.)
let choose $=\lambda(x) \lambda(y)$ if true then x else $y: \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$
let $i d=\lambda(z) z: \forall \alpha \cdot \alpha \rightarrow \alpha$
choose $(\lambda(x) x)$:
let choose $=\lambda(x) \lambda(y)$ if true then x else $y: \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$
let $i d=\lambda(z) z: \forall \alpha \cdot \alpha \rightarrow \alpha$
choose $(\lambda(x) x):\left\{\begin{aligned} \forall \alpha \cdot(\alpha \rightarrow \alpha) & \rightarrow(\alpha \rightarrow \alpha) \\ (\forall \alpha \cdot \alpha \rightarrow \alpha) & \rightarrow(\forall \alpha \cdot \alpha \rightarrow \alpha)\end{aligned}\right.$
let choose $=\lambda(x) \lambda(y)$ if true then x else $y: \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$
let $i d=\lambda(z) z: \forall \alpha \cdot \alpha \rightarrow \alpha$
choose $(\lambda(x) x):\left\{\begin{array}{l}\forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \\ (\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow(\forall \alpha \cdot \alpha \rightarrow \alpha)\end{array}\right\} \quad$ No better choice in F
let choose $=\lambda(x) \lambda(y)$ if true then x else $y: \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$
let $i d=\lambda(z) z: \forall \alpha \cdot \alpha \rightarrow \alpha$
choose $(\lambda(x) x):\left\{\begin{array}{l}\forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \\ (\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow(\forall \alpha \cdot \alpha \rightarrow \alpha)\end{array}\right\}$
No better choice in F
: $\forall(\beta \geq \forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta$ in ML^{F}
let choose $=\lambda(x) \lambda(y)$ if true then x else $y: \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$
let $i d=\lambda(z) z: \forall \alpha \cdot \alpha \rightarrow \alpha$
choose $(\lambda(x) x):\left\{\begin{array}{l}\forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \\ (\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow(\forall \alpha \cdot \alpha \rightarrow \alpha)\end{array}\right\}$
No better choice in F

$$
\begin{aligned}
& : \quad \forall(\beta \geq \forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta \text { in } \mathrm{ML}^{\mathrm{F}} \\
& \leqslant\left\{\begin{array}{l}
\forall(\beta=\forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta \\
\forall(\alpha) \forall(\beta=\alpha \rightarrow \alpha) \beta \rightarrow \beta
\end{array}\right.
\end{aligned}
$$

let choose $=\lambda(x) \lambda(y)$ if true then x else $y: \forall \alpha \cdot \alpha \rightarrow \alpha \rightarrow \alpha$ let $i d=\lambda(z) z: \forall \alpha \cdot \alpha \rightarrow \alpha$
choose $(\lambda(x) x):\left\{\begin{array}{l}\forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \\ (\forall \alpha \cdot \alpha \rightarrow \alpha) \rightarrow(\forall \alpha \cdot \alpha \rightarrow \alpha)\end{array}\right\}$
No better choice in F

$$
\begin{aligned}
& : \quad \forall(\beta \geq \forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta \text { in } \mathrm{ML}^{\mathrm{F}} \\
& \leqslant\left\{\begin{array}{l}
\forall(\beta=\forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta \\
\forall(\alpha) \forall(\beta=\alpha \rightarrow \alpha) \beta \rightarrow \beta
\end{array}\right.
\end{aligned}
$$

But

$\lambda(x) x x \quad: \quad$ ill-typed Do not guess polymorphism!
$\lambda(x: \forall(\alpha) \alpha \rightarrow \alpha) x x \quad: \quad \forall(\beta=\forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta$

Principal types

Type inference, relies on first-order unification in the presence of second-order types.

Convervative over both ML and System F
ML programs need no annotations
F programs need fewer annotations: type abstractions and type applications are always inferred.

$M L^{F}$ is robust (to program transformations)

For example, if $E\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ is typable so $E\left[\right.$ apply $\left.a_{1} a_{2}\right]$ where apply is $\lambda(f) \lambda(x) f x$.

