
Université de Paris
Ecole doctorale 386 – Sciences Mathématiques de Paris Centre

Inria

Refactoring functional

programs with ornaments

Par Ambre Williams

Thèse de doctorat d’Informatique

Dirigée par Didier Rémy

Présentée et soutenue publiquement le 14 décembre 2020

Devant un jury composé de :

Conor McBride, Reader, University of Strathclyde, rapporteur
Nicolas Tabareau, Directeur de recherche, Inria, rapporteur
Chantal Keller, Maître de conférences, Université Paris-Saclay
Delia Kesner, Professeur, Université de Paris
Yann Régis-Gianas, Maître de conférence, Nomadic Labs
Didier Rémy, Directeur de recherche, Inria, directeur de thèse

 Cette œuvre est mise à disposition sous la licence
 https://creativecommons.org/licenses/by/3.0/fr/

2

Titre : Refactorisation de programmes fonctionnels par les ornements

Résumé :
Les ornements fournissent un moyen de définir des transformations de défini-
tions de types de données inductifs réorganisant, spécialisant et ajoutant des
champs à des types de données déjà existants. À partir d’une telle transforma-
tion, nous nous intéressons à la refactorisation semi-automatique d’un code déjà
existant, écrit en ML et opérant sur le type de base pour le faire opérer sur le
type ornementé. Nous décrivons un cadre pour de telles transformations, basé
sur deux phases : tout d’abord, le terme de base est généralisé au maximum en
ajoutant des abstractions sur les détails des types de données utilisés. Le terme
est ensuite spécialisé pour opérer uniquement sur le type ornementé. Nous dé-
crivons un langage intermédiaire fournissant les abstractions nécessaires pour
présenter le terme générique, et garantissant qu’il est possible de simplifier le
terme spécialisé pour ne présenter à l’utilisateur que des termes du langage de
base. Le langage intermédiaire permet notamment d’exprimer des abstractions
dépendantes, de représenter les égalités apprises par le filtrage de motifs, et four-
nit une construction permettant de se référer de façon opaque au résultats de
calculs déjà effectués. Nous exploitons la paramétricité du terme généralisé pour
prouver une relation de cohérence entre le terme de base et le terme ornementé,
garantissant la correction de la refactorisation. Nous présentons une implémen-
tation de cette transformation sur un langage ML noyau, et justifions de son
utilité dans de nombreux cas courants de transformation de programme : refac-
torisation pure, ajout de nouvelles données et spécialisation. Nous présentons
aussi une nouvelle technique de dépliage permise par notre transformation qui
autorise à changer la structure récursive des fonctions, et illustrons son utilité
pour optimiser certaines représentations de données et pour la programmation
générique.

Mots clefs : ornements ; langages de programmation fonctionnelle ; types ; rela-
tions logiques ; refactorisation ; ML.

Title: Refactoring functional programs with ornaments

Abstract:
Ornaments provide a way to express transformations of inductive datatypes that
reorganize, specialize, and add fields to already existing datatypes. From such a
transformation, we consider the problem of semi-automatically refactoring an al-

3

4

ready existing ML program operating on the base type into a program operating
on the ornamented type. We describe a framework for such transformations by
decomposing them in two phases: first, the base term is maximally generalized
by abstracting over the details of the manipulated datatypes. This generic term
is subsequently specialized to operate only on the ornamented type. We de-
scribe an intermediate language providing the necessary abstractions to present
the generic term. This language notably includes dependent abstractions, al-
lows representing the equalities learned from pattern matching, and provide a
way to refer to the opaque result of previous computations. We exploit the
parametricity of the generic term to derive a coherence relation between the
base term and the ornamented term, guaranteeing the correctness of the orna-
mented term. We present an implementation of this transformation on a core
ML language, and illustrate its usefulness in many common cases of program
transformation: pure refactoring, adding new data and specialization. We also
present a new unfolding technique afforded by our transformation and present
its use for optimizing certain data representation and for generic programming.

Keywords: ornaments; functional programming languages; types; logical rela-
tions; refactoring; ML.

Remerciements
J’aurais dû commencer par rédiger ce chapitre pour n’oublier personne, je l’écris
finalement la veille de ma soutenance. J’espère que celles et ceux que j’aurai
inévitablement oublié de remercier ici pourront m’en excuser.

J’ai commencé à travailler sur les ornements dans le cadre d’un stage de
M2, proposé par Didier Rémy et Pierre-Évariste Dagand. Pendant ce stage, j’ai
découvert l’équipe Gallium, avec qui il a été très agréable de travailler. Merci
pour les cafés et Café-vous-fait, les discussions de cantine, pour les conseils
pendant mes répétitions d’exposés, et merci à tous ceux avec qui j’ai partagé un
bureau. Vous avez participé à me convaincre de rester pour ma thèse.

Je ne pouvais espérer meilleur directeur que Didier : il a toujours été dis-
ponible pour passer plusieurs heures à discuter de mon avancement, apportant
un oeil extérieur bienvenu et des idées fraîches quand je rencontrais des difficul-
tés. Beaucoup de cette thèse n’existe que grâce à ses retours, m’encourageant à
développer les concepts intéressants, les rendre plus clairs et les généraliser.

En septembre 2018, alors que j’étais déjà en retard, j’estimais qu’il ne me
manquait que deux mois avant d’avoir fini de rédiger. Avec la distraction d’un
emploi à plein temps, et parce que j’avais sous-estimé le travail restant, cela m’a
finalement pris deux ans, pendant lesquels certaines idées ont pu mûrir pour
arriver à une présentation, je l’espère, plus clair et intéressante.

Je remercie beaucoup Didier pour m’avoir poussé à continuer pendant cette
période, m’avoir rappelé des deadlines administratives que j’aurais sans doute
manquées, et avoir continué à prendre régulièrement du temps avec moi pour
discuter de mon avancement. J’ai aussi été beaucoup soutenue par Annalí, qui
à de nombreuses occasions m’a dissuadé de simplement arrêter. Son aide pen-
dant les derniers mois de la rédaction a été indispensable. Je la remercie aussi
beaucoup de sa patience pour les soirées et les week-ends volés par la rédaction,
et pour avoir supporté mon stress à une période qui n’était pas non plus facile
pour elle. Merci aussi à mes parents pour m’avoir encouragée dans ce processus.

J’ai rédigé une partie de cette thèse au Mexique. Mario y Susana, muchas
gracias por la hospitalidad. ¡Espero que nos podamos ver pronto! J’ai passé les
deux dernières semaines de rédaction dans le très agréable village de Gratallops,
en Catalogne. Moltes gràcies Mireia, una forta abraçada! I also spent a few weeks
at Oscar Wilde House in Berkeley while Annalí was staying there. Thank you
all for the food and the company.

Je n’ai heureusement pas pensé qu’à la thèse pendant ces six ans. Merci
beaucoup à Arthur, Épiphanie, Théo, Cécile, Maiting, Jonathan, Loïc, Irène,
Renaud, Guillaume, Ulysse, Anaël, Kenji, Basile, Damien, Julie, Abel, Najib,
Aymeric, Grégoire, pour les bons moments passés ensemble, ma famille, qui m’a
beaucoup manquée ces derniers mois, et à Annalí pour avoir été tout ce temps
une lumière dans ma vie.

5

6

Résumé en français

Un programme est une description en terme précis des opérations qu’un ordina-
teur doit suivre afin d’accomplir une tâche donnée. Les instructions élémentaires
interprétées par un ordinateur son extrêmement rudimentaires. Il faut parfois
plusieurs centaines d’instructions pour trier une liste de nombres entiers ; les
programmes les plus complexes, tels les navigateurs web, sont composés de di-
zaines de millions de ces instructions. Les langages de programmation sont des
outils d’abstraction : ils permettent aux programmeurs de ne donner qu’une
explication à un haut niveau d’abstraction de ce que le programme doit faire.
Des compilateurs et des interprètes traduisent les représentations de haut niveau
manipulées par les programmeurs en instructions de bas niveau. En libérant les
programmeurs de la nécessité de penser à l’échelle des instructions élémentaires,
les langages de programmation permettent aux programmeurs de construire des
programmes plus complexes, plus vite.

Un programme n’est que rarement écrit d’une seule traite, sans ne rien effa-
cer, et distribué pour n’être plus jamais modifié. Même lorsqu’on écrit la version
initiale d’un programme, on peut ne pas avoir une idée exacte de la forme qu’il
va prendre, et on a souvent besoin de revenir en arrière et changer certaines défi-
nitions à mesure que notre compréhension du problème s’affine. Une fois achevée
l’écriture de la version initiale, on peut aussi s’apercevoir que les besoins ont
changés, nécessitant un code plus général par certains aspects et moins général
par d’autres : on doit alors changer certaines parties du programme pour cor-
respondre aux nouvelles demandes. Tous ces changements ne sont pas locaux :
même si l’essentiel du changement consiste en ne modifier que quelques éléments
du programme, il peut demander une refactorisation très étendue pour faire cir-
culer les nouvelles données à travers le code déjà existant. La version refactorisée
d’un fragment de code peut venir remplacer le code déjà présent, ou les deux
versions du code peuvent être amenées à coexister dans le programme, pour
être utilisées dans des contextes différents. Ces transformations sont souvent
longues, répétitives, et sans intérêt. Face à une telle tâche, un programmeur a
souvent une idée générale de la transformation à réaliser, mais se retrouve obligé
d’effectuer manuellement chaque changements requis pour cette refactorisation.
Notre but est de fournir des outils rendant cette transformation plus rapide et
facile.

Si le programmeur a pris soin d’éviter les effets de bords, les différents frag-
ments du programme communique en échangeant des données à travers les argu-
ments de fonctions et leurs valeurs de retours. Ces données sont contraintes : les
parties du programme qui communiquent doivent s’accorder sur un format pour
les données qu’elles échangent. Si le langage de programmation le permet, une
partie de ces contraintes peut s’exprimer sous forme de types. Les types peuvent

7

8

être vus comme un système de classification de valeurs et de programmes qui,
de plus, est compréhensible par le langage de programmation. Les types forment
un outil puissant : ils permettent au langage de programmation de rejeter un
programme dès la compilation car il pourrait à l’exécution atteindre un état in-
correct. Les types jouent aussi pour le programmeur un rôle de documentation
dont l’exactitude est garantie par le langage. En lisant le type d’une fonction,
on apprend des contraintes sur la façon dont elle doit être appelée, et on obtient
des garanties sur le comportement et les valeurs retournées par cette fonction.
Cela permet de s’assurer que des catégories entières de comportement erronés
ne peuvent se produire.

Bien qu’ils ne caractérisent le comportement que d’une seule version d’un
programme considéré en isolation, les types fournissent un guide utile pour la
refactorisation : lorsque l’un des effets de la refactorisation est de changer le
type de certaines données, le système de types peut orienter un programmeur
vers les emplacements du programme qui sont maintenant mal typés. Le pro-
grammeur peut alors effectuer les changements locaux nécessaires et relancer
le typeur. Le typeur va alors soit pointer vers d’autres emplacements qui sont
maintenant mal typés, soit accepter le programme, concluant ainsi la refactori-
sation. Ce n’est pourtant pas une solution satisfaisante. Premièrement, certaines
transformations ne changent pas les types, seulement la façon dont leurs valeurs
sont interprétées. Par exemple, si la transformation inverse le sens d’une valeur
booléenne, le système de types sera incapable d’indiquer les endroits où le code
doit être modifié, et le programmeur devra garder trace de ces emplacements
lui-même. De plus, cela reste un processus extrêmement manuel et ennuyeux : le
programmeur ne doit plus chercher lui-même les emplacements à modifier, mais
doit tout de même effectuer chaque changement manuellement. Ces change-
ments, qui devraient être simplement mécaniques, sont aussi sources d’erreurs.
Tout cela décourage les programmeurs d’effectuer de tels changements : à la
place, ils choisissent souvent de laisser un commentaire indiquant qu’un refac-
torisation devrait être effectuée.

On attend d’un outil de refactorisation qu’il élimine autant que possible ces
coûts, ne laisse que le minimum de travail au programmeur, et qu’il fournisse
une garantie solide que le nouveau programme est seulement une adaptation du
programmeur d’origine à de nouvelles données.

Dans la famille des langages dérivés de ML, les types de données induc-
tifs sont l’outil principal pour décrire l’organisation des données. On les définit
comme des sommes étiquetées de produits de types primitifs et d’autres types
inductifs. Les produits permettent de former des valeurs composées de plusieurs
autres valeurs, permettant par abstraction de les manipuler comme une valeur
singulière. Par exemple, plutôt que de manipuler individuellement des paires
de coordonnées, un programmeur trouvera plus pratique de manipuler un point
à deux dimensions comme une unité de programmation et de pensée, et il ne
considérera les deux coordonnées que pour définir des opérations basiques sur
ces points. Les sommes permettent l’expression de choix : une forme géomé-
trique est soit un triangle, défini par ses trois sommets, ou un cercle, défini
par son centre et son rayon. Finalement, la récursion permet de représenter des
structures de taille illimitée : une liste de formes géométriques est soit la liste
vide, soit une liste formée en ajoutant un élément en tête d’une autre liste.

Une même structure de données peut souvent être représentée par plusieurs
structures isomorphes, en utilisant un arrangement différent de sommes et de

9

produits. Deux structures de données peuvent aussi n’être différente que par des
éléments mineurs. Par exemple, le type des arbres binaires portant des valeurs
aux feuilles et le type des arbres binaires portant des valeurs aux branches
partagent une même structure où chaque noeud possède deux sous-arbres, mais
les fonctions opérant sur ces deux types doivent être définies séparément.

Puisque les types de données inductifs sont la manière principale de repré-
senter les données en ML, et puisque, dans des programmes bien structurés,
des modules distants interagissent principalement par l’échange de données, la
transformation des types inductifs est une catégorie importante de refactorisa-
tion en ML.

La théorie des ornements [McBride, 2010, Dagand and McBride, 2013, 2014]
fournit un cadre dans lequel exprimer ces transformations. Elle définit des condi-
tions sous lesquelles une nouvelle définition de données peut être décrite comme
un ornement d’une autre. Un ornement est essentiellement une relation entre
deux types de données inductifs qui réorganise, spécialise et ajoute des données
à un type de base pour obtenir un type ornementé.

Prenant les ornements comme brique de base, on peut définir des types d’or-
nement qui expriment une relation entre un terme de base et un terme lifté : un
type d’ornement n’est pas simplement une spécification unaire qui classifie des
termes pris individuellement, mais plutôt une spécification binaire qui indique
comment le comportement du terme de base, qui opère sur le type de base, est
lié au comportement du terme lifté, qui opère sur le type ornementé. Ces types
donnent donc une spécification de l’opération de refactorisation : un lifting est
correct si son résultat est lié au terme de base par la relation définie par le type
d’ornement demandé.

Nous décrivons dans cette thèse une approche bien-fondée pour obtenir des
liftings garantis corrects. Cette approche est basée sur la construction a poste-
riori d’une variante la plus générale possible en abstrayant sur les détails de la
représentation de données, qui peut ensuite être spécialisée pour obtenir un lif-
ting concret. Les abstractions nécessaires ne peuvent pas être exprimées en ML.
Pour la construire, nous définissions mML, une version de ML étendue avec les
mécanismes d’abstraction nécessaires, mais construire de sorte à garantir que les
termes spécialisés puissent être simplifiés pour obtenir à nouveau des termes de
ML. Nous montrons ensuite que le terme de base peut être exprimé comme une
instance particulière du terme généralisé, où l’on sélectionne systématiquement
l’ornement identité, qui lie un type avec lui-même. Cela nous permet d’exploiter
la paramétricité pour prouver l’existence de la relation désirée entre le terme de
base et le terme ornementé.

Ce travail théorique est accompagné d’une implémentation opérant sur une
version noyau de ML avec types de données et polymorphisme. Ce prototype,
disponible en ligne sur https://morphis.me/ornaments/, met en œuvre un
certain nombre de techniques, que nous décrivons dans ce manuscrit, pour gé-
nérer du code proche de ce qu’un programmeur aurait écrit manuellement. Il
est accompagné d’une bibliothèque d’exemples illustrant ses capacités.

La première partie de ce manuscrit introduit le concept d’ornement par le
biais d’exemples illustrant différentes possibilités d’utilisation : refactorisation
pure, ajout de données, spécialisation, optimisation et programmation géné-
rique. Ces exemples servent aussi d’illustration des capacités de notre implé-
mentation. Nous donnons ensuite une vue d’ensemble du processus d’ornemen-
tation : nous faisons abstraction des détails les plus techniques et présentons les

https://morphis.me/ornaments/

10

principes généraux guidant la transformation.
Dans une deuxième partie, nous laissons pour un moment de côté les or-

nements, et nous nous concentrons sur la conception et la formalisation des
briques de base permettant de construire notre transformation. Bien qu’ils aient
étés conçus pour permettre l’ornementation, ces briques sont indépendantes des
ornements et pourraient être appliquées pour réaliser d’autres transformations
de programme. Nous présentons tout d’abord une définition et la méta-théorie
de notre ML noyau. Nous ajoutons ensuite les fonctionnalités nécessaires à la
transformation désirée. Tout d’abord, les programmes font en pratique interve-
nir des effets de bord : ils peuvent ne pas terminer, terminer avec une erreur,
tirer des nombres aléatoires, ou lire et écrire des fichiers. Ces opérations, non
purement fonctionnelle, sont un obstacle à la transformation de programmes :
elles ne peuvent pas être librement dupliquées, réordonnées, ou supprimées.
Nous définissions un système d’étiquetage permettant de se référer au résultat
d’une de ces opérations précédemment effectuée sans avoir à dupliquer l’opéra-
tion elle-même. Nous utilisons ces étiquettes pour définir eML, une extension de
ML ajoutant une construction de filtrage par motifs au niveau des types. Pour
permettre de réduire le filtrage au niveau des types, le filtrage au niveau des
termes introduit une égalité entre le terme sur lequel on filtre et le motif de la
branche sélectionnée. Si le terme sur lequel on filtre contient une application
de fonction, on utilise son étiquette pour s’y référer, tout en gardant l’applica-
tion opaque pour les règles de raisonnement de eML. Cela permet notamment
de fournir un jugement d’égalité décidable. Nous définissons ensuite un langage
appelé mML en ajoutant des abstractions dépendantes à eML. Nous prêtons
particulièrement attention à isoler ces abstractions pour garantir qu’il soit pos-
sible de les réduire entièrement sans évaluer les parties eML du terme : nous
garantissons ainsi qu’elles peuvent être éliminées du terme lifté avant de le pré-
senter à l’utilisateur. Afin de raisonner sur mML, nous définissons une relation
logique indicée. Cette relation fournit un cadre sur lequel il sera possible de
définir des ornements d’ordre supérieur à partir d’ornements de base, et d’ex-
primer la relation entre un type de base et un type ornementé. Finalement, nous
décrivons un procédé permettant de simplifier un terme eML pour obtenir un
terme ML bien typé, garantissant ainsi que les constructions puissantes utilisées
pour la transformation ne soient plus apparentes dans le code généré.

Une fois les briques de base définies, nous revenons à la définition de notre
transformation, et nous construisons une preuve de sa correction. Nous décri-
vons tout d’abord comment transformer une définition d’ornement fournie par
l’utilisateur à la fois en une définition de relation compatible avec la relation lo-
gique, et en fragments de code utilisés pour spécialiser le terme générique. Nous
définissons, relativement à la relation induite, un critère de correction pour ces
fragments de code, et montrons qu’il est satisfait. Nous décrivons ensuite com-
ment transformer un terme de base en terme générique. Nous définissons sa
spécialisation par l’ornement identité, et prouvons qu’elle est équivalente au
terme de base. Finalement, nous expliquons comment une demande de lifting
fournie par l’utilisateur est transcrite en une spécialisation d’un terme générique,
et prouvons le lien entre le terme de base et le terme ornementé.

Nous nous tournons ensuite à l’aspect pratique du travail : nous décrivons
certains aspects clés de l’implémentation du prototype, et les stratégies utilisées
pour présenter à l’utilisateur du code lisible, ainsi que les améliorations permet-
tant de réduire le travail nécessaire pour spécifier un lifting. Nous présentons une

11

technique de dépliage permettant de définir des liftings qui ne respectent pas la
structure récursive de la fonction de base, et nous présentons des exemples de
manipulations de structure de données rendues possibles par cette technique.
Nous décrivons finalement quelques pistes de travail dans la continuation de
cette thèse, et les liens avec des travaux existants.

12

Contents

1 Introduction 21

I Ornaments in practice 25

2 Ornaments by example 27
2.1 Code refactoring . 27
2.2 Code refinement . 29
2.3 Composing transformations: a practical use case 31
2.4 Hiding administrative data . 35
2.5 Higher-order types, recursive types 37

3 Overview of the lifting process 39
3.1 Encoding ornaments . 40

3.1.1 Eliminating the encoding 41
3.1.2 Inferring a generic lifting 42

II A calculus for program transformation 45

4 Core ML 49
4.1 Notation . 49
4.2 Types and datatypes . 49
4.3 The syntax of explicit ML . 53
4.4 Evaluation . 55
4.5 Type soundness . 56

5 Labelling ML terms 61
5.1 Overview . 61
5.2 Labelled reduction . 63
5.3 Full reduction . 66
5.4 An attempt at well-labelling . 68

6 A language for equalities 75
6.1 Design constraints . 75
6.2 Description of eML . 76

6.2.1 Extended syntax . 76
6.2.2 Extended labeled reduction 77
6.2.3 Combining typing and labeling 77

13

14 CONTENTS

6.2.4 The non-expansive equality judgment 81
6.2.5 Full term equality . 82

6.3 Metatheory of eML . 89
6.3.1 Basic properties . 89
6.3.2 Extraction . 92
6.3.3 Subject reduction . 93
6.3.4 Soudness via a logical relation for equality 96
6.3.5 Full term equality and reduction 103

7 Staging with mML 105
7.1 Overview of the design . 105
7.2 Definition of mML . 106

7.2.1 Syntax and typing . 106
7.2.2 The meta reduction . 109
7.2.3 Equality . 113

7.3 Metatheory of mML . 119
7.3.1 Confluence . 119
7.3.2 Basic properties of the typing derivation 132
7.3.3 Strong normalization . 132
7.3.4 Subject reduction and soundness 138

7.4 mML elimination . 146

8 A logical relation for reasoning on mML 155
8.1 A deterministic reduction . 155
8.2 Interpretation of kinds . 157
8.3 The logical relation . 159

9 From eML to ML 167
9.1 Expanded terms . 168
9.2 Simplification . 168
9.3 Removing equalities . 173

III Encoding ornaments 179

10 Encoding ornaments in mML 181
10.1 Ornamentation as a logical relation 181
10.2 Deep pattern matching in eML 183
10.3 Defining datatype ornaments . 186
10.4 Shallow ornaments . 188
10.5 From high-level definition to low-level definition 191
10.6 Encoding ornaments in mML . 193
10.7 Correctness of the encoding . 195

11 Elaborating to the generic term 197
11.1 Preparing an ML term for lifting 197
11.2 Elaboration environments . 200
11.3 Elaboration . 204
11.4 Correctness of elaboration . 206
11.5 Identity instantiation . 206

CONTENTS 15

12 Lifting by instantiation 209
12.1 Specifying liftings . 209
12.2 Correctness of the lifting . 212

IV Implementing lifting 215

13 Implementation 217
13.1 Generalization by inference . 217
13.2 Strategies for instantiation . 220
13.3 Refolding terms after the transformation 222

14 Unfolding of definitions 225
14.1 Unfolding the recursive structure 225
14.2 Unfolding for specialization . 226
14.3 Generic programming with unfolding 227

15 Extensions and future work 231
15.1 Handling effects . 231
15.2 Generalizing the ornamentation relations 232
15.3 Improving the patching language 233
15.4 Scaling up the prototype . 233

V Conclusion 235

16 Related works 237
16.1 Ornaments . 237
16.2 Refactoring . 238
16.3 Porting operations to similar datatypes 240

17 Conclusion 243

16 CONTENTS

List of Figures

3.1 Overview of the lifting process 39

4.1 Types, kinds and environments for ML 50
4.2 Definition of some datatypes . 51
4.3 Well-formedness rules . 52
4.4 Syntax of ML . 53
4.5 Typing rules for ML . 54
4.6 Reduction for ML . 55

5.1 Syntax of labelled ML . 64
5.2 Reduction for labeled ML . 65
5.3 Making ML terms reusable . 66
5.4 Full head reduction for labeled ML 67
5.5 Contexts for full reduction . 67
5.6 Translation . 68
5.7 Full reduction . 68
5.8 Well-labeling . 70

6.1 Types and kinds for eML . 77
6.2 Additional head reduction rule for eML 77
6.3 Additional contexts for eML reduction 77
6.4 Typing environments for eML . 78
6.5 Typing rules for eML . 79
6.6 Well-formedness rules of eML . 81
6.7 Type equality . 83
6.8 Non-expansive term equality . 84
6.9 Non-expansive term equality (congruence rules) 85
6.10 Decomposition of terms . 87
6.11 Non-expansive reduction . 97
6.12 Environment typing . 98
6.13 Interpretation of types . 100

7.1 Kinds and types of mML . 107
7.2 Syntax of mML . 108
7.3 Well-formedness for environments and kind 109
7.4 Kinding rules for mML . 110
7.5 Typing rules for mML (eML rules) 111
7.6 Typing rules for mML (new rules) 112

17

18 LIST OF FIGURES

7.7 Kind equality for mML . 113
7.8 Type equality for mML: new congruence rules 114
7.9 Term equality for mML: new congruence rules 115
7.10 Type equality for mML: subkinding, reduction and split 116
7.11 Term equality for mML: new reduction rules 116
7.12 Definition of ÝÑ# . 117
7.13 Label translation for mML . 117
7.14 Well-labeling for types . 120
7.15 Well-labeling for types (cont.) . 121
7.16 Well-labeling for types . 121
7.17 Well-labeling for kinds . 122
7.18 Parallel reduction: congruence for terms 124
7.19 Parallel reductions: congruence for types and kinds 125
7.20 Parallel reductions: reduction rules 126
7.21 Interpretation of kinds as sets of interpretations 133
7.22 Interpretation of kinds and types as sets of types and terms . . . 134
7.23 Normal equalities (except congruence rules) 139
7.24 Normal equalities: congruence rules 140
7.25 Kind depth . 141
7.26 Logically normalizable equalities 141
7.27 Logical relation for mML elimination: type interpretation 147
7.28 Logical relation for mML elimination: kind interpretation 148
7.29 Logical relation for mML elimination: constraints on type inter-

pretation . 148
7.30 Logical relation for mML elimination: constraints on kind inter-

pretation . 148
7.31 Logical relation for mML elimination: environments 148

8.1 Deterministic reduction ÝÑd for mML 156
8.2 Interpretation of kinds . 158
8.3 Interpretation of environments 160
8.4 Interpretation of types . 161

9.1 Expanded terms, simple terms and types 168
9.2 Binding contexts, expansion contexts 169
9.3 Simplification rules . 169

10.1 Ornament types . 182
10.2 Projection of ornament types . 182
10.3 Well-formedness of ornament types 182
10.4 Deep patterns . 183
10.5 Typing for patterns . 184
10.6 The matching function . 185
10.7 Values matched by a pattern . 187
10.8 Missing part of a pattern . 194
10.9 Patching a pattern . 194

11.1 Environments for ML restricted to top-level polymorphism 198
11.2 Well-formedness for global environments 198
11.3 Typing rules for ML restricted to top-level polymorphism 199

LIST OF FIGURES 19

11.4 Processing of top-level definitions 199
11.5 Environments . 201
11.6 Projections for ornament types 201
11.7 Environment projections . 201
11.8 Well-formedness for elaboration 202
11.9 Elaboration to a generalized term 205
11.10 Elaborating a declaration . 205

12.1 Ornament instantiation: checking and projection 210
12.2 Lifting environment . 210
12.3 Patch instantiation: grammar, projection and well-formedness . . 211
12.4 Lifting . 212

20 LIST OF FIGURES

Chapter 1

Introduction

A program is a description in precise terms of the operations a computer should
follow to accomplish a particular task. The elementary instructions executed
by computers are extremely rudimentary. Sorting a list of integers may re-
quire hundreds of instructions; complex programs, such as web browsers, are
composed of tens of millions of these elementary instructions. A programming
language is a tool of abstraction: it allows programmers to give a higher-level
explanation of what the program should do. Compilers and interpreters trans-
late the high-level representations manipulated by programmers into low-level
instructions. By freeing the programmer from having to think at the level of the
computer, programming languages enable programmers to build more complex
programs faster.

Programs are rarely written in one go, without erasing anything, then ship-
ped and never modified again. Even when writing the initial version of a pro-
gram, the programmer may not have an exact idea of what a program should
look like, and may often need to go back and change some definition as they
understand the requirements better. After the initial version is written, they
may realize that the requirements have changed, requiring more generality in
some aspects, and less in some others, and change some part of the program
to fit the new requirements. Some of these changes are non-local: while the
core of the change may consist in modifying just a few program locations, they
require extensive refactoring to weave new data and behavior throughout the
existing code base. The refactored version of a piece of code may replace the
existing code, or both versions of the code may co-exist in the program, to be
used in different contexts. These transformations are often repetitive, time-
consuming, and uninteresting. Programmers may have a high-level view of the
transformation they wish to perform, but have to manually perform every single
change required by the refactoring. Our goal is to provide tools making these
transformations easier.

If the programmer has been careful in avoiding side-effects, the different
parts of their program communicate by exchanging data through function ar-
guments and return values. This data is constrained: the parts of a program
communicating together must agree on a format for the data they are exchang-
ing. If the language permits it, some of these constraints may be expressed as
types: types can be understood as a kind of classification of programs that is
accessible to the programming language. Types are a powerful tool: they al-

21

22 CHAPTER 1. INTRODUCTION

low the programming language to reject a program at compilation time because
its execution may reach an incorrect state. Types also operate as a form of
guaranteed-correct documentation to programmers: reading the type of a func-
tion gives information to the programmer about how the function ought to be
called, and what kind of result may be expected. They allow the programmer
to trust that whole classes of behaviors will never occur.

Even though they only characterize the behavior of one version of a pro-
gram in isolation, types are useful to guide refactoring: when one effect of the
refactoring is to change the type of some data, the type system is able to point
the programmer to now ill-typed program locations. The programmer makes
the necessary changes and runs the type checker again: the type checker will
either point to new ill-typed locations, or accept the program, signalling that
the refactoring is complete. This is still not a satisfying solution: First, some
refactorings do not change the types, but only the way values are interpreted: if
the meaning of a boolean is inverted, the type system would be unable to point
us to the program location that need fixing and the programmer would have
to track this location themselves. More importantly, this is still a boring and
manual process: the programmer does not have to find the location to change
anymore, but still has to perform all changes manually. These changes, that
should often be simply mechanical, are still error-prone. This discourages pro-
grammers from attempting such changes: they may instead simply leave a note
saying that a refactoring ought be performed.

A principled refactoring tool should eliminate as much as possible of these
costs, leaving as little work as possible to the programmer, and providing a
strong guarantee that the final program is merely an adaptation of the old one
to the new data.

In the ML family of languages, inductive datatypes are the key tool used
to describe the organization of data. They are defined as labeled sums and
products of primitive types and other inductive datatypes. Products allow for
composite values abstracting over sets of multiple values: for example, instead
of manipulating pairs of coordinates, a programmer will find more convenient to
manipulate two-dimensional points as a unit of programming and thought, and
only look at the individual coordinates for implementing basic operations on the
points. Sums allow the expression of choice: a shape is either a triangle, defined
by three points, or a circle, defined by its center and radius. Finally, recursion
allows representing data structures of unbounded size: a list of shapes is either
the empty list, or a list formed by adding a first shape in front of another list
of shapes.

However, the same data can often be represented with several isomorphic
data-structures, using a different arrangement of sums and products. Two data-
structures may also differ in minor ways, for instance sharing the same recursive
structure, but one carrying an extra information at some specific nodes. For
example, the type of leaf binary trees and the type of node binary trees both
share a common binary-branching structure and are isomorphic but functions
operating on them must be defined independently.

Since inductive datatypes are the main form of representing data in ML, and
since distant modules in well-structured programs interact mostly through the
exchange of data, the transformation of inductive datatypes is an important
category of refactoring in ML.

The theory of ornaments [McBride, 2010, Dagand and McBride, 2013, 2014]

23

provides a framework to express these changes. It defines conditions under
which a new datatype definition can be described as an ornament of another.
In essence, an ornament is a relation between two datatypes, reorganizing, spe-
cializing, and adding data to a bare type to obtain an ornamented type.

From ornaments as building blocks, we define ornament types relating a base
term and a lifted term: an ornament type is not simply a unary specification
classifying single terms, but a binary specification explaining how the behavior
of the base term, operating on the base type, is related to the lifted term,
operating on the ornamented type. These types thus give a specification for a
lifting: a correct lifting is a lifting that is related to its base term at the desired
ornament type.

We describe a principled approach to obtaining correct liftings. We abstract
a posteriori a base term into a most general elaborated term, that can then
be instantiated into a concrete lifting. This abstraction is not expressible in
ML: we define a superset mML of ML that supports the necessary abstraction
mechanisms, and guarantees that instantiated terms can be simplified back to
terms of the original language. The base term can be seen as an instantiation
of the generic term with identity ornaments, transforming a type into itself. We
exploit parametricity to prove the expected relation between the base term and
the ornamented term.

We implement this transformation on a core ML language with datatypes and
polymorphism. Our prototype tool, available online at https://morphis.me/
ornaments/, implements a number of techniques to generate code that is close
to code that would have been manually written, and comes with a collection of
examples illustrating its features.

The rest of this dissertation is structured as follows. In Part I, we first give an
introduction to ornaments by way of examples (Chapter 2). These examples also
serve as a demonstration of our prototype tool, and show a variety of program
transformations afforded by ornamentation. We then provide an overview of
the ornamentation process, skipping over the most technical details to present
the guiding principles of the transformation (Chapter 3).

In Part II, we forget about ornaments for a moment and design and for-
malize the building blocks of our transformation. Although they were designed
for ornamentation, they are independent from ornaments and could be applied
to other program refactorings. In Chapter 4, we present the definition and
meta-theory of core ML. The next three chapters add the features necessary to
present the transformation. Practical ML programs feature side-effects: they
might not terminate, terminate with an error, draw random numbers, or read
and write files. These impure computations are an obstacle to program trans-
formation since they cannot be freely duplicated, reordered, or removed. We
define in Chapter 5 a notion of labels allowing to refer to the results of pre-
viously performed computations in the terms evaluated subsequently, without
duplicating the computations themselves. This is used in Chapter 6 to define
eML, a language extending the types of ML with type-level pattern matching.
To reduce type-level pattern matching, term-level pattern matching introduces
in a branch an equality between the scrutinee and the pattern of the branch.
If the scrutinee contains a function application, labels allow us to refer to the
result of these applications while leaving them otherwise opaque to eML’s rea-
soning rules. To allow us to define the generic term, we define in Chapter 7
a language mML formed by adding dependent abstractions to eML. These ab-

https://morphis.me/ornaments/
https://morphis.me/ornaments/

24 CHAPTER 1. INTRODUCTION

stractions are carefully isolated by enforcing staging so that they can be fully
reduced without evaluating the eML parts of the term: this guarantees that
they can be eliminated from the lifted term before presenting the term to the
user. This is important, as we want the lifted term to be a term of the original
language, that can be used as input to the same compiler. We define in Chap-
ter 8 a binary logical relation on mML. That will give us a framework to build
higher-order ornaments from datatype ornaments, and allow us to express the
relation between the base type and the ornamented type. Finally, in Chapter 9,
we describe how to simplify an eML term back to an ML term, ensuring that
our intermediate language do not leak in the generated code.

Having defined the necessary machinery, we come back to ornaments in
Part III. This part formalizes the concepts introduced in Chapter 3, and builds
up to a correctness proof for lifting. In Chapter 10, we describe how to turn an
ornament definition into a datatype ornament compatible with the logical rela-
tion, and into the construction and destruction functions required to instantiate
the generic term. We define what it means for these functions to be correct with
respect to an ornament, and prove that our elaborated definitions are indeed
correct. In Chapter 11, we explain how to turn a base term into a generic term
that can be instantiated. We prove that the identity instantiation of the generic
term is indeed equivalent to the base term. Finally, in Chapter 12, we describe
how to instantiate a generic term and compute the resulting lifting specifica-
tion. We then prove that this lifting specification indeed describes the relation
between the base term and the lifted term.

This theoretical work is accompanied by a proof-of-concept implementation
that demonstrates the practical usefulness of ornamentation. In Part IV, we
start by describing some keys aspects of the implementation (Chapter 13) and
some strategies to generate readable code as output, as well as features that
help reduce the work involved in specifying liftings. In Chapter 14, we describe
unfolding, a way to define liftings that do not follow the recursive structure of
the original function. We give examples of interesting manipulations of data
structures that are allowed by unfolding. In Chapter 15, we explore some future
work around possible extensions to the theory and our implementation, notably
how one would adapt lifting to work on a real-world language such as OCaml.

Finally, in Part V, we describe some related work (Chapter 16) before con-
cluding (Chapter 17).

Part I

Ornaments in practice

25

Chapter 2

Ornaments by example

Let us discover ornaments by means of examples. All examples preceded by a
blue vertical bar have been processed by a prototype implementation1, which
follows an OCaml-like2 syntax. Output of the prototype appears with a wider
green vertical bar. The code that appears without a vertical mark is internal
intermediate code for sake of explanation and has not been processed.

2.1 Code refactoring
The most striking application of ornaments is the special case of code refac-
toring, which is an often annoying but necessary task when programming. We
start with an example reorganizing a sum data structure into a sum of sums.
Consider the following datatype representing arithmetic expressions, together
with an evaluation function.

type expr =
| Const of int
| Add of expr ∗ expr
| Mul of expr ∗ expr

let rec eval a = match a with
| Const i Ñ i
| Add (u, v) Ñ add (eval u) (eval v)
| Mul (u, v) Ñ mul (eval u) (eval v)

The programmer may realize that the binary operators Add and Mul can be
factored, and thus prefer the following version expr’ using an auxiliary type of
binary operators, given below.

type binop = Add’ | Mul’
type expr’ =

| Const’ of int
| Binop’ of binop ∗ expr’ ∗ expr’

There is a relation between these two types, which we may describe as an or-
nament oexpr from the base type expr to the ornamented type expr’.

1The prototype, available at url https://morphis.me/ornaments/, contains a library of
detailed examples, including those presented here.

2http://caml.inria.fr/

27

https://morphis.me/ornaments/
http://caml.inria.fr/

28 CHAPTER 2. ORNAMENTS BY EXAMPLE

type ornament oexpr : expr ñ expr’ with
| Const i ñ Const’ i
| Add (u, v) ñ Binop’ (Add’, u, v) when u v : oexpr
| Mul (u, v) ñ Binop’ (Mul’, u, v) when u v : oexpr

This definition is to be understood as

type ornament oexpr : expr ñ expr’ with
| Const i´ ñ Const’ i` when i´ ñ i` in int
| Add (u´, v´) ñ Binop’ (Add’, u`, v`)

when u´ ñ u` and v´ ñ v` in oexpr
| Mul (u´, v´) ñ Binop’ (Mul’, u`, v`)

when u´ ñ u` and v´ ñ v` in oexpr

This recursively defines the oexpr relation. A clause “x´ ñ x` in orn” means that
x´ and x` should be related by the ornament relation orn. The first clause is the
base case. By default, the absence of ornament specification for variable i (of
type int) has been expanded to “when i´ ñ i` in int” and means that i´ and i`
should be related by the identity ornament at type int, which is also named int
for convenience. The next clause is an inductive case: it means that Add(u´, v´)
and Binop’(Add’,u`, v`) are in the oexpr relation whenever u´ and u` on the one
hand and v´ and v` on the other hand are already in the oexpr relation.

In this example, the relation happens to be an isomorphism and we say that
the ornament is a pure refactoring. Hence, the compiler has enough information
to automatically lift the old version of the code to the new version. We simply
request this lifting as follows:

let eval’ = lifting eval : oexpr Ñ _

The expression oexpr Ñ _ is an ornament signature, which follows the syntax of
types but replacing type constructors by ornaments. (The wildcard represents
a part of the ornament specification that is inferred; it could have been replaced
by int, the ornament specification corresponding to the identity ornament on the
type int.) Here, the compiler will automatically elaborate eval’ to the expected
code, without any further user interaction:

let rec eval’ a = match a with
| Const’ i Ñ i
| Binop’ (Add’, u, v) Ñ add (eval’ u) (eval’ v)
| Binop’ (Mul’, u, v) Ñ mul (eval’ u) (eval’ v)

Not only is this well-typed, but the semantics is also preserved—by construction.
Notice that a pure refactoring also works in the other direction: we could have
instead started with the definition of eval’, defined the reverse ornament from
expr’ to expr, and obtained eval as a lifting of eval’.

Pure refactorings such as oexpr are a particular but quite interesting subcase
of ornaments because the lifting process is fully automated. As a tool built upon
ornamentation, we provide a shortcut for refactoring: one only has to write the
definitions of expr’ and oexpr, and lifting declarations are generated to transform
a whole source file. Thus, pure refactoring is already a very useful application of
ornaments: these transformations become almost free, even on a large code base.

Besides, proper ornaments as described next that decorate an existing node
with new pieces of information can often be decomposed into a possibly com-
plex but pure refactoring and another proper, but hopefully simpler ornament.
Notice that pure code refactoring need not even define a new type. One such
example is to invert values of a boolean type:

2.2. CODE REFINEMENT 29

type bool = True | False
type ornament not : bool ñ bool with

| True ñ False
| False ñ True

Then, we may define bool_or as a lifting of bool_and, and the compiler inverts
the constructors.

let bool_and u v = match u with True Ñ v | False Ñ False
let bool_or = lifting band : not Ñ not Ñ not

let bool_or u v = match u with
| True Ñ True
| False Ñ v

It may also do this selectively, only at some given occurrences of the bool type.
For example, we may only invert the first argument:

let bool_notand = lifting bool_and : not Ñ bool Ñ bool

let bool_notand u v = match u with
| True Ñ False
| False Ñ v

Still, the compiler will carefully reject inconsistencies, such as:

let bool_andnot = lifting bool_and : bool Ñ not Ñ bool

Indeed, given the structure of the program, the second argument can be returned
untransformed. Lifting preserves this structure: then coherent liftings must use
the same ornaments for the second argument and the result.

2.2 Code refinement

Code refinement is an example of a proper ornament where the intention is to
derive new code from existing code, rather than modify existing code and forget
the original version afterwards. To illustrate code refinement, observe that lists
can be considered as an ornament of Peano numbers:

type nat = Z | S of nat

type ’a list = Nil | Cons of ’a ∗ ’a list
type ornament ’a natlist : nat ñ ’a list with

| Z ñ Nil
| S m ñ Cons (_, m) when m : ’a natlist

The parametrized ornamentation relation ’a natlist is not an isomorphism: a nat-
ural number S m´ will be in relation with all values of the form Cons (x, m`) for
any x, as long as m´ is in relation with m`. We use an underscore “_” instead
of x on Cons (_, m) to emphasize that it does not appear on the left-hand side
and thus freely ranges over values of its type. Hence, the mapping from nat to
’a list is incompletely determined: we need additional information to translate
a successor node. (Here, the ornament definition may also be read in the reverse
direction, which defines a projection from ’a list to nat, the length function! but
we do not use this information hereafter.)

30 CHAPTER 2. ORNAMENTS BY EXAMPLE

The addition on numbers may have been defined as follows (on the left-hand
side):

let rec add m n = match m with
| Z Ñ n
| S m’ Ñ S (add m’ n)

val add : nat Ñ nat Ñ nat

let rec append m n = match m with
| Nil Ñ n
| Cons (x, m’) Ñ Cons(x, append m’ n)

val append : ’a list Ñ ’a list Ñ ’a list

Observe the similarity with append, given above (on the right-hand side). Having
already recognized an ornament between nat and list , we expect append to be
definable as a lifting of add.

let append0 = lifting add : _ natlist Ñ _ natlist Ñ _ natlist

However, this returns an incomplete lifting:

let rec append0 m n = match m with
| Nil Ñ n
| Cons (x, m’) Ñ Cons (#2 , append0 m’ n)

Indeed, this requires building a cons node from a successor node, which is un-
derdetermined. This is reported to the user by leaving a labeled hole #2 in the
generated code. The programmer may use this label to provide a patch that
will fill this hole. The patch may use all bindings that were already in context
at the same location in the bare version. In particular, the first argument of
Cons cannot be obtained directly, but only by matching on m again:

let append = lifting add : _ natlist Ñ _ natlist Ñ _ natlist
with #2 Ð match m with Cons(x, _) Ñ x

The lifting is now complete, and produces exactly the code of append given
above. The superfluous pattern matching in the patch has been automatically
removed: the patch “match m with Cons(x0,_) Ñ x0” has not just been inserted
in the hole, but also simplified by observing that x0 is actually equal to x and
need not be extracted again from m. This also removes an incomplete pattern
matching. This simplification process relies on the ability of the meta-language
to maintain equalities between terms via dependent types (§6), and is needed
to make the lifted code as close as possible to manually written code. This is
essential, since the lifted code may become the next version of the source code
to be read and modified by the programmer. This is a strong argument in favor
of the principled approach that we present next and formalize in the rest of the
manuscript.

Although the hole cannot be uniquely determined by ornamentation alone,
it is here the obvious choice: since the append function is polymorphic we need
an element of the same type as the unnamed argument of Cons, so this is the
obvious value to pick—but not the only one, as one could also look further in
the tail of the list. Instead of giving an explicit patch, we could give a tactic
that would fill in the hole with the “obvious choice” in such cases. However,
while important in practice, this is an orthogonal issue related to code inference
which is not the focus of this work. Below, we stick to the case where patches
are always explicitly determined and we leave holes in the skeleton when patches
are missing.

This example is chosen here for pedagogical purposes, as it illustrates the key
ideas of ornamentation. While it may seem anecdotal, there is a strong relation
between recursive data structures and numerical representations, whose relation
to ornamentation has been considered by Ko [2014].

2.3. COMPOSING TRANSFORMATIONS: A PRACTICAL USE CASE 31

2.3 Composing transformations: a practical use
case

Ornamentation could be used in different scenarios: the intent of refactoring is
to replace the base code with the generated code, even though the base code
could also be kept for archival purposes; when enriching a data structure, both
codes may coexist in the same program. To support both of these usages, we
try to generate code that is close to manually written code. For other uses,
the base code and the lifting instructions may be kept to regenerate the lifted
code when the base code changes. This already works well in the absence of
patches; otherwise, we would need a patch description language that is more
robust to changes in the base code. We could also postprocess ornamentation
with some simple form of code inference that would automatically try to fill the
holes with “obvious” patches, as illustrated below. Our tool currently works in
batch mode and is just providing the building blocks for ornamentation. The
ability to output the result of a partially specified lifting makes it possible to
build an interactive tool on top of our interface.

The following example shows how different use-cases of ornaments can be
composed to reorganize, enrich, and cleanup an incorrect program, so that the
final bug fix can be reduced to a manual but simple step. The underlying idea is
to reduce manual transformations by using automatic program transformations
whenever possible. Notice that since lifting preserves the behavior of the original
program, fixing a bug cannot just be done by ornamentation.

Let us consider a small calculus with abstractions and applications and tuples
(which we will take unary for conciseness) and projections. We assume given a
type id representing variables.

type expr =
| Abs of id ∗ expr
| App of expr ∗ expr
| Var of id
| Tup of expr
| Proj of expr

We write an expression evaluator using environments of type (id ∗ expr) list .
We assume given an assoc function of type ’a Ñ (’a ∗ ’b) list Ñ ’b option that
searches a binding in the environment.

let rec eval env e =
match e with
| Var x Ñ assoc x env
| Abs(x, f) Ñ Some (Abs(x, f))
| App(e1,e2) Ñ
begin match eval env e1 with
| Some (Abs(x,f)) Ñ
begin match eval env e2 with
| Some v Ñ eval (Cons((x,v), env)) f
| None Ñ None
end

| Some (Tup _) Ñ None (∗ Type error ∗)
| None Ñ None (∗ Error propagation ∗)
| Some _ Ñ fail () (∗ Not a value ?! ∗)
end

32 CHAPTER 2. ORNAMENTS BY EXAMPLE

| Tup(e) Ñ
begin match eval env e with
| Some v Ñ Some (Tup v)
| None Ñ None
end

| Proj(e) Ñ
begin match eval env e with
| Some (Tup v) Ñ Some v
| Some (Abs _) Ñ None (∗ Type error ∗)
| None Ñ None (∗ Error propagation ∗)
| Some _ Ñ fail () (∗ Not a value ?! ∗)
end

(∗ eval : (id ∗ expr) list ´> expr ´> expr option ∗)

The evaluator distinguishes type (or scope) errors in the program, where it
returns None, and internal errors when the expression returned by the evaluator
is not a value. In this case, the evaluator raises an exception by calling fail ().

We soon realize that we mistakenly implemented dynamic scoping: the result
of evaluating an abstraction should not be an abstraction but a closure that holds
the lexical environment of the abstraction. One path to fixing this evaluator
is to start by separating the subset of values returned by the evaluator from
general expressions. We define a type of values as an ornament of expressions.

type value =
| VAbs of id ∗ expr
| VTup of value

type ornament expr_value : expr ñ value with
| Abs(x, e) ñ VAbs(x, e) when e : expr
| Tup(e) ñ VTup(e) when e : expr_value
| _ Ñ „

This ornament is intendedly partial : some cases are not lifted. Indeed, orna-
ments define a relation between the bare type and the ornamented type. They
are defined syntactically, with both sides being linear patterns. Moreover, the
pattern for the ornamented type should be total, i.e. match all expressions of
the ornamented type. Conversely, the pattern of the bare type need not be
total, but it must not throw away any information: in particular, it cannot use
wildcards or alternative patterns. When lifting a pattern matching with a par-
tial ornament, the inaccessible cases will be dropped. On the other hand, when
constructing a value that is impossible in the lifted type, the user will be asked
to construct a patch of the empty type, which could be filled for example by
an assertion failure. In some cases, the holes that should be filled with values
of the empty type will disappear during simplification, guaranteeing that the
program will not attempt to construct such values. The notation „ corresponds
to the empty pattern.

This ornament does not preserve the recursive structure of the original
datatype: the recursive occurrences are transformed into values or expressions
depending on their position. By contrast with prior works [Williams et al.,
2014, Dagand and McBride, 2013, 2014], we do not treat recursion specifically.
Hence, mutual recursion is not a problem; for instance, we can ornament a mu-
tually recursive definition of trees and forests or modify the recursive structure
during ornamentation. We also allow changing the recursive structure of func-

2.3. COMPOSING TRANSFORMATIONS: A PRACTICAL USE CASE 33

tions, transforming a single recursive function into a group of mutually recursive
functions (Chapter 14).

Using the ornament expr_value we transform the evaluator by making explicit
the fact that it only returns values and that the environment only contains values
(as long as this is initially true):

let eval’ = lifting eval : (id ∗ expr_value) list Ñ expr Ñ expr_value option
(∗ val eval’ : (id ∗ value) list ´> expr ´> value option ∗)

The lifting succeeds—and eliminates all occurrences of fail () in eval’.

let rec eval’ env e = match e with
| Var x Ñ assoc x env
| Abs(x, e) Ñ Some (VAbs(x, e))
| App(e1, e2) Ñ
begin match eval’ env e1 with

| (None | Some (VTup _)) Ñ None
| Some (VAbs(x, e)) Ñ
begin match eval’ env e2 with

| None Ñ None
| Some v Ñ eval’ (Cons((x, v), env)) e

end
end

| Tup e Ñ
begin match eval’ env e with

| None Ñ None
| Some e Ñ Some (VTup e)

end
| Proj e Ñ
begin match eval’ env e with

| (None | Some (VAbs(_, _))) Ñ None
| Some (VTup e) Ñ Some e

end

Wemay now refine the code to add a field for storing the environment in closures:

type value’ =
| VClos’ of id ∗ (id ∗ value’) list ∗ expr
| VTup’ of value’

type ornament value_value’ : value ñ value’ with
| VAbs(x, e) ñ VClos’(x, _, e)
| VTup(v) ñ VTup’(v) when v : value_value’

Since this ornament is not one-to-one, the lifting of eval’ is partial. The advanced
user may realize that there should be a single hole in the lifted code that should
be filled with the current environment env, and may directly write the clause
“ | ∗ Ð env”:

let eval’’ = lifting eval’ with ornament ∗ Ð value_value’, @id | ∗ Ð env

The annotation ornament ∗ Ð value_value’, @id is another way to indicate which
ornaments to use. This is sometimes more convenient than giving a signature.
For each type that needs to be ornamented, we first try value_value’, and use
the identity ornament if this fails (e.g. on types other than value). A more
pedestrian path to writing the patch is to first look at the output of the partial
lifting:

let eval’’ = lifting eval’ with ornament ∗ Ð value_value’, @id

34 CHAPTER 2. ORNAMENTS BY EXAMPLE

let rec eval’’ env e = match e with
| Abs(x, e) Ñ Some (VClos’(x, #32 , e))
| App (e1, e2) Ñ ... | ...

The hole has been labeled #32 which can then be used to refer to this specific
program point. The patch associated to this label can access all variables in
scope where the label #32 appears in the partially lifted term.

let eval’’ = lifting eval’ with ornament ∗ Ð value_value’, @id | #32 Ð env

An interactive tool could point the user to this hole in the partially lifted code
shown above, so that they directly enters the code env, and the tool would
automatically generate the lifting command just above. Notice that env is the
most obvious way to fill the hole here, because it is the only variable of the
expected type available in context. Hence, a very simple form of type-based
code inference could pre-fill the hole with env and just ask the user to confirm.

When the programmer is quite confident, they could even ask for this to be
done in batch mode:

let eval’’ = lifting eval’ with
| ornament ∗ Ð value_value’, @id
| ∗ Ð try by type

Example-based code inference would be another interesting extension of our
prototype, which would increase the robustness of patches to program changes.
Here, the user could instead write:

let eval’’ = lifting eval’ with
| ornament ∗ Ð value_value’, @id
| ∗ Ð try eval env (VAbs (_, _)) = Some (Closure (_, env, _))

providing a partial definition of eval that is sufficient to completely determine
the patch.

For each of these possible specifications, the system will return the same
answer:

let rec eval’’ env e = match e with
| Abs(x, e) Ñ Some (VClos’(x, env, e))
| App(e1, e2) Ñ bind’ (eval’’ env e1) (function

| VClos’(x, _, e) Ñ bind’ (eval’’ env e2) (fun v Ñ eval’’ (Cons((x, v), env)) e)
| VTup’ _ Ñ None)

| Var x Ñ assoc x env
| ...

So far, we have not changed the behavior of the evaluator: the ornaments
guarantee that the result of eval’’ on some expression is essentially the same
as the result of eval—up to the addition of an environment in closures. The final
modification must be performed manually: when applying functions, we need
to use the environment of the closure instead of the current environment.

let rec eval’’ env e = match e with
| Var x Ñ assoc x env
| Abs(x, e) Ñ Some (VClos’(x, env, e))
| App(e1, e2) Ñ
begin match eval’’ env e1 with

| (None | Some (VTup’ _)) Ñ None
| Some (VClos’(x, closure_env, e)) Ñ
begin match eval’’ env e2 with

2.4. HIDING ADMINISTRATIVE DATA 35

| None Ñ None
| Some v Ñ eval’’ (Cons((x, v), closure_env (∗ was env ∗))) e

end
end

| Tup e Ñ
begin match eval’’ env e with

| None Ñ None
| Some v Ñ Some (VTup’ v)

end
| Proj e Ñ
begin match eval’’ env e with

| (None | Some (VClos’(_, _, _))) Ñ None
| Some (VTup’ v) Ñ Some v

end

2.4 Hiding administrative data

Sometimes data structures need to carry annotations, which are useful informa-
tion for certain purposes but not at the core of the algorithms. A typical example
is location information attached to abstract syntax trees for error reporting pur-
poses. The problem with data structure annotations is that they often obfuscate
the code. We show how ornaments can be used to keep programming on the
bare view of the data structures and lift the code to the ornamented view with
annotations. In particular, scanning algorithms can be manually written on the
bare structure and automatically lifted to the ornamented structure with only
a few patches to describe how locations must be used for error reporting.

Consider for example, the type of λ-expressions and its call-by-name evalu-
ator:

type ’a option =
| None
| Some of ’a

type expr =
| Abs of (expr Ñ expr)
| App of expr ∗ expr
| Const of int

let rec eval e = match e with
| App (u, v) Ñ

(match eval u with Some (Abs f) Ñ Some (f v)
| _ Ñ None)

| v Ñ Some (v)

The datatype expr’ that holds location information can be presented as an or-
nament of expr:

type loc = Location of string ∗ int ∗ int
type expr’ =

| App’ of (expr’ ∗ loc) ∗ (expr’ ∗ loc)
| Abs’ of (expr’ ∗ loc Ñ expr’ ∗ loc)
| Const’ of int

36 CHAPTER 2. ORNAMENTS BY EXAMPLE

type ornament add_loc : expr ñ expr’ ∗ loc with
| Abs f ñ (Abs’ f, _) when f : add_loc Ñ add_loc
| App (u, v) ñ (App’ (u, v), _) when u v : add_loc
| Const i ñ (Const’ i, _)

The datatype for returning results is an ornament of the option type:

type (’a, ’err) result =
| Ok of ’a
| Error of ’err

type ornament (’a, ’err) optres : ’a option ñ (’a, ’err) result with
| Some a ñ Ok a
| None ñ Error _

If we try to lift the function without further information,

let eval_incomplete = lifting eval : add_loc Ñ (add_loc, loc) optres

the system will only be able to do a partial lifting, unsurprisingly:

let rec eval_incomplete e = match e with
| (App’(u, v), x) Ñ
begin match (∗ _2 ∗) eval_incomplete u with

| Ok (Abs’ f, x) Ñ Ok (f v)
| ((Ok (App’(_, _, _)) | Ok (Const’(_, _)))

| Error _) Ñ Error #4
end

| (Abs’ f, x) Ñ Ok e
| (Const’ i, x) Ñ Ok e

Indeed, in the erroneous case, eval’ must now return a value of the form Error (...)
instead of None, but it has no way of knowing which arguments to pass to the
constructor, hence the hole labeled #4.

To complete the lifting, we provide the following patch, using the auxiliary
identifier _2 to refer to the inner match expression. This auxiliary identifier is
defined for convenience, and is indicated as a comment next to the corresponding
term when printing partial liftings, as in the code above.

let eval_loc = lifting eval : add_loc Ñ (add_loc, loc) optres with
| #4 Ð begin match _2 with Error err Ñ err

| Ok _ Ñ (match e with (_, loc) Ñ loc) end

We then obtain the expected complete code. Notice that the pattern matching
on all error cases has been expanded to match the different branches of the
patch:

let rec eval_loc e = match e with
| (App’(u, v), loc) Ñ
begin match eval_loc u with

| Ok (Abs’ f, x) Ñ Ok (f v)
| (Ok (App’(_, _, _)) | Ok (Const’(_, _))) Ñ

Error loc
| Error err Ñ Error err

end
| (Abs’ f, loc) Ñ Ok e
| (Const’ i, loc) Ñ Ok e

2.5. HIGHER-ORDER TYPES, RECURSIVE TYPES 37

Common branches could actually be refactored using wildcard abbreviations
whenever possible, leading to the following code, but this has not been imple-
mented yet:

let rec eval_loc e Ñ match e with
| App’ (u, v), loc Ñ

begin match eval_loc u with
| Ok (Abs’ f, loc) Ñ Ok (f v)
| Ok (_, _) Ñ Error loc
| Error err Ñ Error err

end
| _ Ñ Ok e

While this example is limited to the simple case where we only read the abstract
syntax tree, some compilation passes often need to transform the abstract syntax
tree carrying location information around. More experiment is still needed to see
how the ornament approach scales up here to more complex transformations.
This might be a case where appropriate tactics for filling the holes could be
helpful.

This example suggests a new use of ornaments in a programming environ-
ment where the bare code and the lifted code will be kept in sync, and the user
will be able to switch between the two views, using the bare code for the core of
the algorithm that need not see the decorations and the lifted code only when
necessary.

2.5 Higher-order types, recursive types
Lifting also works with higher-order types and recursive datatype definitions
with negative occurrences. For example, we could extend arithmetic expres-
sions with nodes for abstraction and application, with functions represented by
functions of the host language:

type expr =
| Const of int
| Add of expr ∗ expr
| Mul of expr ∗ expr
| Abs of (expr Ñ expr option)
| App of expr ∗ expr

Then, the evaluation function is partial:

let rec eval e = match e with
| Const i Ñ Some(Const i)
| Add (u , v) Ñ
begin match (eval u, eval v) with

| (Some (Const i1), Some (Const i2)) Ñ Some(Const (add i1 i2))
| _ Ñ None

end
| Mul (u , v) Ñ
begin match (eval u, eval v) with

| (Some (Const i1), Some (Const i2)) Ñ Some(Const (mul i1 i2))
| _ Ñ None

end
| Abs f Ñ Some(Abs f)
| App(u, v) Ñ

38 CHAPTER 2. ORNAMENTS BY EXAMPLE

begin match eval u with
| Some(Abs f) Ñ
begin match eval v with None Ñ None | Some x Ñ f x end

| _ Ñ None
end

val eval : expr Ñ expr option

We could still prefer the following representation factoring the arithmetic oper-
ations:

type binop’ =
| Add’
| Mul’

type expr’ =
| Const’ of int
| Binop’ of binop’ ∗ expr’ ∗ expr’
| Abs’ of (expr’ Ñ expr’ option)
| App’ of expr’ ∗ expr’

Then, we can define an ornament between these types, despite expr’ recursively
occurring to the left of a function arrow in its definition:

type ornament oexpr : expr ñ expr’ with
| Const (i) ñ Const’ (i)
| Add (u , v) ñ Binop’ (Add’ , u , v) when u v : oexpr
| Mul (u , v) ñ Binop’ (Mul’ , u , v) when u v : oexpr
| Abs f ñ Abs’ f when f : oexpr Ñ oexpr option
| App (u , v) ñ App’ (u , v) when u v : oexpr

In the clause of Abs, the lifting of the argument is specified by an higher-order
ornament type oexpr Ñ oexpr option that recursively uses oexpr as argument of
another type, and on the left of an arrow. We can then use this to lift the
function eval:

let eval’ = lifting eval : oexpr Ñ oexpr option
with ornament ∗ Ð @id

val eval’ : expr’ Ñ expr’ option

The annotation ornament ∗ Ð @id indicates that, for all ornaments that are not
otherwise constrained, the identity ornament should be used by default. This
is necessary because we create and destruct a tuple in eval, but the type of the
tuple does not appear in the signature, so we cannot specify the ornament that
should be used through the signature. We give more details in Chapter 12.

Chapter 3

Overview of the lifting process

Whether used for refactoring or refinement, ornaments are about code reuse.
Code reuse is usually obtained by modularity, which itself relies on both type
and value abstraction mechanisms. Typically, one writes a generic function gen
that abstracts over the representation details, say described by some structures
s̄ of operations on types τ̄ . Hence, a concrete implementation a is schemati-
cally obtained by the application gen τ̄ s̄; changing the representation to small
variation s̄1 of types τ̄ 1 of the structures s̄, we immediately obtain a new imple-
mentation gen τ̄ 1 s̄1, say a1.

Although the case of ornamentation seems quite different, as we start with a
non-modular implementation a, we may still get inspiration from the previous
schema: modularity through abstraction and polymorphism is the essence of
good programming discipline. Instead of directly going from a to a1 on some
ad hoc track, we may first find a modular presentation of a as an application
agen τ̄ s̄ so that moving from a to a1 is just finding the right parameters τ̄ 1 and
s̄1 to pass to agen.

This is depicted in Figure 3.1. In our case, the elaboration that finds the
generic term agen is syntactic and only depends on the source term a. Hence,
the same generic term agen may be used for different liftings of the same source
code. The specialization process is actually performed in several steps, as we do
not want a1 to be just the application agen τ̄ 1 s̄1, but be presented in a simplified
form as close as possible to the term we started with and as similar as possible
to the code the programmer would have manually written. Hence, after instan-

a „ agen τ̄ s̄

agen
a0 “ agen τ̄

1 s̄1

a1

a1 „ agen τ̄
1 s̄1

elaboration

lifting

instantiation

specialization

trivial
specialization

meta-reduction

simplification

Figure 3.1: Overview of the lifting process

39

40 CHAPTER 3. OVERVIEW OF THE LIFTING PROCESS

tiation, we perform meta-reduction, which eliminates all the abstractions that
have been introduced during the elaboration—but not others. This is followed
by simplifications that will mainly eliminate intermediate pattern matchings.

Having recovered a modular schema, we may use parametricity results, based
on logical relations. As long as the arguments s and s1 passed to the polymorphic
function agen are related—and they are by the ornamentation relation!—the
two applications agen τ̄ s̄ and agen τ̄ 1 s̄1 are also related. Since meta-reduction
preserves the relation, it only remains to check that the simplification steps also
preserve equivalence to establish a relationship between the bare term a and the
lifted term a1 (Chapter 7 and 9).

The lifting process is formally described in Chapter 12. In the rest of this
section, we present it informally on the example of add and append.

3.1 Encoding ornaments

Ornamentation only affects datatypes, so a program can be lifted by simply in-
serting some code to translate from and to the ornamented type at occurrences
where the base datatype is either constructed or destructed in the original pro-
gram.

We now explain how this code can be automatically inserted. For sake of
illustration, we proceed in several incremental steps. Intuitively, the append
function should have the same structure as add, and operate on constructors Nil
and Cons similarly to the way add proceeds with constructors S and Z.

To help with this transformation, we may see a list as a nat-like structure
where just the head of the list has been transformed. For that purpose, we
introduce an hybrid open version of the datatype of Peano naturals, called
the skeleton, using new constructors Z’ and S’ corresponding to Z and S but
remaining parameterized over the type of the argument of the constructor S:

type ’a nat_skel = Z’ | S’ of ’a

We define the head projection of a list into nat_skel1 where the head is trans-
formed and the tail stays a list:

let proj_nat_list : ’a list Ñ ’a list nat_skel = fun m {{“ñ match m with
| Nil Ñ Z’
| Cons (_, m’) Ñ S’ m’

We use annotated versions of abstractions fun x {{“ñ a and applications a#b
called meta-abstractions and meta-applications to keep track of helper code
and distinguish it from the original code, but these can otherwise be read as
regular functions and applications.

Once an ’a list has been turned into ’a list nat_skel, we can pattern match
on it in the same way we match on nat in the definition of add. Hence, the
definition of append should look like:

let rec append1 m n = match proj_nat_list # m with
| Z’ Ñ n
| S’ m’ Ñ ... S’ (append1 m’ n) ...

1Our naming convention is to use the suffix _nat_list for the functions related to the
ornament from nat to list .

3.1. ENCODING ORNAMENTS 41

In the second branch, we must construct a list out of the nat skeleton containing
a list S’ (append1 m’ n). We use a helper function to inject an ’a list nat_skel into
an ’a list :

| S’ m’ Ñ inj_nat_list1 (S’(append m’ n)) ...

Of course, inj_nat_list requires some supplementary information x to put in the
head of the list:

let inj_nat_list : ’a list nat_skel Ñ ’a Ñ ’a list =
fun n x {{“ñ match n with

| Z’ Ñ Nil
| S’ n’ Ñ Cons (x, n’)

As explained earlier (§2.2), we need the patch (match m with Cons (x, _) Ñ x)
to obtain append, and it must be user provided as patch #2. Hence, the lifting
of add into lists is:

let rec append2 m n = match proj_nat_list # m with
| Z’ Ñ n
| S’ m’ Ñ

inj_nat_list # (S’(append2 m’ n)) # (match m with Cons (x, _) Ñ x)

This version is correct, but not final yet, as it still contains the intermediate
hybrid structure, which will eventually be eliminated.

However, before we see how to do so in the next section, we first check
that our schema extends to more complex examples of ornaments. Assume, for
instance, that we also attach new information to the Z constructor to get lists
with some information at the end, which could be defined as:

type (’a,’b) listend = Nilend of ’b | Consend of ’a ∗ (’a, ’b) listend

We may write encoding and decoding functions as above:

let proj_nat_listend = fun l Ñ match l with
| Nilend _ Ñ Z’
| Consend (_,l’) Ñ S’ l’

let inj_nat_listend = fun n x Ñ match n with
| Z’ Ñ Nilend x
| S’ l’ Ñ Consend (x,l’)

However, a new problem appears: we cannot give a valid ML type to the func-
tion inj_nat_listend, as the argument x should take different types depending on
whether n is zero or a successor. This is solved by adding a form of dependent
types to our intermediate language—and finely tuned restrictions to guarantee
that the generated code becomes typeable in ML after some simplifications. The
general idea of the simplifications is given next.

3.1.1 Eliminating the encoding
The mechanical ornamentation both creates intermediate hybrid data structures
and includes extra abstractions and applications. Fortunately, these additional
computations can be avoided, which not only removes sources of inefficiencies,
but also helps generate code with fewer indirections that is more similar to
hand-written code.

We first perform meta-reduction of append2, which removes all helper func-
tions (we actually give different types to ordinary and meta functions so that

42 CHAPTER 3. OVERVIEW OF THE LIFTING PROCESS

meta functions can only be applied using meta-applications and ordinary func-
tions can only be applied using ordinary applications):

let rec append3 m n =
match (match m with Nil Ñ Z’ | Cons (x, m’) Ñ S’ m’) with

| Z’ Ñ n
| S’ m’ Ñ

match S’(append3 m’ n) with
| Z’ ´> Nil
| S’ r’ Ñ Cons ((match m with Cons(x, _) Ñ x), r’)

(The grayed out branch is inaccessible). Still, append3 computes two pattern
matchings that do not appear in the manually written version append. Inter-
estingly, both of them can be eliminated. Extruding the inner match on m in
append3, we get:

let rec append4 m n = match m with
| Nil Ñ (match Z’ with Z’ Ñ n | S’ m’ ´> b)
| Cons (x, m’) Ñ (match S’ m’ with Z’ ´> n | S’ m’ Ñ b)

Since we know that m is equal to Cons(x,m’) in the Cons branch, we simplify b
to Cons(x, append m’ n). After removing all remaining dead branches, we exactly
obtain the manually written version append:

let rec append = fun m n Ñ
match m with

| Nil Ñ n
| Cons (x, m’) Ñ Cons (x, append m’ n)

3.1.2 Inferring a generic lifting

We have shown a specific ornamentation append of add. However, instead of
producing such an ornamentation directly, we first generate a generic lifting
of add abstracted over all possible instantiations, and only then specialize it
to some specific ornamentation by passing encoding and decoding functions as
arguments, as well as a set of patches that generate the additional data.

Let us detail this process by building the generic lifting add_gen of add, which
we repeat below.

let rec add = fun m n Ñ match m with
| Z Ñ n
| S m’ Ñ S(add m’ n)

Because they will be passed together to the function, we group the injection
and projection into a record:

type (’a,’b,’c) orn = { inj : ’a Ñ ’b Ñ ’c; proj : ’c Ñ ’a }
let nat_list = { inj = inj_nat_list; proj = proj_nat_list; }

The code of append2 could have been written as:

let rec append2 m n = match nat_list.proj # m with
| Z’ Ñ n
| S’ m’ Ñ nat_list.inj # (S’(add m’ n)) # (match m with Cons (x, _) Ñ x)
in append2

Instead of using the concrete ornament nat_list, the generic version abstracts
over arbitrary ornaments of nats and over the patch:

3.1. ENCODING ORNAMENTS 43

let add_gen = fun m_orn n_orn p1 {{“ñ

let rec add_gen’ m n = match m_orn.proj # m with
| Z’ Ñ n
| S’ m’ Ñ n_orn.inj # S’(add_gen’ m’ n) # (p1 # add_gen’ # m # m’ # n)

in add_gen’

While append2 uses the same ornament nat_list for ornamenting both argu-
ments m and n, this need not be the case in general; hence add_gen has two
different ornament arguments m_orn and n_orn. The patch p1 is abstracted
over all variables in scope, i.e. m, n and m’.

In general, we ask for a different ornament for each occurrence of a con-
structor or pattern matching on a datatype. We then apply ML inference on
the generic term (ignoring the patches) allowing us to deduce that some orna-
ments encode to the same datatype. In order to preserve the relation between
the bare and lifted terms (see Chapter 11), these ornaments are merged into
a single ornament, with a single record. We thus obtain a description of all
possible syntactic ornaments of the base function, i.e. those ornaments that
preserve the structure of the original code. The patch p1 describes how to ob-
tain the missing information from the environment (namely add_gen, m, n, m’)
when building a value of the ornamented type. While the parameters m_orn
and n_orn will be automatically instantiated, the code for patches will have to
be user-provided.

The generalized function abstracts over all possible ornaments, and must
now be instantiated with some specific ornaments. We may for instance decide
to ornament nothing, i.e. just lift nat to itself using the identity ornament on
nat, which amounts to passing to add_gen the following trivial functions:

let proj_nat_nat = fun x {{“ñ

match x with Z Ñ Z’ | S x Ñ S’ x
let inj_nat_nat = fun x () {{“ñ

match x with Z’ Ñ Z | S’ x Ñ S x
let orn_nat_nat = { proj=proj_nat_nat; inj = inj_nat_nat }

There is no information added, so we may use the following unit_patch for p1:

let unit_patch = fun _ _ _ _ {{“ñ ()
let add1 = add_gen # orn_nat_nat # orn_nat_nat # unit_patch

As expected, meta-reducing add1 and simplifying the result returns the original
program add.

We may also instantiate the generic lifting with the ornament from nat to
lists and the following patch. Meta-reduction of append5 gives append2 which can
then be simplified to append, as explained above.

let orn_nat_list = { proj = proj_nat_list; inj = inj_nat_list }
let append_patch = fun _ m _ _ {{“ñ match m with Cons(x, _) Ñ x
let append5 = add_gen # orn_nat_list # orn_nat_list # append_patch

The generic lifting is not exposed as is to the user because it is not convenient
to use directly. Positional arguments are not practical, because one must refer-
ence the generic term to understand the role of each argument. We can solve
this problem by attaching the arguments to program locations and exposing the
correspondence in the user interface. For example, in the lifting of add to append
shown in the previous section, the location #2 corresponds to the argument p1.

The next two parts formalize the intuition given in this chapter: in Part II,
we define a layer over ML allowing to express the encoding of ornaments and
reasoning tools that will be used to prove that ornamentation is correct; in

44 CHAPTER 3. OVERVIEW OF THE LIFTING PROCESS

Part III, we exploit this language to define the encoding and prove that lifting
is correct.

Part II

A calculus for program
transformation

45

47

In this part, we build a meta-language on top of ML as a tool to define
and reason about ornamentation. We start by formally defining our subset of
OCaml (Chapter 4). We then define a labeling of function applications to reuse
the results of previously computed applications (Chapter 5). We build upon
this concept to present eML, an extension of ML with equalities and type-level
pattern matching (Chapter 6). On top of eML, we add another layer to represent
meta-abstractions andmeta-applications as well as richer type-level computation
(Chapter 7). This layer is carefully designed so that it can disappear simply by
reduction (Theorem 7.3). We present a logical relation allowing us to reason
on mML terms (Chapter 8); later, we will encode ornaments into this relation.
Finally, we show that eML terms can be simplified to ML in appropriate context
(Chapter 9), preserving the logical relation.

48

Chapter 4

Core ML

The transformations done during lifiting take an ML program as input, and
return an ML program as output. We will consider here a small subset of OCaml
[Leroy et al., 2020], featuring data types and polymorphic let bindings. In
particular, our core language has no references or module system. We discusses
extending ornamentation to a larger language in §15.4.

4.1 Notation

We often need to write tuples and sequences of arguments. We write pQiqiPI
for a tuple pQ1, .. Qnq. We often omit the set I in which i ranges and just
write pQiqi, using different indices i, j, and k for ranging over different sets
I, J , and K; we also write Q if we do not have to explicitly mention the
components Qi. In particular, Q stands for pQ, ..Qq in syntax definitions. We
write Qrzi Ð Qis

iPI , or Qrzi Ð Qis
i for short, for the simultaneous substitution

of zi by Qi in Q for all i in I. We sometimes need to consider dependent indices:
we write for example j P Ji for j ranging on a set Ji depending on the index i,
and pQijqiPI,jPJi for the sequence ranging over the pairs of i and j. In this case,
we usually keep the explicit notation. The order of the indices is relevant: we
consider that the order relation ă orders the indices such that the index of an
element is smaller than the indices of elements to its right.

4.2 Types and datatypes

To prepare ML for further extensions, we slightly depart from traditional presen-
tations. Instead of defining type schemes as a generalization of monomorphic
types, we do the converse and introduce monotypes as a restriction of type
schemes. The reason to do so is to be able to see both ML and eML as sublan-
guages of mML—the most expressive of the three. We use kinds to distinguish
between the types of the different languages: for ML we only need a kind Typ, to
classify the monomorphic types, and its superkind Sch, to classify type schemes.
The syntax of kinds (noted κ) and types (σ, τ) is given on Figure 4.1. The mono-
types include function types τ1 Ñ τ2 and application of type constructors d τ ,
while universal quantification @pα : Typq τ , restricted to monotypes, builds a

49

50 CHAPTER 4. CORE ML

κ ::“ Kinds
| Typ Monotypes
| Sch Type schemes

τ, σ ::“ Types
| α Type variable
| τ Ñ τ Function type
| ζ τ Datatype
| @pα : Typq τ Universal quantification

Γ ::“ Typing environments
| H Empty
| Γ, x : τ Variable
| Γ, α : Typ Type variable

D ::“ Datatype environments
| H Empty
| D, ζ : pTyp, ..Typq ñ Typ Type constructor
| D, d : @pαi : Typqi pτjq

j Ñ ζ pαiq
i Data constructor

Figure 4.1: Types, kinds and environments for ML

type scheme. Diverging from the traditional ML syntax, we take type construc-
tors as prefix: thus, the type of lists of booleans is noted list bool instead of
bool list. Type environments Γ bind a set of type variables α, all of kind Typ,
and term variables xi of types τi, which may be type schemes.

We assume given a fixed set of type constructors, written ζ. Each type con-
structor has a fixed signature of the form pTyp, ..Typq ñ Typ. We require that
type expressions respect the kinds of type constructors and type constructors
are always fully applied. We also assume given a set of data constructors. Each
data constructor d comes with a type signature, which is a closed type scheme of
the form @pαi : Typqi pτjq

j Ñ ζ pαiq
i. The mapping between type constructors,

data constructors and their signatures is stored in a datatype environment D,
whose syntax is given on Figure 4.1.

By convention, we choose lowercase names for type constructors, and capi-
talized names for data constructors. Some well-known datatypes will be useful
in examples: the datatype unit with one constructor Unit, the datatype bool with
two constructors False and True, the empty datatype void with no constructors.
We will also use the type of natural numbers nat with two constructors Z and S,
the type of lists list α with two constructors Nil and Cons, the type option α with
two constructors None and Some, the type either pα, βq, with constructors Left
and Right, and the type pair pα, βq with one constructor Pair. The corresponding
type environment is given on Figure 4.2

The well-formedness rules for datatype environments, type environments,
and types are given in Figure 4.3. A datatype environment D is well-formed
(noted $ D) if the types given to the fields of data constructors are valid
(Wf-Datatype). Note that this definition permits arbitrary recursion between
types, including mutually recursive types, non-strictly positive types, and non-
regular types [Bird and Meertens, 1998]. A typing environment Γ is well-formed

4.2. TYPES AND DATATYPES 51

unit : Typ
Unit : unit

bool : Typ
True : bool
False : bool

void : Typ

nat : Typ
Z : nat
S : nat Ñ nat

list : Typ ñ Typ
Nil : @pα : Typq list α
Cons : @pα : Typq pα, list αq Ñ list α

option : Typ ñ Typ
None : @pα : Typq option α
Some : @pα : Typq αÑ option α

either : pTyp,Typq ñ Typ
Left : @pα : Typ, β : Typq αÑ either pα, βq
Right : @pα : Typ, β : Typq β Ñ either pα, βq

pair : pTyp,Typq ñ Typ
Pair : @pα : Typ, β : Typq pα, βq Ñ pair pα, βq

Figure 4.2: Definition of some datatypes

52 CHAPTER 4. CORE ML

EnvEmpty
D $ H

EnvVar
D $ Γ

Γ $ τ : Sch x# Γ

D $ Γ, x : τ

EnvTVar
D $ Γ
α# Γ

D $ Γ, α : Typ

K-Var
D $ Γ

α : Typ P Γ

D; Γ $ α : Typ

K-Datatype
D $ Γ pζ : pTypqi ñ Typq P D pD; Γ $ τi : Typqi

D; Γ $ ζ pτiq
i : Typ

K-Arr
D; Γ $ τ1 : Typ D; Γ $ τ2 : Typ

D; Γ $ τ1 Ñ τ2 : Typ

K-SubTyp
D; Γ $ τ : Typ

D; Γ $ τ : Sch

K-All
D; Γ, α : Typ $ τ : Sch

D; Γ $ @pα : Typq τ : Sch

Wf-Datatype
@pd : @pαi : Typqi pτjq

j Ñ ζ pαiq
iq P D ,

pζ : pTypqi ñ Typq P D ^ pD; pαi : Typqi $ τj : Typqj

$ D

Figure 4.3: Well-formedness rules

4.3. THE SYNTAX OF EXPLICIT ML 53

a, b ::“ Terms
| x Variable
| let x “ a in a Let binding
| fixx px : τq : τ . a Function by fixed point
| a a Application
| a τ Type application
| Λpα : Typq. u Type abstraction
| d τ a Construction
| match a with pP Ñ a | .. P Ñ aq Pattern matching

P ::“ Patterns
| d τ x

u ::“ x | d τ u | fixx px : τq : τ . a | u τ | Λpα : κq. u | let x “ u in u

| match u with pP Ñ u | .. P Ñ uq

Figure 4.4: Syntax of ML

in a datatype environment D, noted D $ Γ if it only contains well-formed types
and does not bind the same variable twice. Finally, a type τ is well-formed with
kind κ in a context D; Γ, noted D; Γ $ τ : κ if all applications of type con-
structors have the right number of arguments (K-Datatype) and any variable
that appears in the type is bound in the context or by a preceding universal
quantification (K-Var). If it does not contain universal quantification, it has
kind Typ. Otherwise, all universal quantification must be at the head of the type
(because the kind Sch cannot appear as the argument of the function arrow or
a type constructor), and it has kind Sch (K-All). The rule K-SubTyp allows
monotypes to be considered as an instance of type schemes. Types (and terms)
are considered up to α-conversion.

Since the datatype environment D does not vary, we will almost always leave
it implicit.

4.3 The syntax of explicit ML

Since we are mainly interrested in transforming ML programs, we describe an
explicitly typed version of ML.

The syntax of ML is given on Figure 4.4. Terms are represented by the meta-
variables a and b. Instead of having a special notation for recursive functions,
functions are always defined recursively, using the construction fix f px : τ1q :
τ2 . a. This avoids having two different syntactic forms for values of function
types. For convenience, we still use the standard notation λpx : τ1q. a for non-
recursive functions, but we just see it as a shorthand for fix f px : τ1q : τ2 . a
where f does not appear free in a and τ2 is the function’s return type. Type
abstraction and type application are explicit, respectively noted Λpα : Typq. a
and a τ . Constructors d take as arguments both a list of types, instantiating the
corresponding type arguments of the datatype, and a list of terms corresponding
to their fields.

54 CHAPTER 4. CORE ML

Var
$ Γ x : σ P Γ

Γ $ x : σ

TAbs
Γ, α : Typ $ u : σ

Γ $ Λpα : Typq. u : @pα : Typq σ

TApp
Γ $ τ : Typ Γ $ a : @pα : Typq σ

Γ $ a τ : σrαÐ τ s

Fix
Γ $ τ1 : Typ Γ $ τ2 : Typ Γ, x : τ1 Ñ τ2, y : τ1 $ a : τ2

Γ $ fixx py : τ1q : τ2 . a : τ1 Ñ τ2

App
Γ $ b : τ1 Γ $ a : τ1 Ñ τ2

Γ $ a b : τ2

Let
Γ $ a : τ 1 Γ, x : τ 1 $ b : τ

Γ $ let x “ a in b : τ

Con
$ Γ $ d : @pαj : Typqj pτiq

i Ñ ζ pαjq
j

pΓ $ τj : Typqj pΓ $ ai : τirαj Ð τjs
jqi

Γ $ dpτjq
jpaiq

i : ζ pτjq
j

Match
Γ $ τ : Sch pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi

Γ $ a : ζ pτkq
k pΓ, pxij : τijrαk Ð τks

kqj $ bi : τqi $ pdiq
i : ζ complete

Γ $ match a with pdipτkq
kpxijq

j Ñ biq
i : τ

Figure 4.5: Typing rules for ML

We distinguish a class of non-expansive terms, noted u, whose evaluation
does not involve reducing function application. We require that the body of
type abstractions is non-expansive. This is a slightly relaxed version of value
restriction [Wright, 1995]. Non-expansive terms will be useful later on because
their reduction terminates. Note that the class of non-expansive terms is not
preserved by substitution of variables for arbitrary terms, but only for substi-
tution by non-expansive terms. To preserve the syntax of terms, we must be
careful to only substitute non-expansive terms for variables.

The typing judgment Γ $ a : τ (which is a shorthand for D; Γ $ a : τ ,
with D considered constant), expresses that a is well-typed of type τ in the
typing context Γ. Its derivation rules are given on Figure 4.5. We need to
ensure that all pattern matchings are non-overlapping and complete. This is
done in Match through an auxiliary judgment $ pdiq

i : ζ complete, defined
as follows: $ pdiq

i : ζ complete if and only if pdiqi contains once and only
once all constructors d such that there exists pαjqj and pτkqk such that pdi :
@pαk : Typqk pτijq

j Ñ ζ pαkq
kq P D. The rules of the typing judgment ensure

that if Γ $ a : τ , then Γ is well-formed and Γ $ τ : Sch; in rule Match this
requires checking explicitly that Γ $ τ : Sch, i.e. that τ and Γ are well-formed,
as the pattern matching can have zero branch if we are matching on a datatype
without constructors.

4.4. EVALUATION 55

v ::“ d τ v | fixx px : τq : τ . a | Λpα : Typq. v

E ::“ rs | E a | v E | d τ pa, .. a, E, v, .. vq | Λpα : Typq. E | E τ

| match E with pP Ñ a | .. P Ñ aq | let x “ E in a

pfixx py : τ 1q : τ . aq v ÝÑh
β arxÐ fixx py : τ 1q : τ . a, y Ð vs

pΛpα : Typq. vq τ ÝÑh
β vrαÐ τ s

let x “ v in a ÝÑh
β arxÐ vs

match dj τ pviq
i with pdj τ pxjiq

i Ñ ajq
j ÝÑh

β ajrxji Ð vis
i

Context-Beta
a ÝÑh

β b

Eras ÝÑβ Erbs

Figure 4.6: Reduction for ML

4.4 Evaluation

The language is equipped with a weak (i.e. we disallow reduction under binders),
call-by-value reduction semantics, expressed in small-step style. To match the
behavior of OCaml, we evaluate applications left-to-right and constructor ar-
guments right-to-left. The definitions of values v, of the evaluation contexts E
are given in Figure 4.6. The reduction ÝÑβ is defined as performing head-
reductions ÝÑh

β in evaluation contexts E. While reduction does not occur under
term abstractions, we reduce under type abstractions: thus evaluation occurs as
if the type abstractions were absent. This is important because abstractions are
not visible in the implicitly-typed language that is presented to the programmer.
If type abstractions did block reduction, the programmer would have to guess
where abstractions are inserted to understand the semantics of the program
they wrote.

Reduction always substitutes variables by values, which are a subset of non-
expansive terms. Thus, the syntax of terms is preserved. Given the evaluation
contexts we have defined, the reduction is deterministic, and values are indeed
irreducible.

Lemma 4.1 (Values are irreducible for ÝÑβ). Consider a value v. Then, there
is no term a such that v ÝÑβ a.

Proof. By contradiction, consider a reduction of v. There exists a decomposition
v “ Erbs where E is an evaluation context, and b ÝÑh

β b
1, and a “ Erb1s.

Let us prove by structural induction of values that this is impossible. There
is no head-reduction on values (because values start with a constructor, while
head-reduction reduces only terms that start with a destructor). Thus, the
evaluation context E is non-empty. Let us consider the different cases for values:

• Suppose v “ dpτqipv1iq
i. Then E is of the form dpτqippv1jq

j , E1, pv1kq
kq,

therefore there is some value v1 in pv1iqi that decomposes as v1 “ E1rbs and
reduces to E1rb1s. This is impossible by induction hypothesis.

• Suppose v “ fixx py : τ 1q : τ . a. There is no possible non-empty context
E such that v “ Erbs.

56 CHAPTER 4. CORE ML

• Suppose v “ Λpα : Typq. v1 for some value v1. Then E “ Λpα : Typq. E1,
thus v1 “ E1rbs reduces to E1rb1s. This is impossible by induction hypoth-
esis.

Lemma 4.2 (ÝÑβ is deterministic). Suppose a ÝÑβ b and a ÝÑβ b
1. Then

b “ b1.

Proof. Let us show that any term a decomposes in at most one way as Era1s
where a1 is head-reducible. This implies the lemma, because head-reduction is
deterministic.

We proceed by induction on a.

• If the term is a variable, the reduction is blocked.

• If it is a let binding a “ let x “ b in b1 there are two cases to consider. If b
is not a value, a does not head-reduce. Then, the decomposition must of
the form E “ let x “ E1 in b1 and we apply the induction hypothesis on b.
If b is a value, the decomposition cannot be of this form, since that would
imply that b reduces. Thus, E is necessarily the empty context.

• If the term is a function definition by fixed point, it is a value, and thus
irreducible.

• If a “ b b1 is an application, there are three cases to consider. If b is not a
value, the term does not head-reduce, and the only possible decomposition
is of the form E “ E1 b1. Then we can apply the inductive hypothesis to
b. If b is a value but b1 is not, the term does not head-reduce, and the only
possible decomposition is of the form E “ b E1 (b does not decompose as
it is a value). The we can apply the inductive hypothesis to b1. Otherwise,
we necessarily have E “ rs.

• Similarly, for type application a “ b τ , either b is not a value and a does
not head-reduce, or b is a value, does not decompose further, and E is the
empty context.

• For type abstraction the context is necessarily of the form E “ Λpα :
Typq. E1, and we can apply the induction hypothesis.

• For constructors we find the first field (starting from the right) that is not
a value, and apply the inductive hypothesis.

• For pattern matching, either the scrutinee is not a value and the term
does not head-reduce, then we can apply the induction hypothesis, or it is
a value and does not decompose so the empty context is the only possible
context.

4.5 Type soundness
As usual, weakening allows us to transport a term to another context, which is
useful to prove that substitution preserves types. We have two ways to enrich
an environment: either add a type variable α : Typ, or add a term variable
a : τ . Similarly, we have three judgments where a typing environment appears:
well-formedness of environments $ Γ, well-formedness of types Γ $ τ : κ and
typing Γ $ a : τ . Thus, we have six statements of weakening:

4.5. TYPE SOUNDNESS 57

Lemma 4.3 (Weakening). Suppose $ Γ,Γ1. Then,

• if α# Γ,Γ1, we have $ Γ, α : Typ,Γ1;

• if x# Γ,Γ1 and Γ $ τ : Sch, then $ Γ, x : τ,Γ1.

Suppose Γ,Γ1 $ τ : κ. Then,

• if α# Γ,Γ1, we have Γ, α : Typ,Γ1 $ τ : κ;

• if x# Γ,Γ1 and Γ $ τ 1 : Sch, then Γ, x : τ 1,Γ1 $ τ : κ.

Suppose Γ,Γ1 $ a : τ . Then,

• if α# Γ,Γ1, then Γ, α : Typ,Γ1 $ a : τ ;

• if x# Γ,Γ1 and Γ $ τ : Sch, then Γ, x : τ,Γ1 $ a : τ .

Proof. By induction on the derivation. For weakening on type variables, since
the variable is free for the context, the context stays valid (EnvTVar), and the
only rule that accesses the context for type variables (K-Var) is monotonic with
respect to the context. Similarly for term variables, with EnvVar and Var.

Similarly, substitution has six different statements:

Lemma 4.4 (Substitution). Suppose Γ $ σ : Typ. Then,

• if $ Γ, α : Typ,Γ1, then $ Γ,Γ1rαÐ σs;

• if Γ, α : Typ,Γ1 $ τ : κ, then Γ,Γ1rαÐ σs $ τ rαÐ σs : κ;

• if Γ, α : Typ,Γ1 $ a : τ , then Γ,Γ1rαÐ σs $ arαÐ σs : τ rαÐ σs.

Suppose Γ $ u : τ .

• if $ Γ, x : τ,Γ1, then $ Γ,Γ1;

• if Γ, x : τ,Γ1 $ τ : κ, then Γ,Γ1 $ τ : κ;

• if Γ, x : τ,Γ1 $ a : τ , then Γ,Γ1 $ arxÐ us : τ .

Proof. By induction on the derivations. For type substitution, substitute in
subderivations by induction, replacing K-Var by the derivation of Γ $ σ : Typ.
For term substitution, substitute in subderivations by induction, replacing rule
Var by the derivation of Γ $ u : τ .

The reduction preserves typing.

Lemma 4.5 (Subject reduction for head reduction). Suppose Γ $ a : τ . Then,
if a ÝÑh

β a
1, we have Γ $ a1 : τ .

Proof. Consider the different redexes.

• If a “ pfixx py : τ 11q : τ 12 . bq v, then the last derivation rule is necessarily
App. Thus, there exists τ1 such that Γ $ fixx py : τ 11q : τ 12 . b : τ1 Ñ τ2 and
Γ $ v : τ1. The last derivation rule of Γ $ fixx py : τ 11q : τ 12 . b : τ1 Ñ τ2
is necessarily Fix. Thus, we have Γ, x : τ1 Ñ τ, y : τ1 $ b : τ . By
substitution (Lemma 4.4), Γ $ arxÐ fixx py : τ 1q : τ . b, y Ð vs : τ .

58 CHAPTER 4. CORE ML

• Proceed similarly for the other redexes (type application and abstraction,
match and constructor, and let and value), by inverting the typing deriva-
tion and applying substitution.

Theorem 4.1 (Subject reduction). Suppose Γ $ a : τ . Then, if a ÝÑβ a
1, we

have Γ $ a1 : τ .

Proof. By induction on the context where head reduction takes place.

• If the context is empty, apply Lemma 4.5.

• Otherwise, notice that typing derivations are not dependent: we can
change subterms as long as we keep the same type. Then apply the in-
duction hypothesis on the reduced subterm.

Moreover, well-typed irreducible terms are values.

Lemma 4.6 (Inversion). Consider a value v, such that Γ $ v : τ .

• If τ “ τ1 Ñ τ2, there exists a such that v “ fixx py : τ1q : τ2 . a.

• If τ “ @pα : Typq τ 1, there exists w such that v “ Λpα : Typq. w.

• If τ “ ζ pτiq
i, there exists a constructor $ d : @pαi : Typqi pτjq

j Ñ ζ pαiq
i

and terms pajqj such that a “ dpτiq
ipajq

j.

Proof. By examining the different cases for values, and inverting the typing
derivation.

Theorem 4.2 (Progress). Consider H $ a : τ . Then, either a reduce, or it is
a value.

Proof. We proceed by induction on the term, as in the proof of Lemma 4.2. In
the induction, we will reduce under type abstractions. For the proof by induction
to work, we need to prove a strengthened result where the typing environment
can bind any number of type variables: consider a set of type variables pαiqi.
Then, if pαi : Typqi $ a : τ , either a is a value or a reduces.

• Term variables are not well-typed in the empty context.

• A function definition by fixed point is a value.

• Each argument of the constructor is well-typed in Γ, thus is either a value
or reduces. If all arguments are values, a is a value. Otherwise, we can
reduce the rightmost non-value argument.

• The term inside a well-typed type abstraction is well-typed in an environ-
ment Γ, α : Typ enriched with one type variable, thus is either a value or
reduces. If it reduces, the abstraction reduces. Otherwise a is a value.

• If a is a let binding let x “ b in b1, apply the induction hypothesis on b,
well-typed in Γ. If b reduces to b2, a reduces to let x “ b2 in b1. Otherwise,
b is a value, and a reduces to b1rxÐ bs.

4.5. TYPE SOUNDNESS 59

• In the case of applications a “ b b1, by inverting the last typing rule, b and
b1 are well-typed. If b1 reduces, a reduces. Otherwise, it is a value. Then,
if b reduces, a reduces. Let us assume b and b1 are values. By inverting the
type derivation, we know that there exists a type τ1 such that H $ b1 : τ1
and H $ b : τ1 Ñ τ . Then, by Lemma 4.6, we know that there exists a1
such that b “ fixx py : τ1q : τ . a1. Then, a reduces to a1rxÐ b, y Ð b1s.

• Proceed similarly for pattern matching and type application.

60 CHAPTER 4. CORE ML

Chapter 5

Labelling ML terms

We introduce a labeling system for ML: expansive computations are labeled so
that their result can be reused without recomputation later in the term, without
having to introduce explicit bindings. This will be used in eML, presented in
the next chapter, to refer to results of previous computations that were useful
in determining, e.g. which branch is taken. eML only requires the labels being
available at type-level. The language we present here also has labels at value
level (and, indeed, is mostly untyped).

5.1 Overview
When lifting an ML program, we provide patches to fill in the missing parts of
the term. When writing these patches, we might need to access a previously
computed result after it has been computed. For example, suppose we are lifting
the following term by lifting the output boolean to an integer:

match random_int_option pq with Some _Ñ True | None Ñ False

We obtain a program of the form

match random_int_option pq with Some _Ñ Some #1 | None Ñ None

To provide a value for the hole #1 we need to access the result of the call
to random_int_option, but we dropped some information. We cannot call the
function a second time, as it may have side-effects, or in this case return a
different result altogether. If we can recover the result of the call, we can simply
match on it again to finish the transformation.

This is already achievable in ML by program transformation: in that case,
we simply have to bind the result of the computation to a variable that we can
reuse later on:

let x “ random_int_option pq in
match x with Some _Ñ True | None Ñ False

The lifted term becomes:

let x “ random_int_option pq in
match x with Some _Ñ Some #1 | None Ñ None

61

62 CHAPTER 5. LABELLING ML TERMS

The hole #1 can then be patched with match x with Some y Ñ y | None Ñ 0.
Note that we have another issue there: we know from the branch we are

in that x is necessarily Some _, but we have to provide a complete pattern
matching. In this example, we simply insert a placeholder value there. We
solve this problem in Chapter 6 by teaching the type system how to use branch
information to decide that some branches are unreachable. This re-uses the
labelling system to refer to previously performed computations.

We don’t need to give names to computations that don’t involve function
application: we consider them both safe and cheap to duplicate if needed.

More complicated cases can also be handled by program transformation,
although at increased cost. Consider for example the program

let x1 = match f () with
| True Ñ g () != 2
| False Ñ False

in
C[#1]

We can only bind g () to a variable if it is actually evaluated, which means we
have to extrude the match around the binding of x1 and duplicate the context
Cr_s so we can reuse the result in #1:

let y1 = f () in
match y1 with
| True Ñ
let y2 = g () in
let x1 = y2 != 2 in
C[#1]
| False Ñ
let x1 = False in
C[#2]

With more pattern matching, we would have to duplicate even more code, nest
even more pattern matchings, and generate even more patches. Moreover, our
lifting strategy does not allow us to perform only the necessary extrusions: since
we want to create a completely generic term that can support any lifting of the
base function, we have to perform all extrusions, even if they are unneeded.

We would rather take the inverse approach: only perform the necessary
extrusions at the latest possible moment, once the term has been instantiated
and we are reducing it back to an ML term. We label each application in the
execution of a program with an unique label p, noted above the application as
in fp x. When we want to reuse the result of a previously executed application,
we access the value of the label, noted ˚p. Our first example becomes: match
random_int_option1 pq with Some _ Ñ Some #1 | None Ñ None, and we can
patch it with match ˚1 with Some y Ñ y | None Ñ 0.

Labels are substituted as soon as the corresponding expansive computation
is evaluated: thus, labels are accessible in all subterms evaluated after the ap-
plication that binds them in the ML evaluation order.

We want applications to have unique names, and application of a function
can create new applications to be evaluated later by duplicating the code inside
the body of the function. Therefore, we need a way for each separate application
to generate its own labels. Instead of using abstract names for labels, we use

5.2. LABELLED REDUCTION 63

paths constructed by concatenating abstract labels. We want a function appli-
cation labelled by a (unique) label p to only generate applications prefixed by p
with a unique suffix. This guarantees that the labels generated throughout the
execution are unique. We add to each term abstraction a label variable π: all
applications in execution position inside the abstraction will then have a label
prefixed by π.

Our presentation here is untyped, we only add some well-labeling checks
to ensure unicity of the generated labels (and later confluence, see §7.3.1). In
particular, we do not worry about using labels that are only defined in some
branches: the problem of knowing whether a particular label is valid to use or
not is solved by the extension to eML in Chapter 6.

When reducing an application labelled with p, we immediately substitute
all instances of ˚p with the result of the application. This requires some care:
consider let x “ pλπ py : unitq. randomπ¨1 pqq1 pq in px, ˚1q. If we substituted
all instances of ˚1 with the result of the application when reducing the lambda,
we would obtain let x “ random1¨1 pq in px, random1¨1 Unitq. This is wrong:
we duplicated the call to random and we will probably end up with different
results for the two calls. We also duplicated a label, while we want labels
to uniquely identify applications. Instead, we substitute a reusable version of
the term, obtained by replacing all new applications by a reuse of their label:
here, this reusable version is simply ˚1 ¨ 1. The reduced term is thus: let x “
random1¨1 pq in px, ˚1 ¨ 1q.