Var
$\frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma}$

Fun
$\frac{\Gamma, x: \tau \vdash a: \tau^{\prime}}{\Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}}$

Inst
$\frac{\Gamma \vdash a: \sigma}{\Gamma \vdash a: \sigma^{\prime}} \sigma \leqslant \sigma^{\prime}$

App
$\frac{\Gamma \vdash a_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash a_{2}: \tau_{2}}{\Gamma \vdash a_{1} a_{2}: \tau_{1}}$

Let

Gen
$\frac{\Gamma \vdash a: \sigma \quad \operatorname{dom}(q) \notin \mathrm{ftv}(\Gamma)}{\Gamma \vdash a: \forall q \cdot \sigma}$

$$
\Gamma \vdash a: \sigma \quad \Gamma, x: \sigma \vdash a^{\prime}: \sigma^{\prime}
$$

$$
\Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}
$$

Var

$$
\frac{x: \sigma \in \Gamma}{(Q) \Gamma \vdash x: \sigma}
$$

Fun
$\frac{(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}}{(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}}$

App

$$
\frac{(Q) \Gamma \vdash a_{1}: \tau_{2} \rightarrow \tau_{1} \quad(Q) \Gamma \vdash a_{2}: \tau_{2}}{(Q) \Gamma \vdash a_{1} a_{2}: \tau_{1}}
$$

Inst
$\frac{(Q) \Gamma \vdash a: \sigma \quad(Q) \sigma \leqslant \sigma^{\prime}}{(Q) \Gamma \vdash a: \sigma^{\prime}}$

Gen
$\frac{(Q, q) \Gamma \vdash a: \sigma \quad \operatorname{dom}(q) \notin \mathrm{ftv}(\Gamma)}{(Q) \Gamma \vdash a: \forall q \cdot \sigma}$

Let

$$
\frac{(Q) \Gamma \vdash a: \sigma \quad(Q) \Gamma, x: \sigma \vdash a^{\prime}: \sigma^{\prime}}{(Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}}
$$

Var
$\frac{x: \sigma \in \Gamma}{(Q) \Gamma \vdash x: \sigma}$

Fun
$\frac{(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}}{(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}}$
App

$$
\frac{(Q) \Gamma \vdash a_{1}: \tau_{2} \rightarrow \tau_{1} \quad(Q) \Gamma \vdash a_{2}: \tau_{2}}{(Q) \Gamma \vdash a_{1} a_{2}: \tau_{1}}
$$

Gen
$\frac{(Q, q) \Gamma \vdash a: \sigma \quad \operatorname{dom}(q) \notin \mathrm{ftv}(\Gamma)}{(Q) \Gamma \vdash a: \forall q \cdot \sigma}$

$$
\begin{aligned}
& \text { Let } \\
& \frac{(Q) \Gamma \vdash a: \sigma \quad(Q) \Gamma, x: \sigma \vdash a^{\prime}: \sigma^{\prime}}{(Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}}
\end{aligned}
$$

(Q) binds free type variables of Γ.
(Q) could be interleaved with Γ as Γ_{Q} and read back by restricting the domain of Γ_{Q} to type variables.
Var
$\frac{x: \sigma \in \Gamma}{(Q) \Gamma \vdash x: \sigma}$

Fun
$\frac{(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}}{(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}}$

App

$$
\frac{(Q) \Gamma \vdash a_{1}: \tau_{2} \rightarrow \tau_{1} \quad(Q) \Gamma \vdash a_{2}: \tau_{2}}{(Q) \Gamma \vdash a_{1} a_{2}: \tau_{1}}
$$

Inst

$$
\begin{array}{r}
\frac{(Q) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash a: \sigma^{\prime}} \quad \frac{(Q) \sigma \leqslant \sigma^{\prime}}{(Q) \Gamma \vdash} \\
\frac{\text { Let }}{} \begin{array}{r}
(Q) \Gamma \vdash a: \sigma \\
(Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}
\end{array}
\end{array}
$$