5.2 Labelled reduction

In this section, we define the syntax of labelled terms and their reduction (Fig-
ure 5.1).

Result names, noted p and q are formed by appending a sequence of path
components n to either the root name ε or a path variable π. When writing a
path starting from the root component, we may omit it: we write n1 ¨ n2 for
ε ¨ n1 ¨ n2. If q is a path starting from the root, we note p ¨ q the path formed
by appending all path components of q to p. We say a path q is a suffix of p,
noted p ď q, if q can be formed by adding some path components to p. It is a
strict suffix if it is different from p.

The syntax of terms a is identical to the syntax of ML, with a few deviations:
first, all applications are labelled: ap b is read as the application of a to b
labelled with p. Second, we write ˚p the reuse of the result of the application
labelled p. When the application is reduced, ˚p is replaced with the result of
the reduction. Third, lambda abstractions also bind a path variable π. This
variable can be used as a prefix for the labels appearing in the variable (either
being defined or used). When an application is reduced, the label variable
on the lambda is substituted with the label of the application in the body of
the abstraction. The grammar of non-expansive terms u is also extended. As
before, applications are expansive. Conversely, reused results ˚p are always non-
expansive. The grammar of values v is unchanged, except for the label variables
added to abstractions.

The definition of the evaluation contexts, the head reduction, and the context
rule are given on Figure 5.2. We define evaluation from elementary context
layers E : they represent the possible right-to-left evaluation contexts in ML,

64 CHAPTER 5. LABELLING ML TERMS

a, b ::“ Terms
| x Variable
| let x “ a in a Let binding
| fixπ x px : τq : τ . a Function by fixed point
| ap a Application
| a τ Type application
| Λpα : Typq. u Type abstraction
| d τ a Construction
| match a with pP Ñ a | .. P Ñ aq Pattern matching
| ˚p Reuse

P ::“ Patterns
| d τ pxqi

p, q ::“ Result names
| ε Root
| π Variable
| p ¨ n Path

u ::“ x | d τ u | fixπ x px : τq : τ . a | u τ | Λpα : κq. u | let x “ u in u

| match u with pP Ñ u | .. P Ñ uq | ˚p

v ::“ x | d τ v | fixπ x px : τq : τ . a | Λpα : κq. v

Figure 5.1: Syntax of labelled ML

5.2. LABELLED REDUCTION 65

E ::“ let x “ rs in a | rsp a | vp rs | d τ pa, .. a, rs, v, .. vq | Λpα : Typq. rs | rs τ

| match rs with pP Ñ a | .. P Ñ aq

pΛpα : Typq. vq τ
0
ÝÑ vrαÐ τ s

pfixπ x py : τ 11q : τ 12 . aq
p v

˚pÐreuseparπÐp,xÐfixπ x py:τ 11q:τ
1
2 . a,yÐτ

1
1sq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

arπ Ð p, xÐ fixπ x py : τ 11q : τ 12 . a, y Ð τ 11s

let x “ v in a
0
ÝÑ arxÐ vs

match dj τ pviq
i with pdj τ 1 pxjiq

i Ñ ajq
j 0
ÝÑ ajrxji Ð vis

i

Red-NoLabel
a

0
ÝÑ b

Eras 0
ÝÑ Erbs

Red-Label
a
˚pÐu
ÝÝÝÝÑ b

Eras ˚pÐuÝÝÝÝÑ pEr˚pÐ usqrbs

Figure 5.2: Reduction for labeled ML

and embed constrains about the fact that terms to the right must already be
reduced to value for a subterm to be in evaluation position.

The reduction ÝÑβ is similar to the ML reduction, except that the reduction
is labelled: a reduction 0

ÝÑ indicates that the head-reduction was performed on a
non-expansive term, while a reduction ˚pÐu

ÝÝÝÝÑ labelled with a substitution indi-
cates that an expansive term with label p has been reduced to some expression
to which u is a representation. Then, all occurrences of ˚p in the evaluation con-
text are substituted by the non-expansive term u. This is done in the context
rules Red-NoLabel (propagating the empty label) and Red-Label (applying
the substitution and propagating it to the enclosing context).

The evaluation contexts E do not bind term variables, and only non-expansive
terms occur under type abstraction; thus we do not need to take precautions to
ensure that the terms substituted for labels stay well-scoped while moving up
the context layers.

The head reduction rules are almost identical to the ML reduction rules.
They are also labelled: reductions of non-expansive redexes (type application, let
binding and pattern matching) have an empty label. Reductions of applications
are labelled with a substitution ˚p Ð u of the label p of the application with
a non-expansive representation u of the result of the application. The non-
expansive representation of a term a is noted reusepaq. It is formed by replacing
all expansive computations in evaluation position (not under a term abstraction)
by a reuse of their label. This makes it equivalent to the term, as long as the
term is already evaluated once before. The definition is given in Figure 5.3: the
important rule is given first, the others simply descend on the structure of the
terms.

Lemma 5.1 (Values do not reduce). Values are irreducible for ÝÑh
β.

Proof. By structural induction on values. Values are never head-reducible (be-
cause they start with a constructor), and if v “ Eras, then a is a value too.

66 CHAPTER 5. LABELLING ML TERMS

reusepap bq “ ˚p

reusepxq “ x
reusep˚pq “ ˚p
reusepΛpα : Typq. uq “ Λpα : Typq. u
reusepfixπ x py : τ 1q : τ . aq “ fixπ x py : τ 1q : τ . a

reuseplet x “ a in bq “ let x “ reusepaq in reusepbq
reusepa τq “ reusepaq τ
reusepdipτjq

jpakq
kq “ dipτjq

jpreusepakqq
k

reusepmatch a with pdipτkq
kpxijq

j Ñ biq
iq

“ match reusepaq with pdipτkq
kpxijq

j Ñ reusepbiqq
i

Figure 5.3: Making ML terms reusable

Lemma 5.2 (Unique decomposition). Consider a reducible term a. Then, ei-
ther a is not head-reducible and there is a unique decomposition as a “ Erbs
where b is reducible, or a is head-reducible and there is no such decomposition.

Proof. Consider the different cases for a.

• Variables x and reused results ˚p are not reducible.

• Suppose a is let x “ a1 in a2. If a1 is not a value, the term is not head-
reducible, and the only possible reduction context is E “ let x “ rs in a2.
Then a1 must be reducible (otherwise a would not be reducible), and
we have a “ Era1s. If a1 is a value, a head-reduces. The only possible
reduction context is E “ let x “ rs in a2 but it does not produce a
decomposition because a1 is not reducible (by Lemma 5.1).

• We proceed similarly for terms starting with destructors (application, pat-
tern matching).

• Term abstractions are always values and do not reduce.

• For other constructors: we consider the case of data constructors, with a “
dpτqipajq

j . Since a is reducible, there exists a decomposition of pajqj “
pbkq

kbpv`q
` such that b reduces. By Lemma 5.1, b is not a value. Other

possible contexts are of the form E “ dpτqipbkq
kbpv`q

`ănrspv`q
`ąn with

a “ Ervns. But vn is irreducible.

Lemma 5.3 (Determinism). Suppose a is reducible. There exists a unique b
and l such that a l

ÝÑh b.

Proof. By induction on the term, using unique decomposition: if there were two
reductions, there would be two decompositions.

5.3 Full reduction
In this section, we introduce a full reduction for labeled ML. While we will
not use it directly, it will serve to explain how the labeling, that seems very

5.3. FULL REDUCTION 67

pΛpα : Typq. uq τ
0
ÞÝÑ urαÐ τ s

pfixπ x py : τ 11q : τ 12 . aq
p u

˚pÐreuseparπÐp,xÐfixπ x py:τ 11q:τ
1
2 . a,yÐτ

1
1sq

ÞÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

arπ Ð p, xÐ fixπ x py : τ 11q : τ 12 . a, y Ð τ 11s

let x “ u in a
0
ÞÝÑ arxÐ us

match djpτ
2
k q
kpviq

i with pdjpτkq
kpxjiq

i Ñ ajq
j 0
ÞÝÑ ajrxji Ð vis

i

Figure 5.4: Full head reduction for labeled ML

C ::“ let x “ rs in a | let x “ a in rs | ap rs | rsp a | d τ pa, .. a, rs, a, .. aq

| Λpα : Typq. rs | fixπ x px : τq : τ . rs | rs τ

| match rs with pP Ñ a | .. P Ñ aq | match a with pP Ñ rs | . . . P Ñ aq

Figure 5.5: Contexts for full reduction

dependent on the evaluation order of ML, is actually compatible with full re-
duction. We will build upon the concepts defined here to provide full reduction
for meta-abstractions in mML (Chapter 7).

The full reduction allows reduction in any position, including under a lambda.
Moreover, instead of requiring values in redexes, we only require terms to be
non-expansive. The definition of the head reductions is given in Figure 5.4.
Other than requiring non-expansive terms instead of values, they are identical
to the head reductions of the weak reduction.

The contexts of the reduction are all shallow contexts C. We enumerate
them in Figure 5.5.

There is an additional wrinkle to take care of when performing full reduction.
Consider the reduction of let z “ let x “ True in pλpy : boolq. yqp x in ˚p. If we
start by reducing the abstraction, we need to propagate a result ˚p Ð x. This
is fine until we leave the scope of x, but if we continue propagating this to the
toplevel, we end up with let z “ let x “ True in x in x, which reduces to x.
If we follow the weak reduction order on the same term, we end up with True:
our reduction is not confluent. We need a way to keep the value of x available
in the term, even if x has not been evaluated yet. Fortunately, we have exactly
that: when ˚p Ð u passes through a let x “ a in rs layer, we transform it into
˚pÐ urxÐ reusepaqs.

We encounter similar problems with pattern matching. We can perform the
same pattern matching to get the values of the variables in a branch, but we are
blocked in other branches: we know locally which branch has been taken, but
there is no way to use this information to create terms to fill the other branches.
We work around this (until Chapter 6 gives us a better solution) by allowing
incomplete pattern matchings.

Lambda abstractions also bind term variables. There is no easy way to
recover a value for these variables because lambda abstractions are detached
from the term that will be used as argument. For this reason, when reducing
inside of a lambda abstraction, we hide the label on the reduction from the
context outside of the abstraction: the reduction becomes unlabeled. Lastly,
type abstractions contain only non-expansive terms, and reducing non-expansive

68 CHAPTER 5. LABELLING ML TERMS

p˚pÐ uq Ò fixx τ rs : py : τ 1q . “ 0

p˚pÐ uq Ò match a with P Ñ rs | . . . “ ˚pÐ match reusepaq with P Ñ u
p˚pÐ uq Ò let x “ a in rs “ ˚pÐ urxÐ reusepaqs

p˚pÐ uq Ò let x “ rs in a “ ˚pÐ u
p˚pÐ uq Ò aq rs “ ˚pÐ u
p˚pÐ uq Ò rsq a “ ˚pÐ u
p˚pÐ uq Ò d τ ppaiq

i, rs, pajq
jq “ ˚pÐ u

p˚pÐ uq Ò rs τ “ ˚pÐ u
p˚pÐ uq Ò match rs with pP Ñ a | .. P Ñ aq “ ˚pÐ u

Figure 5.6: Translation

Red-NoLabel
a

0
ÞÝÑ b

Cras 0
ÞÝÑ Crbs

Red-Label
a
˚pÐu
ÞÝÝÝÝÑ b

Cras p˚pÐuqÒCÞÝÝÝÝÝÝÑ pCr˚pÐ usqrbs

Figure 5.7: Full reduction

terms will not produce a label.
We express these transformations on labels by defining a translation function

p˚pÐ uq Ò C that returns either a new label ˚pÐ u1 or 0. Its definition is given
in Figure 5.6. For weak reduction contexts (i.e. the last six cases), the label is
propagated as-is, which is consistent with the fact that we did not need label
translation in weak reduction contexts.

Then, the full reduction is defined using these two functions in Figure 5.7.
It generalizes the previous reduction:

Lemma 5.4 (Superset). Suppose a l
ÝÑ b. Then a l

ÞÝÑ b.

Proof. The evaluation contexts and redexes of the weak reduction are a subset
of the evaluation contexts and redexes of the full reduction, the weak head re-
duction is a subset of the full head reduction, and the context rules are identical
for evaluation contexts.

The reduction preserves non-expansivity. Moreover, reduction of non-expan-
sive terms does not produce a label:

Lemma 5.5 (Non-expansivity). Suppose u l
ÞÝÑ a. Then a is non-expansive and

l “ 0.

Proof. By induction on the contexts. Contexts that yield non-expansive terms
either have a non-expansive term in the hole or remove the label. Non-expansive
redexes do not produce a label when reducing.

5.4 An attempt at well-labelling

Unfortunately, the full reduction is not confluent. There are three causes for
this. The first cause is that we can have two redexes with the same label.

5.4. AN ATTEMPT AT WELL-LABELLING 69

Depending on which we reduce first, we get two different results. Consider for
example the following two reduction paths from the same term:

p˚p, pλπ x. xqp 1, pλπ y. yp q2q p˚p, pλπ x. xqp 1, pλπ y. yqp 2q
˚pÐ1
ÞÝÝÝÝÑp1, 1, pλπ y. yqp 2q

˚pÐ2
ÞÝÝÝÝÑp2, pλπ x. xqp 1, 2q

˚pÐ2
ÞÝÝÝÝÑp1, 1, 2q

˚pÐ1
ÞÝÝÝÝÑp2, 1, 2q

Secondly, depending on the order of evaluation, a label may or may not be
substituted. Consider the following example, where ˚1 ¨ 1 is substituted or not
depending on whether we start by reducing the outer or the inner thunk:

p˚1 ¨ 1, pλπ y. pλπ z. xqπ¨1 pqq1 pqq p˚1 ¨ 1, pλπ y. pλπ z. xqπ¨1 pqq1 pqq
˚1Ð˚1¨1
ÞÝÝÝÝÝÝÑp˚1 ¨ 1, pλπ z. xq1¨1 pqq

H
ÞÝÑ p˚1 ¨ 1, pλπ y. xq1 pqq

˚1¨1Ðx
ÞÝÝÝÝÝÑ px, xq

˚1Ðx
ÞÝÝÝÝÑp˚1 ¨ 1, xq

Third, under branching constructs, evaluation might simply discard the expres-
sion generating a label before it is substituted: for example, in the following
example, the label 1 is generated in a dead branch. But nothing prevents the
full reduction from evaluating inside this dead branch:

p˚1, if False then pλπ z. xq1 2 else 2q p˚1, if False then pλπ z. xq1 2 else 2q
˚1Ð2
ÞÝÝÝÝÑp2, if False then 2 else 2q

H
ÞÝÑp˚1, 2q

H
ÞÝÑ p2, 2q

We can solve the first two issues by defining a set of well-labeled terms, stable
by reduction. The third issue is solved by the introduction of eML in Chapter 6.
We have two constraints. First, the labels produced by the reductions must be
distinct. We cannot merely ask the labels present in a term to be distinct,
because reduction of expansive redexes creates new redexes. To control the new
labels, we require that the labels generated by reduction of a redex labeled p
have labels prefixed by p. Then, a term should produce a set of labels such
that no label is a prefix of another: this guarantees that replacing p with a
set pp ¨ niqi will never create a conflict. Second, the order of evaluation should
not influence when a label gets substituted. This is a constraint on the uses of
labels: we must be certain that whatever the order of evaluation, a label will be
substituted, or that whatever the order of evaluation it won’t be. The second
case is useful for subject reduction, because we need to handle the case where
the expression producing a label was under a branch that disappeared during
reduction.

To control the unicity of label, we need to define orthogonal sets of paths.

Definition 5.1 (Prefix). A path p is a prefix of q, noted p ď q, if there a exists
a (possibly empty) sequence of labels pniqi such that q “ p ¨ n1 ¨ . . . ¨ nn. This
defines a partial order on the set of paths.

If neither p ď q nor q ď p, we say that p and q are orthogonal, noted
p K q. ♦

Definition 5.2 (Orthogonal set, union). A set S of paths is orthogonal, noted
orthogonalpSq, if there are no distinct elements p and q such that p ď q.

If S1 and S2 are orthogonal, and for all p1 P S1, p2 P S2, p1 K p2, then
S1 and S2 are said to be orthogonal, and there union S1 Y S2 is an orthogonal
set. ♦

70 CHAPTER 5. LABELLING ML TERMS

L-Var
orthogonalpΓq

Σ; Γ $pl xñH

L-TAbs
Σ; Γ $pl uñH

Σ; Γ $pl Λpα : Typq. uñH

L-TApp
Σ; Γ $pl añ ∆

Σ; Γ $pl a τ ñ ∆

L-Fix
π # Σ Σ, π; Γ $πl añ ∆

Σ; Γ $pl fixπ x py : τ1q : τ2 . añH

L-App
Σ; Γ $pl añ ∆1 Σ; Γ,∆1 $

p
l bñ ∆2 p ď q q K Γ,∆1,∆2

Σ; Γ $ql a
q bñ ∆1,∆2, q

L-Let
Σ; Γ $pl añ ∆1 Σ; Γ,∆1 $

p
l bñ ∆2

Σ; Γ $pl let x “ a in bñ ∆1,∆2

L-Con
orthogonalpΓq pΣ; Γ, p∆kq

kąj $
p
l aj ñ ∆jq

j

Σ; Γ $pl dpτiq
ipajq

j ñ p∆jq
j

L-Match
Σ; Γ $pl añ ∆ pΣ; Γ,∆ $

p
l ai ñ ∆iq

i orthogonalp∆iq
i

Σ; Γ $pl match a with pPi Ñ aiq
i ñ ∆, p∆iq

i

L-Reuse
orthogonalpΓq p P Γ_ p K Γ

Σ; Γ $pl ˚pñH

Figure 5.8: Well-labeling

5.4. AN ATTEMPT AT WELL-LABELLING 71

We define a well-labeling judgment Σ; Γ $
p
l a ñ ∆, asserting that under

an environment with label variables Σ and that produces the set of labels Γ,
and when the current prefix for introducing new labels is p, the term a is well-
labeled and may produce labels ∆. The rules of the judgment are given in
Figure 5.8. They are essentially a miniature type-system that is only concerned
with the existence of labels. Information flows following the evaluation order:
for example, in application (L-App), the labels obtained evaluating the left-hand
expression are added as input to the right-hand expression. The well-labeling
judgment is only very weakly concerned with the existence of reused labels: it
just wants them to be unambiguously bound, or unambiguously unbound. The
latter case can happen if a reduction removes the code that would have emitted
the label. A latter reduction might then remove the use of the label. For this
reason, we allow reused labels (L-Reuse) to be either in Γ or independent from
Γ.

The rules maintain some invariants.

Lemma 5.6 (Scoping of path variables). Suppose Σ; Γ $pl a ñ ∆. Then, Σ
does not contain duplicate variables, and all variables occurring in Γ, ∆, p, a
are in Σ.

We write the reduction rules such that if Σ; Γ $
p
l a ñ ∆, Γ and ∆ are

orthogonal. This is enforced by requiring Γ to be orthogonal in L-Var, and re-
quiring the different outputs to be orthogonal in L-Match. The rest is implicitly
enforced:

Lemma 5.7 (Disjoint labels). Suppose Σ; Γ $pl a ñ ∆. Then, Γ K ∆ and all
labels in ∆ are prefixed by p.

Proof. Γ is orthogonal: all derivation rules have a premise whose set of input
labels is Γ or a superset of Γ (then, proceed by induction), except L-Var where
we check explicitly that Γ is orthogonal.

Γ K ∆: the only rule that grows ΓY∆ is L-App, and L-App checks that the
union of input and output labels remains independent.

∆ is orthogonal: for most rules, ∆ is obtained by the union of part of
the input of a premise and its output. L-App checks that the new label is
independent of the already-existing output. L-Match explicitly checks that the
output is orthogonal.

All labels in ∆ are prefixed by p: labels are only introduced by L-App and
it checks that the label is prefixed by p.

Lemma 5.8 (Non-expansivity). Suppose Σ; Γ $pl añ ∆. If a is non-expansive,
then ∆ “ H, and for all q, Σ; Γ $ql añH.

Proof. By induction on the derivation. No rules can inspect p or add something
in ∆ until passing through L-Fix because function application is expansive, and
L-Fix erases the label and ∆.

We need to prove weakening and substitution:

Lemma 5.9 (Weakening). Suppose Σ; Γ $pl añ ∆. Then:

• Suppose q ď p, and q independent of Γ,∆. Then, Σ; Γ $ql añ ∆.

• Suppose π R Σ. Then, Σ, π; Γ $pl añ ∆.

72 CHAPTER 5. LABELLING ML TERMS

• Suppose q K p,Γ,∆. Then, Σ; Γ, q $pl añ ∆.

Proof. By induction on the derivation: these changes translate to weakening in
the premises. The independence side-conditions stay true in the derivations.

Lemma 5.10 (Substitution). Suppose Σ; Γ $pl añ ∆.

• Consider π P Σ, and q K Γ,∆. Then, Σ ´ π; Γrπ Ð qs $
prπÐqs
l arπ Ð

qs ñ ∆rπ Ð qs.

• Consider x and a non-expansive term u such that Σ; Γ $pl uñH. Then,
Σ; Γ $pl arxÐ us ñ ∆.

Proof. By induction on the derivation.

We can prove that well-labeling is preserved by reduction (this is a form
of subject reduction). Reduction can emit a label, which changes the set of
possibly emitted labels: the emitted label p must be in ∆, and it is replaced by
a set of labels prefixed by p. If no label is emitted, ∆ does not change.

Lemma 5.11 (Subject reduction for well-labeling). Suppose Σ; Γ $pl a ñ ∆.
Moreover, suppose a l

ÞÝÑ b. Then:

• If l “ 0, we have Σ; Γ $pl bñ ∆1 where ∆1 is a subset of ∆.

• If l “ ˚q Ð u, we have Σ; Γ $pl bñ ∆1 where ∆1 “ ∆´ tqu Z S where S
is an orthogonal set of labels prefixed by p.

Proof. Let us first prove the result for head reductions:

• For reduction of an application pfixπ x py : τq : τ 1 . aqq u: the application
reduces to arπ Ð q, x Ð pfixπ x py : τq : τ 1 . aq, y Ð us, with label
l “ ˚q Ð reuseparxÐ usq. Inverting rule L-App, we obtain that p ď q and
there exists ∆1 and ∆2 such that ∆ “ ∆1Z∆2Ztqu, with Σ; Γ $pl fixπ xpy :
τq : τ 1 . añ ∆1 and Σ; Γ,∆1 $

p
l uñ ∆2. Since both fixπ x py : τq : τ 1 . a

and u are non-expansive, ∆1 “ ∆2 “ H (Lemma 5.8). Further inverting
the first subderivation (that must use L-Fix), we obtain that there exists
∆3 such that: Σ, π; Γ $πl a ñ ∆3. By substitution of term variables
and path variables (Lemma 5.10), we have Σ; Γrπ Ð qs $ql arπ Ð q, x Ð
pfixπ xpy : τq : τ 1 .aq, y Ð us ñ ∆3rπ Ð qsx. The path variable π does not
appear in Γ (the free variables of Γ are included in Σ, thus Γrπ Ð qs “ Γ.
By Lemma 5.7, all labels of ∆3rπ Ð qs are prefixed by q. By weakening
of the path prefix (Lemma 5.9), we have Σ; Γ $pl arπ Ð q, xÐ pfixπ x py :
τq : τ 1 . aq, y Ð us ñ ∆3rπ Ð qs, which is the result we are looking for
(we have ∆ “ tqu, and S “ ∆3rπ Ð qs).

• Consider the reduction of a type application: pΛp. α : Typquq τ reduces to
urα Ð τ s with label 0. Inverting the last rule (L-TApp), we get Σ; Γ $pl
Λpα : Typq. u ñ H and ∆ “ H. Inverting rule L-TAbs, we get Σ; Γ $pl
u ñ H. By substitution of the type variable (Lemma 5.10), Σ; Γ $

p
l

urαÐ τ s ñ H,

5.4. AN ATTEMPT AT WELL-LABELLING 73

• Consider the reduction of a let binding: let x “ u in a reduces to arxÐ us
with label 0. By inverting the last derivation, we get that there exists
∆1,∆2 such that ∆ “ ∆1 Z ∆2, and Σ; Γ $pl u ñ ∆1 and Σ; Γ,∆1 $

p
l

a ñ ∆2. Since u is non-expansive, ∆1 “ H and ∆ “ ∆2. Then, by
substitution (Lemma 5.10), Σ; Γ $pl arxÐ us ñ ∆2.

• Consider reduction of a pattern matching:

match djpτ
2
k q
kpuiq

i with pdjpτkq
kpxjiq

i Ñ ajq
j

It reduces with label 0 to ajrxji Ð uis
i. Let us invert the rule L-Match.

There exists ∆1, p∆jq
j such that ∆ “ ∆1 Z p∆jq

j , Σ; Γ $pl djpτ
2
k q
kpviq

i ñ

∆1, and, for all j, Σ; Γ,∆1 $pl aj ñ ∆j . We have ∆ “ H because
djpτ

2
k q
kpviq

i is non-expansive. By inverting the rule L-Con, we get that,
for all i, Σ; Γ $pl ui ñ H. By substitution, Σ; Γ $pl ajrxji Ð uis

i ñ ∆j .
This satisfies subject reduction, since ∆j is a subset of ∆.

Then, we proceed by induction on the reduction context. Let us consider a
few different cases for context (other cases are similar):

• Suppose C “ let x “ rs in b, and a0
l
ÞÝÑ a1. Then, let x “ a0 in b

l
ÞÝÑ

let x “ a0 in brls. Suppose let x “ a0 in b is well-labeled: then the last
rule of the well-labeling derivation is L-Let and there exists Σ,Γ, p,∆1,∆2

such that Σ; Γ $pl a0 ñ ∆1, Σ; Γ,∆1 $
p
l b ñ ∆2, and Σ; Γ $pl let x “

a0 in b ñ ∆1,∆2. By induction hypothesis, there exists ∆11 such that
Σ; Γ $pl a1 ñ ∆11. We have ∆11 K ∆2: this is true for ∆1 and the new
elements of ∆11 are suffixes of elements of ∆1: thus, if an element of ∆11 is a
prefix of an element of ∆2, then an element of ∆1 was a prefix of an element
of ∆2. Conversely, if an element of ∆2 is a prefix of an element of ∆11, either
it is a prefix or a suffix of the corresponding element of ∆1. Moreover,
we have Σ; Γ,∆11 $

p
l brls ñ ∆2. This is true if ∆1 “ ∆11. Otherwise, the

emitted label is q. By substitution, we have Σ; Γ,∆1 ´ q $
brls
l ∆2 ñ .

Consider p such that p is either included in ∆1 or independent of ∆1. If
p is q, it is eliminated by substitution. Otherwise, p is either included in
∆11 or independent of ∆11, as ∆11 is a subset of ∆1 ´ q, and we obtain the
result by weakening. Thus, we have Σ; Γ $pl let x “ a1 in brls ñ ∆11,∆2.

• Suppose C “ fixπ x py : τ 1q : τ . rs. Suppose a0
l
ÞÝÑ a1. Then, fixπ x py : τ 1q :

τ . a0
H
ÞÝÑ fixπ x py : τ 1q : τ . a1. Suppose fixπ x py : τ 1q : τ . a0: there exists

Γ, p,∆ such that Σ, π; Γ $πl a0 ñ ∆ and Σ; Γ $pl fixπ xpy : τ 1q : τ .a0 ñH.
By induction hypothesis, there exists ∆11 such that Σ; Γ $

p
l a1 ñ ∆11.

Then, Σ; Γ $pl fixπ x py : τ 1q : τ . a1 ñH.

As mentioned before, the full reduction is not confluent, even on well-labeled
terms. We could prove that two reduction paths either converge or one of them
gets blocked on an unbound label. Instead, we will use equalities to develop a
richer type system that allows us to encode precisely when labels are available
in Chapter 6.

74 CHAPTER 5. LABELLING ML TERMS

Chapter 6

A language for equalities

In this chapter, we construct an extension of ML with type-level pattern match-
ing, dependent on the variables in the context: for example, a term of type
match x with True Ñ τ | False Ñ σ must have a value of type τ if x is true,
and of type σ otherwise. To allow the construction of terms of these types,
term-level pattern matching introduces an equality witnessing the information
learned by matching the term: the term that is matched upon is equal to the
pattern of the current branch. Then, this equality (for instance x “ True) can
be used to reduce type-level pattern matching: under this equality, the type
match x with True Ñ τ | False Ñ σ is equivalent to τ , and terms with these
types are freely interconvertible.

This extension, called eML, is carefully designed so that it can be simplified
back to ML by some well-identified code transformations.

6.1 Design constraints

The introduction of eML is motivated by the fact that, when doing ornamenta-
tion, the programmer decorates a value of the base type with some supplemen-
tary information that will be used to construct a value of the ornamented type.
The type of this supplementary information depends on the original value: for
example, when lifting natural numbers to lists, one has to provide an element for
lifting S into a Cons, but no information (i.e. a value of type unit) is needed for
lifting Z into Nil. In that case, the supplementary information depends only on
the constructor. In general, it could depend on information found deeper into
the term: for example, one could add a value to Some True and leave Some False
as-is.

Type-level pattern matching provides an expressive way of handling the typ-
ing of the supplementary information: the ornament writer can use an arbitrarily
deep (but finite) view of the base term to determine the appropriate type for
the patch.

To write a term of the appropriate type, the writer of the patch can use
the local information in the function: for example, if the patch is to be applied
below a pattern matching Z, the type of the information required is equivalent
to unit. This can be proved to the type system using an equality introduced
in the context by the pattern matching, witnessing the branch that is currently

75

76 CHAPTER 6. A LANGUAGE FOR EQUALITIES

being executed. It is important to the design of eML that this information
is local, i.e. is not propagated through function calls and returns: one key
requirement on eML is that we still want to be able to output ML programs
after ornamentation. Exploiting the fact that the information used to interpret
type is local, it is possible (under some typing conditions) to simplify any eML
term to an equivalent ML term.

The equivalence between types defined by eML depends on an equivalence
between terms: one can reduce a type-level pattern matching (such as match
a with Z Ñ unit | S _ Ñ bool) when one knows that, in the current context,
the term that is matched is equivalent to a term of the shape of one of the
branches (for example, a being equivalent to Z). This equivalence between
terms needs to be appropriately limited: first, it is more convenient if it is
decidable (this allows, for example, to easily eliminate dead branches in eML
code when translating it to ML). A simple way to do that is to not recognize the
equality between a function application and its reduction. A second reason to
not recognize this equality is that, in OCaml, functions may have side-effects.
If an application returns True the first time it is called, there is no guarantee
that it will not return False the second time. The presence of side-effects also
means that it is not sound to replace a call to a function by its result, since
the call may have other effects. Equalities between an application and its result
may be introduced as a witness of the result of a pattern matching: match
rand_bool Unit with True Ñ a | False Ñ b introduces when typing a an equality
between rand_bool Unit and True. A pattern matching on the same expression
could introduce the equality between rand_bool Unit and False. Taken together,
these two equalities give the equivalence of True and False, which notably proves
the equivalence of any two types.

The equalities we actually mean to introduce in this case are that a particular
call to rand_bool Unit returned a particular boolean, without any implications
on the result of other evaluations of this expression. We express this by using
the labels that we introduced to refer to the result of previous applications: each
application executed in the program is attributed a different label, and one can
refer using this label to the result of this specific application.

6.2 Description of eML

This section builds on the presentation of labeled ML (§5). We combine the
typing rules of ML with the well-labeling rules of labeled ML, and add constraints
on labels to ensure that well-typed terms do not get stuck on unsubstituted
labels (Lemma 6.24).

6.2.1 Extended syntax

The syntax of eML is identical to the syntax of labeled ML, except for the in-
troduction of type-level pattern matching. The new syntax of types is given on
Figure 6.1: type-level pattern matching is identical to term-level pattern match-
ing, except that it can only match on non-expansive terms, and the branches are
types instead of terms. For example, match u with True Ñ unit | False Ñ bool is
a valid eML type.

6.2. DESCRIPTION OF EML 77

τ, σ ::“ Types
| α Type variable
| τ Ñ τ Function type
| ζ τ Datatype
| @pα : Typq τ Universal quantification
| match u with P Ñ τ Pattern matching

Figure 6.1: Types and kinds for eML

match djpτ
2
k q
kpviq

i with pdjpτkq
kpxjiq

i Ñ σjq
j 0
ÞÝÑ σjrxji Ð vis

i

Figure 6.2: Additional head reduction rule for eML

6.2.2 Extended labeled reduction

The weak reduction stays the same as in labeled ML: it only reduces the terms,
whose syntax is unchanged.

Since redexes can now appear in types, it is necessary to extend the full
reduction to also reduce these types: this introduces new (non-expansive) eval-
uation contexts and places where a potential substitution is allowed. The ad-
ditional reduction rule is given in Figure 6.2: it is the reduction of a type-level
pattern matching. It is identical to the reduction of a term-level pattern match-
ing, except in that the branches are types. The other rules are identical to those
given in Figure 5.7. The modified contexts are given in Figure 6.3. Since none
of the new contexts may contain expansive expressions, the translation function
is identical to its definition in Figure 5.6.

We could also define a well-labeling relation for eML terms. Instead, we
provide a typing judgment that refines the well-labeling judgment.

6.2.3 Combining typing and labeling

The definitions of datatypes stay unchanged. In particular, we require that they
do not include type-level pattern matching. This is necessary so that they are
still ML datatypes, so that we can simplify eML types to ML types.

The typing judgment for eML combines the typing of ML with the well-
labeling judgment of labeled ML. The syntax of typing environments is given
on Figure 6.4. They include term and type variables as in ML, but also path
variables π and input labels puq˚p : τ . Input labels are guarded with a non-
expansive term u: this is a boolean expression that guards the use of the label.
The typing judgment will ensure that the guard condition is true whenever we
try to refer to a label. We also indicate the type τ of the computed result. The
typing environments are also extended with witnesses of equalities between non-
expansive terms u1 and u2 at a type σ, written pu1 » u2q : σ. The equalities
are introduced and used implicitly, thus are unnamed.

C ::“ . . . | dpτ, .. τ , rs, τ, .. τqpa, .. aq | fixπ x px : τq : rs . a | fixπ x px : rsq : τ . a

Figure 6.3: Additional contexts for eML reduction

78 CHAPTER 6. A LANGUAGE FOR EQUALITIES

Γ ::“ Typing environments
| H Empty
| Γ, x : τ Variable
| Γ, α : Typ Type variable
| Γ, π Path variable
| Γ, puq˚p : τ Precomputed result
| Γ, pu » uq : τ Equality

∆ ::“ Computed applications
| H Empty
| ∆, puq˚p : τ Result

Figure 6.4: Typing environments for eML

The typing judgment is of the form Γ $p a : τ ñ ∆. It can be read similarly
to a ML typing judgment Γ $ a : τ by ignoring the parts related to labeling:
under context Γ, the term a has type τ . It can also be read as well-labeling
judgment Σ; Γ $pl añ ∆ where Σ is the set of label variables defined in Γ, and
Γ represents only the labels that are defined in Γ (Γ plays both roles in the eML
judgment), and under a path prefix p, the term a emits the labels specified in
∆. The output specification ∆ is similar to ∆ in the well-labeling judgment.
Its syntax is defined on Figure 6.4: it is a subset of the syntax of Γ where only
precomputed results are allowed. As with Γ, it associates to each output label
p a condition u, and the type τ of the computed result.

For a non-expensive term u, if Γ $p u : τ ñ ∆, the set of computed results ∆
is always empty, and p is irrelevant. In this case, we may instead write Γ $ u : τ .

The definition of the typing judgment is given in Figure 6.5. It follows the
structure of both the ML typing judgment and the well-labeling judgment.

We need to keep track of which abstractions have been reduced so we can
reduce the results. This is done through the output ∆ of the typing judgment:
∆ contains a list of paths and the type of the result of the application. This
is not enough to guarantee that a term can be reused: in code with branches,
whether or not an application has actually been evaluated may depend on which
branch was taken. For instance, in let x “ match u with True Ñ True | False Ñ
fp y in a, when typing a, a subexpression ˚p would be valid if and only if u
were equal to False. This condition is added (in Match) to ∆: a typing of
b “ match u with True Ñ True | False Ñ fp y could be Γ $π b : bool ñ
pmatch u with True Ñ False | False Ñ Trueq˚p : bool, indicating that ˚p is valid
only when the expression match u with True Ñ False | False Ñ True is equal to
True, i.e. when u is equal to False. This mechanism works well for matching
on non-expansive terms. Matching on expansive terms is problematic, because
we need the condition u to be non-expansive. We exploit the notion of reusable
terms defined in Chapter 5: since the constraint will only be used after the
evaluation of the abstraction in the expansive term, reusepaq is a valid non-
expansive substitute for a. Similarly, the type of the introduced path may use
variables that are only bound in the place where the application is present in the
term. To be able to use these types somewhere else, we must transform them
as we leave the contexts of pattern matchings and let bindings: this is done in

6.2. DESCRIPTION OF EML 79

Var
$ Γ x : σ P Γ

Γ $p x : σ ñH

TAbs
Γ, α : Typ $p u : σ ñH

Γ $p Λpα : Typq. u : @pα : Typq σ ñH

TApp
Γ $ τ : Typ Γ $p a : @pα : Typq σ ñ ∆

Γ $p a τ : σrαÐ τ s ñ ∆

Fix
Γ, π, x : τ1 Ñ τ2, y : τ1 $

π a : τ2 ñ ∆

Γ $p fixπ x py : τ1q : τ2 . a : τ1 Ñ τ2 ñH

App
Γ $p a : τ1 Ñ τ2 ñ ∆1 Γ,∆1 $

p b : τ1 ñ ∆2 p ď q q K Γ,∆1,∆2

Γ $p aq b : τ2 ñ ∆1,∆2, pTrueq˚q : τ2

Let
Γ $p a : τ 1 ñ ∆1 Γ,∆1, x : τ 1, px » reusepaqq : τ 1 $p b : τ ñ ∆2

Γ $p let x “ a in b : τ ñ ∆1,∆2rxÐ reusepaqs

Con
$ Γ $ d : @pαj : Typqj pτiq

i Ñ ζ pαjq
j

pΓ $ τj : Typqj pΓ, p∆kq
kąi $p ai : τirαj Ð τjs

j ñ ∆iq
i

Γ $p dpτjq
jpaiq

i : ζ pτjq
j ñ p∆iq

i

Match
$ pdiq

i : ζ complete
Γ $ τ : Sch pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi Γ $p a : ζ pτkq

k ñ ∆

pΓ,∆, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » reusepaqq : ζ pτkq

k $p bi : τ ñ ∆iq
i

Γ $p match a with pdipτkq
kpxijq

j Ñ biq
i : τ

ñ ∆, pmatch reusepaq with dipτkq
kpxijq

j Ñ ∆iq
i

Coerce
Γ $p a : τ 1 ñ ∆ Γ $ τ 1 : κ1 » τ : κ

Γ $p a : τ ñ ∆

Reuse-Present
puq˚q : τ P Γ Γ $ u : bool » True : bool

Γ $p ˚q : τ ñH

Reuse-Absurd
q K Γ Γ $ False : bool » True : bool Γ $ τ : Typ

Γ $p ˚q : τ ñH

Figure 6.5: Typing rules for eML

80 CHAPTER 6. A LANGUAGE FOR EQUALITIES

rules Match and Let. The transformations are similar to these done to pass
the values associated to labels through let and match contexts. The notation
match u0 with dipτkq

kpxijq
j Ñ ∆ is to be interpreted as transforming each

element puq˚p : τ of ∆ into pmatch u0 with dipτkq
kpxijq

j Ñ u | pd`pτkq
kpx`jq

j Ñ

Falseq`‰iq˚p : match u0 with dipτkq
kpxijq

j Ñ τ | pd`pτkq
kpx`jq

j Ñ voidq`‰i (the
type void could be replaced by any other type).

Function definitions also introduce variables in the scope of their bodies,
but the results from evaluating the body do not escape the abstraction (they
are blocked by the reduction rule, and removed by the typing rule), so there
is no need to retain information about these variables. Abstractions on types
can also avoid doing this for another reason: the body of the abstraction is
non-expansive (by syntactic guarantee) and thus its evaluation cannot involve
reducing an application.

In the judgment Γ $p a : τ ñ ∆, p is a prefix that constrains the labels that
can be returned in ∆. Most rules simply leave p unchanged. The application
rule App checks for an application aq b that the label q is a suffix of p, and that
it is independent from the labels in Γ and the labels in ∆1 and ∆2 generated
by a and b. The returned set of results is composed of ∆1, ∆2, and the newly
introduced result pTrueq˚q : τ2: the condition is True because in this context
the application must be reduced. The fixed-point rule Fix types the body a
of an abstraction fixπ x py : τq : σ . a under the path variable π introduced by
the application. The computed results ∆ are discarded: they are not available
outside of the body of the abstraction.

When re-using a result q (Reuse-Present and Reuse-Absurd) we need to
check that the evaluation of this application did take place. As in the well-
labeling judgment, there are two possibilities: either the label is present in
the context as puq˚q : τ , in which case we look up its condition u and check
that it is equal to True in the current context (by using the equality Γ $ u :
bool » True : bool): then the type of the expression is τ . The other possibility
(Reuse-Absurd) is that q is not present in the context. In that case, we require,
as in the L-Reuse, that q is independent of Γ, and that the branch is dead, as
execution would be stuck if we had to reduce the term. This is expressed by
asking that True be equal to False in the current context. Then, we accept to
type this term with any well-formed type.

The features of eML rely on the ability of the type system to track branches.
This is done by adding equalities in the typing context: when under a branch,
for example in the term a in the expression match u with Z Ñ a | S x Ñ b,
the context contains an equality pu » Zq : nat. This equality witnesses that u
must be Z when evaluating a, which allows for example reusing the results of
applications computed below such a branch in a previous location in the term.
When matching on a term c, not necessarily non-expansive, we introduce an
equality between reusepcq and (e.g.) Z instead. This is done in Match. For
convenience, we also introduce an equality for let bindings (Let): in let x “
a in b, if a has type τ , the equality px » reusepaqq : τ is available when typing b.
The equalities in the context are always between non-expansive terms. These
equalities are not used directly in the typing judgment, but in type and term
equality judgments, written Γ $ τ1 : κ1 » τ2 : κ2 and Γ $ a1 : τ1 » a2 : τ2. The
definition of these judgments is given in the next section (§6.2.4).

Equality judgments are used in two places in the typing derivations. First,
they are used to coerce terms from one type to another (Coerce): if two types

6.2. DESCRIPTION OF EML 81

EnvEmpty
$ H

EnvPathVar
$ Γ π # Γ

$ Γ, π

EnvVar
$ Γ Γ $ τ : Sch x# Γ

$ Γ, x : τ

EnvTVar
$ Γ α# Γ

$ Γ, α : κ

EnvEq
$ Γ Γ $ u1 : τ Γ $ u2 : τ

$ Γ, pu1 » u2q : τ

EnvPtr
$ Γ p K Γ pp “ π ¨ q ùñ π P Γq Γ $ u : bool Γ $ τ : Sch

$ Γ, puq˚p : τ

K-Var
$ Γ α : Typ P Γ

Γ $ α : Typ

K-Datatype
$ Γ $ ζ : pTypqi ñ Typ pΓ $ τi : Typqi

Γ $ ζ pτiq
i : Typ

K-Arr
Γ $ τ1 : Typ Γ $ τ2 : Typ

Γ $ τ1 Ñ τ2 : Typ

K-All
Γ, α : κ $ τ : Sch

Γ $ @pα : Typq τ : Sch

K-SubTyp
Γ $ τ : Typ

Γ $ τ : Sch

K-Match
$ pdiq

i : ζ complete pdi : @pαk : Typqk pτijq
j Ñ ζ pαkq

kqi Γ $ u : ζ pτkq
k

pΓ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » uq : ζ pτkq

k $ σi : κqi

Γ $ match u with pdipτkq
kpxijq

j Ñ σiq
i : κ

Figure 6.6: Well-formedness rules of eML

are equal (in a given environment), terms of one type can be used as terms of
the other type. In our system, this rule is mostly to introduce and eliminate
pattern matching in types. We chose to make coercion invisible in the syntax
of terms: this makes the syntax much lighter and allow us to express simply
transformations that would have to perform complicated transformations on
equalities: indeed, we will introduce a full reduction for non-expansive parts
ÝÑι that would need to perform complex transformations on explicit equalities.
Second, they are used in Reuse-Present to check that the result that we are
attempting to reuse has been computed.

Before proceeding with describing equality, we describe in Figure 6.6 the
well-formedness rules for type environments ($ Γ) and for types (Γ $ τ : κ).

The well-formedness judgment for Γ, as well as the typing rules, reproduce
the assumption in labeled ML that the set of available names is orthogonal:
EnvPathVar checks that path variable names are unique, and EnvPtr ensures
that the introduced path is neither a prefix nor a suffix of an existing path, and
that if it starts with a variable, this variable is present in Γ.

6.2.4 The non-expansive equality judgment

We define the equality judgment on type and non-expansive terms. These terms
do not emit labels: the equality judgment can then be built around a simpler

82 CHAPTER 6. A LANGUAGE FOR EQUALITIES

version of the typing judgment. We want equality to be symmetric, reflexive
(on well-formed types and on well-typed non-expansive terms) and transitive.
It also needs to be a congruence, and compatible with reduction of type-level
and term-level pattern matching, let binding, and type application.

We start with the type equality judgment Γ $ τ1 : κ1 » τ2 : κ2, stating that
under the environment Γ, the types τ1 and τ2 of kinds κ1 and κ2 are equal. Its
rules are given on Figure 6.7. We include a rule for transitivity (TEq-Trans)
and for symmetry (TEq-Sym). Reflexivity can be proved using the congruence
rules. For each well-formedness rules for types, we include a corresponding
congruence rule that states that two types of a given syntactic shape are equal if
their subtypes are equal: TEq-Var for K-Var, TEq-Datatype for K-Datatype,
TEq-Arr for K-Arr, TEq-All for K-All. Since the kind of the types appear
in the judgment, we also include a rule TEq-SubTyp that allows converting the
left-hand side of an equality from the kind of monotypes to the kind of schemes.
We can do the same transformation on the right-hand side using symmetry. The
rule TEq-Match corresponding to K-Match is particular: since it compares two
pattern matchings where two different (but equal) terms are matched on, we
need to chose whether to include an equality with the term on the left- or
right-hand side of the equality. We choose the left-hand side. The reduction
of type-level pattern matching is handled through a rule TEq-ReduceMatch.
Note that the reduction can be done even when the term we are matching on is
not fully reduced to a value. Finally, we allow case-splitting on non-expansive
terms of a datatype (TEq-Split). For each constructor, we can try to prove the
equality assuming that the term starts with this constructor. If we can prove
the equality in all of these cases, then it is true. This implies that, if we have a
term of a datatype without constructors such as void, we can prove the equality
of any two types.

The non-expansive term equality judgment Γ $ u1 : τ1 » u2 : τ2 is de-
fined by the structural and reduction rules in Figure 6.8 and the congruence
rules in Figure 6.9. While it is apparently an heterogeneous equality, we prove
(Lemma 6.15) that it actually only proves equality between terms of equal types.
Its structure is similar to the type equality judgment: it has a transitivity
(Eq-Trans), symmetry (Eq-Sym) and case-splitting rule (Eq-Split), congru-
ence rules for each syntactic construct of eML terms (Figure 6.9), and reduction
rules for let binding (Eq-ReduceLet), type application (Eq-ReduceTApp) and
pattern matching (Eq-ReduceMatch). The rule Eq-Coerce allows substitut-
ing the types on both side of the equality by equal types. Finally, the rule
Eq-Subst allows using equalities in the context.

Note that when there is a contradiction in the context (such as True “ False),
we can deduce the equality of any two types or non-expansive terms: consider
types τ1 and τ2. Then, by TEq-Match, the types match True with True Ñ τ1 |
False Ñ τ2 and match False with True Ñ τ1 | False Ñ τ2 are equal. Reducing
these two equal types, we get τ1 for the first and τ2 for the second. By tran-
sitivity, we have proved pTrue » Falseq : bool $ τ1 : Sch » τ2 : Sch. Similarly,
pTrue » Falseq : bool $ u1 : τ1 » u2 : τ2 for any u1, u2, τ1, τ2.

6.2.5 Full term equality

There is a wrinkle in this definition: we only define equality on non-expansive
terms, but arbitrary terms can appear under lambda abstractions. In order

6.2. DESCRIPTION OF EML 83

TEq-Trans
Γ $ τ1 : κ1 » τ2 : κ2 Γ $ τ2 : κ2 » τ3 : κ3

Γ $ τ1 : κ1 » τ3 : κ3

TEq-Sym
Γ $ τ1 : κ1 » τ2 : κ2

Γ $ τ2 : κ2 » τ1 : κ1

TEq-Split
$ pdiq

i : ζ complete p$ di : @pαk : Typqk pτijq
j Ñ ζ pαkq

kqi

Γ $ u : ζ pτkq
k Γ $ σ1 : κ1 Γ $ σ2 : κ2

pΓ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » uq : ζ pτkq

k $ σ1 : κ1 » σ2 : κ2q
i

Γ $ σ1 : κ1 » σ2 : κ2

TEq-SubTyp
Γ $ τ : Typ » τ 1 : κ

Γ $ τ : Sch » τ 1 : κ

TEq-Var
$ Γ α : Typ P Γ

Γ $ α : Typ » α : Typ

TEq-Datatype
$ Γ $ ζ : pTypqi ñ Typ pΓ $ τi : Typ » τ 1i : Typqi

Γ $ ζ pτiq
i : Typ » ζ pτ 1iq

i : Typ

TEq-Arr
Γ $ τ1 : Typ » τ 11 : Typ Γ $ τ2 : Typ » τ 12 : Typ

Γ $ τ1 Ñ τ2 : Typ » τ 11 Ñ τ 12 : Typ

TEq-All
Γ, α : Typ $ τ : Sch » τ 1 : Sch

Γ $ @pα : Typq τ : Sch » @pα : Typq τ 1 : Sch

TEq-Match
$ pdiq

i : ζ complete
pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi Γ $ u1 : ζ pτ1kq

k » u2 : ζ pτ2kq
k

pΓ, pxij : τijrαk Ð τ1ks
kqj , pdipτ1kq

kpxijq
j » u1q : ζ pτ1kq

k $ σ1i : κ1 » σ2i : κ2q
i

Γ $ match u1 with pdipτ1kq
kpxijq

j Ñ σ1iq
i : κ1

» match u2 with pdipτ2kq
kpx1ijq

j Ñ σ2iq
i : κ2

TEq-ReduceMatch
$ pdiq

i : ζ complete
pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi pΓ $ uj : τijrαk Ð τ 1ks

kqj

Γ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » dipτ

1
kq
kpujq

jq : ζ pτkq
k $ σi : κ

Γ $ match dipτ
1
kq
kpujq

j with pdipτkq
kpxijq

j Ñ σiq
i : κ » σirxij Ð ujs

j : κ

Figure 6.7: Type equality

84 CHAPTER 6. A LANGUAGE FOR EQUALITIES

Eq-Trans
Γ $ u1 : τ1 » u2 : τ2 Γ $ u2 : τ2 » u3 : τ3

Γ $ u1 : τ1 » u3 : τ3

Eq-Sym
Γ $ u1 : τ1 » u2 : τ2

Γ $ u2 : τ2 » u1 : τ1

Eq-Split
$ pdiq

i : ζ complete pdi : @pαk : Typqk pτijq
j Ñ ζ pαkq

kqi

Γ $ u : ζ pτkq
k Γ $ u1 : τ1 Γ $ u2 : τ2

pΓ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » uq : ζ pτkq

k $ u1 : τ1 » u2 : τ2q
i

Γ $ u1 : τ1 » u2 : τ2

Eq-Subst
$ Γ ppu1 » u2q : τq P Γ

Γ $ u1 : τ » u2 : τ

Eq-ReduceLet
Γ $ u : τ1 Γ, x : τ1, px » uq : τ1 $ u1 : τ2

Γ $ let x “ u in u1 : τ2 » u1rxÐ us : τ2

Eq-ReduceTApp
Γ, α : Typ $ u : σ Γ $ τ : Typ

Γ $ pΛpα : Typq. uq τ0 : σrαÐ τ0s » urαÐ τ0s : σrαÐ τ0s

Eq-ReduceMatch
$ pdiq

i : ζ complete
pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi pΓ $ uj : τijrαk Ð τ 1ks

kqj

Γ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » dipτ

1
kq
kpujq

jq : ζ pτkq
k $ u1i : σ

Γ $ match dipτ
1
kq
kpujq

j with pdipτkq
kpxijq

j Ñ u1iq
i : σ » u1irxij Ð ujs

j : σ

Figure 6.8: Non-expansive term equality

6.2. DESCRIPTION OF EML 85

Eq-Coerce
Γ $ u1 : τ 11 » u2 : τ 12 Γ $ τ 11 : κ11 » τ1 : κ1 Γ $ τ 12 : κ12 » τ2 : κ2

Γ $ u1 : τ1 » u2 : τ2

Eq-Var
$ Γ x : σ P Γ

Γ $ x : σ » x : σ

Eq-TAbs
Γ, α : Typ $ u1 : σ1 » u2 : σ2

Γ $ Λpα : Typq. u1 : @pα : Typq σ1 » Λpα : Typq. u2 : @pα : Typq σ2

Eq-TApp
Γ $ τ1 : Typ » τ2 : Typ Γ $ u1 : @pα : Typq σ1 » u2 : @pα : Typq σ2

Γ $ u1 τ1 : σ1rαÐ τ1s » u2 τ2 : σ2rαÐ τ2s

Eq-Fix
Γ $ τ1 : Typ » τ2 : Typ

TermsEqualpΓ, x : τ1 Ñ τ 11, y : τ1 $
π a1 : τ 11 » a2 : τ 12q

Γ $ fixπ x py : τ1q : τ 11 . a1 : τ1 Ñ τ 11 » fixπ x py : τ2q : τ 12 . a2 : τ2 Ñ τ 12

Eq-Let
Γ $ u1 : σ1 » u2 : σ2 Γ, x : σ1 $ u11 : τ1 » u12 : τ2

Γ $ let x “ u1 in u11 : τ1 » let x “ u2 in u12 : τ2

Eq-Con
$ Γ $ d : @pαj : Typqj pτiq

i Ñ ζ pαjq
j pΓ $ τ1j : Typ » τ2j : Typqj

pΓ $ u1i : τirαj Ð τ1js
j » u2i : τirαj Ð τ2js

jqi

Γ $ dpτ1jq
jpu1iq

i : ζ pτ1jq
j » dpτ2jq

jpu2iq
i : ζ pτ2jq

j

Eq-Match
$ pdiq

i : ζ complete
pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi Γ $ u1 : ζ pτ1kq

k » u2 : ζ pτ2kq
k

pΓ, pxij : τijrαk Ð τks
kqj , pdipτ1kq

kpxijq
j » u1q : ζ pτ1kq

k $ u11i : σ1 » u12i : σ2q
i

Γ $ match u1 with pdipτ1kq
kpxijq

j Ñ u11iq
i : σ1

» match u2 with pdipτ2kq
kpx1ijq

j Ñ u12iq
i : σ2

Eq-Reuse-Present
puq˚p : τ P Γ Γ $ u : bool » True : bool

Γ $ ˚p : τ » ˚p : τ

Eq-Reuse-Absurd
p K Γ Γ $ False : bool » True : bool

Γ $ ˚p : τ » ˚p : τ

Figure 6.9: Non-expansive term equality (congruence rules)

86 CHAPTER 6. A LANGUAGE FOR EQUALITIES

not to get stuck, we delegate checking of equality for terms to a judgment
TermsEqualpΓ $p a1 : τ1 » a2 : τ2q: this judgment assert that the terms a1 and
a2 are equal at types τ1 and τ2 under an environment Γ and a label prefix p.
This judgment does not compare the results computed when evaluating a1 and
a2. This does not prevent us from defining the rule Eq-Fix since ∆ is removed
by the Fix typing rule, and many reasonable program transformations change
labels.

Decomposition of terms

To define the equality on term, we want to separate the expansive part of a
term from its non-expansive parts, and reason by equality on these two com-
ponents separately. We define an extraction of expansive computations from
an expansive term a. This extraction returns a mapping from computation
labels to expansive atoms, i.e. applications of the form u u1, where both
sides of the application are non-expansive terms. For example, for the term
a

4
“ Some ppu1

1 u2q
2 pλπ px : τq. u3

π¨1 u4qq, its decomposition is:

˚1 ÞÑ u1 u2

˚2 ÞÑ ˚1 pλπ px : τq. u3
π¨1 u4q

reusepaq ÞÑ Some p˚2q

We need to add typing information to the decomposition: suppose Γ $p a :
τ ñ ∆. Then, we want every expansive atom to be typed in Γ,∆1, with ∆1 a
(strict) subset of ∆, under a condition pu » Trueq : bool. Consider for example
Γ equal to f : bool Ñ bool, x : bool, ∆ “ pTrueq˚1 : bool, pxq˚2 : bool and the
following term:

Γ $ε
ˆ

let y “ True in f1 y,
match x with True Ñ f2 ˚1 | False Ñ x

˙

: boolˆ bool ñ ∆

The expression labeled 2 depends on the expression labeled 1, thus its hypotheses
will be ∆1 “ pTrueq˚1 : bool. Moreover, the expansive atom labeled 1 is under
a let binding. We use context translation (as in reduction) to express it in Γ.
Finally, the expression labeled 2 is only computed if x “ True, so it is protected
by a condition x. The full decomposition is then the following. Note that the
expansive terms are ordered in the same order they would be evaluated in the
original term.

Γ $ pTrueq ˚1 :“ f True : bool
Γ,∆1 $ pxq ˚2 :“ f ˚1 : bool

Γ,∆ $ reusepaq :“

ˆ

let y “ True in ˚1,
match x with True Ñ ˚2 | False Ñ x

˙

: boolˆ bool

The general decomposition of a term, noted atomspaq, is defined in Fig-
ure 6.10: it returns the list of atoms and the set of labels that they depend
on (the final non-expansive expression for the term is given by reusepaq). We
note labelspaq the set of labels defined in a term, and addLabelspS, p˚pi Ð
pTi, ui u

1
iqq

iq “ p˚pi Ð pS Y Ti, ui u
1
iqq

i the addition of the labels in S to
the dependencies of all atoms of the second argument. We use this for example
in the definition of atomspap bq: the decomposition is obtained by concatenating

6.2. DESCRIPTION OF EML 87

atomspuq “ H

atomspa τq “ atomspaq
atomsplet x “ a in bq “

atomspaq, paddLabelsplabelspaq, atomspbqqqrxÐ reusepaqs
atomspmatch a with pci τ pxikq

k Ñ biq
iq “

atomspaq, paddLabelsplabelspaq,match a with cipτjq
jpxikq

k Ñ atomspbiqq
i

atomspc τ pajq
jq “ paddLabelspplabelspbkqq

kąj , atomspajqqq
j

atomspap bq “
atomspaq,
addLabelsplabelspaq, atomspbqq,
˚pÐ plabelspaq Y labelspbq, reusepaq reusepbqq

Figure 6.10: Decomposition of terms

the decomposition atomspaq of a, then the decomposition atomspbq of b, with all
labels of a added as dependencies, then the label ˚p corresponding to the appli-
cation. The decomposition of non-expansive terms is empty. For general terms,
it obeys the following typing property:

Lemma 6.1. Suppose Γ $p a : τ ñ ∆, and atomspaq “ p˚pi Ð pSi, ui u
1
iqq

i.
Then, the labels of ∆ are the ppiqi and for all i, there exists τi, σi such that
Γ,∆X Si $ ui : τi Ñ σi and Γ,∆X Si $ u1i : τi.

Proof. By induction on the typing derivation.

Reasoning on decompositions

We define an equality on decompositions that preserves the fact that equivalent
expansive atoms are evaluated in the same order in both terms. We still want
to allow the evaluation of a subexpression to be split, and subexpressions to be
renamed: the terms f1 x and match y with True Ñ f2 x | False Ñ f3 should be
considered equivalent, as in the y “ True case, 1 on the left will match 2 on the
right, and 3 on the right will not be evaluated, and in the case of y “ False, 1 will
match 3 and 2 will not be evaluated. Thus, an equality should allow to provide
a mapping between the labels on the left-hand side and on the right-hand side.

The evaluations are ordered and we have conditions available telling us if an
expansive atom is evaluated or not: thus, we simply want the first evaluated
atom on the left to match the first evaluated atom, and so on until the last
evaluated atom.

We first define an indexing function that takes a list of non-expansive condi-
tions and associated terms or types and returns the term or type corresponding
to the k-th true condition.

Definition 6.1 (Indexing). Consider a type end with one zero-argument con-
structor End. We use this type and this constructor as a special marker when

88 CHAPTER 6. A LANGUAGE FOR EQUALITIES

indexing goes past the end. We define Indexkpui Ñ u1iq
i as follows:

IndexkpHq “ End
Index0pui Ñ u1iq

iPt1,...,nu “ match u1 with
| True Ñ u11
| False Ñ Index0pui Ñ u1iq

iPt2,...,nu

Indexn`1pui Ñ u1iq
iPt1,...,nu “ match u1 with

| True Ñ Indexnpui Ñ u1iq
iPt2,...,nu

| False Ñ Indexn`1pui Ñ u1iq
iPt2,...,nu

Similarly, we can define for types:

IndexkpHq “ end
Index0pui Ñ τiq

iPt1,...,nu “ match u1 with
| True Ñ τ1
| False Ñ Index0pui Ñ τiq

iPt2,...,nu

Indexn`1pui Ñ τiq
iPt1,...,nu “ match u1 with

| True Ñ Indexnpui Ñ τiq
iPt2,...,nu

| False Ñ Indexn`1pui Ñ τiq
iPt2,...,nu

♦

We have the following typing lemma for indexing:

Lemma 6.2 (Typing of indexing). Consider an environment Γ and suppose
pΓ $ ui : boolqi and pΓ, pui » Trueq : bool $ u1i : σiq

i. Then for all n,
Γ $ Indexnpui Ñ u1iq

i : Indexnpui Ñ σiq
i.

Proof. By induction on the list: at each stage we add a pattern matching in
each of the branches to match the indexing function.

We then use the following definition:

Definition 6.2 (Term equality). Consider an environment Γ, two terms a, b,
and two types τa, τb such that there exists p, ∆a, ∆b such that Γ $p a : τa ñ ∆a

and Γ $p b : τb ñ ∆b. Let Sa “ labelspaq, Sb “ labelspbq
Suppose atomspaq “ p˚pi Ð pTa,i, ua,i u

1
a,iqq

piPlabelspaq and atomspbq “ p˚qj Ð

pTb,j , ub,j u
1
b,jqq

qjPlabelspbq. Moreover, suppose that for all i, Γ,∆a Y Ta,i $ ua,i :
τa,i Ñ σa,i and Γ,∆a Y Ta,i $ u1a,i : τa,i and similarly for all j, Γ,∆b Y Tb,j $
ub,j : τb,j Ñ σb,j and Γ,∆b Y Tb,j $ u1b,j : τb,j. Finally, suppose that ∆a “

ppuca,iq˚pi : σa,iq
i and ∆b “ ppu

c
b,jq˚qj : σb,jq

j.
We define a type app pτ, σq with one constructor App : pτ ˆ pτ Ñ σqq Ñ app

pτ, σq to represent function application atoms. Then, we say that a and b are
equal, noted TermsEqualpΓ $p a : τa » b : τbq if and only if:

• For all k:

Γ,∆a,∆b, ppIndex`puca,i Ñ piq
i » Index`pucb,j Ñ qjq

jq : Index`puca,i Ñ τiq
iq`ăk

$ Indexkpuca,i Ñ Apppua,i, u
1
a,iqq

i : Indexkpuca,i Ñ app pτa,i, σa,iqq
i

» Indexkpucb,j Ñ Apppub,j , u
1
b,jqq

j : Indexkpucb,j Ñ app pτb,j , σb,jqq
j

i.e. the k-th application on the left-hand side has equal function and argu-
ments to the k-th application on the right-hand side.

6.3. METATHEORY OF EML 89

• The final expressions are equal:

Γ,∆a,∆b,

ppIndex`puca,i Ñ piq
i » Index`pucb,j Ñ qjq

jq : Index`puca,i Ñ τiq
iq`ămaxpn,mq

$ reusepaq : τa » reusepbq : τb

where n and m are the number of labels appearing in a and b respectively.

♦

Note that if two non-expansive terms are equal, they are equal as terms:
all indexing operation will rewrite to simply End (or end), and their reusable
versions will be themselves, equal by hypothesis.

6.3 Metatheory of eML
As for ML, the reduction ÝÑβ is deterministic (ÝÑβ does not change between
ML and eML).

6.3.1 Basic properties

We prove some basic properties of the typing judgments of eML.
First, we need to prove a weakening lemma: we can freely add variables, type

variables, path variables, computed results and equalities to the environment
and preserve the typing and equality judgments.

Lemma 6.3 (Weakening). Consider Γ, Γ1 and ∆, and let J be a judgment of
the following forms:

• $ Γ,Γ1

• Γ,Γ1 $ τ : κ

• Γ,Γ1 $p a : τ ñ ∆

• Γ,Γ1 $ τ1 : κ1 » τ2 : κ2

• Γ,Γ1 $ u1 : τ1 » u2 : τ2

• TermsEqualpΓ,Γ1 $p a1 : τ1 » a2 : τ2q

Suppose J holds. Then:

• Suppose α# Γ,Γ1. Then J also holds with Γ,Γ1 replaced by Γ, α : Typ,Γ1.

• Suppose x# Γ,Γ1 and Γ $ σ : Sch. Then J also holds with Γ,Γ1 replaced
by Γ, x : σ,Γ1.

• Consider u11, u12 and σ such that Γ $ u11 : σ and Γ $ u12 : σ. Then J also
holds with Γ,Γ1 replaced by Γ, pu11 » u12q : σ,Γ1.

• Consider q, u1 and σ such that Γ $ u1 : bool, Γ $ τ : Sch, and suppose q
starts at the root or a variable in Γ and q K Γ,Γ1,∆. Then J also holds
with Γ,Γ1 replaced by Γ, pu1q˚q : σ,Γ1.

90 CHAPTER 6. A LANGUAGE FOR EQUALITIES

• Consider a path variable π such that π R Γ,Γ1. Then J also holds with
Γ,Γ1 replaced by Γ, π,Γ1.

Proof. Let us look at the proof in the case of type variables:
By mutual induction on the derivations. For rules that grow the environ-

ment, adding Γ2, note that for any Γ2, Γ, α : Typ,Γ1,Γ2 is still a weakening of
Γ,Γ1,Γ2, so we can use the induction hypothesis on the subderivations. Then
we copy the rule with the new environment. The only rules that access the
environment instead of growing it are the variable rules Var, Eq-Var, K-Var,
TEq-Var, and Eq-Subst but they only check membership in the environment
so they stay true when the environment grows.

In the case of results, we also need to check that the newly introduced path
q does not clash with any existing path: this is true because all results not
introduced under lambdas are already in Γ, Γ1 or ∆, and paths introduced
under lambdas start with a variable that is not in Γ.

For TermsEqualpΓ $p a1 : τ1 » a2 : τ2q: all the judgments used in the proof
are compatible with weakening.

For proving substitution, we first need reflexivity of the equality judgment
on well-typed terms and types:

Lemma 6.4 (Reflexivity). Consider an environment Γ, a kind κ, a type τ , and
a non-expansive term a.

• If Γ $ τ : κ, then Γ $ τ : κ » τ : κ.

• If Γ $ a : τ , then Γ $ a : τ » a : τ .

• If Γ $p a : τ ñ ∆, then TermsEqualpΓ $p a : τ » a : τq.

Proof. For type and non-expansive equality: translate each typing rule to the
equivalent equality rule and apply reflexivity inductively to the subtypes/sub-
terms.

For full term equality: all the required conditions hold by reflexivity.

Even though it does not have a transitivity rule, full term equality is tran-
sitive:

Lemma 6.5 (Term equality is transitive). Suppose TermsEqualpΓ $p a1 : τ1 »
a2 : τ2q and TermsEqualpΓ $p a2 : τ2 » a3 : τ3q. Then, TermsEqualpΓ $p a1 :
τ1 » a3 : τ3q.

Proof. In all three terms, the k-th evaluated atoms are equal.

We can then show substitution for type and term variables and for equalities.
For equalities, substitution means that we can remove from the environment an
equality that can be derived from the rest of the environment.

Lemma 6.6 (Substitution, type variables). Consider Γ,Γ1 and α such that
$ Γ, α : Typ,Γ1. Let σ be a type such that Γ $ σ : Typ. Then,

• we have $ Γ,Γ1rαÐ σs;

• if Γ, α : Typ,Γ1 $ τ : κ, then Γ,Γ1rαÐ σs $ τ rαÐ σs : κrαÐ σs;

6.3. METATHEORY OF EML 91

• if Γ, α : Typ,Γ1 $p a : τ ñ ∆, then Γ,Γ1rα Ð σs $p arα Ð σs : τ rα Ð
σs ñ ∆rαÐ σs;

Moreover, consider σ1, σ2 such that Γ $ σ1 : κ1, Γ $ σ2 : κ2 and Γ $ σ1 :
Typ » σ2 : Typ. Then,

• if Γ, α : Typ,Γ1 $ τ1 : κ1 » τ2 : κ2, then Γ,Γ1rα Ð σ1s $ τ1rα Ð σ1s :
κ1rαÐ σ1s » τ2rαÐ σ2s : κ2rαÐ σ2s;

• if Γ, α : Typ,Γ1 $ u1 : τ1 » u2 : τ2, then Γ,Γ1rα Ð σ1s $ u1rα Ð σ1s :
τ1rαÐ σ1s » u2rαÐ σ2s : τ2rαÐ σ2s;

• if TermsEqualpΓ, α : Typ,Γ1 $p a1 : τ1 » a2 : τ2q, then TermsEqualpΓ,Γ1rαÐ
σ1s $

p a1rαÐ σ1s : τ1rαÐ σ1s » a2rαÐ σ2s : τ2rαÐ σ2sq.

Lemma 6.7 (Substitution, term variables). Consider Γ,Γ1 and x such that
$ Γ, x : σ,Γ1. Let u be a type such that Γ $ u : σ. Then,

• we have $ Γ,Γ1rxÐ bs;

• if Γ, x : σ,Γ1 $ τ : κ, then Γ,Γ1rxÐ bs $ τ rxÐ bs : κrxÐ bs;

• if Γ, x : σ,Γ1 $p a : τ ñ ∆, then Γ,Γ1rx Ð bs $p arx Ð bs : τ rx Ð bs ñ
∆rxÐ bs;

Moreover, consider u1, u2 such that Γ $ u1 : τ , Γ $ u2 : τ and Γ $ u1 : τ »
u2 : τ . Then,

• if Γ, α : Typ,Γ1 $ τ1 : κ1 » τ2 : κ2, then Γ,Γ1rα Ð u1s $ τ1rα Ð u1s :
κ1rαÐ u1s » τ2rαÐ u2s : κ2rαÐ u2s;

• if Γ, α : Typ,Γ1 $ u11 : τ1 » u12 : τ2, then Γ,Γ1rα Ð u1s $ u11rα Ð u1s :
τ1rαÐ u1s » u12rαÐ u2s : τ2rαÐ u2s;

• if TermsEqualpΓ, α : Typ,Γ1 $p a1 : τ1 » a2 : τ2q, then TermsEqualpΓ,Γ1rαÐ
u1s $

p a1rαÐ u1s : τ1rαÐ u1s » a2rαÐ u2s : τ2rαÐ u2sq.

Lemma 6.8 (Substitution, equalities). Consider Γ,Γ1 and u1, u2 such that
$ Γ, pu1 : σ1q » pu2 : σ2q,Γ

1. Suppose Γ $ u1 : σ1 » u2 : σ2. Then,

• we have $ Γ,Γ1;

• if Γ, pu1 : σ1q » pu2 : σ2q,Γ
1 $ τ : κ, then Γ,Γ1 $ τ : κ;

• if Γ, pu1 : σ1q » pu2 : σ2q,Γ
1 $p a : τ ñ ∆, then Γ,Γ1 $p a : τ ñ ∆;

• if Γ, pu1 : σ1q » pu2 : σ2q,Γ
1 $ τ1 : κ1 » τ2 : κ2, then Γ,Γ1 $ τ1 : κ1 » τ2 :

κ2;

• if Γ, pu1 : σ1q » pu2 : σ2q,Γ
1 $ u11 : τ1 » u12 : τ2, then Γ,Γ1 $ u11 : τ1 » u12 :

τ2;

• if TermsEqualpΓ, pu1 : σ1q » pu2 : σ2q,Γ
1 $p a1 : τ1 » a2 : τ2q, then

TermsEqualpΓ,Γ1 $p a1 : τ1 » a2 : τ2q.

Lemma 6.9 (Substitution, computed results). Consider Γ,Γ1 and p, u and τ
such that $ Γ, puq˚p : τ,Γ1. Suppose Γ, pu » Trueq : bool $ u0 : τ . Then,

92 CHAPTER 6. A LANGUAGE FOR EQUALITIES

• we have $ Γ,Γ1r˚pÐ u0s;

• if Γ, puq˚p : τ,Γ1 $ τ : κ, then Γ,Γ1r˚pÐ u0s $ τ r˚pÐ u0s : κr˚pÐ u0s;

• if Γ, puq˚p : τ,Γ1 $q a : τ ñ ∆, then Γ,Γ1r˚p Ð u0s $ q : ar˚p Ð
u0sτ r˚pÐ u0s∆r˚pÐ u0s.

Moreover, consider u1, u2 such that Γ, pu » Trueq : bool $ u1 : τ , Γ, pu »
Trueq : bool $ u2 : τ and Γ $ u1 : τ » u2 : τ . Then,

• if Γ, puq˚p : τ,Γ1 $ τ1 : κ1 » τ2 : κ2, then Γ,Γ1r˚p Ð u1s $ τ1r˚p Ð u1s :
κ1r˚pÐ u1s » τ2r˚pÐ u2s : κ2r˚pÐ u2s;

• if Γ, puq˚p : τ,Γ1 $ u11 : τ1 » u12 : τ2, then Γ,Γ1r˚p Ð u1s $ u11r˚p Ð u1s :
τ1r˚pÐ u1s » u12r˚pÐ u2s : τ2r˚pÐ u2s;

• if TermsEqualpΓ, puq˚p : τ,Γ1 $q a1 : τ1 » a2 : τ2q, then TermsEqualpΓ,Γ1r˚pÐ
u1s $

q a1r˚pÐ u1s : τ1r˚pÐ u1s » a2r˚pÐ u2s : τ2r˚pÐ u2sq.

Lemma 6.10 (Substitution, path variables). Consider Γ,Γ1 and π such that
$ Γ, π,Γ1. Suppose p K Γ,Γ1. Then,

• we have $ Γ,Γ1rπ Ð ps;

• if Γ, π,Γ1 $ τ : κ, then Γ,Γ1rπ Ð ps $ τ rπ Ð ps : κrπ Ð ps;

• if Γ, π,Γ1 $q a : τ ñ ∆, then Γ,Γ1rπ Ð ps $qrπÐps arπ Ð ps : τ rπ Ð
ps ñ ∆rπ Ð ps.

• if Γ, π,Γ1 $ τ1 : κ1 » τ2 : κ2, then Γ,Γ1rπ Ð ps $ τ1rπ Ð ps : κ1rπ Ð
ps » τ2rπ Ð ps : κ2rπ Ð ps;

• if Γ, π,Γ1 $ u11 : τ1 » u12 : τ2, then Γ,Γ1rπ Ð ps $ u11rπ Ð ps : τ1rπ Ð
ps » u12rπ Ð ps : τ2rπ Ð ps;

• if TermsEqualpΓ, π,Γ1 $q a1 : τ1 » a2 : τ2q, then TermsEqualpΓ,Γ1rπ Ð
ps $qrπÐps a1rπ Ð ps : τ1rπ Ð ps » a2rπ Ð ps : τ2rπ Ð psq.

Proof. By induction on the derivations. When extending the environment, use
weakening on the thing we are substituting. When reaching a variable rule for
the substituted variable (e.g. Var), replace the rule by the typing derivation.
For the corresponding equality rule (e.g. Eq-Var), use reflexivity and replace
the rule by the derivation obtained.

For computed results, use substitution with the equality in Rule Reuse-Present
after weakening.

6.3.2 Extraction
We can now prove a useful result: the environments and types appearing in type
well-formedness and typing derivations are well-formed and the types given in
equality judgments are correct.

Lemma 6.11 (Extraction for environment well-formedness). The following all
imply $ Γ:

• Γ $ τ : κ

6.3. METATHEORY OF EML 93

• Γ $π a : τ ñ ∆ (this additionally implies $ Γ,∆)

• Γ $ τ1 : κ1 » τ2 : κ2

• Γ $ u1 : τ1 » u2 : τ2

• TermsEqualpΓ $p a1 : τ1 » a2 : τ2q

Proof. By induction on the derivation. There is always an hypothesis that
implies $ Γ,Γ1 with Γ1 some (optional) extra bindings. From this we can derive
$ Γ by inverting the derivation.

The following two lemmas need to be proved by mutual induction:

Lemma 6.12 (Extraction for type well-formedness). Suppose Γ $π a : τ ñ ∆.
Then, there exists κ such that Γ $ τ : κ. Suppose Γ $ τ1 : κ1 » τ2 : κ2. Then,
Γ $ τ1 : κ1 and Γ $ τ2 : κ2. Suppose Γ $ u1 : τ1 » u2 : τ2. Then, there exist κ1

and κ2 such that Γ $ τ1 : κ1 and Γ $ τ2 : κ2.

Lemma 6.13 (Extraction for well-typing). Suppose Γ $ u1 : τ1 » u2 : τ2.
Then, Γ $ u1 : τ1 and Γ $ u2 : τ2.

Proof. By mutual induction, using substitution when needed.

6.3.3 Subject reduction
We can now proceed to proving subject reduction for eML. Compared to subject
reduction for ML, we need to handle both labels and equalities. Compared to
subject reduction for labeled ML, we need to ensure that results are substituted
with terms of the right type and that the reuse conditions stay true.

The main difficulty is to prove that the coercions we distribute in the sub-
terms when reducing actually correspond to valid equalities. For example, we
need to prove that when Γ $ τ1 Ñ τ2 : κ » τ 11 Ñ τ 12 : κ1, then Γ $ τ1 : Typ »
τ2 : Typ and Γ $ τ 11 : Typ » τ 12 : Typ.

Lemma 6.14 (Projection). Consider an environment Γ and types pτiqi and
pτ 1iq

i.

• If Γ $ τ1 Ñ τ2 : κ » τ 11 Ñ τ 12 : κ1, then Γ $ τ1 : Typ » τ 11 : Typ and
Γ $ τ2 : Typ » τ 12 : Typ.

• If Γ $ @pα : Typq τ : κ » @pα : Typq τ 1 : κ1, then Γ, α : Typ $ τ : Sch » τ 1 :
Sch.

• If Γ $ ζ pτiq
i : κ » ζ pτ 1iq

i : κ1, then pΓ $ τi : Typ » τ 1i : Typqi.

Proof. The three cases are similar. We give the proof for universal quantifica-
tion.

Let us define a function tail as follows:

tailp@pα : Typq τq “ τ
tailpmatch a with pPi Ñ τiq

iq “ match a with pPi Ñ tailpτiqq
i

tailpτq “ Any

Here, Any stands for some well-formed typed. For example, we may take
@pα : Typq α for Any. The function tail returns the type below the universal

94 CHAPTER 6. A LANGUAGE FOR EQUALITIES

quantifier, but it is also able to look under pattern matching, as if the quantifier
were lifted out of the pattern matching.

Then, we show by induction on type equality derivations that whenever
Γ $ τ : κ » τ 1 : κ1, then Γ $ tailpτq : Sch » tailpτ 1q : Sch (or Typ for the case of
type constructors and function types). This implies the result.

• For TEq-Trans, apply transitivity on the tails.

• For TEq-Split, split on the same term to prove the equality of the tails.

• For TEq-Sym, apply symmetry on the tails.

• For TEq-Match, apply the induction hypothesis on the branches. The
tails will start with a pattern matching on the same two equal terms.
Then, we can use TEq-Match to prove that the tails are equal.

• For TEq-ReduceMatch, note that the pattern matching in the left-hand
tail will reduce in the same way as the pattern matching in the original
term.

• TEq-All has equality of the tails as a premise.

• For the other congruence rules, the tails of the two terms are Any, which
is equal to itself by reflexivity.

• For TEq-SubTyp, apply induction to the subderivation.

We are now able to prove that two equal terms have equal types:

Lemma 6.15 (Equal terms have equal types). Suppose Γ $ u1 : τ1 » u2 : τ2.
Then, there exists κ1 and κ2 such that Γ $ τ1 : κ1 » τ2 : κ2.

Proof. By induction on the derivation. This is immediate for most rules by ap-
plying the lemma inductively on the hypotheses. For Eq-Coerce and Eq-Trans,
use transitivity. For Eq-Split and Eq-Match, split on the same term using
TEq-Split. For Eq-TApp, use Lemma 6.14 to deduce equality of σ1 and σ2 from
the equality of @pα : Typq σ1 and @pα : Typq σ1, then apply substitution.

Now we’ll prove subject reduction. To pass to context, we need to prove
that the equalities introduced using one term are preserved when the term
reduces. For non-expansive reductions, we will show that reduction preserves
equality of the reusable versions of the terms. For expansive reductions, they
are represented in other terms by their label: we can then use substitution on
the label.

The typing derivation are syntax-directed, except for the rule Coerce. Thus,
we will often resort to the following pattern of reasoning:

Lemma 6.16 (Extracting a coercion). Suppose we have a derivation Γ $ a : τ .
Then, it has a subderivation Γ $ a : τ 1 whose first rule is not Coerce (so, is
syntax-directed), and Γ $ τ : κ » τ 1 : κ1.

Proof. By induction:

6.3. METATHEORY OF EML 95

• Suppose the derivation does not start with Coerce. Then, we can take
τ 1 “ τ . Since Γ $ a : τ , there exists a kind κ such that Γ $ τ : κ. Then,
by reflexivity (Lemma 6.4), τ is equal to itself: Γ $ τ : κ » τ : κ.

• Otherwise, the derivation is an application of Coerce to a derivation of
Γ $ a : τ 1, and we have Γ $ τ : κ » τ 1 : κ1. By induction hypothesis
on the subderivation, there exists τ2 and a subderivation of Γ $ a : τ2

starting with a syntax-directed rule. Then, it is a subderivation of the
initial derivation too, and we have Γ $ τ 1 : κ1 » τ2 : κ2. We obtain
Γ $ τ : κ » τ2 : κ2 by transitivity.

When reducing a term typed Γ $π a : τ ñ ∆, the reduction might change
the conditions in the output ∆, the types, and some labels may disappear.
For instance, reducing match True with True Ñ fp1 x | False Ñ gp2 y to
fp1 x removes the label p2 and changes the condition for label p1 from match
True with True Ñ True | False Ñ False to True. We ensure that the outputs
are still equivalent: notably, we need to ensure that the type for non-eliminated
labels stay consistent (i.e. are equivalent for type equality), and that, for elimi-
nated labels, their conditions were already equivalent to False. This ensures that
the Reuse-Present and Reuse-Absurd typing rules still apply in the context
where the reduced subterm appears.

Definition 6.3 (Reduced outputs). Let ∆1 and ∆2 be outputs. We say that
∆2 is a reduced output of ∆1 in context Γ, noted Γ $ ∆1 Ě ∆2, if for all
p P ∆2, p P ∆1 and for all p P ∆1 such that pu1q˚p : τ1 P ∆1, either p R ∆2 and
Γ $ u : bool » False : bool or pu2q˚p : τ2 P ∆2 and we have both Γ $ u1 : bool »
u2 : bool and Γ, pu1 » Trueq : bool $ τ1 : Sch » τ2 : Sch. ♦

Lemma 6.17 (Substitution of outputs). Suppose Γ $ ∆1 Ě ∆2. Then,

• $ Γ,∆1,Γ
1 implies $ Γ,∆2,Γ

1;

• Γ,∆1,Γ
1 $p a : τ ñ ∆1 implies Γ,∆2,Γ

1 $p a : τ ñ ∆1;

• and similarly for other judgments.

Proof. By induction on the derivations. If something is independent of ∆1,
it is also independent of ∆2. When the results are read (in Reuse-Present,
Reuse-Absurd and their equivalent in the equality judgment), in the “present”
case, the conditions are both true, so the types are equal and we can use coercion;
in the “absent” case, the result stays absent.

Lemma 6.18 (Subject reduction). Let Γ be an environment, a a term such
that Γ $π a : τ ñ ∆. Suppose a l

ÞÝÑ b. We can interpret l as a substitution.
Then there exists ∆1 such that Γ $π b : τ rls ñ ∆1 and:

• If l “ 0, we have Γ $ ∆ Ě ∆1.

• If l “ q ÞÑ u, we have ∆1 “ p∆´qqr˚q Ð usYS, where S is an environment
of labels with all labels prefixed by q.

Moreover, Γ,∆1 $ reusepaqrls : τ » reusepbq : τ .

96 CHAPTER 6. A LANGUAGE FOR EQUALITIES

Proof. First, let us prove this for head reductions: we need to use projection
(Lemma 6.14). Take for example reduction of a type-level application: we have
Γ $ pΛpα : Typq. vq τ0 : σ. Invert the derivation rules until we reach a rule
that is not Coerce. Then, the last rule is necessarily TApp. By inverting
the type derivation, we obtain Γ $ τ0 : Typ, σ “ τ rα Ð τ0s and Γ $ Λpα :
Typq. v : @pα : Typq τ . After extracting a coercion, and inverting the last syntax
directed rule, we obtain that there exists τ 1 such that Γ, α : Typ $ v : τ 1 and
Γ $ @pα : Typq τ : κ » @pα : Typq τ : κ1. Then we apply projection on this
equality: we obtain Γ, α : Typ $ τ : Sch » τ 1 : Sch. Thus, applying Coerce,
we get Γ, α : Typ $ v : τ . Then we conclude by substitution: Γ $ vrα Ð τ0s :
τ rα Ð τ0s. The equality of the reusable versions of the terms is guaranteed by
Eq-ReduceTApp.

Let us also examine the reduction of a pattern matching, as it removes labels:
if it reduces, the conditions for the output labels reduce too, and they reduce
to False in the branches that are not selected, so the new outputs ∆1 with the
results in.discarded branches removed are reduced outputs of ∆.

For context: by induction on the context. The subterm that is reduced
does not appear in the resulting type, but its reusable version may appear in an
equality for typing another subterm that is not reduced. But we know by induc-
tion hypothesis that the reusable versions stay equal. The output changes, but
stays equivalent, so any well-typed term with the old output is also well-typed
with the new output. We need to show equality of the reused versions. This
is immediate by congruence (for Eq-Fix, we require the equality on expansive
terms to embed the equality on non-expansive terms). Finally, we need to show
equivalence of the computed result sets. This is immediate by substituion/con-
gruence (for Eq-Let and Eq-Match), and the fact that we combine equivalent
computed result sets.

6.3.4 Soudness via a logical relation for equality

In order to prove soundness, we need to show that, in evaluation contexts,
there will never be an equality between, e.g., an arrow type and a datatype, or
between True and False. This is not an obvious result because it depends on
the equalities in the environment: for example, if we have True “ False in the
environment we can prove any equality.

We prove that these equalities cannot be proved in inhabited environments,
i.e. typing environments for which we can provide an instanciation of the type
and term variables with types and terms that satisfies the equality in the context.
For this, we explain the meaning of equality in the empty environment.

We define a terminating subset of the reduction ÝÑι on non-expansive terms
that only does non-expansive reduction. It is defined in Figure 6.11 and does
not emit labels.

The reduction ÝÑι does not involve labels, since applications are not re-
duced. It is confluent. It also preserves types, since its head reduction is a
subset of ÝÑβ .

We need to prove that ÝÑι terminates. Then, this gives a meaning to ‖a‖,
the normal form of a for ÝÑι.

Lemma 6.19. The reduction ÝÑι is strongly normalizing: there is no infinite
reduction path for ÝÑι starting from a term or type (even ill-typed).

6.3. METATHEORY OF EML 97

pΛpα : Typq. uq τ ÝÑι urαÐ τ s let x “ u in a ÝÑι arxÐ us

match djpτ
2
k q
kpuiq

i with pdjpτkq
kpxjiq

i Ñ ajq
j ÝÑι ajrxji Ð uis

i

match djpτ
2
k q
kpuiq

i with pdjpτkq
kpxjiq

i Ñ σjq
j ÝÑι σjrxji Ð uis

i

Context-Iota
a ÝÑι b

Cras ÝÑι Crbs

Figure 6.11: Non-expansive reduction

Proof. Note that this result is not restricted to well-typed terms and types.
Implicitly, every reduction mentioned in this proof will be ÝÑι.

We define the set Sτ of strongly normalizing types: we will show that every
type belongs in Sτ . We also define the set Sa as the largest set of terms such
that:

• if a P Sa, a is strongly normalizing;

• if a P Sa reduces to Λpα : Typq.u, then for all types τ P Sτ , urαÐ τ s P Sa;

• if a P Sa reduces to dpτjqjpaiqi, then for all i, ai in Sa.

These two sets are stable by reduction because the restrictions apply to all
reductions of terms or types that are in the sets. Finally, let γ associate type
variables to types and term variables to terms. We say that γ P Sγ if for all
α P dompγq, γpαq P Sτ and for all x P dompαq, γpxq P Sa.

We prove, by mututal induction on the structure of types and terms, the
following results:

• for all types τ , if γ P Sγ , γpτq P Sτ ;

• for all terms a, if γ P Sγ , γpaq P Sa.

For types τ :

• If τ “ α, if α P dompγq, then γpτq “ γpαq P Sτ , because γ P Sγ . Otherwise,
τ does not reduce.

• If τ “ τ1 Ñ τ2 (similarly for τ “ @pα : Typq σ, and τ “ ζ pτiq
i), the

reduction sequences from τ1 and τ2 are finite, thus the reductions from
τ “ τ1 Ñ τ2 are finite (the arrow will never reduce).

• If τ “ match a with pdipτjq
jpxikq

k Ñ τiq
i, then we have

γpτq “ match γpaq with pdipτjq
jpxikq

k Ñ γpτiqq
i

By induction hypothesis, the subterm γpaq and the subtypes γpτiq do not
have an infinite reduction sequence. Thus any infinite reduction sequence
includes a head reduction. Suppose the reduction is from τ 1 “ match
b with pdipτjq

jpxikq
k Ñ τ 1iq

i. Then, b “ dipτ
1
jq
jpukq

k. The head reduction
then reduces τ 1 to τ 1irxik Ð uks

k. Let γ1 “ γrxik Ð uks
k. We have γ1 P Sγ ,

because for all k, uk P Sa. Thus, by induction hypothesis, γ1pτiq P Sτ . But
τ 1irxik Ð uks

k is a possible reduction of γ1pτiq, thus τ 1irxik Ð uks
k P Sτ .

98 CHAPTER 6. A LANGUAGE FOR EQUALITIES

EnvT-Empty

γ $ H

EnvT-Var
γ $ Γ x# Γ $ γpxq : γpτq γpxq is nonexpansive

γ $ Γ, x : τ

EnvT-TVar
γ $ Γ α# Γ $ γpαq : γpκq

γ $ Γ, α : κ

EnvT-Eq
γ $ Γ $ γpu1q : γpτq » γpu2q : γpτq

γ $ Γ, pu1 » u2q : τ

Env-Path-Var
γ $ Γ γpπq K Γ

γ $ Γ, π

Env-Result
γ $ Γ p$ γpuq : bool » True : boolq ùñ p$ γppq : γpτqq

γ $ Γ, puq˚p : τ

Figure 6.12: Environment typing

For terms a:

• The cases of variables and pattern matching are similar to their type
equivalents.

• Labels stay labels and are never substituted.

• For function definition and application, the subterms are strongly normal-
izing by induction hypothesis, and they never reduce to a type abstraction
or a type constructor.

• For constructors, by induction hypothesis on the fields, they are all in Sa.
A constructor never reduces to a type abstraction.

• If a “ Λpα : Typq. u, then, by induction hypothesis, γpuq has no infinite
reduction sequence. Moreover, for every type τ , if γ1 “ γrα Ð τ s, then
γ1puq has no infinite reduction sequence. Thus, urα Ð τ s P Sa. Then
a P Sa.

• If a “ a1 τ , there are no infinite reduction sequences from a1 and τ by
induction hypothesis, thus an infinite reduction sequence from a must
include a head reduction, and so must be a reduction sequence that yields
a constructor or a type abstraction. Suppose the head reduction is from
b “ pΛpα : Typq. uq τ 1. Then b reduces to urαÐ τ 1s. Let γ1 “ γrαÐ τ 1s.
We have γ1 P Sγ because τ 1 P Sτ by induction hypothesis. Thus by
induction hypothesis, we have γ1pσq P Sτ and γ1puq P Sa.

For an environment Γ and a mapping from term variables to non-expansive
terms, type variables to types, path variables to paths, and paths to non-
expansive terms γ, we define a judgment γ $ Γ that indicates that the types
and terms in γ are closed and well-formed and define a valid instance of Γ. The
rules defining this judgment are given in Figure 6.12.

We will prove that every well-typed closed non-expansive term reduces for
ÝÑι to a value of the correct syntactic shape for its type. We will also prove

6.3. METATHEORY OF EML 99

that equal non-expansive terms normalize to values, and that these values are
semantically equal according to some relation. Although tempting, we cannot
take this relation to only relate identical terms (up to renaming). Indeed, in
function definitions λpx : τq.a, a is not closed anymore, and does not necessarily
reduce to a value (for example, a “ match x with Unit Ñ Unit is equal to Unit,
but reduction does not prove the equality). Since the terms inside function
definitions are never taken out of the definition by the reduction ÝÑι, we can
simply ignore them (as long as they are syntactically equal). We do not actually
define a (unary) set of terms with the correct syntactic shape: instead, we use
reflexivity and say that for any closed well-typed term a of type τ , the pair
pa, aq is in Erτ s. The set Erτ s of comparable coerced terms is defined in terms
of Vrτ s, the set of comparable values at type τ . Two equal coerced terms may
have different, but equal, types. This is not a problem, as we prove that, for
two closed equal types τ1 and τ2, Vrτ1s “ Vrτ2s.

The definition implementing these ideas is given in Figure 6.13. We limit
our definitions, for Erτ s, to closed well-typed non-expansive terms equal in the
empty environment, and for Vrτ s to values of types equal to τ . To keep the
definitions readable, we implicitly limit the sets we define to only contain pairs
of terms verifying these conditions, i.e. we allow ourselves to omit the typing
conditions. The sets Erτ s and Vrτ s are defined as the least fixed point of the
equations given here (it exists, because we never use the interpretation in a
contravariant position). For the needs of the proof, we also define a relation on
environments γ1, γ2: we say pγ1, γ2q P GrΓs if the terms and types in the two
environments are syntactically equal, related and of the appropriate type. In
the same way, we require the environments to be well-typed.

To start with, we need the following technical lemma on the interpretations.
Proving that an environment is related to itself is important to build environ-
ments to apply transitivity in.

Lemma 6.20 (Left slicing).

• If pu1, u2q P Erτ s, pu1, u1q P Erτ s.

• If pv1, v2q P Vrτ s, pv1, v1q P Vrτ s.

• If pγ1, γ2q P GrΓs, pγ1, γ1q P GrΓs.

Proof. For the second item, by induction of the derivation of pv1, v2q P Vrτ s.
The syntactic typing/equality conditions are immediately true (by reflexivity of
equality, Lemma 6.4).

• For pv1, v2q P Vrτ1 Ñ τ2s: v1 has the right syntactic form, and there are
no other conditions.

• For pv1, v2q P Vr@pα : Typq σs: we have v1 “ Λpα : Typq. w1 and v2 “

Λpα : Typq. w2. Consider $ τ : Typ. We have pw1rα Ð τ s, w2rα Ð

τ sq P Vrσrα Ð τ1ss: by induction hypothesis we conclude that pv1rα Ð
τ s, v1rαÐ τ sq P VrσrαÐ τ1ss.

• For pv1, v2q P Vrζ pτjqjs, we similarly apply the induction hypothesis on
all fields.

• For a pattern matching: the selection of the branch is only decided by the
type, then we can apply the induction hypothesis on the branch.

100 CHAPTER 6. A LANGUAGE FOR EQUALITIES

Erτ s Ď tpu1, u2q |$ u1 : τ » u2 : τu
Erτ s “ tpu1, u2q | p‖u1‖, ‖u2‖q P Vrτ squ

Vrτ s Ď tpv1, v2q |$ v1 : τ » v2 : τu
Vrτ1 Ñ τ2s “ tpfixπ x py : τ 11q : τ 12 . a

1, fixπ x py : τ21 q : τ22 . a2qu
Vr@pα : Typq σs “

"ˆ

Λpα : Typq. u1

Λpα : Typq. u2

˙
ˇ

ˇ

ˇ

ˇ

@pτ1, τ2q p$ τ1 : Typ » τ2 : Typ^ Vrτ1s “ Vrτ2sq
ùñ pu1rαÐ τ1s, u2rαÐ τ2sq P VrσrαÐ τ1ss

*

Vrζ pτjqjs “
"ˆ

dpτ1jq
jpv1iq

i

dpτ2jq
jpv2iq

i

˙
ˇ

ˇ

ˇ

ˇ

p$ d : @pαj : Typqj pτiq
i Ñ ζ pαjq

jq

^ ppv1i, v2iq P Vrτirαj Ð τjs
jsqi

*

Vrmatch a with pdipτkq
kpxijq

j Ñ σiq
is “

$

&

%

Vrσirxij Ð vjs
js if

"

^
‖a‖ “ dipτ

1
kq
kpvjq

j

$ di : @pαk : Typqk pτjq
i Ñ ζ pαkq

k

H otherwise

GrΓs Ď tpγ1, γ2q | γ1 $ Γ^ γ2 $ Γu
GrHs “ H

GrΓ, α : Typs “

tpγ1rαÐ τ1s, γ2rαÐ τ2sq | pγ1, γ2q P GrΓs ^ Vrτ1s “ Vrτ2s^ $ τ1 : Typ » τ2 : Typu
GrΓ, x : τ s “

tpγ1rαÐ u1s, γ2rαÐ u2sq | pγ1, γ2q P GrΓs ^ pu1, u2q P Vrγ1pτqsu
GrΓ, pu1 » u2q : τ s “ tpγ1, γ2q | pγ1, γ2q P GrΓs ^ pγ1pu1q, γ2pu2qq P Erγ1pτqsu

Figure 6.13: Interpretation of types

6.3. METATHEORY OF EML 101

The proof of the result on environments similarly follows the structure of
GrΓs.

We also need to prove that the interpretations are transitive:

Lemma 6.21 (Transitivity).

• If pv1, v2q P Vrτ s and pv2, v3q P Vrτ s, then pv1, v3q P Vrτ s.

• If pu1, u2q P Erτ s and pu2, u3q P Erτ s, then pu1, u3q P Erτ s.
Proof. Transitivity of Erτ s is immediately implied by transitivity of Vrτ s. The
typing conditions are immediately satisfied by transitivity. The rest of the proof
is done by mutual induction.

For transitivity of Vrτ s, consider the different cases. Similarly to the previous
lemma (6.20), it suffices to follow the structure of the derivation.

Lemma 6.22 (Correcteness of the intepretation).

• If Γ $ u : τ , then for all pγ1, γ2q P GrΓs, pγ1puq, γ2puqq P Erγ1pτqs.

• If Γ $ u1 : τ1 » u2 : τ2 then for all pγ1, γ2q P GrΓs, pγ1pu1q, γ2pu2qq P

Erγ1pτ1qs.

• If Γ $ τ1 : κ1 » τ2 : κ2, then for all pγ1, γ2q P GrΓs, Vrγ1pτ1qs “ Vrγ2pτ2qs.
Moreover, if γ $ Γ, then pγ, γq P GrΓs.

Proof. We prove the three first results by mutual induction on the derivations.
The first result is essentially a special case of the second: we could indeed obtain
it by first applying reflexivity to deduce that u is equal to itself, although that
changes the derivation so that we cannot proceed by induction. We will focus
on the second result on term equality instead.

For term equality: suppose Γ $ u1 : τ1 » u2 : τ2, and pγ1, γ2q P GrΓs. Let us
consider some of the different rules.

• For Eq-Trans, we have premises Γ $ u1 : τ1 » u3 : τ3 and Γ $ u3 : τ3 »
u2 : τ2. By Lemma 6.20, we have pγ1, γ1q P GrΓs. Thus, by induction
hypothesis on the first premise, pγ1pu1q, γ1pu3qq P Erγ1pτ1qs. By induc-
tion hypothesis on the second premise, pγ1pu3q, γ2pu2qq P Erγ1pτ3qs. We
also have Γ $ τ1 : κ1 » τ3 : κ3 (Lemma 6.15), thus Erγ1pτ1qs “ Erγ1pτ3qs.
Then, by transitivity of Erγ1pτ1qs (Lemma 6.21), pγ1pu1q, γ2pu3qq P Erγ1pτ1qs.