Gen
$\frac{(Q, q) \Gamma \vdash a: \sigma \quad \operatorname{dom}(q) \notin \mathrm{ftv}(\Gamma)}{(Q) \Gamma \vdash a: \forall q \cdot \sigma}$

ML

Types

$$
\begin{aligned}
\tau::= & \alpha \mid \tau \longrightarrow \tau \\
\sigma::= & \tau \mid \forall(q) \sigma \\
q::= & \alpha
\end{aligned}
$$

Instance relation

$$
\forall(\bar{\alpha}) \tau \leqslant \forall(\beta) \tau\left[\bar{\tau}^{\prime} / \bar{\alpha}\right]
$$

$\beta \notin \operatorname{ftv}(\forall(\bar{\alpha}) \tau)$

Var $(Q) \Gamma \vdash x: \sigma$	Fun $(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}$	App $(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}$

Inst
$\frac{(Q) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash a: \sigma^{\prime}} \quad\left(Q \leqslant \sigma^{\prime}\right.$
$\frac{\text { Let }}{(Q) \Gamma \vdash a: \sigma} \quad \frac{(Q) \Gamma) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}}$

System F

Types

$$
\begin{aligned}
& \tau::=\alpha|\tau \rightarrow \tau| \forall(\alpha) \tau \\
& \sigma::= \tau \\
& q::=\alpha
\end{aligned}
$$

Instance relation

$$
\forall(\bar{\alpha}) \tau \leqslant \forall(\beta) \tau\left[\bar{\tau}^{\prime} / \bar{\alpha}\right]
$$

$$
\begin{aligned}
& \text { Var Fun App } \\
& \frac{x: \sigma \in \Gamma}{(Q) \Gamma \vdash x: \sigma} \quad \frac{(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}}{(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}} \\
& \frac{(Q) \Gamma \vdash a_{1}: \tau_{2} \rightarrow \tau_{1} \quad(Q) \Gamma \vdash a_{2}: \tau_{2}}{(Q) \Gamma \vdash a_{1} a_{2}: \tau_{1}} \\
& \text { Inst } \\
& \underline{(Q) \Gamma \vdash a: \sigma \quad(Q) \sigma \leqslant \sigma^{\prime}} \\
& (Q) \Gamma \vdash a: \sigma^{\prime} \\
& \text { Gen } \\
& \text { Let } \\
& (Q) \Gamma \vdash a: \sigma \quad(Q) \Gamma, x: \sigma \vdash a^{\prime}: \sigma^{\prime} \\
& (Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}
\end{aligned}
$$

System \mathbf{F}^{η}

Types

$$
\begin{aligned}
\tau:: & =\alpha|\tau \rightarrow \tau| \forall(\alpha) \tau \\
\sigma::= & \tau \\
q::= & \alpha
\end{aligned}
$$

Instance relation

type containment :
deep, contra-variant, etc.

Var $(Q) \Gamma \vdash x: \sigma$	Fun $(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}$	App $(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}$

Inst
$\frac{(Q) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash a: \sigma^{\prime}} \quad\left(Q \leqslant \sigma^{\prime}\right.$
$\frac{\text { Let }}{(Q) \Gamma \vdash a: \sigma} \quad \frac{(Q) \Gamma) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}}$

Explicit MLF

Types

$$
\begin{aligned}
\tau::= & \alpha \mid \tau \rightarrow \tau \\
\sigma::= & \tau|\forall(q) \tau| \perp \\
q::= & (\alpha \geq \sigma) \mid(\alpha=\sigma)
\end{aligned}
$$

Instance relation
\leqslant

Var	Fun	App
$\frac{x: \sigma \in \Gamma}{(Q) \Gamma \vdash x: \sigma}$	$\frac{(Q) \Gamma, x: \tau \vdash a: \tau^{\prime}}{(Q) \Gamma \vdash \lambda(x) a: \tau \rightarrow \tau^{\prime}}$	$\frac{(Q) \Gamma \vdash a_{1}: \tau_{2} \rightarrow \tau_{1}}{(Q) \Gamma \vdash a_{1} a_{2}: \tau_{1}}$