• For Eq-Split, consider the premise Γ $ u : ζ pτkq
k. By induction hypothe-

sis, pγ1puq, γ2puqq P Erγ1pζ pτkq
kqs. Thus, p‖γ1puq‖, ‖γ2puq‖q P Vrγ1pζ pτkq

kqs.
Then there exists a constructor$ d : @pαk : Typqkpτiq

i Ñ ζ pαkq
k such that

‖γ1puq‖ “ dpτ1kq
kpv1iq

i, ‖γ2puq‖ “ dpτ2kq
kpv2iq

i, and for all i, pv1i, v2iq P

Erτirαj Ð τ1js
js. Suppose the premise corresponding to this branch is

Γ, pxi : τirαk Ð τks
kqi, pdpτkq

kpxiq
i » uq : ζ pτkq

k $ u1 : τ1 » u2 : τ2

Consider the environments γ11 “ γ1rxi Ð v1is
i and γ12 “ γ2rxi Ð v2is

i.
We have:

pγ11, γ
1
2q P GrΓ, pxi : τirαk Ð τks

kqi, pdpτkq
kpxiq

i : uq » pζ pτkq
k :sq

Thus, pγ11pu1q, γ
1
1pu2qq P Erγ11pτ1qs. Since γ1ipuiq “ γpuiq for i P t1, 2u, we

have pγ1pu1q, γ2pu2qq P Erγ1pτ1qs.

102 CHAPTER 6. A LANGUAGE FOR EQUALITIES

• For Eq-Subst, this is true by the hypothesis pγ1, γ2q P GrΓs.

• For Eq-Coerce, use (by induction hypothesis) the equality of the inter-
pretation of equal types.

• For Eq-Var on x, by hypothesis pγ1pxq, γ2pxqq P Erγ1pτqs. Then we have
p‖γ1pxq‖, ‖γ2pxq‖q P Vrγ1pτqs.

• For congruence rules, let us consider for example Eq-Let. We have u1 “

let x “ u01 in u11 and u2 “ let x “ u02 in u12, with premises Γ $ u01 :
σ1 » u02 : σ2 and Γ, x1 : τ1, px » u01q : σ1 $ u11 : τ1 » u12 : τ2. Apply the
induction hypothesis on the first premise: we have p‖γ1pu01q‖, ‖γ2pu02q‖q P
Vrγ1pτ1qs. Consider γ11 “ γ1rxÐ ‖γ1pu01q‖s and γ12 “ γ2rxÐ ‖γ2pu02q‖s.
We have both γ11 $ Γ, x : σ1 and γ12 $ Γ, x : σ1, since Γ $ γ2pσ1q :
κ » γ2pσ

1
1q : κ1. Then, pγ11, γ12q P GrΓ, x : σ1, px » σ1q : a1s, and by

induction hypothesis, pγ11pu11q, γ
1
2pu12qq P Erγ11pτ1qs. Finally, ‖γ11pu11q‖ “

‖γ1pu11qrx Ð ‖u01‖s‖ “ ‖γ1plet x1 “ u01 in u11q‖ and similarly for u2.
Thus, pγ1p‖let x1 “ u01 in u11‖q, γ2p‖let x2 “ u02 in u12‖q P Erγ1pτ1qs.

• For reduction rules, the two terms normalize to the same thing and have
the same type. We conclude by applying the first result on the typing
derivation of one of the sides of the equality.

For equality on types, consider the last rule in the derivation:

• For TEq-Trans, proceed as for Eq-Trans: suppose we have Γ $ τ1 :
κ1 » τ2 : κ2 and Γ $ τ2 : κ2 » τ3 : κ3 and consider pγ1, γ3q P GrΓs. By
Lemma 6.20, pγ1, γ1q P GrΓs, thus (applying the induction hypothesis on
the first premise), Vrγ1pτ1qs “ Vrγ1pτ2qs. From the second premise, we
obtain Vrγ1pτ2qs “ Vrγ3pτ3qs. Thus, Vrγ1pτ1qs “ Vrγ3pτ3qs.

• For TEq-Split, select a branch and build an environment as for Eq-Split,
then use the induction hypothesis on this branch.

• For congruence rules, take for instance TEq-All. We have Γ, α : Typ $
σ1 : Sch » σ2 : Sch. We want to prove that, for a term u and a closed
type τ such that $ τ : Typ, urα Ð τ s P Vrγ1pσ1qrα Ð τ ss if and only if
urα Ð τ s P Vrγ2pσ2qrα Ð τ ss. Consider, for i P t1, 2u, γ1i “ γirα Ð τ s.
Since Vrτ s “ Vrτ s, pγ11, γ12q P GrΓ, α : Typs. By induction hypothesis,
Vrγ11pσ1qs “ Vrγ12pσ2qs, and γ1ipσiq “ γipσiqrαÐ τ s.

• For TEq-Match, consider the premise on the term that is matched on:
Γ $ a1 : τ1 » a2 : τ2. Then, ‖γ1pa1q‖ and ‖γ2pa2q‖ both normalize
to the same constructor. Then the correct branch can be selected as in
TEq-Split.

• For TEq-ReduceMatch: compute the intepretations on both side, they
are actually the same.

From the fact that the Vrτ s are distinct for different shapes of τ , we can
conclude that, in the empty environment, it is impossible to prove an equality
between, e.g., arrow types and universally quantified types. This suffices to
prove progress.

6.3. METATHEORY OF EML 103

Lemma 6.23 (Inversion). Consider a value v such that pαk : Typqk $ v : τ .

• If τ “ τ1 Ñ τ2, there exists a, τ 11, τ 12 such that v “ fixπ x py : τ 11q : τ 12 . a.

• If τ “ @pα : Typq τ 1, there exists w such that v “ Λpα : Typq. w.

• If τ “ ζ pτiq
i, there exists a constructor $ d : @pαi : Typqi pτjq

j Ñ ζ pαiq
i,

types pτ 1iqi and terms pajqj such that a “ dpτ 1iq
ipajq

j.

Proof. We will only look at the last case, the other cases are similar. Consider
the different cases for v:

• If v “ fixπ x py : τ1q : τ2 . a, then we have pαk : Typqk $ v : τ1 Ñ τ2, and
pαk : Typqk $ ζ pτiq

i : κ » τ1 Ñ τ2 : κ1. We can instantiate the αk with,
e.g. unit: we get $ ζ pτirαk Ð unitskqi : κ » τ1rαk Ð unitsk Ñ τ2rαk Ð
unitsk : κ1 But this would imply Vrτ1rαk Ð unitsk Ñ τ2rαk Ð unitsks “
Vrζ pτirαk Ð unitskqis, which is false (function definitions are present in
the first set but not the second).

• Similarly for v “ Λpα : Typq. u, and for v “ dpτjq
jpvkq

k where d is a
constructor of another type.

• There remains only the case v “ dpτ 1iq
ipvkq

k with d a constructor of ζ.

Lemma 6.24 (Progress). Suppose $ a : τ . Then, either a ÝÑβ b for some
term b, or a is a value.

Proof. We proceed by induction on the base term, as in the proof of Theorem 4.2
for ML, strengthening the induction to accept environments of the form pαi :
Typqi. Instead of inversion for ML, we use Lemma 6.23.

For the (new) case of Reuse-Present and Reuse-Absurd: if a “ ˚p, a is not
typeable in an environment composed only of type variables: the only possibility
is that pαiqi $ True : bool » False : bool, which is impossible as pTrue,Falseq is
not included in the interpretation of bool.

6.3.5 Full term equality and reduction
We’d like to prove that full term equality is stable by reduction. We have two
cases to consider for an equality between a and b: the first one is performing
a non-expansive reduction (ÝÑι) on one of the terms (e.g. a reduces to a1q.
Then, a1 stays equal to the same terms. The second is performing an expansive
reduction on one term. Then, we can perform some number of non-expansive
reductions then an expansive reduction on the other term and recover equal
terms: essentially, we are performing the same reduction on the two sides up to
non-expansive reduction.

Lemma 6.25 (Stability by non-expansive reduction). Suppose TermsEqualpΓ $p

a : τa » b : τbq, and a ÝÑι a
1. Then, TermsEqualpΓ $p a1 : τa » b : τbq.

Proof. The atoms of a1 are obtained by reducing one subterm of the decom-
position of a, and removing some atoms. The removed atoms must have their
condition equivalent to False by subject reduction for ÝÑι (subject reduction
tells us the returned results from a1 are reduced outputs of those of a, as defined
in Definition 6.3).

104 CHAPTER 6. A LANGUAGE FOR EQUALITIES

Lemma 6.26 (Stability by expansive reduction). Suppose TermsEqualppαi :
Typqi $a τa : b » τb :) , and a ÝÑβ a

1 where the reduction reduces a function
application. Then, there exists b1, b2 such that b ÝÑ˚

β b
1 without performing an

expansive reduction, then b1 ÝÑβ b2, performing an expansive reduction, and
TermsEqualpΓ $p a1 : τa » b2 : τbq.

Proof. Reduce b until reaching either a value or an expansive reduction. If
we reach a value b1, we must have TermsEqualpΓ $p a : τa » b1 : τbq. The
decomposition of b1 has no expansive atoms, thus the condition for all expansive
atoms in a must be equivalent to False, thus there is no expansive reduction
from a (expansive reductions in evaluation position have a constraint equal to
True, by induction on evaluation context).

Otherwise, we reach an expansive reduction. It must be a reduction with
equivalent function and argument. Then, by substitution, the bodies with ar-
gument substituted are equal terms.

Chapter 7

Staging with mML

In this chapter, we introduce another component of our encoding of ornaments,
as an extension of eML called mML. This extension has two purposes. First,
it allows separating some meta-abstractions and meta-applications than can
be reduced in a separate phase from the abstractions and applications already
present in user code. The language is designed so that all mML code can be
reduced without touching the eML code. Building on this phase distinction,
we can introduce richer abstractions facilities to mML: since we guarantee that
they can be eliminated, we can add things that are not available in eML, such
as dependent types, abstraction on equalities, and type-level functions.

7.1 Overview of the design

We want the extensions in the language mML to be able to reduce in a separate
phase from the eML reduction. This imposes several constraints.

We write mML application with a # to distinguish it from ML application.
Similarly, all mML abstraction are marked with #.

First, we must ensure that ML constructs (functions, pattern matching, etc)
do not return meta abstractions, because then reduction of some ML code could
make new mML redexes appear. We ensure this by introducing a superkind Met
of Sch that classifies the types of meta abstractions.

Since term meta-abstraction can reduce at any moment, even when the ar-
gument is not fully evaluated, it could substitute expansive terms for variables.
But this would break stability of non-expansivity by evaluation. Thus we limit
meta term application to non-expansive terms.

In an environment with an incoherent equality (such as pTrue » Falseq :
bool), any two eML types are equal. We prefer to avoid this for mML: since
mML code will be evaluated under arbitrary contexts, we need, e.g., that type
abstractions are not confused with term abstractions under any context. This
is solved by disallowing mML types in type-level pattern matching, and limiting
case splitting (TEq-Split) to only operate on types of kinds Typ and Sch.

Finally, we have to decide whether mML abstractions and applications are
expansive. To allow reducing mML redexes in equalities, we consider most
abstractions and applications non-expansive, and we require the body of ab-
stractions to be non-expansive terms. However, to allow transporting expansive

105

106 CHAPTER 7. STAGING WITH MML

computations inmML, for example for patches, we introduce thunks, noted rπ.as:
thunks can contain an expansive term, whose labels start with π. A thunk is
applied, noted puqp, by choosing a label p for the result of the evaluation of the
body of the thunk. For example consider,

ppλ#px : boolq. rπ. fπ¨1 xsq # Trueqp

This reduces to:
prπ. fπ¨1 Truesqp

This reduces to the following term, emitting a label ˚pÐ ˚p ¨ 1:

fp¨1 True

Thus, thunks allows us to transport expansive computations inside mML ab-
stractions, as long as the place where they are used is ready to unthunk them.
This is similar to labeled ML abstractions, but we can eliminate the thunk-
ing and unthunking at mML reduction time, and we allow the thunk/unthunk
redexes to be reduced in the full term equality for mML.

7.2 Definition of mML

7.2.1 Syntax and typing
The syntax of mML builds on the syntax of eML. One thing we need to add
is type-level functions, taking types, terms, or equalities as arguments. This
requires a richer language of kinds to denote these abstractions. In the same way,
we need a richer language of types to represent the term-level meta-abstractions
on types, terms, and equalities.

The syntax of kinds and types is given in Figure 7.1. Compared to the
syntax of kinds and types of eML (Figure 6.1), the kinds are enriched with a
kind of meta types Met that will serve to separate terms having a meta type
from terms having an eML type, and kinds for the type-level dependent meta-
abstractions on types, terms and equalities. Equalities stay unnamed in meta-
abstractions. The syntax of types is similarly enriched with types for term-level
meta-abstractions on types, terms and equalities. These types have kind Met.

We also add type-level meta abstractions and applications on types, terms
and equalities. The meta abstractions and applications are marked with # to
distinguish them from normal abstractions and applications. As discussed pre-
viously, we limit meta term application to non-expansive terms. When applying
an equality, we explicitly mark the equality, using the syntax pu » uq : τ (this
is the syntax used to mark equalities in eML typing environments). This makes
typing easier. Finally, the syntax of typing environments is modified to allow
type variables at any kind instead of only the kind Typ. The syntax of terms
(Figure 7.2) is similarly enriched with meta-abstractions and applications. We
add meta-abstraction to non-expansive terms, but not meta-application as its
reduction can yield an expansive term.

We now describe the typing rules of mML. Datatypes stay the same (in
particular, they cannot contain values of a meta-type). The rules for the well-
formedness of environments are staightforward and given on Figure 7.3. In
EnvVar, the type of the variable can now be of kind Met. In EnvTVar, we

7.2. DEFINITION OF MML 107

κ ::“ Kinds
| Typ Monotypes
| Sch Type schemes
| Met Meta types
| Πpα : κq κ Type function
| Πpx : τq κ Term function

τ, σ ::“ Types
| α Type variable
| τ Ñ τ Function type
| ζ τ Datatype
| @pα : Typq τ Universal quantification
| match a with P Ñ τ Pattern matching
| λ#pα : κq. τ Type abstraction (meta)
| λ#px : τq. τ Term abstraction (meta)
| τ # τ Type application (meta)
| τ # u Term application (meta)
| Πpα : κq τ Type function (meta)
| Πpx : τq τ Term function (meta)
| Πppu » uq : τq τ Equality function (meta)
| Πppuq˚p : τq τ Reused result function (meta)
| rτ s Thunk (meta)

Γ ::“ Typing environments
| H Empty
| Γ, x : τ Variable
| Γ, α : κ Type variable
| Γ, pa » aq : τ Equality
| Γ, puq˚p : τ Precomputed result
| Γ, π Path variable

∆ ::“ Computed applications
| H Empty
| ∆, puq˚p : τ Result

Figure 7.1: Kinds and types of mML

108 CHAPTER 7. STAGING WITH MML

a, b ::“ Terms
| x Variable
| let x “ a in a Let binding
| fixπ x px : τq : τ . a Function by fixed point
| ap a Application
| a τ Type application
| Λpα : Typq. u Type abstraction
| dpτqipaqi Construction
| match a with pP Ñ a | .. P Ñ aq Pattern matching
| ˚p Reused result
| λ#pα : κq. u Type abstraction (meta)
| λ#px : τq. u Term abstraction (meta)
| λ#pu » uq : τ. u Equality abstraction (meta)
| u # τ Type application (meta)
| u # u Term application (meta)
| u # pu » uq : τ Equality application (meta)
| rπ. us Thunk creation (meta)
| puqp Thunk evaluation (meta)
| λ#ppuq˚p : τq. u Result abstraction (meta)
| u # u Result application (meta)

P ::“ Patterns
| dpτqipxqi

u ::“ x | dpτqipuqi | fixπ x px : τq : τ . a | u τ | Λpα : κq. u | let x “ u in u

| match u with pP Ñ u | .. P Ñ uq | ˚p | λ#pα : κq. u | λ#px : τq. u

| λ#pu » uq : τ. u | u # τ | u # u | u # pa » aq : τ | rπ. as | λ#ppuq˚p : τq. u

| u #˚ u

Figure 7.2: Syntax of mML

7.2. DEFINITION OF MML 109

EnvEmpty
$ H

EnvPathVar
$ Γ π # Γ

$ Γ, π

EnvVar
$ Γ Γ $ τ : Met x# Γ

$ Γ, x : τ

EnvTVar
$ Γ Γ $ κ wf α# Γ

$ Γ, α : κ

EnvEq
$ Γ Γ $ u1 : τ Γ $ u2 : τ Γ $ τ : Sch

$ Γ, pu1 » u2q : τ

EnvPtr
$ Γ p K Γ pp “ π ¨ q ùñ π P Γq Γ $ u : bool Γ $ τ : Sch

$ Γ, puq˚p : τ

Wf-Base
$ Γ κ P tTyp,Sch,Metu

Γ $ κ wf

Wf-TyFun
α# Γ Γ $ κ wf Γ, α : κ $ κ1 wf

Γ $ Πpα : κq κ1 wf

Wf-TermFun
x# Γ Γ $ τ : Met Γ, x : τ $ κ wf

Γ $ Πpx : τq κ wf

Figure 7.3: Well-formedness for environments and kind

allow quantification on type variables of any kind. We introduce a new judgment
for well-formedness of kinds: we write Γ $ κ wf if κ is well-formed in the
environment Γ.

The well-formedness rules for types are given in Figure 7.4. We introduce
new rules for the new constructions. The types of term-level abstractions are
classified with kind Met. Type-level meta-abstractions are dependently typed
using the new kinds. Type-level pattern matching and universal types are still
limited to types of kind Typ or Sch: this enforces that the types of term-level
meta-abstractions cannot appear inside a ML type. This is important for cor-
rectly reducing from mML to eML. We add a subtyping rule K-SubSch from
Sch to Met: thus, the base kinds form a hierarchy, with Met containing Sch
containaing Typ.

The typing rules are similar to the typing rules for eML, except that we add
rules for the new constructs, similar to those for types. In rule Let, we check
that the type of the term in the binding and of the returned type is of kind Sch
and not Met. This was already done for Match.

7.2.2 The meta reduction

In mML, two reductions coexist: the normal eML reduction ÝÑβ and a reduc-
tion ÝÑ# that only reduces meta applications. The reduction ÝÑ# is non-
deterministic and can occur under any context, including applications. Its defi-
nition is given in Figure 7.12. As in ÝÑβ , meta-reduction emits results that can

110 CHAPTER 7. STAGING WITH MML

K-Var
$ Γ α : κ P Γ

Γ $ α : κ

K-Datatype
$ Γ $ ζ : pTypqi ñ Typ pΓ $ τi : Typqi

Γ $ ζ pτiq
i : Typ

K-Arr
Γ $ τ1 : Typ Γ $ τ2 : Typ

Γ $ τ1 Ñ τ2 : Typ

K-SubTyp
Γ $ τ : Typ

Γ $ τ : Sch

K-SubSch
Γ $ τ : Sch

Γ $ τ : Met

K-All
Γ, α : κ $ τ : Sch

Γ $ @pα : Typq τ : Sch

K-Match
κ P tTyp,Schu

$ pdiq
i : ζ complete pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi Γ $ u : ζ pτkq

k

pΓ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » uq : ζ pτkq

k $ σi : κqi

Γ $ match u with pdipτkq
kpxijq

j Ñ σiq
i : κ

K-TyAbs
Γ, α : κ0 $ τ : κ

Γ $ λ#pα : κ0q. τ : Πpα : κ0q κ

K-TyApp
Γ $ τ : Πpα : κ0q κ Γ $ τ0 : κ0

Γ $ τ # τ0 : κrαÐ τ0s

K-TermAbs
Γ, x : τ0 $ τ : κ

Γ $ λ#px : τ0q. τ : Πpx : τ0q κ

K-TermApp
Γ $ τ : Πpx : τ0q κ Γ $ u : τ0

Γ $ τ # u : κrxÐ us

K-TyMetaArr
Γ, α : κ $ τ : Met

Γ $ Πpα : κq τ : Met

K-TermMetaArr
Γ, x : τ0 $ τ : Met

Γ $ Πpx : τ0q τ : Met

K-EqMetaArr
Γ, pu1 » u2q : σ $ τ : Met

Γ $ Πpu1 » u2q : σ τ : Met

K-PtrMetaArr
p K Γ

Γ $ u : bool Γ, pu » Trueq : bool $ τ : Sch Γ, puq˚p : τ $ σ : Met

Γ $ Πppuq˚p : τq σ : Met

K-Thunk
Γ $ τ : Sch

Γ $ rτ s : Met

Figure 7.4: Kinding rules for mML

7.2. DEFINITION OF MML 111

Var
$ Γ x : σ P Γ

Γ $p x : σ ñH

TAbs
Γ, α : Typ $p u : σ ñH

Γ $p Λpα : Typq. u : @pα : Typq σ ñH

TApp
Γ $ τ : Typ Γ $p a : @pα : Typq σ ñ ∆

Γ $p a τ : σrαÐ τ s ñ ∆

Fix
Γ, π, x : τ1 Ñ τ2, y : τ1 $

π a : τ2 ñ ∆

Γ $p fixπ x py : τ1q : τ2 . a : τ1 Ñ τ2 ñH

App
Γ $p a : τ1 Ñ τ2 ñ ∆1 Γ,∆1 $

p b : τ1 ñ ∆2 p ď q q K Γ,∆1,∆2

Γ $p aq b : τ2 ñ ∆1,∆2, pTrueq˚q : τ2

Let
Γ $p a : τ 1 ñ ∆1

Γ,∆a, x : τ 1, px » reusepaqq : τ 1 $p b : τ ñ ∆2 Γ $ τ : Sch Γ $ τ 1 : Sch

Γ $p let x “ a in b : τ ñ ∆1,∆2rxÐ reusepaqs

Con
$ Γ $ d : @pαj : Typqj pτiq

i Ñ ζ pαjq
j

pΓ $ τj : Typqj pΓ, p∆kq
kąi $p ai : τirαj Ð τjs

j ñ ∆iq
i

Γ $p dpτjq
jpaiq

i : ζ pτjq
j ñ p∆iq

i

Match
$ pdiq

i : ζ complete
Γ $ τ : Sch pdi : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi Γ $p a : ζ pτkq

k ñ ∆

pΓ,∆, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » reusepaqq : ζ pτkq

k $p bi : τ ñ ∆iq
i

Γ $p match a with pdipτkq
kpxijq

j Ñ biq
i : τ

ñ ∆, pmatch reusepaq with dipτkq
kpxijq

j Ñ ∆iq
i

Coerce
Γ $p a : τ 1 ñ ∆ Γ $ τ 1 : κ1 » τ : κ

Γ $p a : τ ñ ∆

Reuse-Present
puq˚q : τ P Γ Γ $ u : bool » True : bool

Γ $p ˚q : τ ñH

Reuse-Absurd
q K Γ Γ $ False : bool » True : bool Γ $ τ : Typ

Γ $p ˚q : τ ñH

Figure 7.5: Typing rules for mML (eML rules)

112 CHAPTER 7. STAGING WITH MML

TyMetaAbs
Γ, α : κ $p u : τ ñH

Γ $p λ#pα : κq. u : Πpα : κq τ ñH

TyMetaApp
Γ $p u : Πpα : κ0q τ ñH Γ $ τ0 : κ0

Γ $p u # τ0 : τ rαÐ τ0s ñ H

TermMetaAbs
Γ, x : τ0 $

p u : τ ñH

Γ $p λ#px : τ0q. u : Πpx : τ0q τ ñH

TermMetaApp
Γ $p u : Πpx : τ0q τ ñH Γ $p u0 : τ0 ñH

Γ $p u # u0 : τ rxÐ u0s ñ H

EqMetaAbs
Γ, pu1 » u2q : σ $p u : τ ñH

Γ $p λ#ppu1 » u2q : σq. u : Πppu1 » u2q : σq τ ñH

EqMetaApp
Γ $p u : Πpu1 » u2q : σ τ ñH Γ $ u1 : σ » u2 : σ

Γ $p u # pu1 » u2q : σ : τ ñH

PtrMetaAbs
Γ, pu0 » Trueq : bool $ τ : Sch Γ, pu0q˚q : τ $p u : σ ñH

Γ $p λ#ppu0q˚q : τq. u : Πppu0q˚q : τq σ ñH

PtrMetaApp
Γ $p u : Πppu0q˚p : τq σ ñH Γ, pu0 » Trueq : bool $p u1 : τ ñH

Γ $p u #˚ u1 : σr˚pÐ u1s ñ H

Thunk
Γ, π $π a : τ ñ ∆

Γ $p rπ. as : rτ s ñ H

Unthunk
Γ $p u : rτ s ñ H p ď q q K Γ,∆

Γ $p puqq : τ ñ ∆, pTrueq˚q : τ

Figure 7.6: Typing rules for mML (new rules)

7.2. DEFINITION OF MML 113

KEq-Trans
Γ $ κ1 » κ2 Γ $ κ2 » κ3

Γ $ κ1 » κ3

KEq-Base
$ Γ κ P tTyp,Sch,Metu

Γ $ κ » κ

KEq-Type-Fun
Γ $ κ1 » κ2 Γ, α : κ1 $ κ11 » κ12

Γ $ Πpα : κ1q κ
1
1 » Πpα : κ2q κ

1
2

KEq-Term-Fun
Γ $ τ1 : κ1 » τ2 : κ2 Γ, x : τ1 $ κ11 » κ12

Γ $ Πpx : τ1q κ
1
1 » Πpx : τ2q κ

1
2

Figure 7.7: Kind equality for mML

be reused. This only happens when evaluating thunks. The label translation
rules are extended for the new abstractions and applications (see Figure 7.13):
thunk abtraction hides the labels emitted inside, all applications are transparent
to labels. We do not provide a label translation for the other meta abstractions
as they only expect non-expansive terms.

7.2.3 Equality

The equality of mML is similar to the equality of eML. There are three major
changes: we include congruence rules corresponding to the new constructs on
types and terms; we include reduction rules corresponding to the head reduc-
tion of ÝÑ# (the non-head reduction are included because non-expansive term
equality is a congruence). We limit case-splitting to proving equalities between
terms whose type is of kind Sch, and between types whose kind is Sch: this en-
sures that the mML part of type equality always holds, even in contexts that are
absurd, and thus unreachable for eML reduction: we need to guarantee progress
for the full mML reduction.

The new and changed rules are given on Figure 7.8 for the congruence rules
for types, Figure 7.9 for the congruence rules for terms. As in eML, the congru-
ence rules follow the structure of the typing rules. The reduction rules, the new
split rule and the subkinding rules are given in Figure 7.10 and Figure 7.11.

Since types can appear in kinds, we also have a kind equality judgment, that
only includes congruence rules (defined on Figure 7.7).

We also extend term equality to take thunk application into account. There
is a new atom of the form puqp. We can either chose to keep these atoms as-is, in
which case they are equal to atoms pu1qp when u and u1 are equal, or to expand
them: we must provide a such that u is equal to rπ. as. Then, the atom is
replaced by the decomposition of a before evaluating the equality. This makes
such atoms transparent for term equality: we can reduce them as needed, thus
meta-reduction preserves term equality.

Then, the definition of equality is in two steps: first we allow expanding as
much as desired on each side, then we compare the terms for equality.

Definition 7.1 (Expansion). Consider Γ $p a : τ ñ ∆. Let S “ labelspaq and
suppose atomspaq “ p˚pi Ð pTi, aiqq

piPlabelspaq, with for all i,

114 CHAPTER 7. STAGING WITH MML

TEq-TyAbs
Γ $ κ11 » κ12 Γ, α : κ11 $ τ1 : κ1 » τ2 : κ2

Γ $ λ#pα : κ11q. τ1 : Πpα : κ11q κ1 » λ#pα : κ12q. τ2 : Πpα : κ12q κ2

TEq-TermAbs
Γ $ σ1 : κ11 » σ2 : κ12 Γ, x : σ1 $ τ1 : κ1 » τ2 : κ2

Γ $ λ#px : σ1q. τ1 : Πpx : σ1q κ1 » λ#px : σ2q. τ2 : Πpx : σ2q κ2

TEq-TyApp
Γ $ σ1 : Πpα : κ11q κ1 » σ2 : Πpα : κ12q κ2 Γ $ τ1 : κ11 » τ2 : κ12

Γ $ σ1 # τ1 : κ1rαÐ τ1sσ2 # τ2κ2rαÐ τ2s

TEq-TermApp
Γ $ σ1 : Πpx : τ1q κ1 » σ2 : Πpx : τ2q κ2 Γ $ u1 : τ1 » u2 : τ2

Γ $ σ1 # u1 : κ1rxÐ u1sσ2 # u2κ2rxÐ u2s

TEq-TyMetaArr
Γ $ κ1 » κ2 Γ, α : κ1 $ τ1 : Met » τ2 : Met

Γ $ Πpα : κ1q τ1 : Met » Πpα : κ2q τ2 : Met

TEq-TermMetaArr
Γ $ τ1 : κ1 » τ2 : κ2 Γ, x : τ1 $ σ1 : Met » σ2 : Met

Γ $ Πpx : τ1q σ1 : Met » Πpx : τ2q σ2 : Met

TEq-EqMetaArr
Γ $ u11 : σ1 » u21 : σ2

Γ $ u12 : σ1 » u22 : σ2 Γ, pu11 » u12q : σ1 $ τ1 : Met » τ2 : Met

Γ $ Πpu11 » u12q : σ1 τ1 : Met » Πpu21 » u22q : σ2 τ2 : Met

TEq-PtrMetaArr
p K Γ

Γ $ u1 : bool » u2 : bool Γ, pu1 » Trueq : bool $ τ1 : Sch » τ2 : Sch
Γ, pu1q˚p : τ1 $ σ1 : Met » σ2 : Met

Γ $ Πppu1q˚p : τ1q σ1 : Met » Πppu2q˚p : τ2q σ2 : Met

TEq-Thunk
Γ $ τ1 : Sch » τ2 : Sch

Γ $ rτ1s : Met » rτ2s : Met

Figure 7.8: Type equality for mML: new congruence rules

7.2. DEFINITION OF MML 115

Eq-TyMetaAbs
Γ $ κ1 » κ2 Γ, α : κ1 $ u1 : τ » u2 : τ2

Γ $ λ#pα : κ1q. u1 : Πpα : κ1q τ1 » λ#pα : κ2q. u2 : Πpα : κ2q τ2

Eq-TermMetaAbs
Γ $ τ1 : Met » τ2 : Met Γ, x : τ1 $ a1 : σ1 » a2 : σ2

Γ $ λ#px : τ1q. a1 : Πpx : τ1q σ1 » λ#px : τ2q. a2 : Πpx : τ2q σ2

Eq-EqMetaAbs
Γ $ u11 : σ1 » u21 : σ2

Γ $ u12 : σ2 » u22 : σ2 Γ, pu11 » u12q : σ1 $ u1 : τ1 » u2 : τ2

Γ $λ#ppu11 » u12q : σ1q. u1 : Πppu11 » u12q : σ1q τ1
»λ#ppu21 » u22q : σ2q. u2 : Πppu21 » u22q : σ2q τ2

Eq-PtrMetaAbs
p K Γ Γ $ u11 : bool » u12 : bool

Γ, pu11 » Trueq : bool $ τ1 : Sch » τ2 : Sch Γ, pu11q˚p : τ1 $ u1 : σ1 » u2 : σ2

Γ $ λ#ppu11q˚p : τ1q. u1 : Πppu11q˚p : τ1q σ1

Eq-Thunk
TermsEqualpΓ $π a1 : τ1 » a2 : τ2q

Γ $ rπ. a1s : rτ1s » rπ. a2s : rτ2s

Eq-TyMetaApp
Γ $ u1 : Πpα : κ1q σ1 » u2 : Πpα : κ2q σ2 Γ $ τ1 : κ1 » τ2 : κ2

Γ $ u1 # τ1 : σ1rαÐ τ1s » u2 # τ2 : σ2rαÐ τ2s

Eq-TermMetaApp
Γ $ u1 : Πpx : τ 11q τ1 » u2 : Πpx : τ 12q τ2 Γ $ u11 : τ 11 » u12 : τ 12

Γ $ u1 # u11 : τ1rxÐ u11s » u2 # u12 : τ2rxÐ u12s

Eq-EqMetaApp
Γ $ u1 : Πpu11 » u12q : σ1 τ1 » u2 : Πpu21 » u22q : σ2 τ2

Γ $ u11 : σ1 » u12 : σ1 Γ $ u21 : σ2 » u22 : σ2

Γ $ u1 # pu11 » u12q : σ1 : τ1 » u2 # pu21 » u22q : σ2 : τ2

Eq-PtrMetaApp
Γ $ u1 : Πppu21q˚p : τ1q σ1 » u2 : Πppu22q˚p : τ1q σ2

Γ, pu21 » Trueq : bool $ u11 : τ1 » u12 : τ2

Γ $ u1 #˚ u11 : σ1r˚pÐ u11s » u2 #˚ u12 : σ2r˚pÐ u12s

Figure 7.9: Term equality for mML: new congruence rules

116 CHAPTER 7. STAGING WITH MML

TEq-SubSch
Γ $ τ : Sch » τ 1 : κ

Γ $ τ : Met » τ 1 : κ

TEq-Split
p$ di : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi

Γ $ u : ζ pτkq
k Γ $ σ1 : κ1 Γ $ σ2 : κ2 κ1, κ2 P tTyp,Schu

pΓ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » uq : ζ pτkq

k $ σ1 : κ1 » σ2 : κ2q
i

Γ $ σ1 : κ1 » σ2 : κ2

TEq-Reduce-MetaTApp
Γ, α : κ0 $ σ : κ Γ $ τ : κ0

Γ $ pλ#pα : κ0q. σq # τ : κrαÐ τ s » σrαÐ τ s : κrαÐ τ s

TEq-Reduce-MetaApp
Γ, x : τ $ σ : κ Γ $ u : τ

Γ $ pλ#px : τq. σq # u : κrxÐ us » σrxÐ us : κrxÐ us

TEq-Reduce-MetaEqApp
Γ, pu1 » u2q : τ $ σ : κ Γ $ u1 : τ » u2 : τ

Γ $ pλ#ppu1 » u2q : τq. σq # ppu1 » u2q : τq : κ » σ : κ

Figure 7.10: Type equality for mML: subkinding, reduction and split

Eq-Reduce-MetaTApp
Γ, α : κ $ u : σ Γ $ τ : κ

Γ $ pλ#pα : κq. uq # τ : σrαÐ τ s » urαÐ τ s : σrαÐ τ s

Eq-Reduce-MetaApp
Γ, x : τ0 $ u : τ Γ $ u0 : τ0

Γ $ pλ#px : τq. uq # u0 : τ rxÐ u0s » urxÐ u0s : τ rxÐ u0s

Eq-Reduce-MetaEqApp
Γ, pu1 » u2q : τ $ u : σ Γ $ u1 : τ » u2 : τ

Γ $ pλ#ppu1 » u2q : τq. uq # ppu1 » u2q : τq : σ » u : σ

Eq-Reduce-MetaPtrApp
p K Γ Γ, pu0q˚p : τ $ u : σ Γ, pu0 » Trueq : bool $ u1 : τ

Γ $ pλ#ppu0q˚p : τq. uq #˚ u1 : σr˚pÐ u1s » ur˚pÐ u1s : σr˚pÐ u1s

Figure 7.11: Term equality for mML: new reduction rules

7.2. DEFINITION OF MML 117

pλ#pα : κq. σq # τ
0
ÝÑ# σrαÐ τ s

pλ#px : τq. σq # u
0
ÝÑ# σrxÐ us

pλ#pu1 » u2q : τ. σq # pu1 » u2q : τ 1
0
ÝÑ# σ

pλ#pα : κq. uq # τ
0
ÝÑ# urαÐ τ s

pλ#px : τq. uq # u0
0
ÝÑ# urxÐ u0s

pλ#pu1 » u2q : τ. uq # pu11 » u12q : τ 1
0
ÝÑ# u

pλ#ppu1q˚p : τq. uq #˚ u0
0
ÝÑ# ur˚pÐ u0s

prπ. asqp
˚pÐreuseparπÐpsq
ÝÝÝÝÝÝÝÝÝÝÝÝÑ# arπ Ð ps

Red-NoLabel
a

0
ÝÑ# b

Cras 0
ÝÑ# Crbs

Red-Label
a
˚pÐu
ÝÝÝÝÑ# b

Cras p˚pÐuqÒCÝÝÝÝÝÝÑ# pCr˚pÐ usqrbs

Figure 7.12: Definition of ÝÑ#

p˚pÐ uq Ò rπ. rss “ 0

p˚pÐ uq Ò rs # τ “ ˚pÐ u
p˚pÐ uq Ò rs # u1 “ ˚pÐ u
p˚pÐ uq Ò rs # pu11 » u12q : τ “ ˚pÐ u
p˚pÐ uq Ò rs #˚ u1 “ ˚pÐ u
p˚pÐ uq Ò prsqq “ ˚pÐ u

Figure 7.13: Label translation for mML

118 CHAPTER 7. STAGING WITH MML

• either ai “ ui u
1
i, and then Γ,∆YTi $ ui : τi Ñ σi and Γ,∆YTi $ u1i : τi;

• or ai “ puiqpi and then Γ,∆Y Ti $ ui : rσis

. Then, consider a set of non-expansive term expandi for all i for which ai is a
thunk application, and a set of terms expandedi, such that:

• For all i, Γ,∆ Y Ti $ expandi : bool, i.e. the expandi are boolean non-
expansive expressions.

• For all i, Γ,∆Y Ti, pexpandi » Trueq : bool $ ui : σi » rp. expandedis : σi,
i.e. the expression inside the thunk application is equivalent to rp.expandedis
whenever expandi is True.

Then, consider a1 the term obtained by replacing all thunk application atoms
in a with match expandi with False Ñ puiq

pi | True Ñ expandedirπ Ð pis. We
say that a1 is a one-step expansion of a.

We way that a1 is an expansion of a if it can be obtained from a by a finite
number of expansions. ♦

Definition 7.2 (Term equality for mML). Consider an environment Γ, two
terms au, bu, and two types τa, τb. Consider expansions a and b of these terms,
and suppose there exists p, ∆a, ∆b such that Γ $p a : τa ñ ∆a and Γ $p b :
τb ñ ∆b. Let Sa “ labelspaq, Sb “ labelspbq

Suppose atomspaq “ p˚pi Ð pTa,i, aiqq
piPlabelspaq and atomspbq “ p˚qj Ð

pTb,j , bjqq
qjPlabelspbq, with for all i,

• either ai “ ui u
1
i, and then Γ,∆a Y Ta,i $ ua,i : τa,i Ñ σa,i and Γ,∆a Y

Ta,i $ u1a,i : τa,i;

• or ai “ puiqpi and then Γ,∆a Y Ta,i $ ui : rσa,is

and similarly for Moreover, suppose that for all i, and similarly for all j, Γ,∆bY

Tb,j $ ub,j : τb,j Ñ σb,j and Γ,∆b Y Tb,j $ u1b,j : τb,j. Finally, suppose that
∆a “ ppu

c
a,iq˚pi : σa,iq

i and ∆b “ ppu
c
b,jq˚qj : σb,jq

j.
We define a type unthunk τ with one constructor Unthunk : τ Ñ unthunk τ to

represent thunk-valued atoms. Then, for each i, we define atoma,i “ Apppui, u
1
iq

and atomtya,i “ app pτi, σiq if the expression defining pi is of the form ui u
1
i,

and atoma,i “ Unthunk u, atomtya,i “ unthunk σa,i if the expression defining pi
is of the form ppiq

_, and similarly for each j
Then, we say that that a and b are equal, noted TermsEqualpΓ $p au : τa »

bu : τbq if and only if:

• For all k,

Γ,∆a,∆b, ppIndex`puca,i Ñ piq
i » Index`pucb,j Ñ qjq

jq : Index`puca,i Ñ τiq
iq`ăk

$ Indexkpuca,i Ñ atoma,iq
i : Indexkpuca,i Ñ atomtya,iq

i

» Indexkpucb,i Ñ atomb,iq
i : Indexkpucb,i Ñ atomtyb,iq

i

i.e. the k-th atom on the left-hand side is equivalent to the k-th atom on
the right-hand side.

7.3. METATHEORY OF MML 119

• The final expressions are equal:

Γ,∆a,∆b,

ppIndex`puca,i Ñ piq
i » Index`pucb,j Ñ qjq

jq : Index`puca,i Ñ τiq
iq`ăpn,mq

$ reusepaq : τa » reusepbq : τb

where n and m are the number of labels appearing in a and b respectively.

♦

This equality has the same properties as the eML equality. In particular, for
transitivity, we can perform expansion on all terms and then apply transitivity
as for eML.

Then, reduction preserves equality:

Lemma 7.1 (Meta reduction preserves equality). Suppose Γ $p a : τ ñ ∆ and
a ÝÑ# a1. Then, TermsEqualpΓ $p a : τ » a1 : τq.

Proof. A meta-reduction is either a non-expansive reduction, that preserves
equality as in Lemma 6.25, or a reduction of a thunk, in which case we need to
mark the expanded thunk as to-be-expanded and then recover identical terms.

7.3 Metatheory of mML

7.3.1 Confluence

First, we prove that themML reductionÝÑ# is confluent. This is not immediate
because of labels: we need to show that the same labels are substituted whatever
the order thunks are reduced in, and independently of where mML reduction
moves them. As explained when presenting labeled ML, this is only true for
well-typed terms and well-formed types and kinds.

Well-labeling and subject reduction

We have not yet proved subject reduction for ÝÑ#, and we intend to use con-
fluence in the proof. Fortunately, the reduction ÝÑ# does not drop expansive
expressions and labels are preserved: the obstacles to proving confluence using
only the well-labeling of §5 are absent here.

Our first step is thus to extend the well-labeling defined in Figure 5.8 to
mML. The new rules, given in Figure 7.14 for terms, and Figure 7.16 for types,
are essentially a simplification of the typing rules for mML, where only the label
information is kept: the judgment Σ; Γ $pl a ñ ∆ reads as with path variables
Σ and labels Γ in context, and with current label p, the term a is well-labeled
and emits labels in ∆. We also give a well-labeling judgment for kinds and
terms. Since they do not emit labels, the judgments are simpler: Σ; Γ $l τ
(resp. Σ; Γ $l κ) states that the type τ (resp. the kind κ) is well-labeled in the
environment Σ,Γ.

The well-labeling judgment for mML is more lenient than the typing judg-
ment:

120 CHAPTER 7. STAGING WITH MML

L-Var
orthogonalpΓq

Σ; Γ $pl xñH

L-TAbs
Σ; Γ $pl uñH

Σ; Γ $pl Λpα : Typq. uñH

L-TApp
Σ; Γ $pl añ ∆ Σ; Γ $l τ

Σ; Γ $pl a τ ñ ∆

L-Fix
π # Σ Σ, π; Γ $πl añ ∆ Σ; Γ $l τ1 Σ; Γ $l τ2

Σ; Γ $pl fixπ x py : τ1q : τ2 . añH

L-App
Σ; Γ $pl añ ∆1 Σ; Γ,∆1 $

p
l bñ ∆2 p ď q q K Γ,∆1,∆2

Σ; Γ $ql a
q bñ ∆1,∆2, q

L-Let
Σ; Γ $pl añ ∆1 Σ; Γ,∆1 $

p
l bñ ∆2

Σ; Γ $pl let x “ a in bñ ∆1,∆2

L-Con
orthogonalpΓq pΣ; Γ $l τiq

i pΣ; Γ, p∆kq
kąj $

p
l aj ñ ∆jq

j

Σ; Γ $pl dpτiq
ipajq

j ñ p∆jq
j

L-Match
Σ; Γ $pl añ ∆

pΣ; Γ $l τkq
k pΣ; Γ,∆ $

p
l ai ñ ∆iq

i orthogonalpp∆iq
iq

Σ; Γ $pl match a with pdipτkq
kpxijq

j Ñ biq
i ñ ∆, p∆iq

i

L-Reuse
orthogonalpΓq p P Γ_ p K Γ

Σ; Γ $pl ˚pñH

L-TyMetaAbs
Σ; Γ $l κ Σ; Γ $pl uñH

Σ; Γ $pl λ
#pα : κq. uñH

L-TyMetaApp
Σ; Γ $pl añ ∆ Σ; Γ $l τ0

Σ; Γ $pl a # τ0 ñ ∆

L-TermMetaAbs
Σ; Γ $l τ0 Σ; Γ $pl uñH

Σ; Γ $pl λ
#px : τ0q. uñH

L-TermMetaApp
Σ; Γ $pl añ ∆ Σ; Γ $pl uñH

Σ; Γ $pl a # uñ ∆

L-EqMetaAbs
Σ; Γ $l σ Σ; Γ $pl u1 ñH Σ; Γ $pl u2 ñH Σ; Γ $pl uñH

Σ; Γ $pl λ
#ppu1 » u2q : σq. uñH

L-EqMetaApp
Σ; Γ $pl añ ∆ Σ; Γ $l σ Σ; Γ $pl u1 ñH Σ; Γ $pl u2 ñH

Σ; Γ $pl a # pu1 » u2q : σ ñ ∆

Figure 7.14: Well-labeling for types

7.3. METATHEORY OF MML 121

L-PtrMetaAbs
q K Γ Σ; Γ $pl u0 ñH Σ; Γ $l τ Σ; Γ, q $pl uñH

Σ; Γ $pl λ
#ppu0q˚q : τq. uñH

L-PtrMetaApp
Σ; Γ $pl añ ∆ Σ; Γ $pl uñH

Σ; Γ $pl a #˚ uñ ∆

L-Thunk
π # Σ Σ, π; Γ $πl añ ∆

Σ; Γ $pl rπ. as ñ H

L-Unthunk
p ď q q K Γ,∆ Σ; Γ $pl añ ∆

Σ; Γ $pl paq
q ñ ∆, q

Figure 7.15: Well-labeling for types (cont.)

LT-Var
orthogonalpΓq

Σ; Γ $l α

LT-Datatype
orthogonalpΓq pΣ; Γ $l τiq

i

Σ; Γ $l ζ pτiqi

LT-Arr
Σ; Γ $l τ1 Σ; Γ $l τ2

Σ; Γ $l τ1 Ñ τ2

LT-All
Σ; Γ $l τ

Σ; Γ $l @pα : Typq τ

LT-Match
Σ; Γ $pl uñH pΣ; Γ $l τkq

k pΣ; Γ $l σiq
i

Σ; Γ $l match u with pdipτkq
kpxijq

j Ñ σiq
i

LT-TyAbs
Σ; Γ $l κ Σ; Γ $l τ

Σ; Γ $l λ
#pα : κq. τ

LT-TyApp
Σ; Γ $l σ Σ; Γ $l τ

Σ; Γ $l σ # τ

LT-TermAbs
Σ; Γ $l τ Σ; Γ $l σ

Σ; Γ $l λ
#px : τq. σ

LT-TermApp
Σ; Γ $l τ Σ; Γ $pl uñH

Σ; Γ $l τ # u

LT-TyMetaArr
Σ; Γ $l κ Σ; Γ $l τ

Σ; Γ $l Πpα : κq τ

LT-TermMetaArr
Σ; Γ $l τ Σ; Γ $l σ

Σ; Γ $l Πpx : τq σ

LT-EqMetaArr
Σ; Γ $pl u1 ñH Σ; Γ $pl u2 ñH Σ; Γ $l τ Σ; Γ $l σ

Σ; Γ $l Πpu1 » u2q : τ σ

LT-PtrMetaArr
p K Γ Σ; Γ $pl uñH Σ; Γ $l τ Σ; Γ, p $l σ

Σ; Γ $l Πppuq˚p : τq σ

LT-Thunk
Σ; Γ $l τ

Σ; Γ $l rτ s

Figure 7.16: Well-labeling for types

122 CHAPTER 7. STAGING WITH MML

LK-Base
orthogonalpΓq κ P tTyp,Sch,Metu

Σ; Γ $l κ

LK-TyFun
Σ; Γ $l κ Σ; Γ $l κ

1

Σ; Γ $l Πpα : κq κ1

LK-TermFun
Σ; Γ $l τ Σ; Γ $l κ

Σ; Γ $l Πpx : τq κ

Figure 7.17: Well-labeling for kinds

Lemma 7.2 (Well-typed expressions are well-labeled). Consider a typing en-
vironment Γ. We can obtain a labeling environment Σ; Γ1 from it by removing
everything except path variables and the names of labels. Similarly, from a list
of computed results for typing ∆ with their types and conditions, we can obtain
a list of computed results for labeling ∆1. Then,

• if Γ $ κ wf, then Σ; Γ1 $l κ;

• if Γ $ τ : κ, then Σ; Γ1 $l τ ;

• if Γ $ p : aτ∆, then Σ; Γ1 $pl añ ∆1.

Proof. By induction on the derivation. Some hypotheses requires in the label-
ing derivation but absent from the mML derivation can be extracted from the
already-present typing hypotheses (Lemma 6.12).

We need weakening and substitution for this judgment:

Lemma 7.3 (Weakening). Suppose Σ; Γ $pl añ ∆. Then:

• Suppose q ď p, and q independent of Γ,∆. Then, Σ; Γ $ql añ ∆.

• Suppose π R Σ. Then, Σ, π; Γ $pl añ ∆.

• Suppose q K p,Γ,∆. Then, Σ; Γ, q $pl añ ∆.

We have the same results for types and kinds.

Proof. By induction on the derivation: these changes translate to weakening in
the premises. The independence side-conditions stay true in the derivations.

Lemma 7.4 (Substitution). Suppose Σ; Γ $pl añ ∆.

• Consider π P Σ, and q K Γ,∆. Then, Σ ´ π; Γrπ Ð qs $
prπÐqs
l arπ Ð

qs ñ ∆rπ Ð qs.

• Consider x and a non-expansive term u such that Σ; Γ $pl uñH. Then,
Σ; Γ $pl arxÐ us ñ ∆.

We have the same results for types and kinds.

Proof. By induction on the derivation.

We then prove subject reduction for the well-labeling. This lemma is similar
to Lemma 5.11, except that we do not need a case for labels that disappear. It
is also extended to handle types and kinds.

7.3. METATHEORY OF MML 123

Lemma 7.5 (Subject reduction for well-labeling and ÝÑ#).

• Suppose Σ; Γ $l κ. If κ ÝÑ# κ1, then Σ; Γ $l κ
1.

• Suppose Σ; Γ $l τ . If τ ÝÑ# τ 1, then Σ; Γ $l τ
1.

• Suppose Σ; Γ $pl añ ∆. Moreover, suppose a l
ÝÑ# b. Then:

– If l “ 0, we have Σ; Γ $pl bñ ∆.

– If l “ ˚q Ð u, we have Σ; Γ $pl b ñ ∆1 where ∆1 “ ∆ ´ tqu Z S
where S is an orthogonal set of labels prefixed by q, and q P ∆.

Proof. The proof is similar to Lemma 5.11, except that we do not have to handle
the case of reduction of a pattern matching, thus labels never disappear.