Inst

$$
\begin{array}{rc}
\frac{(Q) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash a: \sigma^{\prime}} & \frac{(Q) \sigma \leqslant \sigma^{\prime}}{(Q) \Gamma \vdash c} \\
\frac{\text { Let }}{} & \\
\frac{(Q) \Gamma \vdash a: \sigma}{(Q) \Gamma \vdash \text { let } x=a \text { in } a^{\prime}: \sigma^{\prime}}
\end{array}
$$

Gen
$\frac{(Q, q) \Gamma \vdash a: \sigma \quad \operatorname{dom}(q) \notin \operatorname{ftv}(\Gamma)}{(Q) \Gamma \vdash a: \forall q \cdot \sigma}$

Implicit MLF

Types

$$
\begin{aligned}
\tau::= & \alpha|\tau \rightarrow \tau| \forall(\alpha) \tau \\
\sigma::= & \tau|\forall(q) \tau| \perp \\
q::= & (\alpha \geq \sigma)
\end{aligned}
$$

Instance relation

$\sqsubseteq \quad$ (simpler version)

Standard $\forall \alpha$.
Flexible $\forall(\alpha \geq \sigma)$

Standard $\forall \alpha$.
Flexible $\forall(\alpha \geq \sigma)$

A lot of administrative rules (See?)

- Hides the underlying principles
- Heavy pronfr ':

$$
\begin{aligned}
\forall(\alpha \geq \sigma) \tau & \equiv \\
& \forall(\beta=s) \forall(\alpha \geq \forall(\gamma=\sigma) \gamma) \tau \\
& \forall(\beta=s) \forall(\alpha \geq \forall(\gamma=\beta) \gamma) \tau \\
& \equiv(\beta=s) \forall(\alpha \geq \beta) \tau \\
& \forall(\alpha=s) \tau
\end{aligned}
$$

i.e. the

No!: An impro, ,ent was suggested by F. Pottier, but it technicall. collapses the syntactic instance relation via dark corners, to our surprise...

A lot of administrative rules (See?)

- Hides the underlying principles
- Heavy proofs (in breadth more than in depth).
- Made extensions difficult.

Do we have the definition right?

i.e. the instance relation the best within the framework?

No!: An improvement was suggested by F. Pottier, but it technically collapses the syntactic instance relation via dark corners, to our surprise...

Efficiency

Expensive unification (and type inference) algorithms.
Does it scale up to large, automatically generated, programs?

A tree

A tree dag

All occurrences of a variables are shared.

A tree dag

Variables need not be represented.

A tree dag

Other nodes may be also shared.

A dag τ is the superposition of
a tree $\hat{\tau}$ and an equivalence $\tilde{\tau}$ on nodes of τ

A $\operatorname{dag} \tau$ is the superposition of a tree $\hat{\tau}$ and an equivalence $\tilde{\tau}$ on nodes of τ

Nodes may be named after the set of paths leading to them.

A dag τ is the superposition of a tree $\hat{\tau}$ and an equivalence $\tilde{\tau}$ on nodes of τ

name of merged nodes $=$ union of merged names.

Unification computes the smallest equivalence that is

 congruent and consistent

Unification computes the smallest equivalence that is

 congruent and consistent
consistent : no symbol class, but \perp is a pseudo-symbol that never clashes

Unification computes the smallest equivalence that is

 congruent and consistent
consistent : no symbol class, but \perp is a pseudo-symbol that never clashes

Unification computes the smallest equivalence that is

 congruent and consistent

Drawn as a graph.

Explicitly with forward pointers (as usual)

Problem: binders do not commute and cannot be removed implicitly.

Implicitly with backward pointers (bindings edges)

$$
\forall(\beta \geq \perp, \gamma \geq \perp) \beta \rightarrow \gamma \rightarrow \beta \rightarrow \gamma
$$

Binding edges point to the node where they (as variables) would have been introduced.
Commutation of binders come for free!

$$
\forall(\beta=\text { int } \rightarrow \text { int }, \gamma \geq \perp) \beta \rightarrow \gamma \rightarrow \beta \rightarrow \gamma
$$

Useless binders may be removed (GC).

$$
\forall(\beta=\text { int } \rightarrow \text { int }, \gamma \geq \perp) \beta \rightarrow \gamma \rightarrow \beta \rightarrow \gamma
$$

Well-formed conditions (1)

$$
\forall(\beta \geq \perp) \beta \rightarrow \gamma \rightarrow \forall(\gamma \geq \perp) \beta \rightarrow \gamma
$$

(1) The binding of a node must be one of its dominators.

Well-formed conditions (2)

$\forall\left(\beta_{1} \geq \perp\right) \beta_{1} \rightarrow \beta_{1} \rightarrow \forall\left(\beta_{2} \geq \perp, \beta_{3} \geq \perp\right) \forall\left(\beta_{4}\right) \beta_{4} \rightarrow \beta_{3} \rightarrow \beta_{2}$
(2) Binding paths are upward closed.

Well-formed conditions (2)

$\forall\left(\beta_{1} \geq \perp, \alpha_{1}=\forall\left(\beta_{2} \geq \perp, \beta_{3} \geq \perp, \alpha_{2}=\forall\left(\beta_{4}\right) \beta_{4} \rightarrow \beta_{3}\right) \beta_{2} \rightarrow \alpha_{2}\right) \beta_{1} \rightarrow \beta_{1} \rightarrow \alpha_{1}$

Well-formed conditions (2)

$\forall\left(\beta_{1} \geq \perp, \alpha_{1}=\forall\left(\beta_{2} \geq \perp, \beta_{3} \geq \perp, \alpha_{2}=\forall\left(\beta_{4}\right) \beta_{4} \rightarrow \beta_{3}\right) \beta_{2} \rightarrow \alpha_{2}\right) \beta_{1} \rightarrow \beta_{1} \rightarrow \alpha_{1}$
(2) Inverse binding edges form a tree (with the same root)

Well-formed conditions (3)

$\forall\left(\beta_{1} \geq \perp, \alpha_{2}=\forall\left(\beta_{4}\right) \beta_{4} \rightarrow \beta_{3}, \alpha_{1}=\forall\left(\beta_{2} \geq \perp, \beta_{3} \geq \perp\right) \beta_{2} \rightarrow \alpha_{2}\right) \beta_{1} \rightarrow \beta_{1} \rightarrow \alpha_{1}$
(3) Binding edges cannot cross (to be made precise)

A graphic type...

$\forall\left(\beta \geq \perp, \alpha=\forall(\gamma \geq \perp) \beta \rightarrow \gamma, \alpha^{\prime}=(\beta \rightarrow \beta) \rightarrow \alpha\right) \alpha^{\prime} \rightarrow \alpha^{\prime}$
is a first-order term graph...

...plus a binding tree...

with relations between them.

$\mathcal{B}(n)=\{m \mid n \circ m \circ \longrightarrow \bar{n}\}$ where $n \longrightarrow \bar{n}$.
If $m \in \mathcal{B}(n)$, then $\mathcal{B}(m) \subseteq \mathcal{B}(n)$

with relations between them.

$\mathcal{B}(n)=\{m \mid n \circ m \circ \longrightarrow \bar{n}\}$ where $n \longrightarrow \bar{n}$.
If $m \in \mathcal{B}(n)$, then $\mathcal{B}(m) \subseteq \mathcal{B}(n)$

Two kinds of binding arrows

- Flexible binding (\geq flag, dotted arrows): mean instances may be taken.
- Rigid (= flag, dashed arrows): mean no instance may not be taken.

Binding path	Permissions
\geq^{*}	$\{\geq,=\}$
$=(\geq \mid=)^{*}$	$\{=\}$
Others	$\}$

Grafting

Raising

Weakening

Raising

Deletion (implicit)

Raising

Deletion (implicit)

Merging

Operation	Relation	Conditions
$\operatorname{Graft}\left(\tau^{\prime \prime}, n\right)$	$\leqslant{ }^{G}$	(1)
$\operatorname{Merge}\left(n_{1}, n_{2}\right)$	$\leqslant{ }^{M}$	or
Weaken (n)	$\leqslant W$	
Raise (n)	$\leqslant{ }^{R}$	
$\triangleq\left(\leqslant{ }^{G} \cup \leqslant^{M} \cup \leqslant{ }^{W} \cup \leqslant^{R}\right)^{*}$		

\leqslant^{m} is the subrelation of \leqslant^{M} that merges monomorphic nodes.
Similarity is the relation \approx is $\left(\leqslant^{m} \cup \geqslant^{m}\right)^{*}$.