The parallel reduction

In order to prove confluence, we follow Takahashi [1989]. We define a parallel
reduction for ÝÑ#. For types, it is noted aBσ a1, where σ is a substitution of la-
bels, corresponding to the labels emitted by the one-step reductions represented
by this parallel reduction. When σ is empty, we will also write a B a1. It also
applies to types and kinds. Since all terms appearing in types and kinds are non-
expansive, σ will always be empty and we write τB τ 1 and κBκ1. The reduction
has two parts: it has congruence rules, presented in Figure 7.18 for terms and
Figure 7.19 for types and kinds, and reduction rules, presented in Figure 7.20.
The congruence rules (for example P-App) reduce each subexpression. If labels
are generated, the labels are substituted in all the subexpressions, as well as
in the substitutions that were generated while reducing these expressions (until
there is nothing to substitute). The rules for let binding (P-Let) and pattern
matching (P-Match) also ensure that the substitutions stay well-scoped, as is
already done by label translation.

We will need a few substitution and reflexivity results on B:

Lemma 7.6 (Reflexivity of B). The parallel reduction is reflexive:

• For all a, aBH a.

• For all τ , τ B τ .

• For all κ, κB κ.

Proof. By mutual induction on terms, types, and kinds: apply the lemma for
each subexpression, and always choose the congruence rules.

Lemma 7.7 (Substitution for B). Let σ be a substitution (of term, type or label
variables, or of labels). Consider σB a reduced version of this substitution (i.e.
where some terms and types have been replaced by their reductions by B). Then,

• If aBl a1, then arσsBlrσ
B
s a1rσBs.

• If τ B τ 1, then τ rσsB τ 1rσBs.

• If κB κ1, then κrσsB κ1rσBs.

124 CHAPTER 7. STAGING WITH MML

P-Var

xBH x

P-Let
aBla a1 bBlb b1

let x “ a in bBla,lbrla,xÐreusepa1qs let x “ a1 in b1rlas

P-Fix
aBl a1 τ1 B τ

1
1 τ2 B τ

1
2

fixπ x py : τ 12q : τ1 . aB
H fixπ x py : τ 12q : τ 11 . a

1

P-App
aBla a1 bBlb b1

ap bBla,lbrlas a1p b1rlas

P-TAbs
uBH u1

Λpα : Typq. uBH Λpα : Typq. u1

P-TApp
aBl a1

a τ Bl a1 τ

P-Match
aBl a1 pτk B τ

1
kq
k pbi B

li b1iq
i

match a with pdipτkq
kpxijq

j Ñ biq
iBl,pmatchreusepa1q with dipτkq

k
pxijq

j
Ñlirlsq

i

match a1 with pdipτ
1
kq
kpxijq

j Ñ b1irlsq
i

P-Reuse

˚pBH ˚p

P-TyMetaAbs
κB κ1 uBH u1

λ#pα : κq. uBH λ#pα : κ1q. u1

P-TyMetaApp
uBH u1 τ B τ 1

u # τ BH u1 # τ 1

P-TermMetaAbs
τ B τ 1 uBH u1

λ#px : τq. uBH λ#px : τ 1q. u1

P-TermMetaApp
u1 B

H u11 u2 B
H u12

u1 # u2 B
H u11 # u12

P-EqMetaAbs
u0 B

H u10 u1 B
H u11 u2 B

H u12 τ B τ 1

λ#pu1 » u2q : τ. u0 B
H λ#pu11 » u12q : τ 1. u10

P-EqMetaApp
u0 B

H u10 u1 B
H u11 u2 B

H u12 τ B τ 1

u0 # pu1 » u2q : τ BH u10 # pu11 » u12q : τ 1

P-PtrMetaAbs
u0 B

H u10 uBH u1 τ B τ 1

λ#ppu0q˚p : τq. uB λ#ppu10q˚p : τ 1q. u1

P-PtrMetaApp
u1 B

H u11 u2 B
H u12

u1 # u2 B
H u11 # u12

P-Thunk
aBl a1

rπ. asBH rπ. a1s

P-Unthunk
uBH u1

puqp BH pu1qp

Figure 7.18: Parallel reduction: congruence for terms

7.3. METATHEORY OF MML 125

P-KBase
κ P tTyp,Sch,Metu

κB κ

P-KTyFun
κ1 B κ

1
1 κ2 B κ

1
2

Πpα : κ1q κ2 B Πpα : κ11q κ
1
2

P-KTermFun
τ B τ 1κB κ1

Πpx : τq κB Πpx : τ 1q κ1

P-TyVar

αB α

P-TyFun
τ1 B τ

1
1 τ2 B τ

1
2

τ1 Ñ τ2 B τ
1
1 Ñ τ 12

P-TyDatatype
pτi B τ

1
iq
i

ζ pτiq
i B ζ pτ 1iq

i

P-TyAll
τ B τ 1

@pα : Typq τ B @pα : Typq τ 1

P-TyMatch
aBl a1 pτk B τ

1
kq
k pσi B σ

1
iq
i

match u with pdipτkq
kpxijq

j Ñ σiq
i B match u1 with pdipτ

1
kq
kpxijq

j Ñ σ1iq
i

P-TyTyAbs
κB κ1 τ B τ 1

λ#pα : κq. τ B λ#pα : κ1q. τ 1

P-TyTyApp
σ B σ1 τ B τ 1

σ # τ B σ1 # τ 1

P-TyTermAbs
τ B τ 1 σ B σ1

λ#px : τq. σ B λ#px : τ 1q. σ1

P-TyTermApp
τ B τ 1 uB u1

τ # uB τ 1 # u1

P-TyMetaTyFun
κB κ1 τ B τ 1

Πpα : κq τ B Πpα : κ1q τ 1

P-TyMetaTermFun
τ B τ 1 σ B σ1

Πpx : τq σ B Πpx : τ 1q σ1

P-TyMetaEqFun
u1 B u

1
1 u2 B u

1
2 τ B τ 1 σ B σ1

Πpu1 » u2q : τ σ B Πpu11 » u12q : τ 1 σ1

P-TyMetaPtrFun
uB u1 τ B τ 1 σ B σ1

Πppuq˚p : τq σ B Πppu1q˚p : τ 1q σ1

P-TyThunk
τ B τ 1

rτ sB rτ 1s

Figure 7.19: Parallel reductions: congruence for types and kinds

126 CHAPTER 7. STAGING WITH MML

P-TyTermRed
σ B σ1 uB u1

pλ#px : τq. σq # uB σ1rxÐ u1s

P-TyTyRed
σ B σ1 τ B τ 1

pλ#pα : κq. σq # τ B σ1rαÐ τ 1s

P-TermTermRed
u1 B u

1
1 u2 B u

1
2

pλ#px : τq. u1q # u2 B u
1
1rxÐ u12s

P-TermTyRed
uB u1 τ B τ 1

pλ#pα : κq. uq # τ B u1rαÐ τ 1s

P-TermEqRed
uB u1

pλ#pu1 » u2q : τ. uq # pu1 » u2q : τ 1 B u1

P-TermPtrRed
u2 B u

1
2 u3 B u

1
3

pλ#ppu1q˚p : τq. u2q # u3 B u
1
2r˚pÐ u13s

P-TermThunkRed
aBl a1

prπ. asqp B˚pÐreusepa1qrπÐps a1rπ Ð ps

Figure 7.20: Parallel reductions: reduction rules

Proof. By induction on the derivation of the reduction. When reaching a vari-
able substituted by σ, use the reduction from its value for σ to its value for
σB.

We also need to prove that the reduction is compatible with making terms
reusable:

Lemma 7.8 (Reusability for B). Suppose a Bl a1. Then, there exists u such
that reusepaqBl u and reusepa2q “ urls.

Proof. By induction on the derivation.

Embedding of one reduction into the other

We then need to prove that ÝÑ# is a subset of B, and that B is a subset of
ÝÑ˚

#. From this, we will deduce subject reduction for B, and that ÝÑ# is
confluent if B is confluent.

We need a few lemmas analogous to lemmas from §5. The following lemma
is the equivalent for mML of Lemma 5.7:

Lemma 7.9 (Disjoint labels). Suppose Σ; Γ $pl a ñ ∆. Then, Γ and ∆ are
orthogonal and all labels in ∆ are prefixed by p.

Proof. Similar to Lemma 5.7.

The two next lemmas state that the typing describes what labels may be
emitted by reducing a term. We need one for the usual reduction and one for
the parallel reduction:

Lemma 7.10 (Emitted labels). Suppose Σ; Γ $ql añ ∆.

7.3. METATHEORY OF MML 127

• If a ˚pÐu
ÝÝÝÝÑ# a1, then p P ∆.

• If aBl a1, for all ˚pÐ u P l, p P ∆.

Proof. By induction on the derivation of the reduction.

The usual reduction and the parallel reductions do not perform the same
substitutions of labels: in a b, if the reduction of b emits a substitution, it will
be substituted in a by the usual reduction but not by the parallel reduction.
We need to prove that this has no consequences on the result: this is the case
because all labels that could be emitted by b are out of scope for a.

Lemma 7.11.

• If Σ; Γ $ql añ ∆ and p R Γ,∆, then ar˚pÐ us “ a.

• If Σ; Γ $l τ and p K Γ, then τ r˚pÐ us “ τ .

• If Σ; Γ $l κ and p K Γ, then κr˚pÐ us “ κ.

Proof. By induction on the derivation.

We also need the same result for the emitted substitutions. Here, we need a
stronger hypothesis because emitted substitutions may reference labels that are
suffixes of already existing labels.

Lemma 7.12. Suppose Σ; Γ $
q
l a ñ ∆. Let ˚p Ð u be a substitution with

q ď p and p K Γ,∆. Suppose aBl b. Then, lr˚pÐ us “ l.

Proof. By induction on the reduction, we prove that all labels appearing in the
terms in l are suffixes of the labels in Γ,∆.

We prove that the parallel reduction embeds the usual reduction. This relies
on the well-labeling to be true: when propagating reduction labels, the par-
allel reduction only substitutes in the part of the context that are after the
evaluation of the label, while ÝÑ# substitutes in the whole context. The well-
labeling guarantees that such labels cannot appear in the parts that are before
the evaluation.

Lemma 7.13 (ÝÑ# is included in B).

• Suppose Σ; Γ $pl añ ∆. Then if a l
ÝÑ# a1, aBl a1.

• Suppose Σ; Γ $l τ . Then, if τ ÝÑ# τ 1, τ B τ 1.

• Suppose Σ; Γ $l κ. Then, if κ ÝÑ# κ1, κB κ1

Proof. By induction on the reduction, inverting the typing derivation along the
way.

Head reduction map directly to reduction rules of the parallel reduction.
The subexpressions of the reduction rules are not reduced: we map them to
themselves using reflexivity for parallel reduction (Lemma 7.6).

For context rules, we will take the reduction in context C “ let x “ a in rs as
an example, as it has the most complicated features, and we will suppose that
the term in the context reduces with an attached substitution.

128 CHAPTER 7. STAGING WITH MML

Suppose b ˚pÐu
ÝÝÝÝÑ# a1. Then, Crbs ˚pÐurxÐreusepaqs

ÝÝÝÝÝÝÝÝÝÝÝÝÑ# let x “ ar˚p Ð us in
br˚pÐ urxÐ reusepaqss. Consider the labeling derivation of let x “ a in b. The
last rule must be L-Let. Inverting the rule Let, we obtain Σ; Γ $ql añ ∆ and
Σ; Γ,∆ $

q
l b ñ ∆1. By Lemma 7.10, we know that p P ∆1. Thus, p K Γ,∆.

Then, we can apply Lemma 7.11: we have ar˚pÐ us “ a.
We conclude by applying P-Let: we have aBH a (by reflexivity, Lemma 7.6)

and bB˚pÐu b1 by induction hypothesis, thus let x “ a in bB˚pÐurxÐreusepaqs let
x “ a in b1.

We also prove that the parallel reduction is a subset of the (iterated) usual
reduction:

Lemma 7.14 (B included in ÝÑ#).

• Suppose Σ; Γ $l κ and κB κ1. Then, κ ÝÑ˚
κ1.

• Suppose Σ; Γ $l τ and τ B τ 1. Then, τ ÝÑ˚
τ 1.

• Suppose Σ; Γ $al ∆ ñ , and aBl a1. Then, a l
ÝÑ
˚

a1.

Proof. By mutual induction on the parallel reduction derivations. We describe
the reasoning for two representative rules:

• If the last rule is a congruence rule such as P-Let:

P-Let
aBla a1 bBlb b1

let x “ a in bBla,lbrla,xÐreusepa1qs let x “ a1 in b1rlas

The last rule of the well-labeling derivation must be L-Let:

L-Let
Σ; Γ $pl añ ∆1 Σ; Γ,∆1 $

p
l bñ ∆2

Σ; Γ $pl let x “ a in bñ ∆1,∆2

By induction hypothesis on the well-labeled term b, we have b lb
ÝÑ# b1.

All the labels q P lb are in ∆2 by Lemma 7.10. Thus, l2 K Γ,∆1, and
for any subset l12 of l2, arl12s “ a. Thus, (by applying the context rule for

C “ let x “ a in rs, we have let x “ a in b
lbrxÐreusepaqs
ÝÝÝÝÝÝÝÝÝÑ

˚

let x “ a in b1.

By induction hypothesis on the well-labeled term a, we have a la
ÝÑ# a1.

Thus, by applying the context rule for C “ let x “ rs in b1, we obtain

let x “ a in b1
la
ÝÑ

˚

let x “ a in b1rlas. By composing these two reductions

we obtain: let x “ a in b
la,lbrla,xÐreusepa1qs
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

˚

let x “ a1 in b1rlas.

• If the last rule is a reduction rule such as P-TermThunkRed:
P-TermThunkRed

aBl a1

prπ. asqp B˚pÐreusepa1qrπÐps a1rπ Ð ps

By inverting the well-labeling derivation (L-Unthunk then L-Thunk), we

obtain that a is well-typed. Thus, by induction hypothesis, a l
ÝÑ
˚

a1.

7.3. METATHEORY OF MML 129

Then, prπ.asqp ÝÑ˚
prπ.a

1sqp (the rπ.rss removes the substitution emitted
by the reduction of a). By head-reduction, we have

prπ. a1sqp
˚pÐreusepa1qrπÐps
ÝÝÝÝÝÝÝÝÝÝÝÝÑ# a1rπ Ð ps

We conclude by composition.

Confluence for B

We now define the maximal reduction for B: aBl a1 is a maximal reduction of
a if we always use the reduction rules whenever possible. Then, we write this
aBBla1. We can similarly define a maximal reduction for types and kinds.

The core of the confluence proof is the following lemmas, expressing that if
we start by doing a step of non-maximal reduction, we can always obtain the
maximal reduction by performing another step of reduction. The term version
is more complex to express because it also needs to state how the substitutions
labelling these reductions are related: intuitively, performing a first reduction
might make some redexes that were hidden under a lambda exposed. Reducing
these lambdas in the second reduction step will emit labels that are not visible
when doing the maximal reduction in one step. The labels of these now-revealed
redexes are suffixes of labels emitted in the first reduction.

Lemma 7.15.

• Suppose Σ; Γ $l κ0. Consider a maximal reduction κ0 BBκ2. Suppose we
also have κ0 B κ1. Then, κ1 B κ2.

• Suppose Σ; Γ $l τ0. Consider a maximal reduction τ0 BBτ2. Suppose we
also have τ0 B τ1. Then, τ1 B τ2.

• Suppose Σ; Γ $
p
l a0 ñ ∆. Consider a maximal reduction a0 BBl12a2.

Suppose we also have a0Bl1 a1. Then, there exists l2, l12 and lB1 such that:

– a1 Bl2,l
1
2 a2.

– l1rl2, l
1
2s B lB1 , i.e. lB1 associates labels to reduced versions of their

corresponding terms in l1.

– The labels in l12 are suffixes of the labels in l1,

– l12 “ lB1 rl2, l
1
2s, l2.

Proof. By mutual induction on terms, types and kinds. We consider a few
representative cases:

• If the last rule of the maximal reduction is P-Thunk, the last rule of the
non-maximal reduction is also P-Thunk.

a0 BB
la,12a2

rπ. a0sBB
Hrπ. a2s

a0 B
la,1 a1

rπ. a0sB
H rπ. a1s

Inverting the well-labeling derivation, we obtain that a is well-labeled.
Then by induction hypothesis, there exists la,2, l1a,2 such that a1B

la,2,l
1
a,2a2.

Then, applying P-Thunk, rπ. a1sBH rπ. a2s. We conclude with l1 “ lB1 “
l2 “ l12 “ l12 “ H.

130 CHAPTER 7. STAGING WITH MML

• If the last rule of the maximal reduction is P-Unthunk, then the last rule
of the non-maximal reduction is also P-Unthunk (the last rule cannot
be P-TermThunkRed because if it was possible to apply it it would be
applied in the maximal reduction).

u0 BB
Hu2

pu0q
p BBHpu2q

p

u0 B
H u1

pu0q
p BH pu1q

p

Inverting the well-labeling derivation, we obtain that u is well-labeled.
Then by induction hypothesis, we have u1BH u2. Thus, applying the rule
P-Unthunk, we obtain pu1q

p BH pu2q
p.

• If the last rule of the maximal reduction is P-TermThunkRed and the last
rule of the non-maximal reduction is P-Unthunk: then, the second-to-last
rule of the non-maximal reduction is P-Thunk.

a0 BB
la,12a2

prπ. a0sq
p BB˚pÐreusepa2qrπÐpsa2rπ Ð ps

a0 B
la,1 a1

rπ. a0sB
H rπ. a1s

prπ. a0sq
p BH prπ. a1sq

p

By inverting the well-labeling derivation, we obtain that a0 is well-labeled.
By induction hypothesis, there exists la,2, l1a,2 such that a1 B

la,2,l
1
a,2 a2

Then, by P-TermThunkRed, we obtain prπ.a1sq
pB˚pÐreusepa2qrπÐpsa2rπ Ð

ps. We conclude, with l12 “ l2 “ ˚p Ð reusepa2qrπ Ð ps, and l1 “ lB1 “

l12 “ H.

• If the last rule of the maximal reduction is P-TermThunkRed and the
last rule of the non-maximal reduction is not P-Unthunk, it must be
P-TermThunkRed too.

a0 BB
la,12a2

prπ. a0sq
p BB˚pÐreusepa2qrπÐpsa2rπ Ð ps

a0 B
la,1 a1

prπ. a0sq
p B˚pÐreusepa1qrπÐps a1rπ Ð ps

Similarly to the previous case, we have a0BBla,12a2, a0Bla,1 a1, a1B
la,2,l

1
a,2

a2. By substitution, we have a1rπ Ð psBpla,2,l
1
a,2qrπÐps a2rπ Ð ps.

We have l1 “ ˚p Ð reusepa1qrπ Ð ps. By substitution (Lemma 7.7), we
have a1rπ Ð psBpl2,l

1
2qrπÐps a2rπ Ð ps. Then, by Lemma 7.8, there exists

u such that reusepa1qBH u and ˚a2rπ Ð ps “ urpl2, l
1
2qrπ Ð pss.

Let l2 “ H, l12 “ pla,2, l
1
a,2qrπ Ð ps, Then, let lB1 “ ˚p Ð u. We have

url2, l
1
2s “ ˚a2rπ Ð ps. Thus lB1 rl2, l

1
2s “ ˚pÐ reusepa2qrπ Ð ps

By subject reduction for well-labeling (Lemma 7.5), the labels emitted by
the reduction a1rπ Ð ps Bpla,2,l

1
a,2qrπÐps a2rπ Ð ps must be prefixed by p

(the output label set for prπ. a0sq
p only contains p, thus the new labels

appearing may only start with p and parallel reduction only emits exposed
labels by Lemma 7.10).

Then, l12 “ lB1 , l2 and we conclude.

7.3. METATHEORY OF MML 131

• If the last rule of the maximal reduction is P-Let, the last rule of the
other reduction is also P-Let:

a0 BB
la,12a2 b0 BB

lb,12b2

let x “ a0 in b0 BB
la,12,lb,12rla,12,xÐreusepa2qslet x “ a2 in b2rla,12s

a0 BB
la,1a1 b0 BB

lb,1b1

let x “ a0 in b0 BB
la,1,lb,1rla,1,xÐreusepa1qslet x “ a1 in b1rla,1s

By inverting the well-labeling derivation, we obtain that a0 and b0 are
well-labeled. Thus, by induction hypothesis, there exists lBa,1, la,2, l

1
a,2 such

that a1B
la,2,l

1
a,2 a2 and la,12 “ lBa,1rla,2, l

1
a,2s, la,2, and l

B
b,1, lb,2, l

1
b,2 such that

b1 B
lb,2,l

1
b,2 b2 and la,12 “ lBb,1rlb,2, l

1
b,2s, lb,2.

By substitution (Lemma 7.7), we have b1rla,1sBlb,2rl
B
a,1s,l

1
b,2rl

B
a,1s b2rl

B
a,1s.

Thus, applying P-Let, we get:

let x “ a1 in b1rla,1s

Bla,2,l
1
a,2,plb,2,lb,2qrl

B
a,1srxÐa2,la,2,l

1
a,2s let x “ a2 in b2rl

B
a,1srla,2, l

1
a,2s

Let us first show that the reduced expression is the one we want: we have
b2rl

B
a,1srla,2, l

1
a,2s “ b2rl

B
a,1rla,2, l

1
a,2s, la,2, l

1
a,2s “ b2rl

B
a,1rla,2, l

1
a,2s, la,2s “

b2rla,12s. The second-to-last equality is true because the labels in l1a,2 do
not appear in b2 because they are strict suffixes of labels that may be
emitted by the reduction of a0 (by induction hypothesis).

By a similar argument, we have:

plb,2, l
1
b,2qrl

B
a,1srxÐ reusepa2q, la,2, l

1
a,2s

“ plb,2, l
1
b,2qrxÐ reusepa2q, l

B
a,1rla,2, l

1
a,2s, la,2, l

1
a,2s

“ plb,2, l
1
b,2qrxÐ reusepa2q, l

B
a,1rla,2, l

1
a,2s, la,2s

“ plb,2, l
1
b,2qrxÐ reusepa2q, la,12s

We take l1 “ la,1, lb,1rxÐ reusepa1q, la,1s, lB1 “ lBa,1, l
B
b,1rxÐ reusepaeq, l

B
a,2s,

l2 “ la,2, lb,2rxÐ reusepa2q, la,12s, l12 “ l1a,2, l
1
b,2rxÐ reusepa2q, la,12s.

Then, we have l12 “ lB1 rl2, l
1
2s, l2.

From this, we deduce the diamond property for the parallel reduction. We’ll
allow ourselves to write B without label for Bl for some substitution l.

Lemma 7.16 (Diamond property for B). Consider a well-labeled term a0 Sup-
pose a0Ba1 and a0Ba2. Then, there exists a12 such that: a1Ba12 and a2Ba12.

We have the same results on types and kinds.

Proof. Take a12 to be the maximal reduction of a0.

Lemma 7.17 (Confluence for B). Suppose a0B˚ a1 and a0B˚ a2. Then, there
exists a12 such that a1 B˚ a12 and a2 B˚ a12.

We have the same result for types and kinds.

132 CHAPTER 7. STAGING WITH MML

Proof. We will write the proof for types. Suppose τ0,0 B τ1,0 B . . . B τn,0 and
τ0,0 B τ0,1 B . . .B τ0,m.

By subject reduction, the τi,0 and τ0,j are well-labeled.
For each 0 ă i ď n, 0 ă j ď m, suppose τi´1,j´1 is well-labeled and let τi,j

be the type such that τi,j´1 B τi,j and τi´1,j B τi,j . It exists by the diamond
property (Lemma 7.16). Moreover, it is well-labeled by subject reduction.

Then τn,m is such that τn,0 B τn,1 B . . .B τn,m and τ0,m B τ1,m B . . .B τn,m,
ie. τn,0 B˚ τn,m and τ0,m B˚ τn,m.

As a consequence, we have confluence for ÝÑ# :

Theorem 7.1 (Confluence for ÝÑ#). The reduction ÝÑ# is confluent: con-
sider a well-typed term a0, and suppose a0

l1
ÝÑ# a1, a0

l2
ÝÑ# a2. Then, there

exists a3 and l11, l12 such that a1
l11
ÝÑ# a3 and a2

l12
ÝÑ# a3.

The same result is true for types and kinds.

Proof. Well-typed terms, types, and kinds are well-labeled (Lemma 7.2) B is
confluent on well-typed terms, types and kinds, and B˚ and ÝÑ˚

coincide.

7.3.2 Basic properties of the typing derivation

We need weakening, reflexivity and substitution lemmas as for eML (see §6.3.1),
as well as symmetry of the equality. Neither the proofs nor the statements
change significantly, and we will not repeat them here.

7.3.3 Strong normalization

Our goal in this section is to prove that meta-reduction and type reduction are
strongly normalizing. The notations used in this proof are only used here, and
will be re-used for other purposes later in this article.

Theorem 7.2 (Normalization for meta-reduction). The meta-reduction ÝÑ#

is strongly normalizing.

As usual, the proof uses reducibility sets [Girard et al., 1989]. We need some
unusual properties to deal with labels: terms must stay strongly normalizing,
even when labels are substituted by arbitrary terms of the right types. Since
the labels are always substituted by expressions whose types are eML types,
and thus substitution of labels does not interact with the mML reduction, we
actually allow substitution of labels by safe term:

Definition 7.3 (Safe terms). The set of safe terms Ba is defined as the maximal
set of terms such that

• All terms in Ba are strongly normalizing.

• If a P Ba, then a does not begin with a meta-abstraction or a meta thunk.

• Suppose a P Ba. If a 0
ÝÑ# a1, a1 P Ba. If a ˚pÐu

ÝÝÝÝÑ# a1, then both a1 P Ba

and u P Ba.

♦

7.3. METATHEORY OF MML 133

⟪Typ⟫ “ tBau

⟪Sch⟫ “ tBau

⟪Met⟫ “ Ca

⟪Πpα : κ1q κ2⟫ “ ⟪κ1⟫Ñ ⟪κ2⟫
⟪Πpx : τq κ⟫ “ 1Ñ ⟪κ⟫

Figure 7.21: Interpretation of kinds as sets of interpretations

The set of safe terms is stable by reusep_q: reuse distributes over reduction,
and does not create meta abstractions or thunks.

Lemma 7.18 (Stability by label substitution). Suppose a P Ba, and consider a
label p and u P Ba. Then, ar˚p Ð us P Ba, and we have the same property for
partial substitution (where only some labels are substituted).

Proof. All reductions of ar˚p Ð us are either reductions of a or of u: because
u can never begin with a constructor for ÝÑ#, there can be no redex spanning
the substitution boundary.

We now define reducibility sets. The unusual property here is CR4, which
asserts that labels can be arbitrarily substituted. CR2 needs to check that
generated labels are still safe.

Definition 7.4 (Reducibility set). A set S of terms is called a reducibility set
if it respects the properties CR1-4 below. We write Ca the set of reducibility sets
of terms.

CR1 Every term a P S is strongly normalizing.

CR2 If a P S and a 0
ÝÑ# a1 then a1 P S; if a ˚pÐu

ÝÝÝÝÑ# a1 then a1 P S and u P Ba.

CR3 Suppose a is not a meta-abstraction (i.e. it is a neutral term for meta-
reduction), and for all a1 such that a l

ÝÑ# a1 we have a1 P S and moreover
if l “ ˚pÐ u then u P Ba. Then a P S.

CR4 If a P S and u P Ba, then ar˚pÐ us P S

Similarly, replacing terms with types and kinds, we obtain a version of the prop-
erties CR1-4 for sets of types and sets of kinds. A set of types or kinds is
called a reducibility set if it respects those properties, and we write Ct the set of
reducibility sets of types, and Ck the set of reducibility sets of kinds. ♦

Lemma 7.19. Ba is a reducibility set.

Proof. The properties CR1-3 are immediate from the definition. CR4 is exactly
Lemma 7.18.

Let us all Nk, Nt, and Na the maximal reducibility sets of kinds, types and
terms.

Definition 7.5 (Interpretation of types and kinds). We define an interpretation
⟪κ⟫ of kinds as sets of possible interpretations of types, with 1 the set with one
element ‚. Type-level abstractions and applications are interpreted as functions
in set theory. The interpretation is given on Figure 7.21.

On Figure 7.22, we also define an interpretation rrκssρ of a kind κ as a set
of types and an interpretation rrτ ssρ of a type τ as a set of terms, both under

134 CHAPTER 7. STAGING WITH MML

rrTypssρ “ rrSchssρ “ rrMetssρ “ Nt

rrΠpα : κ1q κ2ssρ “

"

τ P Nt

ˇ

ˇ

ˇ

ˇ

@τ 1 P rrκ1ssρ, rrτ
1ssρ defined

ùñ τ # τ 1 P rrκ2ssρrαÐrrτ 1ssρs

*

rrΠpx : τq κssρ “ tτ P Nt | @u P rrτ ssρ, τ # u P rrκssρu

rrαssρ “ ρpαq
rrτ1 Ñ τ2ssρ “ rrζ τ ssρ “ rrmatch a with . . .ssρ “ rr@pα : Typq . . .ssρ “ Ba

rrΠpx : τ1q τ2ssρ “ ta P Na | @u P rrτ1ssρ, a # u P rrτ2ssρu

rrΠpα : κq τ ssρ “

"

a P Na

ˇ

ˇ

ˇ

ˇ

@τ 1 P rrκssρ, rrτ
1ssρ defined

ùñ a # τ 1 P rrτ ssρrαÐrrτ 1ssρs

*

rrΠpu1 » u2q : τ τ 1ssρ “ ta P Na | a # pu1 » u2q : τ P rrτ 1ssρu
rrΠppuq˚p : τq σssρ “ ta P Na | @u P rrτ ssρ, a #˚ u P rrσssρu

rrrτ sssρ “ ta P Na | @p.paq
p P rrτ ssρu

rrλ#px : τ 1q. τ ssρ “ λ ‚ . rrτ ssρ
rrλ#pα : κq. τ ssρ “ λpSα P ⟪κ⟫q. rrτ ssρrαÐSαs

rrτ1 # τ2ssρ “ rrτ1ssρ rrτ2ssρ
rrτ # ussρ “ rrτ ssρ ‚

Figure 7.22: Interpretation of kinds and types as sets of types and terms

an assignment ρ of reducibility sets to type variables. The definition is done by
mutual induction on types and kinds.

♦

Definition 7.6 (Type environment). We will write ρ (Γ if for all pα : κq P Γ,
ρpαq P ⟪κ⟫. ♦

Lemma 7.20 (Equal kinds have the same interpretation). If Γ $ κ1 » κ2, then
⟪κ1⟫ “ ⟪κ2⟫.
Proof. By induction on the derivation of the judgment Γ $ κ1 » κ2.

• This is immediately true for KEq-Base.

• For KEq-Trans, apply the induction hypothesis and use transitivity of
equality.

• For KEq-Type-Fun and KEq-Term-Fun: the subkinds have equal inter-
pretations by induction hypothesis, so the interpretations are equal.

Lemma 7.21 (Interpretation of kinds and types). Assume ρ (Γ. Then:

• If Γ $ κ wf, then ⟪κ⟫ and rrκssρ are well-defined, and rrκssρ P Ct.

• If Γ $ τ : κ, then rrτ ssρ is well-defined, and we have rrτ ssρ P ⟪κ⟫.
Proof. By simultaneaous induction on the well-formedness derivations for types
and kinds.

• For K-Var: if pα : κq P Γ, since ρ (Γ, then ρpαq P ⟪κ⟫.

7.3. METATHEORY OF MML 135

• The types in the conclusion of rules K-Datatype, K-Arr, K-All, K-Match,
K-SubTyp and K-SubSch are all interpreted asNa, which is in the intepre-
tation of the kinds (Typ, Sch and Met) that appear as conclusions of these
rules.

• For rule Wf-Base, the interpretations of Typ, Sch and Met is Nt, which is
in Ct.

• For the type-level meta abstractions (K-TyAbs and K-TermAbs), by in-
duction. The extended type environment ρ1 matches the extended type
environment Γ1: we still have ρ1 (Γ1. The interpretation is a function,
which is in the interpretation of function kinds as sets of interpretations.

• Similarly for the type-level applications (K-TyApp and K-TermApp): we
provide an argument of the right type, and the interpretation of the kind
of the function guarantees that the application will be in the interpretation
of the result kind.

• The rules Wf-TyFun, Wf-TermFun, K-TyMetaArr, K-TermMetaArr,
K-EqMetaArr, K-PtrMetaArr and K-Thunk are similar. We only give
the proof for K-TermMetaArr: take τ “ Πpx : τ1q τ2. Define S1 “ rrτ1ssρ
and S2 “ rrτ2ssρ. By induction hypothesis, S1 and S2 are reducibility sets.
We will prove CR1-4 for S “ rrτ ssρ “ ta P Na | @u P S1, a # u P S2u.

CR1 S is a subset of Na.

CR2 Consider a P S and a1 such that a σ
ÝÑ# a1. For a given u P S1,

a # u P S2
σ
ÝÑ# a1 # urσs. Thus, a1 # urσs P S2 by CR2 for S2.

Then, a1 P S. Moreover, we know that σ only substitutes a safe term.

CR3 Consider a, not an abstraction, such that if a σ
ÝÑ# a1, a1 P S. For

u P S1, we’ll prove a # u P S2. Since a is not an abstraction, a # u

reduces either to a1 # urσs with a σ
ÝÑ# a1, or a # u1 with u 0

ÝÑ# u1. In
the first case, a1 P S by hypothesis and urσs P S1, so a1 # urσs P S2.
In the second case, u1 P S1 by CR2, so a # u1 P S2. By CR3 for S2,
because a # u is not an abstraction, a # u P S2.

CR4 Consider a P S, and a substitution ˚pÐ u with u P Ba. For u1 P S1,
we have to prove ar˚pÐ us # u1 P S2. This is a partial substitution
of a # u1 P S2 thus is in S2 too,

We need the following substitution lemma:

Lemma 7.22 (Substitution). For all τ , κ, τ 1, α, a, u, x, p and ρ, we have:

• rrτ ssρrαÐrrτ 1ssρs “ rrτ rαÐ τ 1sssρ

• rrκssρrαÐrrτ 1ssρs “ rrκrαÐ τ 1sssρ

• rrτ ssρ “ rrτ rxÐ asssρ “ rrτ r˚pÐ usssρ

• rrκssρ “ rrκrxÐ asssρ “ rrκr˚pÐ usssρ

Proof. By induction on types and kinds. This comes from the fact that the
interpretation of type variables is obtained by looking them up in the context,
and that the interpretation never considers the terms inside types and kinds.

136 CHAPTER 7. STAGING WITH MML

We then need to prove that conversion is sound with respect to the relation.
We start by proving soundness of reduction:

Lemma 7.23 (Soundness of meta-reduction). Assume that ρ (Γ, and τ , τ 1,
κ, κ1 are well-kinded (or well-formed) in Γ. Then rrτ ssρ “ rrτ 1ssρ whenever
τ ÝÑh

τ 1 and rrκssρ “ rrκ1ssρ whenever κ ÝÑ# κ1.

Proof. By structural induction on the context in which head reduction occurs.
The only interesting context is the hole rs. Consider the different kinds of
head-reduction on types (the induction hypothesis is not concerned with terms,
and there is no head-reduction on kinds). The cases of all meta-reductions are
similar. Consider for example pλ#pα : κq. τq # τ 1 ÝÑh

τ rα Ð τ 1s. The inter-
pretation of the left-hand side is pλSα P ⟪κ⟫.rrτ ssρrαÐSαsq rrτ 1ssρ “ rrτ ssρrαÐrrτ 1ssρs
and the interpretation of the right-hand side is rrτ rα Ð τ 1sssρ “ rrτ ssρrαÐrrτ 1ssρs
by substitution (Lemma 7.22).

Lemma 7.24 (Soundness of conversion). If ρ (Γ and Γ $ τ1 : κ1 » τ2 : κ2,
then rrτ1ssρ “ rrτ2ssρ. If Γ $ κ1 » κ2, then ⟪κ1⟫ “ ⟪κ2⟫.
Proof. By induction on the equality judgment.

• This is obviously true for TEq-Trans and KEq-Trans.

• By induction hypothesis, this is true for subtyping rules (TEq-SubTyp,
TEq-SubSch).

• For all eML congruence rules (TEq-Datatype, TEq-Arr, TEq-All, TEq-
Match), the result holds because the interpretation of rrτ1ssρ “ rrτ2ssρ “
Ba.

• For all mML congruence rules, the result holds: by induction hypothesis,
the interpretation of the subtypes/kinds appearing as premises is the same,
so the interpretation of the types/kinds is the same.

• For themML reduction rules, by soundness of meta-reduction (Lemma 7.23).

• For TEq-Split and the eML reduction rules (TEq-ReduceMatch), the
types τ1 and τ2 have kind Typ or Sch. Their interpretations are in rrTypssρ “
rrSchssρ “ tNtu, thus are both equal to Nt.

Now we can prove the fundamental lemma. We consider environments γ
associating term variables to terms and type variables to types.

Definition 7.7. We say ρ, γ (Γ if ρ (Γ, for all px : τq P Γ, γpxq P rrτ ssρ, for
all ˚p P Γ, γp˚pq P Ba, and for all pα : κq P Γ, rrγpαqssρ “ ρpαq. ♦

Lemma 7.25 (Fundamental lemma). Suppose ρ, γ (Γ. Then:

• If Γ $ κ wf, then γpκq P Nk.

• If Γ $ τ : κ, then γpτq P rrκssρ.

• If Γ $ a : τ , then γpaq P rrτ ssρ.

Proof. By mutual induction on typing, kinding, and well-formedness deriva-
tions. We will examine a few representative rules:

7.3. METATHEORY OF MML 137

• If the last rule is a conversion, use soundness of conversion.

• If the last rule is a reuse: γp˚pq P Ba, and the type in conclusion of the
typing derivation has kind Sch so its interpretation is Ba.

• If the last rule is App: suppose a “ a1a2, with Γ $ a1 : τ1 Ñ τ2 and
Γ $ a2 : τ1. Assume ρ, γ (Γ. We have γpa1q P rrτ1ssρ and γpa2q P rrτ2ssρ.
We need to show: γpa1 a2q “ γpa1q γpa2q P rrτ2ssρ “ Ba (because τ2 is
necessarily of kind Typ). Meta-reduction does not reduce ML application:
then, any reduction is either a reduction of γpa1q or γpa2q. By hypothesis,
these two terms are strongly normalizing, thus γpa1 a2q P Ba.

• If the last rule is a meta-application TermMetaApp

Γ $ u : Πpx : τ1q τ2 Γ $ u1 : τ1

Γ $ u # u1 : τ2rxÐ u1s

Consider ρ, γ (Γ. Then, by induction hypothesis, we have: γpuq P
rrΠpx : τ1q τ2ssρ, and γpu1q P rrτ1ssρ. We thus have: γpu # u1q “ γpuq #
γpu1q P rrτ2ssρ. By Lemma 7.22 rrτ2ssρ “ rrτ2rx Ð u1sssρ. It follows that
γpu # u1q P rrτ2rxÐ u1sssρ.

• If the last rule is a meta-abstraction TermMetaAbs:

Γ, x : τ1 $ u : τ2

Γ $ λ#px : τ1q. u : Πpx : τ1q τ2

Consider ρ, γ (Γ. Consider u1 P rrτ1ssρ. We need to prove that pλ#px :
γpτ1qq. γpuqq # u1 P rrτ2ssρ. Let us write u2 “ γpuq, τ 11 “ γpτ1q. Then we
will proceed by induction on the sum of the longest derivation starting τ 11,
u1, and u1. Let us apply CR3 to pλ#px : τ 11q. u

2q # u1, and consider all
possible reductions:

– If the reduction happens in τ 11, u2, or u1, we obtain a term of the
same shape with the number of possible reductions strictly decreased.
Then, we apply the induction hypothesis.

– Otherwise, we reduce the head redex: by hypothesis, u2rx Ð u1s P
rrτ2ssρ.

• If the last rule is K-TyAbs:

Γ, α : κ1 $ τ : κ2

Γ $ λ#pα : κ1q. τ : @pα : κ1q κ2

As previously, we need to prove that for all τ 1 P rrκ1ssρ, pλ#pα : γpκ1qq.γpτqq #
τ 1 P rrκ2ssρ. We will only consider the case of the head redex:

– if rrτ 1ssρ is not defined, there is nothing to prove;

– otherwise, we need to show that γpτqrα Ð τ 1s P rrκ2ssρrαÐrrτ 1ssρs.
Define γ1 “ γrα Ð τ 1s and ρ1 “ ρrα Ð rrτ 1ssρs. Then, we have
ρ1, γ1 (Γ, α : κ1. We conclude by the induction hypothesis.

138 CHAPTER 7. STAGING WITH MML

– If the last rule is Unthunk:

Unthunk
p ď q q K Γ,∆ Γ $p u : rτ s ñ ∆

Γ $p puqq : τ ñ ∆, pTrueq˚q : τ

We examine the possible reductions as for TermMetaApp. When
reducing the thunk, we emit ˚γpaq where a is the term currently
inside the thunk. We have γpaq P Ba, thus ˚γpaq P Ba.

We can now prove the main result of this section:

Proof. [Proof of Theorem 7.2] Consider a kind, type, or term X that is well-
typed in a context Γ. We can take the identity substitution γpxq “ x for all
x P Γ and apply the fundamental lemma. All interpretations are subsets of Na,
thus X P Na.

7.3.4 Subject reduction and soundness

In order to prove subject reduction and soundness, we need to understand better
the equalities on mML types. We prove a decomposition result: if we have an
equality between two mML types that start with a type constructor, then they
must start with the safe constructor, and the arguments to the constructor are
also equal. This is a stronger result than the same for eML: we assert that, even
in absurd contexts, we cannot derive an absurd equality between meta types.
This makes the strong reduction sound.

The proof is by normalizing equality derivations, i.e. maximally reducing
(for ÝÑ#) the terms appearing in the derivation. Then such derivations do not
have any type-levelmML reduction. Once we have such a derivation between two
terms with a given mML head constructor, we can show by case analysis that the
head constructor is preserved throughout the equality derivation. The definition
of normalized equality derivations, noted Γ $norm τ1 : κ1 » τ2 : κ2 is given in
Figure 7.23 for non-congruence rule and Figure 7.24 for congruence rules. The
rules are a subset of the rules for Γ $ τ1 : κ1 » τ2 : κ2. FormML, the congruence
rules (equivalent to the rules presented in Figure 7.8 for the full equality) and the
transitivity rule (TEqN-Trans) are preserved, while the meta-reduction rules
(that were presented in Figure 7.10) are removed. Once the derivation reaches
an eML type or a term, it proceeds using the usual equality rules (TEqN-eML).
We also need to preserve the sub-kinding rules (TEqN-SubSch-R).

Normal equalities are a subset of the usual equality, and are compatible with
substitution.

Lemma 7.26 (Normal equalities are equalities). Suppose Γ $norm τ1 : κ1 »

τ2 : κ2. Then, Γ $ τ1 : κ1 » τ2 : κ2

Proof. By induction on the derivation: each rule of the normal equality can be
translated to the corresponding rule on the usual equality, except TEqN-eML
which directly embeds an usual equality.

Lemma 7.27 (Substitutions for normal equalities). Suppose Γ, x : σ,Γ1 $norm
τ1 : κ1 » τ2 : κ2. Then, if Γ $ u1 : σ » u2 : σ, we have Γ,Γ1rx Ð u1s $norm

τ1rxÐ u1s : κ1rxÐ u1s » τ2rxÐ u2s : κ2rxÐ u2s.

7.3. METATHEORY OF MML 139

TEqN-eML
Γ $ τ1 : κ1 » τ2 : κ2 κ1, κ2 P tTyp,Schu

Γ $norm τ1 : κ1 » τ2 : κ2

TEqN-Trans
Γ $norm τ1 : κ1 » τ2 : κ2 Γ $norm τ2 : κ2 » τ3 : κ3

Γ $norm τ1 : κ1 » τ3 : κ3

TEqN-SubSch-L
Γ $norm τ : Sch » τ 1 : κ

Γ $norm τ : Met » τ 1 : κ

TEqN-SubSch-R
Γ $norm τ : κ » τ 1 : Sch

Γ $norm τ : κ » τ 1 : Met

TEqN-SubTyp-L
Γ $norm τ : Typ » τ 1 : κ

Γ $norm τ : Sch » τ 1 : κ

TEqN-SubTyp-R
Γ $norm τ : κ » τ 1 : Typ

Γ $norm τ : κ » τ 1 : Sch

Figure 7.23: Normal equalities (except congruence rules)

Similarly, if Γ, α : κ,Γ1 $norm τ1 : κ1 » τ2 : κ2. Then, if Γ $norm σ1 : κ »
σ2 : κ, we have Γ,Γ1rα Ð σ1s $norm τ1rα Ð σ1s : κ1rα Ð σ1s » τ2rα Ð σ2s :
κ2rαÐ σ2s.

Proof. By induction on equalities, similarly to substitution for usual equalities.

We prove that every equality can be turned into a normal equality. This
requires some care around function kinds: we not only want to prove that
the equality between the two type-level functions can be normalized, but also
that for any pair of arguments with a normal equality between them, there
is a normal equality between the application of the the left function to the
left argument and the right function to the right argument. What we want
is a logical relation: we aim to prove that if Γ $ τ1 : κ1 » τ2 : κ2, then
pτ1, τ2q P rrΓ $ κ1ss, and if pτ1, τ2q P rrΓ $ κss, then Γ $norm ‖τ1‖ : κ » ‖τ2‖ : κ.
The relation rrΓ $ κss is defined by induction on the kind-depth of Γ. Its
definition is given on Figure 7.26. For the base kinds Typ, Sch and Met, we
simply require that the equality derivation between them be normalizable. For
arrow kinds, we require that the equality be normalizable, and that, for any pair
of equal arguments (according to the relation), the applications of the (equal)
types to equal arguments have a normal equality.

It is not immediate that this relation is well-defined: the substitutions in
the arrow rules may grow the size of the kind. To make the definition precise,
we define the kind-depth of a kind KindDepthpκq inductively as the depth of the
kind expression, stopping at types and terms (Figure 7.25 Kind-depth ignores
the types and terms present in a kind: it is thus invariant by substitution of
type and term variables. This is enough to prove that the logical relation is
well-defined.

Lemma 7.28 (Substitution preserves kind-depth). Consider a kind κ, type
and term variables x and α, a non-expansive term u and a type τ . Then,
KindDepthpκq “ KindDepthpκrxÐ usq “ KindDepthpκrαÐ τ sq.

140 CHAPTER 7. STAGING WITH MML

TEqN-TVar
pα : κq P Γ

Γ $norm α : κ » α : κ

TEqN-TyAbs
Γ $ κ11 » κ12 Γ, α : κ11 $norm τ1 : κ1 » τ2 : κ2

Γ $norm λ#pα : κ11q. τ1 : Πpα : κ11q κ1 » λ#pα : κ12q. τ2 : Πpα : κ12q κ2

TEqN-TermAbs
Γ $norm σ1 : κ11 » σ2 : κ12 Γ, x : σ1 $norm τ1 : κ1 » τ2 : κ2

Γ $norm λ#px : σ1q. τ1 : Πpx : σ1q κ1 » λ#px : σ2q. τ2 : Πpx : σ2q κ2

TEqN-TyApp
Γ $norm σ1 : Πpα : κ11q κ1 » σ2 : Πpα : κ12q κ2 Γ $norm τ1 : κ11 » τ2 : κ12

Γ $ σ1 # τ1 : κ1rαÐ τ1sσ2 # τ2κ2rαÐ τ2s

TEqN-TermApp
Γ $norm σ1 : Πpx : τ1q κ1 » σ2 : Πpx : τ2q κ2 Γ $ u1 : τ1 » u2 : τ2

Γ $ σ1 # u1 : κ1rxÐ u1sσ2 # u2κ2rxÐ u2s

TEqN-TyMetaArr
Γ $ κ1 » κ2 Γ, α : κ1 $norm τ1 : Met » τ2 : Met

Γ $norm Πpα : κ1q τ1 : Met » Πpα : κ2q τ2 : Met

TEqN-TermMetaArr
Γ $norm τ1 : κ1 » τ2 : κ2 Γ, x : τ1 $norm σ1 : Met » σ2 : Met

Γ $norm Πpx : τ1q σ1 : Met » Πpx : τ2q σ2 : Met

TEqN-EqMetaArr
Γ $ u11 : σ1 » u21 : σ2

Γ $ u12 : σ1 » u22 : σ2 Γ, pu11 » u12q : σ1 $norm τ1 : Met » τ2 : Met

Γ $norm Πpu11 » u12q : σ1 τ1 : Met » Πpu21 » u22q : σ2 τ2 : Met

TEqN-PtrMetaArr
p K Γ

Γ $ u1 : bool » u2 : bool Γ, pu1 » Trueq : bool $norm τ1 : Sch » τ2 : Sch
Γ, pu1q˚p : τ1 $norm σ1 : Met » σ2 : Met

Γ $norm Πppu1q˚p : τ1q σ1 : Met » Πppu2q˚p : τ2q σ2 : Met

TEqN-Thunk
Γ $norm τ1 : Sch » τ2 : Sch

Γ $norm rτ1s : Met » rτ2s : Met

Figure 7.24: Normal equalities: congruence rules

7.3. METATHEORY OF MML 141

KindDepthpTypq “ KindDepthpMetq “ KindDepthpSchq “ 0

KindDepthpΠpα : κ1q κ2q “ 1`maxpKindDepthpκ1q,KindDepthpκ2qq

KindDepthpΠpx : τq κq “ 1` KindDepthpκq

Figure 7.25: Kind depth

rrΓ $ κ P tTyp,Sch,Metuss “ tpσ1, σ2q | Γ $norm ‖σ1‖ : κ » ‖σ2‖ : κu

rrΓ $ Πpx : τq κss “
$

&

%

pσ1, σ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ $norm ‖σ1‖ : Πpx : τq κ » ‖σ2‖ : Πpx : τq κ
^ @pu1, u2q, Γ $ u1 : τ » u2 : τ ùñ

pσ1 # u1, σ2 # u2q P rrΓ $ κrxÐ u1sss

,

.

-

rrΓ $ Πpα : κ1q κss “
$

&

%

pσ1, σ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ $norm ‖σ1‖ : Πpα : κ1q κ » ‖σ2‖ : Πpα : κ1q κ
^ @pτ1, τ2q P rrΓ $ κ1ss,

pσ1 # τ1, σ2 # τ2q P rrΓ $ κrαÐ τ1sss

,

.

-

Figure 7.26: Logically normalizable equalities

Proof. Immediate by structural induction on the kind: kind-depth does not take
into account any part where substitution can occur.

This definition is invariant by substitution of equal things:

Lemma 7.29 (Substitution of terms and types).

• Consider Γ, x : τ $ κ wf. Suppose Γ $ u1 : τ » u2 : τ . Then, rrΓ $ κrxÐ
u1sss “ rrΓ $ κrxÐ u2sss.

• Consider Γ, α : κ $ κ1 wf. Suppose Γ $norm σ1 : κ » σ2 : κ. Then,
rrΓ $ κ1rαÐ σ1sss “ rrΓ $ κ1rαÐ σ2sss.

Proof. Immediate by induction on the definition of the relation, and using the
same results on the normal equality derivations.

We need symmetry and transitivity for the relation:

Lemma 7.30 (Symmetry for logical normalizability). Suppose pτ1, τ2q P rrΓ $
κss. Then pτ2, τ1q P rrΓ $ κss.

Proof. By induction on kind-depth.

• For base kinds, we need to prove Γ $norm ‖τ2‖ : κ » ‖τ1‖ : κ. By
hypothesis, Γ $norm ‖τ1‖ : κ » ‖τ2‖ : κ. By symmetry of normal equality,
we have the result.

• For arrow kinds: we’ll examine the case κ “ Πpα : κ1q κ2. For the base
normalized equality, proceed as for base kinds. Consider pσ1, σ2q P rrΓ $
κ1ss. We need to prove pτ2 # σ1, τ1 # σ2q P rrΓ $ κ2rα Ð σ1sss. We
have pσ2, σ1q P rrΓ $ κ1ss because rrΓ $ κ1ss is symmetric by induction
hypothesis. Thus, pτ1 # σ2, τ2 # σ1q P rrΓ $ κ2rα Ð σ2sss. By invariance

142 CHAPTER 7. STAGING WITH MML

by substitution of equal things (Lemma 7.29), rrΓ $ κ2rαÐ σ2sss “ rrΓ $
κ2rα Ð σ1sss Moreover, by induction hypothesis, rrΓ $ κ2rα Ð σ1sss is
symmetric (it has the same kind-depth as κ2 which is lower than the kind-
depth of κ). Thus, pτ2 # σ1, τ1 # σ2q P rrΓ $ κ2rαÐ σ1sss

Lemma 7.31 (Logical normalizability is transitive). Suppose pτ1, τ2q P rrΓ $ κss
and pτ2, τ3q P rrΓ $ κss, then pτ1, τ3q P rrΓ $ κss

Proof. By induction on kind-depth:

• For base kinds, we have Γ $norm ‖τ1‖ : κ » ‖τ2‖ : κ and Γ $norm ‖τ1‖ :
κ » ‖τ2‖ : κ. By TEqN-Trans, Γ $norm ‖τ1‖ : κ » ‖τ3‖ : κ.

• For arrow kinds: the base normalized equality is obtained as for base
kinds. We’ll examine the case κ “ Πpα : κ1q κ2. Consider pσ1, σ3q P

rrΓ $ κ1ss. We need to prove pτ1 # σ1, τ3 # σ3q P rrΓ $ κ2rα Ð σ1sss.
We have pσ1, σ1q P rrΓ $ κ1ss: from pσ1, σ3q P rrΓ $ κ1ss, by symmetry
(Lemma 7.31, we have pσ3, σ1q P rrΓ $ κ1ss, and we conclude by transitivity
(since κ1 has lower kind-depth than κ). From pτ1, τ2q P rrΓ $ κss, we
obtain pτ1 # σ1, τ2 # σ1q P rrΓ $ κ2rα Ð σ1sss. We also have pτ2 #
σ1, τ3 # σ3q P rrΓ $ κ2rα Ð σ1sss. By transitivity of rrΓ $ κ2rα Ð σ1sss

(induction hypothesis, since κ2rα Ð σ1s has lower kind-depth than κ),
pτ1 # σ1, τ3 # σ3q P rrΓ $ κ2rαÐ σ1sss.

We know want to prove, by induction on equality derivations, that pairs of
equal types are included in the relation. We’ll need to strengthen our inductive
hypothesis to allow some substitutions without changing the derivation we are
doing the induction on. We need to introduce a notion of environments mapping
one typing environment to another.

Definition 7.8 (Environment mapping). We say that a pair of environments
pγ1, γ2q map Γ to Γ1, noted Γ1 $ pγ1, γ2q : Γ, if it has the same domain as Γ
and:

• For all px : τq P Γ, Γ1 $ γ1pxq : γ1pτq » γ2pxq : γ2pτq.

• For all pα : κq P Γ, pγ1pαq, γ2pαqq P rrΓ
1 $ γ1pκqss.

• For all π P Γ, π P Γ1.

• For all puq˚p : τ P Γ, pγ1puqq˚p : γ1pτq P Γ1

♦

Then a pair of identity environments, mapping variables to themselves, satis-
fies this definition. Then we can state a lemma that can be proved by induction
on the derivations:

Lemma 7.32 (Equalities are logically normalizable). Suppose Γ $ τ1 : κ1 » τ2 :
κ2. Moreover, suppose Γ1 $ pγ1, γ2q : Γ. Then, pγ1pτ1q, γ2pτ2qq P rrΓ

1 $ γ1pκ1qss.

7.3. METATHEORY OF MML 143

Proof. We must (simultaneously) prove a reflexivity result, although it’s the
same process because any well-formedness derivation for a type can be expanded
into an equality derivation between this type and itself. We need a separate
result for the induction to be structural on derivations, but the arguments are
identical and we omit it. The result is the following: suppose Γ $ τ : κ, and
suppose Γ1 $ pγ1, γ2q : Γ. Then, pγ1pτq, γ2pτqq P rrΓ

1 $ γ1pκqss.
Let us consider the proof of the main result. By induction on the equality

derivation:

• Suppose the last rule is an eML congruence or reduction rule, or TEq-Split.
Then, the conclusion of the rule has kind Typ or Sch and we can directly
apply TEqN-eML.

• Suppose the last rule is TEq-Thunk. Then, the subderivation inside
TEq-Thunk has kind Sch, and is immediately normal after applying the
rule TEqN-eML.

• Suppose the last rule is TEq-Trans.

TEq-Trans
Γ $ τ1 : κ1 » τ2 : κ2 Γ $ τ2 : κ2 » τ3 : κ3

Γ $ τ1 : κ1 » τ3 : κ3

Consider the two sub-derivations Γ $ τ1 : κ1 » τ2 : κ2 and Γ $ τ2 : κ2 »

τ3 : κ3. By induction hypothesis, pγ1pτ1q, γ1pτ2qq P rrΓ $ γ1pκ1qss and
pγ1pτ2q, γ2pτ3qq P rrΓ $ γ1pκ2qss. Then rrΓ $ γ1pκ1qss “ rrΓ $ γ1pκ2qss. We
conclude by Lemma 7.31.

• Suppose the last rule is TEq-Var:

TEq-Var
$ Γ α : Typ P Γ

Γ $ α : Typ » α : Typ

Then, by hypothesis on pγ1, γ2q, pγ1pαq, γ2pαqq P rrΓ
1 $ γ1pκ1qss.

• Suppose the last rule is an mML reduction (rules TEq-Red-Meta-*).
Then, the two ends of the equality normalize to the same well-formed
type. We conclude by the reflexivity result.

• For conversion rules (TEq-SubSch,TEq-SubTyp), observe that Typ, Sch
and Met have the same interpretation up to subkinding: we apply the
corresponding normal rule for normal derivations.

• Suppose the last rule is a congruence for an mML type constructor (ie. one
of the rules TEq-TyMetaArr, TEq-TermMetaArr, TEq-EqMetaArr,
TEq-PtrMetaArr, TEq-Thunk). Take for example TEq-TyMetaArr:

TEq-TyMetaArr
Γ $ κ1 » κ2 Γ, α : κ1 $ τ1 : Met » τ2 : Met

Γ $ Πpα : κ1q τ1 : Met » Πpα : κ2q τ2 : Met

Then we have Γ $ κ1 » κ2 and Γ, α : κ1 $ τ1 : Met » τ2 : Met. We need
to prove, that pγpΠpα : κ1q τ1q, γpΠpα : κ2q τ2qq P rrΓ

1 $ γpMetqss “ rrΓ1 $

144 CHAPTER 7. STAGING WITH MML

Metss, i.e. Γ1 $norm Πpα : γ1pκ1qq‖γ1pτ1q‖ : Met » Πpα : γ2pκ2qq‖γ2pτ2q‖ :
Met. We intend to apply TEqN-TyMetaArr: we need to prove that Γ1 $
γ1pκ1q » γ2pκ2q (this is true by substitution), and that Γ1 $norm ‖γ1pτ1q‖ :
Met » ‖γ1pτ2q‖ : Met- Consider γ11 “ γ1rαÐ α1s, γ12 “ γ2rαÐ α1s. Then,
we have Γ1, α1 : γ1pκ1q $ pγ11, γ

1
2q : Γ, α : κ1. By induction hypothesis,

pγ11pτ1q, γ
1
2pτ2qq P rrΓ

1 $ γ11pMetqss “ rrΓ1 $ Metss. From this we obtain the
desired result.

• Suppose the last rule is a congruence for an application. Consider for
example TEq-TyApp:

TEq-TyApp
Γ $ σ1 : Πpα : κ11q κ1 » σ2 : Πpα : κ12q κ2 Γ $ τ1 : κ11 » τ2 : κ12

Γ $ σ1 # τ1 : κ1rαÐ τ1sσ2 # τ2κ2rαÐ τ2s

Consider Γ1 $ pγ1, γ2q : Γ: by induction hypothesis, pγ1pσ1q, γ2pσ2qq P

rrΓ1 $ Πpα : γ1pκ
1
1qq γ1pκ1qss, and pγ1pτ1q, γ2pτ2qq P rrΓ

1 $ γ1pκ
1
1qss. Then,

by definition of rrΓ1 $ Πpα : γ1pκ
1
1qq γ1pκ1qss, pγ1pσ1q # γ1pτ1q, γ2pσ2q #

γ2pτ2qq P rrΓ
1 $ γ1pκ1qrαÐ γ1pτ1qsss.

• Suppose the last rule is a congruence for an abstraction. Consider for
example TEq-TyAbs:

TEq-TyAbs
Γ $ κ11 » κ12 Γ, α : κ11 $ τ1 : κ1 » τ2 : κ2

Γ $ λ#pα : κ11q. τ1 : Πpα : κ11q κ1 » λ#pα : κ12q. τ2 : Πpα : κ12q κ2

Consider γ such that Γ1 $ pγ1, γ2q : Γ. We first need to prove that
Γ1 $norm ‖p‖γ1pλ

#pα : κ11q. τ1qq : γ1pΠpα : κ11qκ1q » ‖γ2pλ
#pα : κ12q. τ2‖q :

γ2pΠpα : κ12q κ2q. This is very similar to the case of congruence for con-
structors treated above.

Now consider pσ1, σ2q P rrΓ
1 $ γ1pκ

1
1qss. We want to show pγ1pλ

#pα :
κ11q. τ1q # σ1, γ2pλ

#pα : κ12q. τ1q # σ2q P rrΓ
1 $ γ1pκ1rα Ð σ1sqss, This

is equivalent to showing that: pγ1pτ1rα Ð σ1sq, γ2pτ2rα Ð σ2sqq P rrΓ
1 $

γ1pκ1rαÐ σ1sqss. Let γ11 “ γ1rαÐ σ1s, γ12 “ γ2rαÐ σ2s be the extension
of γ1, γ2 with values for α. Then, Γ1 $ pγ11, γ

1
2q : Γ, α : κ11, and the

previous inclusion can be rewritten as: pγ11pτ1q, γ12pτ2qq P rrΓ1 $ γ11pκ1qss,
true by induction hypothesis.

As an immediate corollary, if two terms are equal, there is a normal equality
derivation between their normal forms.

We can now prove a projection result very similar to the one for eML
(Lemma 6.14).

Lemma 7.33 (Projection). Consider an evironment Γ. and types pτiqi and
pτ 1iq

i.

• If Γ $ rτ1s : Met » rτ2s : Met.

• If Γ $ Πpx : τ1qσ1 : Met » Πpx : τ2qσ2 : Met, then Γ $ τ1 : Met » τ2 : Met
and Γ, x : τ1 $ σ1 : Met » σ2 : Met.

7.3. METATHEORY OF MML 145

• If Γ $ Πpα : κ1q σ1 : Met » Πpα : κ2q σ2 : Met, then Γ $ κ1 » κ2Met and
Γ, α : κ1 $ σ1 : Met » σ2 : Met.

• If Γ $ Πppu1 » u11q : τ1q σ1 : Met » Πppu2 » u12q : τ2q σ2 : Met, then Γ $
τ1 : Sch » τ2 : Sch, Γ $ u1 : τ1 » u2 : τ2, Γ $ u11 : τ1 » u12 : τ2, and
Γ, pu1 » u2q : τ1 $ σ1 : Met » σ2 : Met.

• If Γ $ Πppu1q˚p : τ1q σ1 : Met » Πppu2q˚p : τ2q σ2 : Met, then Γ $ u1 :
bool » u2 : bool, Γ, pu1 » Trueq : bool $ τ1 : Sch » τ2 : Sch, and
Γ, pu1q˚p : τ1 $ σ1 : Met » σ2 : Met

Proof. All cases are similar. Let us consider the first one: suppose we have
Γ $ rτ1s : Met » rτ2s : Met. Let γ be the identity environment for Γ; we have
Γ $ pγ, γq : Γ, thus by Lemma 7.32, we have p‖rτ1s‖, ‖rτ2s‖q P rrΓ $ Metss. We
have ‖rτ s‖ “ rτ s. Then, by definition of rrΓ $ Metss, we have Γ $norm r‖τ1‖s :
Met » r‖τ2‖s : Met.

We will then show that such an equality implies Γ $ ‖τ1‖ : Sch » ‖τ2‖ :
Sch. This is done by induction on the equality derivation, generalizing to have
any kinds instead of Met in the equality, and anything on the right-hand side:
suppose Γ $norm rτ1s : κ1 » σ2 : κ2. Then, σ2 “ rτ2s for some τ2, and
Γ $ τ1 : Sch » τ2 : Sch.

• If the last rule is a congruence rule, it must be TEqN-Thunk. Then, the
result we need is an hypothesis of the rule.

• If the last rule is a subkinding rule, apply the induction hypothesis to the
premise.

• The last rule cannot be TEqN-eML: this would imply Γ $ r‖τ1‖s : Sch
which is impossible.

• If the last rule is TEqN-Trans,

TEqN-Trans
Γ $norm rτ1s : κ1 » σ2 : κ2 Γ $norm σ2 : κ2 » σ3 : κ3

Γ $norm rτ1s : κ1 » σ3 : κ3

apply the induction hypothesis to the first premise: we obtain σ2 “ rτ2s,
with Γ $ τ1 : Sch » τ2 : Sch. Then, the induction hypothesis can also
be applied to the second premise: we obtain σ3 “ rτ3s, with Γ $ τ2 :
Sch » τ3 : Sch. Finally, by transitivity (TEq-Trans), we conclude that
Γ $ τ1 : Sch » τ3 : Sch.

This is sufficient to prove subject reduction for eML:

Lemma 7.34 (Subject reduction, mML). Let Γ be an environment, a a term
such that Γ $π a : τ ñ ∆. Suppose a l

ÝÑ# b. Then there exists ∆1 such that
Γ $π b : τ rls ñ ∆1 and:

• If l “ 0, we have Γ $ ∆ Ě ∆1.

• If l “ q ÞÑ u, we have ∆1 “ ∆r˚q Ð us ´ qY S, where S is a environment
of labels with all labels prefixed by q.

Moreover, Γ,∆1 $ arls : τ » b : τ .

Proof. Identical to the proof for eML, using the projection result.

146 CHAPTER 7. STAGING WITH MML

7.4 mML elimination

The last result we need to prove about mML is that any mML term that can
be typed in an environment without any meta construct normalizes by ÝÑ# to
an eML term of the same type. It does not suffice to normalize the term, check
that it does not contain any mML syntactic construct and conclude by subject
reduction: we have to show the existence of an eML typing derivation of the
term.

To distinguish mML derivations from eML derivations, we will write eML
derivations with a subscript, for example Γ $eML u1 : τ1 » u2 : τ2 for typ-
ing derivations. In this section, we take ‖_‖ to perform every possible meta-
reduction in a term or type.

The proof is similar to the subject reduction proof: we construct a logical
relation for terms and types stating that (under the right typing conditions)
they reduce to terms that have an eML typing derivation. The logical relation
is defined by mutual induction on the syntax of types and kinds.

The interpretation of types as binary relations is given in Figure 7.27. It is
written rrΓ1 $ pτqγ:Γss, where Γ1 is the eML environment in which the reduction
is performed, τ the type we interpret and γ an environment mapping variables
in a mML environment Γ to terms and types scoped in Γ1. γ is useful because, as
we descend inside mML abstractions, we accumulate some mML-typed variables
in the environment that we need to keep separated (as they must be handled
by reduction). For eML types, rrΓ1 $ pτqγ:Γss is simply the set of pairs of non-
expansive terms of the correct type that can be proved to be equal in eML.
For mML constructs, the interpretation is still a set of pairs of non-expansive
terms, but since we need to evaluate them, we check that they can be properly
applied. Finally, we interpret type-level abstractions and applications as set-
theoretic abstractions and applications.

We define in Figure 7.29, given a type τ of kind κ, the set ⟪Γ1 $ pτ : κqγ:Γ⟫
of acceptable interpretations of τ . This is useful because, in type abstractions, it
breaks a circular dependency: we cannot abstract on a type and then compute
the interpretation of this type, as the type we are given is not a subtype of
the type abstraction. Instead, we ask for an acceptable interpretation only.
To interpret transitivity, we require the binary relations R to have the zig-zag
property, noted zigzagpRq: for all a, b, c, d, if a R b R´1 c R d, then a R d.
This is a variant of transitivity for heterogenous relations where the left and
right-hand side are taken from different sets. For Typ and Sch, we only allow
one possible interpretation. We check (Lemma 7.35) that this interpretation
has the zig-zag property too.

Similarly, we define in Figure 7.28 an interpretation of kinds as sets of pairs
of equal types, noted rrΓ1 $ pκqγ:Γss. For the kinds Typ and Sch, we require that
the types are equal in eML. For Met, we simply require that they be equal in
mML, and functional kinds are interpreted as pairs of type-level functions that
map valid pairs of terms or types to valid pairs of types. We also define the
set of possible interpretations of kinds ⟪Γ1 $ pκqγ:Γ⟫ in Figure 7.30. As for sets
of interpretations of types, we require all relations to be between types of the
correct kind, and to have the zig-zag property.

Finally, we define in Figure 7.31 the set rrΓ1 $ Γss of acceptable environments
γ representing an mML typing environment Γ in the eML environment Γ1.

7.4. MML ELIMINATION 147

rrΓ1 $ pαqγ:Γss “ γRpαq
rrΓ1 $ pσqγ:Γss “ tpu1, u2q | Γ1 $eML u1 : ‖γ1pσq‖ » u2 : ‖γ2pσq‖u

when

σ “ τ1 Ñ τ2
σ “ @pα : Typq τ
σ “ ζ pτiq

i

σ “ match u with pdjpτkq
kpxjiq

i Ñ σjq
j

rrΓ1 $ pΠpx : τq σqγ:Γss “
$

’

’

’

’

&

’

’

’

’

%

ˆ

λ#px : τ1q. u1,
λ#px : τ2q. u2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ1 $ τ1 : Met » γ1pτq : Met
^ Γ1 $ τ2 : Met » γ2pτq : Met
^ @pu11, u

1
2q P rrΓ

1 $ pτqγ:Γss

p‖u1rxÐ u11s‖, ‖u2rxÐ u12s‖q
P rrΓ1 $ pσqγ,xÐpu11,u12q:Γ,x:τ ss

,

/

/

/

/

.

/

/

/

/

-

rrΓ1 $ pΠpα : κq σqγ:Γss “
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ˆ

λ#pα : κ1q. u1,
λ#pα : κ2q. u2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ1 $ κ1 » γ1pκq
^ Γ1 $ κ2 » γ2pκq
^ @pτ1, τ2q P rrΓ

1 $ pκqγ:Γss

@R P ⟪Γ1 $ pτ1 : κqγ:Γ⟫
p‖u1rαÐ τ1s‖, ‖u2rαÐ τ2s‖q
P rrΓ1 $ pσqγ,αÐpτ1,τ2,Rq:Γ,α:κss

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

rrΓ1 $ pΠppua » ubq : τq σqγ:Γss “
$

’

’

’

’

&

’

’

’

’

%

ˆ

λ#pu1
a » u1

bq : τ1. u1,
λ#pu2

a » u2
bq : τ2. u2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pΓ1 $ τi : Sch » γipτq : SchqiPt1,2u

^ pΓ1 $ uia : τi » γipuaq : τiq
iPt1,2u

^ pΓ1 $ uib : τi » γipubq : τiq
iPt1,2u

^ pu1, u2q

P rrΓ1, p‖γ1puaq‖ » ‖γ1pubq‖q : ‖γ1pτq‖ $ pσqγ:Γ,pua»ubq:τ ss

,

/

/

/

/

.

/

/

/

/

-

rrΓ1 $ pΠppu1q˚p : τq σqγ:Γss “
$

’

’

’

’

&

’

’

’

’

%

ˆ

λ#ppu11q˚p : τ1q. u1,
λ#ppu12q˚p : τ2q. u2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pΓ1 $ τi : Typ » γipτq : TypqiPt1,2u

^ pΓ1 $ u1i : τi » γipu
1q : τiq

iPt1,2u

^ @pu11, u
1
2q P rrΓ

1, p‖γ1pu
1q‖ » Trueq : bool $ pτqγ:Γ,pu1»Trueq:boolss

p‖u1r˚pÐ u11s‖, ‖u2r˚pÐ u12s‖q
P rrΓ1 $ pσqγ,˚pÐpu11,u12q:Γ,pu1q˚p:τ ss

,

/

/

/

/

.

/

/

/

/

-

rrΓ1 $ prσsqγ:Γss “
"ˆ

rπ. a1s,
rπ. a2s

˙
ˇ

ˇ

ˇ

ˇ

TermsEqualpΓ1 $π a1 : ‖γ1pσq‖ » a2 : ‖γ2pσq‖q
^ pai P UrrΓ1, π $ pσqγi:Γ;p;∆ssq

iPt1,2u

*

rrΓ1 $ pλ#px : τq. σqγ:Γss “ λpu1, u2q P rrΓ
1 $ pτq.:γss rrΓ

1 $ pσqγ,xÐpu1,u2q:Γ,x:τ ss

rrΓ1 $ pτ # uqγ:Γss “ rrΓ
1 $ pτqγ:Γss p‖γ1puq‖, ‖γ2puq‖q

rrΓ1 $ pλ#pα : κq. σqγ:Γss “ λpτ1, τ2q P rrΓ
1 $ pκqγ:Γss. λR P ⟪Γ1 $ pτ1 : κqγ:Γ⟫. rrΓ1 $ pσqγ,αÐpτ1,τ2,Rq:Γ,α:κss

rrΓ1 $ pσ # τqγ:Γss “ rrΓ
1 $ pσqγ:Γss p‖γ1pτq‖, ‖γ2pτq‖q rrΓ1 $ pτqγ:Γss

Figure 7.27: Logical relation for mML elimination: type interpretation

148 CHAPTER 7. STAGING WITH MML

rrΓ1 $ pTypqγ:Γss “ tpτ1, τ2q | Γ1 $eML τ1 : Typ » τ2 : Typu
rrΓ1 $ pSchqγ:Γss “ tpτ1, τ2q | Γ1 $eML τ1 : Sch » τ2 : Schu
rrΓ1 $ pMetqγ:Γss “ tpτ1, τ2q | Γ1 $ τ1 : Met » τ2 : Metu
rrΓ1 $ pΠpx : τq κqγ:Γss “

$

’

’

’

’

&

’

’

’

’

%

ˆ

λ#px : τ1q. σ1,
λ#px : τ2q. σ2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ1 $ τ1 : Met » γ1pτq : Met
^ Γ1 $ τ2 : Met » γ2pτq : Met
^ @pu1, u2q P rrΓ

1 $ pτqγ:Γss

p‖σ1rxÐ u1s‖, ‖σ2rxÐ u2s‖q
P rrΓ1 $ pκqγ,xÐpu1,u2q:Γ,x:τ ss

,

/

/

/

/

.

/

/

/

/

-

rrΓ1 $ pΠpα : κq κ1qγ:Γss “
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ˆ

λ#pα : κ1q. σ1,
λ#pα : κ2q. σ2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ1 $ κ1 » γ1pκq
^ Γ1 $ κ2 » γ2pκq
^ @pτ1, τ2q P rrΓ

1 $ pκqγ:Γss

@R P ⟪Γ1 $ pτ1 : κqγ:Γ⟫
p‖u1rαÐ τ1s‖, ‖u2rαÐ τ2s‖q
P rrΓ1 $ pκ1qγ,αÐpτ1,τ2,R:Γ,α:κss

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

Figure 7.28: Logical relation for mML elimination: kind interpretation

⟪Γ1 $ pτ : Typqγ:Γ⟫ “ ⟪Γ1 $ pτ : Schqγ:Γ⟫ “
ttpu1, u2q | Γ1 $eML u1 : ‖γ1pτq‖ » u2 : ‖γ2pτq‖uu

⟪Γ1 $ pτ : Metqγ:Γ⟫ “
tS | zigzagpSq ^ @pu1, u2q P S Γ1 $ u1 : γ1pτq » u2 : γ2pτqu

⟪Γ1 $ pτ : Πpx : σq κqγ:Γ⟫ “
"

F

ˇ

ˇ

ˇ

ˇ

@pu1, u2q P rrΓ
1 $ pσqγ:Γss

F pu1, u2q P ⟪Γ1 $ pτ # x : κqγ,xÐpu1,u2q:Γ,x:σ⟫
*

⟪Γ1 $ pτ : Πpα : κ1q κqγ:Γ⟫ “
"

F

ˇ

ˇ

ˇ

ˇ

@pτ1, τ2q P rrΓ
1 $ pκ1qγ:Γss @R P ⟪Γ1 $ pτ1 : κ1qγ:Γ⟫

F pu1, u2qpRq P ⟪Γ1 $ pτ # α : κqγ,αÐpτ1,τ2,Rq:Γ,α:σ⟫
*

Figure 7.29: Logical relation for mML elimination: constraints on type inter-
pretation

⟪Γ1 $ pκqγ:Γ⟫ “
tS | zigzagpSq ^ @pτ1, τ2q P S Γ1 $ τ1 : γ1pκq » τ2 : γ2pκqu

Figure 7.30: Logical relation for mML elimination: constraints on kind inter-
pretation

rrΓ1 $ Hss “ tHu

rrΓ1 $ Γ, x : τ ss “ tγ, xÐ pu1, u2q | γ P rrΓ
1 $ Γss ^ pu1, u2q P rrΓ

1 $ pτqγ:Γssu

rrΓ1 $ Γ, α : κss “

tγ, αÐ pτ1, τ2,Rq | γ P rrΓ1 $ Γss ^ pτ1, τ2q P rrΓ
1 $ pκqγ:Γss ^R P ⟪Γ1 $ pτ1 : κqγ:Γ⟫u

rrΓ1 $ Γ, pu1q˚p : τ ss “

γ, ˚pÐ pu1, u2q
ˇ

ˇ γ P rrΓ1 $ Γss ^ pu1, u2q P rrΓ
1, pu1 » Trueq : bool $ pτqγ:Γ,pu1»Trueq:boolss

(

rrΓ1 $ Γ, πss “ tγ, π Ð p | γ P rrΓ1 $ Γss ^ p K Γ1u
rrΓ1 $ Γ, pua » ubq : τ ss “

tγ | γ P rrΓ1 $ Γss ^ Γ1 $eML ‖γ1puaq‖ : ‖γ1pτq‖ » ‖γ1pubq‖ : ‖γ1pτq‖u

Figure 7.31: Logical relation for mML elimination: environments

7.4. MML ELIMINATION 149

Lemma 7.35 (The interpretations of Typ and Sch have the zig-zag property).
Consider κ P tTyp,Schu, and suppose S P ⟪Γ1 $ pτ : κqγ:Γ⟫. Then, zigzagpSq.

Proof. We necessarily have:

S “ tpu1, u2q | Γ $eML u1 : ‖γ1pτq‖ » u2 : ‖γ2pτq‖u

Suppose pu0, u1q P S, pu2, u1q P S and pu2, u3q P S. Then, we have Γ $eML

u0 : ‖γ1pτq‖ » u1 : ‖γ2pτq‖, Γ $eML u2 : ‖γ1pτq‖ » u1 : ‖γ2pτq‖, Γ $eML u2 :
‖γ1pτq‖ » u3 : ‖γ2pτq‖.

By symmetry and transitivity, Γ $eML u0 : ‖γ1pτq‖ » u3 : ‖γ2pτq‖.

We first need to prove substitution properties for our interpretations:

Lemma 7.36 (Substitution). Suppose γ P rrΓ1 $ Γss and consider Γ $ u : τ .
Let γ1 “ γ, xÐ pγ1puq, γ2puqq. Then,

• γ1 P rrΓ1 $ Γ, x : τ ss

• rrΓ1 $ pτqγ1:Γ,x:τ ss “ rrΓ
1 $ pτ rxÐ usqγ:Γss

• rrΓ1 $ pκqγ1:Γ,x:τ ss “ rrΓ
1 $ pκrxÐ usqγ:Γss

• ⟪Γ1 $ pτ : κqγ1:Γ,x:τ⟫ “ ⟪Γ1 $ pτ rxÐ us : κrxÐ usqγ:Γ⟫
• ⟪Γ1 $ pκqγ1:Γ,x:τ⟫ “ ⟪Γ1 $ pκrxÐ usqγ:Γ⟫

We have the same result with type substitutions, with γ1 “ αÐ pγ1pτq, γ2pτq, rrΓ
1 $

pτqγ:Γssq.

Proof. By induction on the definitions.

We can then prove all the following by mutual induction:

Lemma 7.37 (Well-typed things are in relation). Suppose γ P rrΓ1 $ Γss. Then,

(a) Suppose Γ $ τ : κ (or Γ $ τ : κ » τ 1 : κ1, or Γ $ τ 1 : κ1 » τ : κ). Then,
rrΓ1 $ pτqγ:Γss P ⟪Γ1 $ pτ : κqγ:Γ⟫.

(b) Suppose Γ $ κ wf (or Γ $ κ » κ1, or Γ $ κ1 » κ). Then, rrΓ1 $ pκqγ:Γss P

⟪Γ1 $ pκqγ:Γ⟫.
(c) Suppose Γ $ u1 : τ1 » u2 : τ2. Then, p‖γ1pu1q‖, ‖γ2pu2q‖q P rrΓ1 $

pτ1qγ:Γss.

(d) Suppose Γ $ u : τ (or Γ $ u : τ » u1 : τ 1q. Then, p‖γ1puq‖, ‖γ2puq‖q P
rrΓ1 $ pτqγ:Γss.

(e) Suppose Γ $ τ1 : κ1 » τ2 : κ2. Then, p‖γ1pτ1q‖, ‖γ2pτ2q‖q P rrΓ1 $
pκ1qγ:Γss.

(f) Suppose Γ $ τ : κ. Then, p‖γ1pτq‖, ‖γ2pτq‖q P rrΓ1 $ pκqγ:Γss.

(g) Suppose Γ $ τ1 : κ1 » τ2 : κ2. Then, rrΓ1 $ pτ1qγ:Γss “ rrΓ
1 $ pτ2qγ:Γss,

and ⟪Γ1 $ pτ1 : κ1qγ:Γ⟫ “ ⟪Γ1 $ pτ2 : κ1qγ:Γ⟫.
(h) Suppose Γ $ κ1 » κ2. Then, rrΓ1 $ pκ1qγ:Γss “ rrΓ1 $ pκ2qγ:Γss, and
⟪Γ1 $ pτ : κ1qγ:Γ⟫ “ ⟪Γ1 $ pτ : κ2qγ:Γ⟫.

150 CHAPTER 7. STAGING WITH MML

(i) Suppose TermsEqualpΓ $p a1 : τ1 » a2 : τ2q, with Γ $ τ1 : Sch and
Γ $ τ2 : Sch. Then TermsEqualpΓ $peML ‖γ1pa1q‖ : ‖γ1pτ1q‖ » ‖γ2pa2q‖ :
‖γ2pτ2q‖q.

Proof. By induction on the typing/kinding/equality derivations of the judgment
after "Suppose".

Consider part (a). We’ll only consider the kinding derivation as a premise.
We can derive equivalent properties from the equalities (because they imply
that their left-hand side has the right kind). Let us consider some representative
kinding rules:

• If the last rule is the type variable rule, with τ “ α, and pα : κq P Γ, then
by hypothesis, γRpαq P ⟪Γ1 $ pγ1pαq : κqγ1:Γ1⟫ where Γ2, γ1 is a subset of
Γ, γ. By weakening and substitution, ⟪Γ1 $ pγ1pαq : κqγ1:Γ2⟫ “ ⟪Γ1 $ pα :
κqγ:Γ⟫.

• If the last rule is a conversion: we have ⟪Γ $ pτ : κqγ:Γ⟫ “ ⟪Γ $ pτ :
κ1qγ:Γ⟫ for Γ $ κ » κ1 by (h).

• If the last rule is an eML type formation rule, then the type is of the form
τ1 Ñ τ2, @pα : Typq τ , ζ pτiqi, or a pattern matching. Thus it has kind Typ
or Sch, and the interpretation matches the single allowed interpretation.

• If the last rule is the formation of an mML arrow type, for example the
rule K-TermMetaArr:

K-TermMetaArr
Γ $ τ0 : Met Γ, x : τ0 $ τ : Met

Γ $ Πpx : τ0q τ : Met

The interpretation of this kind is:

S “

$

’

’

’

’

&

’

’

’

’

%

ˆ

λ#px : τ1q. u1,
λ#px : τ2q. u2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ1 $ τ1 : Met » γ1pτq : Met
^ Γ1 $ τ2 : Met » γ2pτq : Met
^ @pu11, u

1
2q P rrΓ

1 $ pτqγ:Γss

p‖u1rxÐ u11s‖, ‖u2rxÐ u12s‖q
P rrΓ1 $ pσqγ,xÐpu11,u12q:Γ,x:τ ss

,

/

/

/

/

.

/

/

/

/

-

The equality condition is satisfied by using the two equality conditions and
by transitivity. Let us prove this satisfies the zig-zag property: suppose
pλ#px : τ0q. u0, λ

#px : τ1q. u1q P S, λ#px : τ2q. u2, λ
#px : τ1q. u1 P S and

λ#px : τ2q.u2, λ
#px : τ3q.u3 P S, and consider pu10, u13q P rrΓ1 $ pτqγ:Γss. Let

T “ rrΓ1 $ pσqγ,xÐpu11,u12q:Γ,x:τ ss. By induction hypothesis, T has the zig-
zag property, and p‖u0rx Ð u10s‖, ‖u1rx Ð u13s‖q, p‖u2rx Ð u10s‖, ‖u1rx Ð
u13s‖q, p‖u2rx Ð u12s‖, ‖u3rx Ð u13s‖q P T . Thus p‖u0rx Ð u10s‖, ‖u3rx Ð
u13s‖q P T .

• If the last rule is a type-level abstraction, such as:

K-TermAbs
Γ $ τ0 : Met Γ, x : τ0 $ τ : κ

Γ $ λ#px : τ0q. τ : Πpx : τ0q κ

7.4. MML ELIMINATION 151

The type is interpreted as:

F “ λpu1, u2q P rrΓ
1 $ pτq.:γss rrΓ

1 $ pσqγ,xÐpu1,u2q:Γ,x:τ ss

The interpretation of this kind is:

⟪Γ1 $ pτ : Πpx : σq κqγ:Γ⟫ “
"

F

ˇ

ˇ

ˇ

ˇ

@pu1, u2q P rrΓ
1 $ pσqγ:Γss

F pu1, u2q P ⟪Γ1 $ pτ # x : κqγ,xÐpu1,u2q:Γ,x:σ⟫
*

Consider pu1, u2q P rrΓ
1 $ pσqγ:Γss. Then, γ1 “ γ, x Ð pu1, u2q P rrΓ

1 $

Γ, x : σss. Thus, by induction hypothesis,
F pu1, u2q “ rrΓ

1 $ pσqγ,xÐpu1,u2q:Γ,x:τ ss P ⟪Γ1 $ pτ # x : κqγ,xÐpu1,u2q:Γ,x:σ⟫
• If the last rule is a type-level application, such as:

K-TermApp
Γ $ τ : Πpx : σq κ Γ $ u : σ

Γ $ τ # u : κrxÐ us

By induction hypothesis (d), p‖γ1puq‖, ‖γ2puq‖q P rrΓ1 $ pσqγ:Γss, and by
induction hypothesis (a), rrΓ1 $ pτqγ:Γss P ⟪Γ1 $ pτ : Πpx : σq κqγ:Γ⟫.
Then, rrΓ1 $ pτ # uqγ:Γss P ⟪Γ1 $ pτ # x : κqγ,xÐp‖γ1puq‖,‖γ2puq‖q:Γ,x:σ⟫ “
⟪Γ1 $ pτ # u : κrxÐ usqΓ:γ⟫ by substitution.

For part (d), let us consider some representative rules. We will omit part
(d), (e) and (f) as they are very similar.

• If the last rule is variable rule, this is immediate by hypothesis on γ.

• If the last rule is a conversion rule: by part (g) the interpretation of the
original type and the converted type are equal.

• If the last rule is the transitivity rule:

Eq-Trans
Γ $ u1 : τ1 » u2 : τ2 Γ $ u2 : τ2 » u3 : τ3

Γ $ u1 : τ1 » u3 : τ3

By induction hypothesis (g), we have rrΓ1 $ pτ1qγ:Γss “ rrΓ1 $ pτ2qγ:Γss.
We also have, by (c) and (d):

– p‖γ1pu1q‖, ‖γ2pu2q‖q P rrΓ1 $ pτ1qγ:Γss

– p‖γ1pu2q‖, ‖γ2pu2q‖q P rrΓ1 $ pτ2qγ:Γss

– p‖γ1pu2q‖, ‖γ2pu3q‖q P rrΓ1 $ pτ2qγ:Γss

Thus, by the zig-zag property, p‖γ1pu1q‖, ‖γ2pu3q‖q P rrΓ1 $ pτ1qγ:Γss.

• If the last rule is an eML congruence or reduction rule, or the split rule
(ie. any eML rule that has Sch-kinded output types): we will consider
Eq-Let for example.

Eq-Let
Γ $ σ1 : Sch Γ, x : σ1 $ τ1 : Sch

Γ $ u1 : σ1 » u2 : σ2 Γ, x : σ1 $ u11 : τ1 » u12 : τ2

Γ $ let x “ u1 in u11 : τ1 » let x “ u2 in u12 : τ2

152 CHAPTER 7. STAGING WITH MML

By induction hypothesis, p‖γ1pu1q‖, ‖γ2pu2q‖q P rrΓ $ pσ1qγ:Γss P ⟪Γ $

pσ1 : Schqγ:Γ⟫. Thus, we have Γ1 $eML ‖γ1pu1q‖ : ‖γ1pσ1q‖ » ‖γ2pu2q‖ :
‖γ2pσ2q‖ and similarly Γ1, x : ‖γ1pσ1q‖ $eML ‖γ1pu

1
1q‖ : ‖γ1pτ1q‖ »

‖γ2pu
1
2q‖ : ‖γ2pτ2q‖. Then, by Eq-Let, we have Γ1 $eML let x “ ‖γ1pu1q‖ in

‖γ1pu
1
1q‖ : ‖γ1pτ1q‖ » let x “ ‖γ2pu2q‖ in ‖γ2pu

1
2q‖ : ‖γ2pτ2q‖. Finally,

‖γiplet x “ ui in u1iq‖ “ let x “ ‖γipuiq‖ in ‖γipu1iq‖.

• If the last rule is congruence for an mML abstraction, for example:

Eq-TermMetaAbs
Γ $ τ1 : Met » τ2 : Met Γ, x : τ1 $ a1 : σ1 » a2 : σ2

Γ $ λ#px : τ1q. a1 : Πpx : τ1q σ1 » λ#px : τ2q. a2 : Πpx : τ2q σ2

The interpretation of the type is:

S “

$

’

’

’

’

&

’

’

’

’

%

ˆ

λ#px : τ 11q. u1,
λ#px : τ 12q. u2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ1 $ τ 11 : Met » γ1pτ1q : Met
^ Γ1 $ τ 12 : Met » γ2pτ1q : Met
^ @pu11, u

1
2q P rrΓ

1 $ pτ1qγ:Γss

p‖u1rxÐ u11s‖, ‖u2rxÐ u12s‖q
P rrΓ1 $ pσqγ,xÐpu11,u12q:Γ,x:τ1ss

,

/

/

/

/

.

/

/

/

/

-

We have ‖γipλ#px : τiq. a1q‖ “ λ#px : ‖γipτiq‖q. ui. The typing conditions
are satisfied because normalization preserves equality.

Consider pu11, u12q P rrΓ1 $ pτ1qγ:Γss. We have γ1 “ γ, x Ð pu11, u
1
2q P

rrΓ1 $ Γ, x : τ1ss. By induction hypothesis, p‖γ11pa1q‖, ‖γ12pa2q‖q P rrΓ1 $
pσqγ,xÐpu11,u12q:Γ,x:τ1ss. We conclude because ‖γ1ipuiq‖ “ ‖‖γipuiq‖rx Ð
u1is‖ “ ‖uirxÐ u1is‖.

• If the last rule is congruence for an mML application, for example:

Eq-TermMetaApp
Γ $ u1 : Πpx : τ 11q τ1 » u2 : Πpx : τ 12q τ2 Γ $ u11 : τ 11 » u12 : τ 12

Γ $ u1 # u11 : τ1rxÐ u11s » u2 # u12 : τ2rxÐ u12s

By induction hypothesis, and unpacking the definition, we learn that
p‖γ1pu1q‖, ‖γ2pu2q‖q is a pair of abstractions. Then, reducing, we obtain
a term that is guaranteed to be in the correct interpretation.

For part (i), notice that normalization distributes around term equality: we
can normalize all subterms, then remove all thunks using the fact that thunk-
typed terms reduce to thunkings, and normalize what was inside the thunks
independently.

For part (g), let us consider some representative rules. We will omit part
(h) as it is very similar.

• If the last rule is transitivity, we use transitivity of the equality.

• If the last rule is a conversion, use the induction hypothesis directly.

• Consider the case of an equality between eML types (ie. of kind κ P
tTyp,Schu): The interpretations of τ1 are the sets of pairs of terms pu1, u2q

such that Γ1 $eML u1 : ‖γ1pτ1q‖ » u2 : ‖γ2pτ1q‖, and we wish to substitute
τ2 for τ1 there. Consider the first type (the second is similar):

7.4. MML ELIMINATION 153

– By (e), we have p‖γ1pτ1q‖, ‖γ2pτ2q‖q P rrΓ1 $ pκqγ:Γss, i.e. Γ1 $eML

‖γ1pτ1q‖ : κ » ‖γ2pτ2q‖ : κ.

– By(f), we have Γ1 $eML ‖γ1pτ2q‖ : κ » ‖γ2pτ2q‖ : κ.

Thus by symmetry and transitivity, Γ $eML ‖γ1pτ1q‖ : κ » ‖γ1pτ2q‖ : κ,
and we conclude by conversion.

• Consider a congruence for an mML type constructor: the interpretations
of the subexpressions are equal.

• Similarly, congruences for type-level abstraction and reduction are treated
simply by using the induction hypothesis to verify that the interpretations
of subexpressions are equal.

• Consider a type-level reduction, for example:

TEq-Reduce-MetaApp
Γ, x : τ $ σ : κ Γ $ u : τ

Γ $ pλ#px : τq. σq # u : κrxÐ us » σrxÐ us : κrxÐ us

The left-hand side is interpreted as pλpu1, u2q P rrΓ
1 $ pτq.:γss rrΓ

1 $

pσqγ,xÐpu1,u2q:Γ,x:τ ssq p‖γ1puq‖, ‖γ2puq‖q “ rrΓ1 $ pσqγ,xÐp‖γ1puq‖,‖γ2puq‖q:Γ,x:τ ss

while the right-hand side is interpreted as rrΓ1 $ pσrxÐ usqγ:Γss, and these
two interpretations are equal by substitution.

We deduce the main theorem of this section:

Theorem 7.3 (mML elimination). Let Γ be an eML environment, τ an eML
type. Then, if in mML Γ $p a : τ ñ ∆, there exists ∆1 such that we have
Γ $peML ‖a‖ : τ ; ∆1.

Proof. Consider Γ1 “ Γ, and γ the environment such that:

• γpxq “ px, xq

• γpαq “ pα, α, tpu1, u2q | Γ1 $eML u1 : α » u2 : αuq

• γpπq “ π

• γp˚pq “ ˚p

We then have γ P rrΓ $ Γss and TermsEqualpΓ $p a : τ » a : τq By the previous
lemma, TermsEqualpΓ $peML ‖a‖ : ‖τ‖ » ‖γ‖ : τq. This implies that there exists
∆1 such that Γ $peML ‖a‖ : τ ; ∆1.

154 CHAPTER 7. STAGING WITH MML

Chapter 8

A logical relation for
reasoning on mML

We now define a logical relation for reasoning parametrically on mML. We want
this relation to be compatible with term equality, so that we can reduce the left
and right-hand side. The relation needs to handle non-strictly positive types
and non-termination. We do this by defining a step-indexed logical relation
[Appel and McAllester, 2001, Ahmed, 2006], indexed by the number of available
execution step (here, we count only expansive steps).

8.1 A deterministic reduction
In this section we introduce another view of mML: instead of having two stages
of reduction, first ÝÑ# then ÝÑβ , we can define a single reduction ÝÑd that
extends ÝÑβ and normalizes every term to a value.

This interleaved view of mML and eML evaluation helps reasoning about
mML: we simply have two different abstractions and applications that work
independently, but at the same time. This will help set up the logical relation.

We never need to evaluate types for reduction to proceed to a value. Thus,
our reduction will ignore the types appearing in terms (and the terms appearing
in these types, etc.). The reduction is defined in Figure 8.1. The evaluation
contexts E are the evaluation contexts of eML, extended with mML applications,
and the redexes are the ML redexes plus the mML redexes, restricted to value
arguments. For a term meta-application u1 # u2, we require the term u2 to be
fully evaluated to a value v2, then u1 to be fully evaluated to v1. On the other
hand, for a result application u1 #˚ u2, u2 may be typed in an absurd context,
and its reduction might block. For this reason, we do not require (and, indeed,
do not allow) reducing the right-hand side of #˚. We instead substitute it as a
non-expansive term. The values v are also defined in Figure 8.1.

As for the labeled ML reduction, this reduction is deterministic, and values
are irreducible for it.

This reduction coincides with the eML reduction on eML terms: the contexts
and redexes can only match eML terms and redexes.

We define an indexed version of this reduction as follows: the beta-reduction
and the expansion of fixed points in ML take one step each, and all other reduc-

155

156 CHAPTER 8. A LOGICAL RELATION FOR REASONING ON MML

E ::“ let x “ rs in a | ap rs | rsp v | d τ pa, .. a, rs, v, .. vq | Λpα : Typq. rs | rs τ

| match rs with pP Ñ a | .. P Ñ aq | u # rs | rs # v | rs # τ

| rs # ppu » uq : τq | rs #˚ u | prsqp

v ::“ x | d τ v | fixπ x px : τq : τ . a | Λpα : κq. v | λ#pα : κq. u

| λ#px : τq. u | λ#pu » uq : τ. u | λ#ppuq˚p : τq. u | rπ. as

pfixπ x py : τ 11q : τ 12 . aq
p v

˚pÐreuseparπÐp,xÐfixπ x py:τ 11q:τ
1
2 . a,yÐτ

1
1sq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑd

arπ Ð p, xÐ fixπ x py : τ 11q : τ 12 . a, y Ð τ 11s

pΛpα : Typq. vq τ
0
ÝÑd vrαÐ τ s

let x “ v in a
0
ÝÑd arxÐ vs

match dj τ 1 pviq
i with pdj τ pxjiq

i Ñ ajq
j 0

ÝÑd ajrxji Ð vis
i

pλ#pα : κq. aq # τ
0
ÝÑd arαÐ τ s

pλ#px : τq. aq # v
0
ÝÑd arxÐ vs

pλ#pu1 » u2q : τ. aq # pu11 » u12q : τ 1
0
ÝÑd a

pλ#ppu1q˚p : τq. aq #˚ u
0
ÝÑd ar˚pÐ us

prπ. asqp
˚pÐreuseparπÐpsq
ÝÝÝÝÝÝÝÝÝÝÝÝÑd arπ Ð ps

Red-NoLabel
a

0
ÝÑd b

Eras 0
ÝÑd Erbs

Red-Label
a
˚pÐu
ÝÝÝÝÑd b

Eras ˚pÐuÝÝÝÝÑd pEr˚pÐ usqrbs

Figure 8.1: Deterministic reduction ÝÑd for mML

8.2. INTERPRETATION OF KINDS 157

tions take 0 steps. Then, ÝÑi
d is the reduction of cost i, i.e. the composition

of i one-step reductions and an arbitrary number of zero-step reductions. Since
ÝÑd 0 is a subset of the union of ÝÑι and ÝÑ#, it terminates.

We have the following lemma describing how the counting reduction interacts
with term equality:

Lemma 8.1 (Equal terms stay equal after i reductions). Suppose TermsEqualppτj :
κjq

j $p a : τa » b : τbq, and suppose a ÝÑi
d a

1. Then, there exists b1 such that
b ÝÑi

d b
1 and TermsEqualppτj : κjq

j $p a1 : τa » b1 : τbq.

Proof. By induction on the reduction: if the first reduction is a non-expansive
reduction or a thunk reduction, it preserves term equality. If it is the reduction
of a function application, by Lemma 6.26, there exists b1 such that we can go
from b to b1 by some non-expansive reductions, then one expansive reduction,
preserving equality.

Also, we have a progress result for ÝÑ0
d:

Lemma 8.2 (ÝÑ0
d reduces non-expansive terms). Let $ u : τ be a well-typed

non-expansive term in the empty environment. Then there exists v such that
u ÝÑ0

d v

Proof. ÝÑ0
d terminates. Consider the non-value term in reduction position in u

(if there is no such term, u is already a value). It is either a mML application or
a ML destructor that operates on a value. If it is an mML application, we can
apply ÝÑ# on it (otherwise the term would be stuck for ÝÑ#) and similarly
for an ML destructor.

8.2 Interpretation of kinds
We want to define a typed, binary, step-indexed logical relation. We first define
the shape of the interpretation of types depending on their kinds on Figure 8.2 by
induction on the kinds. The interpretation is defined in a pair of environments
γ1, γ2 associating term, type and label variables appearing in κ to closed values
and types, and label variables to label variables. For a kind κ, Kjrκsγ1,γ2 is a
set of triples of the form pσ1, pSkq

kďj , σ2q, where σ1 and σ2 are the possible left
and right-projections of a type of kind κ and pSkqkďj is a possible sequence of
interpretations of the type up to rank j. The left and right projections have
kind respectively γ1pκq and γ2pκq in the empty environment.

For types of terms (i.e. of kinds Typ, Sch and Met), the interpretation of a
type will be a left and a right projection of a type and a relation between values
of this type. This relation is step-indexed, i.e. it is defined as a sequence of
refinements of the largest relation between these types. We also require it to be
stable by equality: if two values are equal, they are related to the same values.