We are interested in instance modulo similarity $\leqslant \approx$, which is $(\leqslant \cup \approx)^{*}$.
We compute instance up to deletion, but not up to similarity...

Similarity is equal to $\leqslant^{m} ; \geqslant^{m}$.

Instance modulo similarity $\leqslant \approx$ is equal to $\leqslant ; \geqslant^{m}$ are equal. Hence:

Instance is equal to $\left(\leqslant^{G} ; \leqslant^{R} ; \leqslant^{M W}\right)$, where $\leqslant^{M W}$ is $\left(\leqslant^{M} \cup \leqslant^{W}\right)^{\star}$.

Definition A type τ^{\prime} unifies nodes N of τ if τ^{\prime} is an instance of τ and all nodes in N are merged in τ^{\prime}.

Moreover τ^{\prime} is a principal unifier is all other unifiers are an instance of τ^{\prime}.
The algorithm proceeds in three steps:

1) Computes $\tilde{\tau_{u}}$ by performing first-order unification on the term-graph to merge all nodes of N.
2) Compute the binding tree $\breve{\tau}_{u}$: Given a node n of $\tilde{\tau_{u}}$, let n_{1}, \ldots, n_{k} be the nodes of τ that are merged into n. The binding edges of n_{1}, \ldots, n_{k} are raised until they are all bound at the same level. The flag for n is the best flag common to n_{1}, \ldots, n_{k}.
3) Check permissions for all merges of $\tilde{\tau_{u}}$ that are still polymorphic in $\breve{\tau}_{u}$.

Definition A type τ^{\prime} unifies nodes N of τ if τ^{\prime} is an instance of τ and all nodes in N are merged in τ^{\prime}.

Moreover τ^{\prime} is a principal unifier is all other unifiers are an instance of τ^{\prime}.
The algorithm proceeds in three steps:

1) Computes $\tilde{\tau_{u}}$ by performing first-order unification on the term-graph to merge all nodes of N. Cost $O(n)$ (ou $O(n \alpha(n))$).
2) Compute the binding tree $\breve{\tau}_{u}$: Given a node n of $\tilde{\tau_{u}}$, let n_{1}, \ldots, n_{k} be the nodes of τ that are merged into n. The binding edges of n_{1}, \ldots, n_{k} are raised until they are all bound at the same level. The flag for n is the best flag common to n_{1}, \ldots, n_{k}. Cost $O(n)$: a top down visit. The most involved part of the algorithm. Uses a linear algorithm for computing least-common ancestors.
3) Check permissions for all merges of $\tilde{\tau_{u}}$ that are still polymorphic in $\breve{\tau}_{u}$. Cost $O(n)$, simple visit of $\tilde{\tau_{u}}$.

Correction τ^{\prime} is a unifier of τ.
Completeness if there is a unifier of τ, this algorithm finds one.

Principality The unifier return by the algorithm is a principal one.
Proofs are involed. Relies a lot on commutation lemmas, but not only.

Principality

Merging

\Longrightarrow

Escaping edge

\Longrightarrow

Add virutal structure edge

\Longrightarrow

Now correct

Cost linear in number of merged nodes plus number of added instance edges

Key features

- Binding structure (and invariants)
- Instance relation

Type constraints

- Add new node to types, that are to be interpreted, especially as type constraints.
- Preserve the invariants
- Introduce new transformations (beyond instantiation) to simplify them.

The interior $\lceil n\rceil$ of a node n is the set of nodes dominated by n when inverse binding edges are added to structure edges.

The frontier of n is the set of nodes that are not interior nodes but reached by structure edges from interior nodes.

The interior $\lceil n\rceil$ of a node n is the set of nodes dominated by n when inverse binding edges are added to structure edges.

The frontier of n is the set of nodes that are not interior nodes but reached by structure edges from interior nodes.

The interior $\lceil n\rceil$ of a node n is the set of nodes dominated by n when inverse binding edges are added to structure edges.

The frontier of n is the set of nodes that are not interior nodes but reached by structure edges from interior nodes.

Replace any occurrence of x by a copy.

Replace any occurrence of x by a copy.

Remove unused let ${ }_{x}$ —provided left-hand branch is consistent Reduce copies as before

Unification

Unification

More general constraints

Syntactically

$$
(Q) \Gamma \vdash a: \tau
$$

Find pairs $Q^{\prime}, \tau^{\prime}$ such that $Q^{\prime} \leqslant \tau^{\prime}$ and $\left(Q^{\prime}\right) \tau \leqslant \tau^{\prime}$ and $\left(Q^{\prime}\right) \Gamma \vdash a: \tau^{\prime}$.

Syntactically

$$
(Q) x_{1}: \tau_{1}, \ldots x_{n}: \tau_{n} \vdash a: \alpha
$$

Find pairs $Q^{\prime}, \tau^{\prime}$ such that $Q^{\prime} \leqslant \tau^{\prime}$ and $\left(Q^{\prime}\right) \tau \leqslant \tau^{\prime}$ and $\left(Q^{\prime}\right) \Gamma \vdash a: \tau^{\prime}$.

Syntactically

$$
(Q) x_{1}: \tau_{1}, \ldots x_{n}: \tau_{n} \vdash a: \alpha
$$

Graphically

Graphically

Graphically

Key

Some nodes of τ_{n} may actually be bound tighter, just as tightly as permitted.

Graphically

Of course, some bindings may also be rigid.

Graphically

Find instances of the graph so that constraints are satisfied.
Their is a smaller solution if any, of which all other solutions are instances.

Simplification

Key feature

Types always kept as polymorphic as possible.
Interior application nodes will remain bound to interior nodes (hence polymorphic) unless unified with some exterior node. [possible optimization]

Simplification

Type abbreviations

A key in $M L^{F}$, but technically treated as coercion functions.

Unification is all formalized. (See papers on the web)
Type constraints need to be formlaized

Subject reduction: calls for a direct proof using graphical constraints.

Extensions of the core language

- Recursive types
$\Rightarrow \mathrm{F}^{\omega}$ (I.e. allow quantification over type operators)
- Existential types:
\triangleright Encoding via universal types: encapsulation is explicitly, opening is explicit but with no type information
\triangleright Can we infer positions of openings? (See work by Daan Leijen)

Appendices

Type Equivalence

Type Abstraction

	A-Trans		
A-Equiv	$(Q) \sigma_{1} E \sigma_{2}$		
$\frac{(Q) \sigma_{1} \equiv \sigma_{2}}{(Q) \sigma_{1} E \sigma_{2}}$	$\frac{(Q) \sigma_{2} E \sigma_{3}}{(Q) \sigma_{1} E \sigma_{3}}$	$\frac{\text { A-Context-R }}{(Q) \forall(\alpha \diamond \sigma) \sigma_{1} E \forall(\alpha \diamond \sigma) \sigma_{2}}$	A-Hyp $(Q) \sigma_{1} E \alpha_{1}$

Type Instance

I-Abstract (Q) $\sigma_{1} \in \sigma_{2}$	I-Trans (Q) $\sigma_{1} \leqslant \sigma_{2}$ $(Q) \sigma_{2} \leqslant \sigma_{3}$	$\begin{aligned} & \text { I-Context-R } \\ & \quad(Q, \alpha \diamond \sigma) \sigma_{1} \leqslant \sigma_{2} \end{aligned}$	$\begin{aligned} & \text { I-Hyp } \\ & \left(\alpha_{1} \geq \sigma_{1}\right) \in Q \end{aligned}$	I-Context-L (Q) $\sigma_{1} \leqslant \sigma_{2}$
$\overline{(Q) \sigma_{1} \leqslant \sigma_{2}}$	$\overline{(Q) \sigma_{1} \leqslant \sigma_{3}}$	$\overline{(Q) \forall(\alpha \diamond \sigma) \sigma_{1} \leqslant \forall(\alpha \diamond \sigma) \sigma_{2}}$	(Q) $\sigma_{1} \leqslant \alpha_{1}$	$\overline{(Q) \forall\left(\alpha \geq \sigma_{1}\right) \sigma \leqslant \forall\left(\alpha \geq \sigma_{2}\right) \sigma}$
	I-Bot			
$(Q) \perp \leqslant \sigma$ ($\overline{(Q) \forall\left(\alpha \geq \sigma_{1}\right) \sigma \leqslant \forall\left(\alpha=\sigma_{1}\right) \sigma}$				

Type Equivalence

Eq-Refl

$$
(Q) \sigma \equiv \sigma
$$

Eq-Trans

$$
(Q) \sigma_{1} \equiv \sigma_{2} \quad \text { Eq-Context-R }
$$

$$
\frac{(Q) \sigma_{2} \equiv \sigma_{3}}{(Q) \sigma_{1} \equiv \sigma_{3}}
$$

$$
\frac{(Q, \alpha \diamond \sigma) \sigma_{1} \equiv \sigma_{2}}{(Q) \forall(\alpha \diamond \sigma) \sigma_{1} \equiv \forall(\alpha \diamond \sigma) \sigma_{2}}
$$

Eq-Context-L

$$
\frac{(Q) \sigma_{1} \equiv \sigma_{2}}{(Q) \forall\left(\alpha \diamond \sigma_{1}\right) \sigma \equiv \forall\left(\alpha \diamond \sigma_{2}\right) \sigma}
$$

Eq-Comm

$\frac{\alpha_{1} \notin \mathrm{ftv}\left(\sigma_{2}\right) \quad \alpha_{2} \notin \mathrm{ftv}\left(\sigma_{1}\right)}{(Q) \forall\left(\alpha_{1} \diamond_{1} \sigma_{1}\right) \forall\left(\alpha_{2} \diamond_{2} \sigma_{2}\right) \sigma}$
Eq-Var
$(Q) \forall(\alpha \diamond \sigma) \alpha \equiv \sigma$

Eq-Free

$$
\frac{\alpha \notin \operatorname{ftv}\left(\sigma_{1}\right)}{(Q) \forall(\alpha \diamond \sigma) \sigma_{1} \equiv \sigma_{1}}
$$

$$
\equiv \forall\left(\alpha_{2} \diamond_{2} \sigma_{2}\right) \forall\left(\alpha_{1} \diamond_{1} \sigma_{1}\right) \sigma
$$

Eq-Mono

$$
\frac{\left(\alpha \diamond \sigma_{0}\right) \in Q \quad(Q) \sigma_{0} \equiv \tau_{0}}{(Q) \tau \equiv \tau\left[\tau_{0} / \alpha\right]}
$$

Type Abstraction

	A-Trans		
A-Equiv	$(Q) \sigma_{1} \in \sigma_{2}$	A-Context-R	A-Hyp
$(Q) \sigma_{1} \equiv \sigma_{2}$	$(Q) \sigma_{2} \in \sigma_{3}$	$(Q, \alpha \diamond \sigma) \sigma_{1} \in \sigma_{2}$	$\left(\alpha_{1}=\sigma_{1}\right) \in Q$
$(Q) \sigma_{1} \in \sigma_{2}$	$(Q) \sigma_{1} \in \sigma_{3}$	$(Q) \forall(\alpha \diamond \sigma) \sigma_{1} \in \forall(\alpha \diamond \sigma) \sigma_{2}$	$(Q) \sigma_{1} \in \alpha_{1}$

A-Context-L

$$
\frac{(Q) \sigma_{1} \boxminus \sigma_{2}}{(Q) \forall\left(\alpha=\sigma_{1}\right) \sigma € \forall\left(\alpha=\sigma_{2}\right) \sigma}
$$

Type Instance