We interpret the types of higher-order kinds as sequences of functions. For
an abstraction on terms Πpx : τqκ, the k-th function in the sequence takes a pair
of values of the left and right-hand side projection of the type of the argument
γ1pτq and γ2pτq and returns the interpretation of the application at rank k. We
require the interpretation to be stable when replacing the arguments by equal
values. The interpretation of an abstractions on type Πpα : κq κ1 is similar: the
k-th function in the sequence takes a pair of types of kinds γ1pκq and γ2pκq and

158 CHAPTER 8. A LOGICAL RELATION FOR REASONING ON MML

Kjrκ P tTyp,Sch,Metusγ1,γ2 “
$

’

’

’

’

&

’

’

’

’

%

pσ1, pRkq
kďj , σ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p$ σi : γipκqq
iPt1,2u

^ @k ď j, @pv1, v2q P Rk, p$ vi : σiq
iPt1,2u

^ @` ď k ď j, R` Ě Rk
^ @k ď j, @pv1, v2q P Rk, @pv

1
1, v

1
2q,

pΓ $ vi : σi » v1i : σiq
iPt1,2u ùñ pv11, v

1
2q P Rk

,

/

/

/

/

.

/

/

/

/

-

KjrΠpα : κq κ1sγ1,γ2 “
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pσ1, pFkq
kďj , σ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p$ σi : Πpα : γipκqq γipκ
1qqiPt1,2u

^ @k ď j,@pτ1, pS`q
`ďk, τ2q P Krκsγ1,γ2 ,

pσ1 # τ1, pF`pτ1, pShq
hď`, τ2qq

`ďk, σ2 # τ2q
P Kkrκ1spγ1,αÐτ1q,pγ2,αÐτ2q

^ @k ď j,@pτ1, pS`q
`ďk, τ2q P Kkrκsγ1,γ2 ,

@pτ 11, τ
1
2q,p$ τi : γipκq » τ 1i : γipκqq

iPt1,2u

ùñ Fkpτ1, pS`q
`ďk, τ2q “ Fkpτ

1
1, pS`q

`ďk, τ 12q

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

KjrΠpx : τq κsγ1,γ2 “
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pσ1, pFkq
kďj , σ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p$ σi : Πpx : γipτqq γipκqq
iPt1,2u

^ @k ď j,@pv1, v2q, p$ vi : γipτqq
iPt1,2u ùñ

pσ1 # v1, pFlpv1, v2qq
lďk, σ2 # v2q

P Kkrκspγ1,xÐv1q,pγ2,xÐv2q
^ @k ď j,@pv1, v2q, @pv

1
1, v

1
2q,

p$ vi : γipτq » v1i : γipτqq
iPt1,2u

ùñ Fkpv1, v2q “ Fkpv
1
1, v

1
2q

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

Figure 8.2: Interpretation of kinds

a sequence of interpretation at levels l ď k, and returns the interpretation at
rank k. We require the triple formed by the types and the interpretation to be
in Kkrκsγ1,γ2 .

We say that two environments γ1 and γ2 are equal, noted $ γ1 » γ2 : Γ,
if they map type, term, and result variables to equal type, terms and results.
Then, equal kinds have equal interpretations in equal environments:

Lemma 8.3 (Equal kinds have equal interpretations in equal environments).
Consider $ γ1 » γ11 : Γ and $ γ2 » γ12 : Γ. Then, if Γ $ κ » κ1, Kjrκsγ1,γ2 “
Kjrκ1sγ11,γ12 .

Proof. By induction on equality derivations. The kind equality rules preserve
the head constructor. The types and terms in the environment are only used in
typing judgments which are stable by substitution.

Lemma 8.4 (The interpretation of kinds is well-indexed). Consider a kind κ,
and environments γ1, γ2. Let k ď j. Then, if pσ1, pS`q

`ďj , σ2q P Kjrκsγ1,γ2 ,
then pσ1, pS`q

`ďk, σ2q P Kkrκsγ1,γ2

Proof. By induction on kinds.

8.3. THE LOGICAL RELATION 159

8.3 The logical relation

We define a typed binary step-indexed logical relation on mML equipped with
ÝÑd. We define an interpretation of types of terms as a relation on values
Vkrτ sγ stable by equality.

The environment γ in this interpretation maps term variables to pairs of
terms related at the given type, labels to pairs of expressions representing a
value for this label if the expression is true, nothing otherwise, label variables
to labels, and type variables α to a triple pσ1, pSkq

kďj , σ2q where σ1 and σ2 are
the left and right-projections of the type and the pSjqkďj are the interpretations
of the a relation between σ1 and σ2 at rank k. We note γ1 (resp. γ2) the left
(resp. right) projection of γ, i.e. the environment mapping variables to their
left (resp. right) projection in γ. Thus, γ1, γ2 is a pair of environments we could
use with the interpretation of kinds. If γpαq is pσ1, pSkq

kďj , σ2q, we also write
γRpαq for the sequence of interpretations pSkqkďj .

The constraints of environments are given in Figure 8.3: an environment γ
is in GjrΓs if it respects these conditions at step-index j. For type variables
α : κ, we require the triple pσ1, pSkq

kďj , σ2q to be in the interpretation of the
corresponding kind κ. For term variables x : τ , we require the pair of left and
right projections v1, v2 to be related by the relation at type τ . For equalities,
we check that the left and right projections of the terms respect the equality in
the empty environment. For results puq˚p : τ , either we require the condition
u to reduce to false in the left projection γ1, or we require that γ maps ˚p to
pairs of related non-expansive terms.

The projection T rσsγ of a relational type σ in γ maps σ to a pair of types
pσ1, σ2q. We define it here as pγ1pσq, γ2pσqq, but we will extend relational types
to embed ornaments as a first-class concept in Chapter 10. It does not depend
on the index.

The interpretation Vjrσsγ of σ in γ at step-index j, is given in Figure 8.4.
Types of terms σ are interpreted as sets of values of types σ1, σ2 if T rσsγ “
pσ1, σ2q (the typing condition is left implicit to make the definitions lighter),
while type-level functions are interpreted as functions transforming interpre-
tations into interpretations. Type-level abstraction maps to abstraction and
type-level application to application. When a type variable appears, its inter-
pretations is looked up in the context γ. Related values at function types map
related arguments to related results. When the body of the function is non-
expansive (in mML functions and ML type abstractions), we can simply reduce
it to a value in zero steps by ÝÑ0

d. For thunks and ML functions, we need
to check that terms are equal. We delegate this to an interpretation of terms
Ekrγsσ built on the interpretation of types. We test this at an index k ă j: this
is because we performed one expensive step of reduction already by substituting
the argument into the body. Finally, for type-level pattern matching, we reduce
the term matched upon in zero steps, look at the head-constructor to select the
branch, and use the interpretation of this branch with the variables representing
the constructor arguments added to the environment.

The interpretation of types as set of terms Ejrγsσ is defined in Figure 8.4.
Two terms pa1, a2q are in relation at rank j if they are well-typed and when
we can reduce a2 in k ď j steps to a value, a1 also reduces in an unspecified
number of steps to a value and the values are related at index j ´ k: we use
some of the step-index to "pay" for the reduction. This definition requires that

160 CHAPTER 8. A LOGICAL RELATION FOR REASONING ON MML

GjrHs “ tHu

GjrΓ, x : τ s “ tγ, xÐ pv1, v2q | γ P GjrΓs ^ pv1, v2q P Vjrγsτu
GjrΓ, α : κs “ tγ, αÐ S | γ P GjrΓs ^ S P Kjrκsγ1,γ2u
GjrΓ, pua » ubq : τ s “ tγ P GkrΓs | p$ γipuaq : γipτq » γipunq : γipτqq

iPt1,2uu

GjrΓ, puq˚p : τ s “

tγ | γ P GjrΓs ^ γ1puq ÝÑ
0
d Falseu

Y tγ, ˚pÐ pu11, u
1
2q | γ P GjrΓs ^ γ1puq ÝÑ

0
d True^ pu11, u

1
2q P Ejrτ sγu

GjrΓ, πs “ tγ, π Ð p | γ P GjrΓs ^ p K γu

Figure 8.3: Interpretation of environments

a1 terminates whenever a2 terminates, i.e. that a1 terminates more often. In
particular, every program of the correct type is related to the never-terminating
program. This is not a problem: if we need to consider termination, we can
use the reverse relation, where the left and right side are exchanged. This is
what we will do on ornaments: we will first show that, for arbitrary patches,
the ornamented program is equivalent but terminates less, and then, assuming
the patches terminate, we show that the base program and the lifted program
are linked by both the normal and the reverse relation.

We need to ensure that this is well-defined. The interpretation is first defined
by induction on the index k. For a given k, the interpretation is defined by
induction on the type τ , except in the case of datatypes, where we define the
relation by induction on the term: the terms inside data constructors are smaller,
and their types are either data constructors or function types, and functions
types strictly decrease the index. This justification is sufficient to handle ML
datatypes, but it would not work if we had (ML) quantified types or mML
constructs inside datatypes.

We now prove that, in a well-formed context, the interpretation of a well-
kinded type is included in the set of valid interpretations at its kind.

Lemma 8.5 (Type interpretation (as values) is well-defined). Suppose Γ $ σ :
κ, and γ P GjrΓs. If pσ1, σ2q “ T rσsγ , then pσ1, pVkrσsγqkďj , σ2q P Kjrκsγ1,γ2 .

Simultaneously, we prove that term interpretation is monotonic and stable
by equality (this is sufficient because the types of terms necessarily have kinds
Typ, Sch or Met):

Lemma 8.6 (Type interpretation (as terms) is well-defined). Suppose κ P

tTyp,Sch,Metu, Γ $ σ : κ and γ P GjrΓs. Suppose pσ1, σ2q “ T rσsγ . Suppose
pa1, a2q P Ejrσsγ . Consider a11, a12 such that TermsEqualpH $p a1 : σ1 » a11 : σ1q

and TermsEqualpH $p a2 : σ2 » a12 : σ2q. Then, for all k ď j, pa11, a12q P Ekrσsγ

Proof. By induction on the well-kindedness judgment.
For the lemma on interpretation as values, the typing constraints are always

(implicitly) implied by the definition of Vjrσsγ . We need to prove monotonicity
and stability by equality. Consider the last rule:

• If it is K-Var: by hypothesis on γ, γpαq “ pσ1, pSkq
kďj , σ2q P Kjrκsγ1,γ2 .

• For K-SubTyp and K-SubSch: apply the inductive hypothesis, and the
same rule on the kinding constraints.

8.3. THE LOGICAL RELATION 161

Ejrτ sγ “ tpa1, a2q | @k ď j, @v2, a2 ÝÑ
k
d v2 ùñ Dv1, a1 ÝÑ

˚
d v1 ^ pv1, v2q P Vj´krτ sγu

Vjrαsγ “ γRpαqj
Vjrτ1 # τ2sγ “ Vjrτ1sγ Vjrτ2sγ
Vjrτ # usγ “ Vjrτ sγ pv1, v2q where pγipuq ÝÑ0

d viq
iPt1,2u

Vjrλ#pα : κq. τ sγ “ λpR P Kjrκsγ1,γ2q. Vjrτ sγ,αÐR
Vjrλ#px : κq. τ sγ “ λpv1, v2q. Vjrτ sγ,xÐpv1,v2q
Vjrτ Ñ σsγ “

$

&

%

ˆ

fixπ x py : τ1q : σ1 . a1,
fixπ x py : τ2q : σ2 . a2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@k ă j, @p1, p2,@pv1, v2q P Vkrτ sγ ,
ˆ

a1rxÐ pfixπ x py : τ1q : σ1 . a1q, y Ð v1, π Ð p1s

a2rxÐ pfixπ x py : τ2q : σ2 . a2q, y Ð v2, π Ð p2s

˙

P Ekrσsγ

,

.

-

Vjr@pα : Typq σsγ “
"ˆ

Λpα : Typq. u1,
Λpα : Typq. u2

˙
ˇ

ˇ

ˇ

ˇ

@k ď j, @pτ1, S, τ2q P KkrTypsγ1,γ2 ,
pu1rαÐ τ1s, u2rαÐ τ2sq P Ekrσsγ,αÐpτ1,S,τ2q

*

Vjrζ pτiqisγ “
"

pd τ1 pv1,kq
k, d τ2 pv2,kq

kq

ˇ

ˇ

ˇ

ˇ

pd : @pαi : Typqi pσkq
k Ñ ζ pαiq

iq

^ @k pv1,k, v2,kq P Vjrσkrαi Ð τis
isγ

*

VjrΠpx : τq σsγ “
"ˆ

λ#px : τ1q. u1,
λ#px : τ2q. u2

˙
ˇ

ˇ

ˇ

ˇ

@k ď j, @pv1, v2q P Vkrτ sγ ,
pu1rxÐ v1s, u2rxÐ v2sq P Ekrσsγ,xÐpv1,v2q

*

VjrΠppu » u1q : τq σsγ “
"ˆ

λ#ppu1 » u11q : τ1q. u
2
1,

λ#ppu2 » u12q : τ2q. u
2
2

˙
ˇ

ˇ

ˇ

ˇ

pH $ γipuiq : γipτq » γipu
1
iq : γipτqq

iPt1,2u

ùñ pu21, u
2
2q P Ejrσsγ

*

VjrΠpα : κq σsγ “
"ˆ

λ#pα : κ1q. u1,
λ#pα : κ2q. u2

˙
ˇ

ˇ

ˇ

ˇ

@k ď j, @pτ1, S, τ2q P Kkrκsγ1,γ2 ,
pu1rαÐ τ1s, u2rαÐ τ2sq P Ekrσsγ,αÐpτ1,S,τ2q

*

VjrΠppuq˚p : τq σsγ “
$

’

’

&

’

’

%

ˆ

λ#ppu1q˚p : τ1q. u
1
1,

λ#ppu2q˚p : τ2q. u
1
2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pγ1puq ÝÑ
0
d False^ pu11, u

1
2q P Ekrσsγq

_

¨

˝

γ1puq ÝÑ
0
d True

^ @k ď j,@pu21, u
2
2q P Ekrτ sγ ,

pu11rpÐ u21s, u
1
2rpÐ u22sq P Vkrσsγ,˚pÐpu21,u22q

˛

‚

,

/

/

.

/

/

-

Vjrrσssγ “
"ˆ

rπ. a1s,
rπ. a2s

˙
ˇ

ˇ

ˇ

ˇ

@k ă j, @p1, p2, pa1rπ Ð p1s, a2rπ Ð p2sq P Ekrσsγ
*

Vjrmatch u with pdipτ`q
`pxikq

k Ñ τiq
isγ “

$

’

’

&

’

’

%

Vjrτksγ,pxijÐpv1,j ,v2,jqqj if γ1puq ÝÑ
0
d dipv1,jq

j ^ γ2puq ÝÑ
0
d dipv2,jq

j

^pdi : @pα` : Typq` pσkq
k Ñ ζ pα`q

`q

^@k pv1,k, v2,kq P Vjrσkrα` Ð τ`s
isγ

H otherwise

Figure 8.4: Interpretation of types

162 CHAPTER 8. A LOGICAL RELATION FOR REASONING ON MML

• For K-Datatype: monotonicity derives from the monotonicity of the in-
terpretations we use for the subvalues. For stability by equality: sup-
pose pv1, v2q P Vjrζ pτiqisγ . Then, we have v1 “ dpτ1,iq

ipw1,kq
k and

v2 “ dpτ1,iq
ipw2,kq

k. Suppose $ v1 : ζ pτ1,iq
i » v11 : ζ pτ1,iq

i. and $
v2 : ζ pτ2,iq

i » v12 : ζ pτ2,iq
i. By mML elimination (Theorem 7.3), we have

$eML ‖v1‖ : ζ pτ1,iq
i » ‖v11‖ : ζ pτ1,iq

i. We have ‖v1‖ “ dp‖τ1,i‖qip‖w1,k‖qk,
and ‖v11‖ is a value. By the logical relation for eML (Lemma 6.22),
v21 “ ‖v11‖ must be of the form v21 “ dpτ21,iq

ipw21,kq
k, with $eML w1,k :

σ1,k » w21,k : σ1,k for all k. Since v11 is a value, it starts with a constructor,
so we must have v11 “ dpτ 11,iq

ipw11,kq
k, with w21,k “ ‖w11,k‖. Normalization

preserves equality. Thus, for all k, $ w1 : σ1,k » w11 : σ1,k, and similarly
for v2, and we use the stability by equality of their interpretations.

• The other rules for function types follow identical patterns.

• For K-Match, the conditions for the interpretation not to be empty are
stronger if the index j is larger, and ensure that γ stays valid. We then use
monotonicity and stability by equality of the interpretation of the branch.

• For higher-order constructs: consider K-TyAbs (K-TermAbs is similar).
When the function is applied to a valid interpretation, it gives back a
valid interpretation by induction hypothesis. Moreover, it is stable by
type equality: equal types as inputs translate to equal environments.

• Consider K-TyApp (K-TermApp is similar): by definition of the interpre-
tation of function kinds, the result of the application is valid.

For the lemma on type interpretation as terms, monotonicity comes from
monotonicity of the interpretation of values, and stability by equality is implied
by Lemma 8.1 and stability of the interpretation of values.

Lemma 8.7 (Substitution commutes with interpretation). For all environments
γ and indices j, we have:

Vjrτ rαÐ τ 1ssγ “ Vjrτ sγrαÐpγ1pτ 1q,pVkrτ 1sγqkďj ,γ2pτ 1qqs
Vjrτ rxÐ ussγ “ Vjrτ sγrxÐpγ1puq,γ2puqqs

Proof. By induction on the structure of the interpretation.

We want to prove that terms are related to themselves by the relation. For
the induction to work properly, we need a finer version of Ejrτ sγ that also
checks emitted labels: while the current version works to interpret the expansive
bodies of functions and thunks, it ignores the emitted labels because they are
inaccessible to the surrounding terms. We thus define a set Ejrτ ñ ∆sγ that
takes emitted labels into account: we require

• the emitted labels one each side to be present in ∆ or to be suffixes of
labels presents in ∆;

• the label in ∆ to be emitted on both sides whenever their condition in
True, and not emitted otherwise;

• for emitted labels in ∆, the emitted values on both sides to be related at
the type given in ∆.

8.3. THE LOGICAL RELATION 163

Definition 8.1 (Equivalence, including results). Consider an index j, a type σ
such that Γ $ σ : κ with κ P tTyp,Sch,Metu, and γ P GjrΓs, and let pσ1, σ2q “

T rσsγ .
Consider pa1, a2q such that Γ $p a1 : σ1 ñ ∆ and Γ $p a2 : σ2 ñ ∆. We

say that pa1, a2q P Ejrτ ñ ∆sγ if the reduction of a2 by ÝÑd does not terminate,
or:

• There exists i such that a2
p˚p2,kÐu2,kq

k

ÝÝÝÝÝÝÝÝÝÑi
d v2.

• We have a1
p˚p1,kÐu1,kq

k

ÝÝÝÝÝÝÝÝÝÑ˚d v1.

• The labels in pp1,kq
k and pp2,kq

k are either in ∆ or suffixes of labels in ∆.

• The labels in pp1,kq
k present in ∆ are also the labels in pp2,kq

k. Define
pp1lq

` the subsequence formed from the labels in ∆, associated on the left
with the pu11,`q

` and on the right with the pu12,`q
`.

• We define γ1 “ γ, p˚p1` Ð pu11,`, u
1
2,`qq

`. Then, we must have γ1 P Gj´irΓ,∆s.
This implies that every label is present if its condition evaluates to true,
and that the non-expansive terms associated to labels are related at the
type given in ∆.

• Finally, we must have pv1, v2q P Vj´irσsγ1

♦

We simultaneously need to prove that equal terms have equal interpretations
in equivalent environments, as defined here:

Lemma 8.8 (Interpretation is compatible with equality). Suppose Γ $ τ : κ »
τ 1 : κ1 and that γ and γ1 are equivalent, i.e. $ γ1 » γ11 : Γ and $ γ2 » γ12 : Γ,
and that for all α : κ P Γ, γRpαq “ γ1Rpαq. Then, for all j, if γ1 P GjrΓs, then
Vjrτ sγ “ Vjrτ 1sγ1

We thus prove the following two lemmas by mutual induction:

Theorem 8.1 (Terms are related to themselves). Suppose Γ $p a : τ ñ ∆.
Consider k and γ P GkrΓs. Then, pγ1paq, γ2paqq P Ekrτ ñ ∆sγ .

Proof. By induction on j then on the typing derivation.
For equality:

• If the last rule is TEq-Trans: apply induction hypothesis on the left
with environments γ and γ, on the right with environments γ and γ1, and
conclude by transitivity.

• For TEq-Split:

TEq-Split
p$ di : @pαk : Typqk pτijq

j Ñ ζ pαkq
kqi

Γ $ u : ζ pτkq
k Γ $ σ1 : Sch Γ $ σ2 : Sch

pΓ, pxij : τijrαk Ð τks
kqj , pdipτkq

kpxijq
j » uq : ζ pτkq

k $ σ1 : κ1 » σ2 : κ2q
i

Γ $ σ1 : κ1 » σ2 : κ2

164 CHAPTER 8. A LOGICAL RELATION FOR REASONING ON MML

By induction, we have pγ1puq, γ2puqq P Ejrζ pτkqksγ . γ2puq is non-expansive
and well-typed in the empty environment, thus it reduces in 0 steps to some
value v2. Then, γ1puq ÝÑ

0
d v1 for some v1, and pv1, v2q P Ejrζ pτkqksγ .

γ2puq: there exists a constructor $ di : @pαk : Typqk pτiq
i Ñ ζ pαkq

k such
that v1 “ dipτ1,kq

kpw1,iq
i, v2 “ dipτ2,kq

kpw2,iq
i, and for all i, pw1,i, w2,iq P

Vjrσisγ where σi is the type of the i-th parameter.
We have H $ γipuq : ζ γppτkq

kq » γ1ipuq : ζ γ1ppτkq
kq for i P t1, 2u. Thus

(applying the same reasoning as in the previous lemma), γ11puq reduces to
a term d1pτ

1
1,kq

kpw11,iq
i and similarly for γ12puq, with pw1,i, w2iq P Vjrσisγ1

because Vjrσisγ is stable by equality and equal to Vjrσisγ1 .
Then consider the branch for di, with environments γ2 “ γ, pxi Ð pw1,i, w2iqq

i

and γ3 “ γ1, pxi Ð pv11,i, w
1
2,iqq

i: these environments are valid and compat-
ible and satisfy the newly introduced equality pdipτkqkpxijqj » uq : ζ pτkq

k,
so we apply the induction hypothesis in that branch.

• The sub-kinding rules do not change the interpretations.

• If the last rule is TEq-Var, the interpretations are the same.

• If the last rule is congruence for an ML or mML type constructor (i.e.
one of the rules TEq-Datatype, TEq-Arr, etc.), the subtypes and sub-
kinds appearing are equal so their interpretations are equal by induction
hypothesis, and the interpretation only depends on the interpretations of
the subtypes.

• The type-level abstractions and applications respect equality: for con-
gruence, abstractions with equal bodies have equal interpretations, as do
applications with equal function and argument. For reduction, this is
implied by substitution inside the interpretation.

• For TEq-Match: as for TEq-Split, equal terms will reduce to terms start-
ing with the same constructor and equal parameters, so the new environ-
ments stay equal.

• For TEq-ReduceMatch: like the previous case, then the interpretation of
the expanded and reduced term are equal by substitution.

For typing, consider the last rule. We will examine a few representative
cases:

• If it is Coerce: coercion preserves the interpretations (by induction hy-
pothesis).

• If it is Var: from γ P GkrΓs, we get pγ1pxq, γ2pxqq P Vkrτ sγ .

• If it is Reuse:

Reuse
ppuq˚q : τ P Γ^ Γ $ u : bool » True : boolq
_pq K Γ^ Γ $ False : bool » True : boolq

Γ $p ˚q : τ ñH

We apply the induction hypothesis on u: we have pγ1puq, γ2puqq P Ejrbool ñ
Hsγ . Since γ2puq is well-typed in the environment, it reduces in 0 steps to

8.3. THE LOGICAL RELATION 165

a value. This value must be True, because the other case implies we have
$ γ1pTrueq : bool » γ1pFalseq : bool, which is impossible.
Thus, by hypothesis on γ, γp˚pq “ pu1, u2q P Ejrboolsγ . Since they are
non-expansive, their reductions do not emit labels, and we have pu1, u2q P

Ejrbool ñHsγ .

• Consider the Fix rule:
Fix
Γ $ τ : Typ Γ $ σ : Typ Γ, π, x : τ Ñ σ, y : τ $q a : σ ñ ∆

Γ $p fixπ x py : τq : σ . a : τ Ñ σ ñH

Consider γ P GjrΓs. We want to prove pfixπ xpy : γ1pτqq : γ1pσq .γ1paq, fixπ xpy :
γ2pτqq : γ2pσq . γ2paqq P Vjrτ Ñ σsγ .
Consider k ă j, and pv1, v2q P Vkrτ sγ . We need to show:
pγ1paqrxÐ fixπ x py : γ1pτqq : γ1pσq . γ1paq, y Ð v1, π Ð p1s,
γ2paqrxÐ fixπ x py : γ2pτqq : γ2pσq . γ2paq, y Ð v2, π Ð p2sq P Vkrσsγ Note
that by weakening, γ P GkrΓs. Moreover, by induction hypothesis at rank
k ă j, pfixπ x py : γ1pτqq : γ1pσq . γ1paq, fixπ x py : γ2pτqq : γ2pσq . γ2paqq P
Vkrτ Ñ σsγ . Consider
γ1 “ γrxÐ pfixπ x py : γ1pτqq : γ1pσq . γ1paq,
fixπ x py : γ2pτqq : γ2pσq . γ2paqq, y Ð pv1, v2q, , π Ð pp1, p2qs. Then, γ1 P
GkrΓ, x : τ Ñ σ, y : τ s. Thus, by induction hypothesis on a, pγ11paq, γ12paqq “
pγ1paqrxÐ fixπ x py : γ1pτqq : γ1pσq . γ1paq, y Ð v1, π Ð p1s

, γ2paqrxÐ fixπ x py : γ2pτqq : γ2pσq . γ2paq, y Ð v2, π Ð p2sq P Ekrσ ñ ∆sγ1 Ď
Ekrσsγ1 “ Ekrσsγ .

• Consider the App rule:
App

p ď q
q K Γ,∆a,∆b Γ $p a : τ Ñ σ ñ ∆a Γ,∆a $

p b : τ ñ ∆b

Γ $p aq b : σ ñ ∆a,∆b, pTrueq˚q : σ

Let γ P GjrΓs. Suppose γ2paq γ2pbq ÝÑ
k
d v2.

Then, there must exist ka ă k such that: γ2paq
la,2
ÝÝÑ

ka
d va,2 where la,2 is a

sequence of labels. By induction hypothesis on a, we have γ1paq
la,1
ÝÝÑ˚d va,1.

The labels in la,1 and la,2 are either in ∆a or strict suffixes of labels
in ∆a. By the typing conditions, only the labels in ∆a can appear in
b: the other labels are neither in ∆a not orthogonal to it. Consider
γa P Gk´karΓ,∆as the environment obtained by adding these labels to

γ. Then, γ2paq γ2pbq
la,2
ÝÝÑk

d va,2 γ2pbqrla,2s “ va,2 γa2pbq, and similarly

γ1paq γ1pbq
la,1
ÝÝÑd va,1 γa1pbq.

There also exists kb ă k ´ ka such that: γa2pbq
lb,2
ÝÝÑ

kb
d vb,2. Similarly,

by induction hypothesis, we have γ1paq
lb,1
ÝÝÑ˚d vb,1, and there exists γb P

Gk´ka´kbrΓ,∆a,∆bs.
We have: pva,1, va,2q P Vk´ka´kbrΓsγb : there exists a1, a2 such that va,1 “
fixπ x px : τ1q : σ1 . a1 and va,2 “ fixπ x px : τ2q : σ2 . a2. Then, we have

va,2 vb,2
˚pÐreusepa2qrπÐp,xÐfixπ x px:τ2q:σ2 . a2,yÐvb,2s
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ1

d a1rπ Ð p, xÐ, y Ð vb,2s

166 CHAPTER 8. A LOGICAL RELATION FOR REASONING ON MML

and similarly for va,1 vb,1. These two terms are related by Ek´ka´kb´1rσsγ1 ,
and all labels they emit are prefixed by p. Then, when they reduce
to values v1 and v2 in kc ď k ´ ka ´ kb ´ 1 steps, these values are in
Vk´ka´kb´1´kcrσsγ1 . Then, their non-expansive versions are related too.
Finally,

γ1 “ γb, ˚pÐ preusepa1qrπ Ð p, xÐ, y Ð vb,1s, reusepa2qrπ Ð p, xÐ, y Ð vb,2sq
P Gk´ka´kb´kc´1rΓ,∆a,∆b, pTrueq˚p : σs

Chapter 9

From eML to ML

In this chapter, we’ll prove that any eML term well-typed in an ML environment
can be transformed into an equivalent ML term, such that the original term and
the final terms are equal for the eML equality.

There are three features of eML we need to simplify. First, eML has pattern
matching on types, and such types cannot exist in ML. We remove these types
by moving the pattern matching to the term level: for example, the term

¨

˝

match x with
True Ñ λpy : unitq. True
False Ñ λpy : boolq. y

˛

‚

p ¨

˝

match x with
True Ñ Unit
False Ñ x

˛

‚

contains a type-level pattern matching because the type of both the function
and the argument depend on x, but we can move this pattern matching to the
term level, around the application, and obtain the following simplified term that
only requires ML types:

match x with
True Ñ pλpy : unitq. Trueqp Unit
False Ñ pλpy : boolq. yqp x

We also need to get rid of reused results. This is done by lifting the evaluation
of the function application producing this result into a separate let binding so we
can give it a name. For example, the term match fp x with True Ñ ˚p | False Ñ
True can be rewritten as let y “ fp x in match y with True Ñ y | False Ñ True.
Some cases are more complex: consider

let x “ match y with True Ñ True | False Ñ f1 False in
match y with True Ñ x | False Ñ ˚1

There, the result is only present conditional on y. We again solve this by
matching on y first, and having two branches:

match y with
True Ñ let x “ True in x
False Ñ let z “ f1 False in let x “ z in z

Finally, we have conversions in typing derivations: if a type is equal to
another for eML, all values of this type are values of the other type. These type

167

168 CHAPTER 9. FROM EML TO ML

s ::“ x | ˚p | Λpα : Typq. s | s ν | fixp x px : νq : ν . e | d ν s

ν ::“ α | @pα : Typq ν | ν Ñ ν | ζ ν

e ::“ s | let x “ sp s in e | match s with pP Ñ e | .. P Ñ eq

Figure 9.1: Expanded terms, simple terms and types

equalities can be proved using value equalities deduced from let bindings and
pattern matching. We can eliminate the equalities from the context: we make
sure that pattern matching is always on a variable. Then, equalities of the form
px » dpτiq

ipxjq
jq : τ can be eliminated from the environment by replacing all

instances of x by dpτiqipxjqj . Then, all equalities are provable in an environment
without equalities. We prove that in this case an equality between ML types is
either trivial (the two types are syntactically equal), or there are variables of
some un-inhabited types in the contexts.

For technical reasons, we restrict ourselves to environments where all poly-
morphic definition are definitions of functions. This guarantees that pattern
matching only occurs on monomorphic values, which allows us to substitute the
variables that are matched on by their values in the branches.

9.1 Expanded terms

The simplification we present here is a maximal version of the transformations
described above: pattern matchings and bindings are extruded even if they
actually would not need to be. In practice, the implementation performs the
maximal simplification then tries to move let bindings and pattern matchings
back to their original position.

Our goal is to end up with a term where there is no type-level pattern
matching, all function applications are given a name, and all pattern matching
is extruded such that we never match on the result of a match of a let. We
might match on a variable or a constructor (the latter case would reduce).

Thus we define in Figure 9.1 the syntax of expanded terms e. An expanded
term is formed by a series of bindings of the results of function applications,
pattern matchings, and finally a simple term. The function and argument in
application, the things we are matching on, and the terms at the end are required
to be simple terms s, which are a subset of non-expansive terms: a simple term
may be a variable applied to some type arguments, a reused result, a type
abstraction whose body is simple, a function definition whose body is expanded
or a constructor. Finally all types must be ML types, i.e. types that do not
feature type-level pattern matching, We note these types ν.

After terms are expanded, we will need to perform a second pass on them
to actually eliminate coercions.

9.2 Simplification

The simplification is then described as a small-step reduction� on terms. The
reduction context, defined in Figure 9.2, is the composition of a binding context

9.2. SIMPLIFICATION 169

F ::“ rs | let x “ F in a | Λpα : Typq. F | F τ | s Ft | fixp x px : τq : Ft . a

| fixp x px : Ftq : ν . a | sp F | F p a | d pν, Ft, τq a

| d ν ps, F, aq | match F with pP Ñ a | .. P Ñ aq

Ft ::“ rs | @pα : Typq Ft | Ft Ñ τ | ν Ñ Ft | ζ pν, Ft, τq

| match F with pP Ñ τ | .. P Ñ τq

B ::“ rs | let x “ sp s in B | match x with P Ñ B | P Ñ a | F rfixp x px : νq : ν . Bs

Figure 9.2: Binding contexts, expansion contexts

BrF rlet x “ s in ass� BrF rarxÐ ssss

F ‰ let _ “ rs in _
BrF rs1

p s2ss� Brlet x “ s1
p s2 in F rxss

F ‰ rs

BrF rmatch s with pdipνjq
jpxikq

k Ñ aiq
iss�

Brmatch s with pdipνjq
jpxikq

k Ñ relabelpF raisqq
is

BrF rmatch x with pdipνjq
jpxikq

k Ñ σiq
iss�

Brmatch x with pdipνjq
jpxikq

k Ñ relabelpF rσisqq
is

Figure 9.3: Simplification rules

B that binds variables, and is composed of bindings of results of applications
and pattern matching, and an expansion context F that does not bind variables
and is similar to the evaluation contexts E of the ML reduction, with values
replaced by simple terms s. The expansion contexts F can also have their hole
in the type part of the terms. Contexts that create a type are written Ft.

The simplification rules are given in Figure 9.3. For a let binding let x “
a in b, once a has been simplified to a simple value s, we substitute it inside the
term (as it is non-expansive). When we encounter a function application, we
lift it at the end of the binding context. We ask for the expansion context to
not be just a let binding to avoid endlessly lifting the same application. When
we encounter a pattern matching on a simple term, the pattern matching is
similarly added to the end of the binding environment B. This duplicates the
term that enclosed the pattern matching. To keep the labeling consistent, we
relabel all labels produced in F with distinct labels in each branch. This is done
by a function relabelpaq whose definition is given next. This rule can be applied
both for type-level and term-level pattern matching.

Definition 9.1 (Relabeling). Consider a term a introducing labels ppiqi (not
counting the labels under abstractions, similarly to the decomposition atomspaq
given in Figure 6.10). Then, consider a substitution σ from labels in ppiqi to
fresh labels. We write σpaq for the term obtained by replacing all ppiqi and their
uses by the corresponding labels in σ. Then, we note relabelpaq any such relabeled
term. ♦

Lemma 9.1 (Relabeling preserves typing). Consider a such that Γ $p a : τ ñ
∆. Suppose b “ relabelpaq with label substitution σ. Then, Γ $p b : σpτq ñ

170 CHAPTER 9. FROM EML TO ML

σp∆q.

Proof. By induction on the typing derivation of the term.

We first prove that we can ignore the binding environment when proving
equalities. This is true because the binding environment is always before the
hole for the order of evaluation, and thus of propagation of results.

Lemma 9.2 (Equality in a binding context). Consider a binding context B and
a term a, with Γ $p Bras : σ ñ ∆. Suppose the typing derivation uses a typing
Γ,Γ1 $p

1

a : τ ñ ∆1 of a, and moreover suppose TermsEqualpΓ,Γ1 $p
1

a : τ »
a1 : τq. Then, TermsEqualpΓ $p Bras : σ » Bra1s : σq.

Proof. By induction on B:

• Suppose B “ F rfixπ x py : τ1q : τ2 . B
1ras. We have Γ, π, x : τ1 Ñ τ2, y :

τ1 $
π B1ras : τ2 ñ ∆1. By induction hypothesis, we have TermsEqualpΓ, π, x :

τ1 Ñ τ2, y : τ1 $
π B1ras : τ2 » B1ra1s : τ2q. Thus, by congruence for func-

tion definition, TermsEqualpΓ $p fixπ x py : τ1q : τ2 . B
1ras : τ1 Ñ τ2 »

fixπ x py : τ1q : τ2 . B
1ra1s : τ1 Ñ τ2q We conclude by congruence in F : we

obtain a non-expansive equality that implies the term equality.

• Suppose B “ let x “ s1
q s2 in B1ras. We have Γ, pTrueq˚q : τx, x :

τx, px » ˚qq : τx $
p B1ras : σ ñ ∆2. By induction hypothesis, we have

TermsEqualpΓ, pTrueq˚q : τx, x : τx, px » ˚qq : τx $
p B1ras : σ » B1ra1s :

σq. This means the decompositions (§6.2.5) of B1ras and B1ra1s match.
Then the decompositions of Bras and Bra1s match (since they are the
same with the indices shifted by one).

• The same reasoning is used when the binding context is a pattern match-
ing.

We prove that simplification preserves term equality:

Lemma 9.3 (Expansion preserves term equality). Consider a well-typed term
a with Γ $p a : τ ñ ∆ and suppose a � a1. Then, TermsEqualpΓ $p a : τ »
a1 : τq.

This implies Γ $p a1 : τ ñ ∆1 for some ∆1, i.e. that expansion preserves
types (but not results).

Proof. The simplification of let bindings is a non-expansive reduction. It pre-
serves term equality by Lemma 6.25.

By Lemma 9.2, we only have to consider reductions with an empty binding
context B.

We have three rules to consider. Let us start with lifting of a labeled appli-
cation into a let binding:

F rs1
p s2s� let x “ s1

p s2 in F rxs

Consider the decomposition of F rs1
p s2s: the first atom in the decomposition

is ˚p Ð s1 s2 with condition True (simple terms are non-expansive so they are

9.2. SIMPLIFICATION 171

equal to their reusable version). The subsequent atoms are some p˚pi Ð ui u
1
iq
i

with conditions uc,i. The reusable version of the term is u “ reusepF r˚psq.
Then, the decomposition of let x “ s1

p s2 in F rxs has first atom ˚pÐ s1 s2

with condition True, the subsequent atoms are p˚p Ð pui u
1
iqrx Ð ˚psqi, with

conditions uc,irx Ð ˚ps. The reusable version of the term is let x “ p in
reusepF rxsq.

Then, all atoms of both terms have equal expressions and conditions: the
first atom is the same; for subsequent atoms, we have pui u1iqrx Ð ˚ps “ ui u

1
i,

because x does not occur in ui, and the same for the condition uc,i.
Moreover, the reusable versions of the tests are equal by reduction. Then,

the terms are equal.
Consider now the lifting of a term-level pattern matching. We will only look

at the lifting of terms, the lifting of types is similar. We can consider only the
case B “ rs as well. The rule to consider is then:

F rmatch s with pdipνjq
jpxikq

k Ñ aiq
is�

match s with pdipνjq
jpxikq

k Ñ relabelpF raisqq
i

We only need to show that F rmatch s with pdipνjq
jpxikq

k Ñ aiq
is is equal to

match s with pdipνjq
jpxikq

k Ñ relabelpF rmatch x with pdipνjq
jpxikq

k Ñ aiq
isqqi:

the latter term is equal to match s with pdipνjq
jpxikq

k Ñ relabelpF rmatch
dipνjq

jpxikq
k with pdipνjq

jpxikq
k Ñ aiq

isqqi by substitution using the equalities
in each branch of the outer match, and this term reduces (preserving equality)
to the term on the right-hand side of the reduction.

We suppose the relabeling transforms labels ppjqj into labels ppijqj in the
branch of the constructor i. Consider the decomposition of the left-hand side: it
is p˚pj Ð ujq

j , with conditions uc,j and types τj . Consider the decomposition
of the right-hand side. It is p˚pij Ð match s with dipνjq

jpxikq
k Ñ uj match

s with dipνjq
jpxikq

k Ñ u1jq
ij , with conditions match s with dipνjq

jpxikq
k Ñ

uc,j | pd`pνjq
jpx`kq

k Ñ Falseq`‰i and types match s with dipνjq
jpxikq

k Ñ τj .
We want to show that the indexings of the atoms of these two terms match:

consider an index m. We want to prove: Γ $ Indexmpuc,j Ñ Apppuj , u
1
jqq

j :

Indexmpuc,j Ñ app pτj , τ
1
jqq

j » Indexmppmatch x with dipνjq
jpxikq

k Ñ uc,j |

_Ñ Falseq Ñ Apppmatch s with dipνjq
jpxikq

k Ñ uj ,match s with dipνjq
jpxikq

k Ñ

u1jqq
`j : Indexmppmatch s with dipνjq

jpxikq
k Ñ uc,j | _ Ñ Falseq Ñ app

pτj , τ
1
jqq

`j . Let us start by splitting on s: we need to prove this equality in
Γ, pxik : τikq

ik, ps » dipνjq
jpxikq

kq : ζ pνjq
j for each i. We apply this substitu-

tion everywhere and reduce: the items on the right-hand side become:

• For ` “ i, the conditions are uc,j , the terms are Apppuj , u
1
jq and the types

are app pτj , τ
1
jq

• For ` ‰ i, the conditions are False.

Then, the conditions for p`j on the right-hand side are False for ` ‰ i. We
can reduce the corresponding matches in Indexmp. . .q: this yield exactly an
Indexmp. . .q where these options have been removed. We thus obtain the equal-
ity.

We also have to prove that the reusable versions of the terms are equal.
Again, we first split on x and substitute and reduce on the right-hand side:

172 CHAPTER 9. FROM EML TO ML

we have to prove Γ,∆,∆1, ppIndexmpuc,j Ñ pjq
j » Indexmpuc,j Ñ pijq

jq :
Index`puc,j Ñ τjq

jqm, pxik : τikq
k $ F rais : τ » F raisr˚pj Ð ˚pijs

j : τ .
This is true as long as for all j Γ,∆,∆1, ppIndexmpuc,j Ñ pjq

j » Indexmpuc,j Ñ
pijq

jq : Index`puc,j Ñ τjq
jqm, puc,j » Trueq : bool $ ˚pij : τ 1j » ˚pj : τ 1j , i.e. the

labels match between the left and right-hand side. We proceed by splitting on
all the uc,j : then, there exists at least one index m such that the m-th index
matches pj . It also matches pij since the conditions are equal. Otherwise, uc,j
is false and we derive the equality from this contradiction.

Then the two terms are equal since their decompositions are equal.

We now have to prove that the simplification terminates and yields and
expanded term:

Lemma 9.4 (Simplification terminates). There is not infinite sequence of terms
paiq

i such that ai� ai`1

Proof. Consider a reduction in a bind context B. Then, there is no rule that
allows reduction in a prefix of this bind context, thus bind contexts always grow.

We define the weight of a term a as the number of let bindings, function
applications, and pattern matchings it contains (not counting inside functions),
and the set of weights of a term as the multiset of weights of residuals, i.e. terms
that are in the holes of maximal B contexts.

All reductions take a residual of weight n and transform it into multiple
residuals of weight n ´ 1. Then consider the sequence pwnqnPN counting the
terms of weight n. Each transformation leads to a lower value of this sequence
for the lexical ordering. Since the lexical ordering of sequence of natural numbers
is a well-order, there cannot be infinite sequences of simplifications.

Lemma 9.5 (Un-simplifiable terms are expanded terms). Suppose that there is
no a1 such that a� a1. Then, a is an expanded term.

Proof. We are proving three results by simultaneous induction, proving that
subterms of a are either expanded terms or simple terms depending on their
contexts, and that subtypes of a are ML types.

Consider a term a in B such that Bras is irreducible. Then a is an expanded
term e. By case analysis:

• If the term starts with a let binding let x “ a in b: by induction hypothesis
in the context Brlet x “ rs in bs, a must be a simple term s or of the form
s1
p s2. If it were a simple term s, we could reduce the let, so it must be an

application. Then, by induction hypothesis in Brlet x “ s1
p s2 in rss, the

term b must be an expanded term, thus let x “ s1
p s2 in b is an expanded

term.

• If the term starts with a pattern matching, the term we are matching on
must be a simple term (by induction hypothesis, since match rs with . . .
is a valid F context). Then, we can apply the induction hypothesis on
each branch (since each branch forms a valid context B1): all branches are
expanded terms, thus the pattern matching is an expanded term.

• Otherwise, B is of the form BrF rss with F “ rs, and by induction hypoth-
esis, the term must be a simple tern.

9.3. REMOVING EQUALITIES 173

Consider a in BrF rss such that BrF rass is irreducible. Then:

• either a is a simple term s

• or F is let x “ rs in b and a is s1
p s2

• or F is rs and a is match s with . . .

By looking at the different cases for a:

• If a is x or ˚p, it is a simple term.

• If a is Λpα : Typq. u, apply the induction hypothesis to u in BrF rΛpα :
Typq. rsss. Only the first case is possible, thus u is simple and a is simple.

• If a is b τ : by induction hypothesis applied to a in BrF rrs τ ss, b must be
a simple term. Then, by induction hypothesis applied to τ in BrF rb rsss,
τ must be an ML type, thus a is simple.

• If a is fixp x py : τq : σ . b, we first apply the induction hypothesis to τ in
BrF rfixp x py : rsq : σ . bs to find out it is an ML type, then similarly for σ.
Finally, we apply the induction hypothesis to b in the context B1 equal to
BrF rfixp x py : τq : σ . rss and conclude it is an expanded term. Thus a is
simple.

• If a is b1p b2: by induction hypothesis, both b1 and b2 are simple terms.
Then, F must be let x “ rs in b for some b, otherwise BrF ras would reduce.

• If a is a constructor, we similarly show that all types and terms appearing
in the constructor must be simple.

• If a is match b with . . ., b must be a simple term by induction hypothesis.
Then, if F ‰ rs, we could move the pattern matching around F . Thus
F “ rs.

Finally consider τ in BrF rss such that BrF rτ ss is irreducible. Then τ is a
simple type τ , by a similar case analysis.

9.3 Removing equalities

Simplification removes all apparent result reuse and term-level pattern match-
ing. But we also need the typing derivation of the final term to be a valid ML
typing derivation. This is ensured by performing a final rewriting step on the
term that also rewrites its typing derivation to be in ML.

We need to take care of equalities. We can prove that in an environment
containing only type variables, two equal ML types are syntactically equal. We
can extend this result to equalities in inhabited environments, i.e. environments
for which we can provide an instantiation of each type and term variable.

First, we prove a stronger version of inversion (Lemma 6.23):

Lemma 9.6 (Equalities in almost empty environments). Suppose that pαi :
Typ, xi : αiq

i $ ν1 : Sch » ν2 : Sch. Then, ν1 “ ν2.

174 CHAPTER 9. FROM EML TO ML

Proof. We already know (Lemma 6.14) that if the two types have the same head
(i.e. arrow, type constructor, or quantification), their tails are equal, thus are
syntactically equal by induction.

We therefore only to prove that the heads are equal.

• If the heads are both type variables α1 and α2: if they are identical, the
types are equal. Otherwise, take γpα1q “ unit (and γpxq “ Unit for the
corresponding term); γpα2q “ bool (and γpxq “ True). Then we would
have $ unit : Sch » bool : Sch, which is impossible (for the same reasons
as in Lemma 6.23: their interpretations are distinct).

• If one head is a type variable (let’s say ν1) and the other not a type vari-
able, instantiate the type variable with unit or bool, whichever is different
from ν2.

• Otherwise proceed as in Lemma 6.23.

We now consider more closely the environments. We prove that an environ-
ment Γ is either inhabited, i.e. we can provide an instance of this environment,
or that we can prove in eML that it is absurd, by exhibiting a non-expansive
term returning void (or any type). For example, the environment Γ1 equal to
x : @pα : Typq α Ñ α, y : nat is inhabited by γ1 such that γ1pxq is the identity
function and γ1pyq is S Z, while Γ2 equal to x : @pα : Typq α is not, since x void
has type void. This is made slightly more complicated by free type variables, so
we instead consider instances of an environment that type in an almost empty
environment pαi : Typ, xi : αiq

i.

Lemma 9.7 (Environment inhabitant). Consider an ML environment Γ with
type variables pαiqi. Then, either there exists γ such that pαi : Typ, xi : αiq

i $

γ : Γ mapping each type variable to itself and we say the environment is inhab-
ited, or there exists a non-expansive term u such that Γ $ u : void.

Proof. Construct γ as follows: map type variables to themselves. For a term
variable of type @pβj : Typqj τ with τ of kind Typ, construct a value as follows
by induction on the type τ :

• If the type is αi with αi in Γ, take xi.

• If the type is βj for some j, we cannot construct a term.

• If the type is τ1 Ñ τ2, take the term fixπ x py : τ1q : τ2 . x y.

• If the type is ζ pτjqj , choose a constructor di such that its arguments are
constructible with the same process.

Now consider the case where we do not succeed in building γ: it means that
there is some variable x : @pβj : Typqj τ for which we were not able to construct
a value. Then, we construct a term that matches on u “ x pvoidqj of type
τ rβj Ð voidsj and that is of type void. By induction on τ :

• If the type is αi with αi P Γ we were able to construct a value.

• If the type is βj for some j, it is substituted by void. Then we return u.

9.3. REMOVING EQUALITIES 175

• If the type is τ1 Ñ τ2, we were able to construct a value.

• If the type is ζ pτjqj : the constructors are di taking arguments of type
pτikq

k. For each constructor there must be at least one argument k for
which we cannot construct a term: we then have a term uk of type σ
matching on xik of type τik. Then, we construct match u with pdipτjq

jpxikq
k Ñ

ukq
i.

Lemma 9.8 (Equalities are almost trivial). Consider an environment Γ without
equalities or results and two ML types τ1 and τ2. Suppose Γ $ τ1 : Sch » τ2 :
Sch. Then either Γ is inhabited τ1 “ τ2 or there exists a non-expansive ML
term u such that for any type σ, we have Γ $ u : σ, and for any a such that
Γ $p a : σ ñ ∆, we haveTermsEqualpΓ $p u : σ » a : σq.

Proof. We either construct an environment γ that gives a value all bindings of
Γ, or a term u of type void by Lemma 9.7. If we have a non-expansive term
of type void, it is equal to any other term (as each equality required for term
equality can be proved by splitting on void).

Otherwise, we use Lemma 9.6.

Then we can proceed with simplification:

Lemma 9.9 (Expanded terms type without equalities and with ML types only).
Suppose Γ is an ML environment and τ an ML type. Consider an expanded
term e such that Γ $p e : τ ñ ∆. Then there exists an ML term a such that
TermsEqualpΓ $p e : τ » a : τq and Γ $ a : τ in ML.

Proof. During simplification, we accumulate a substitution γ describing how
variables and results must be replaced by simple terms to obtain a term that
types in an ML environment. We write Γ $ML γ : Γ1 if:

• for all px : τq P Γ1, γpxq is a simple term and Γ $ML γpxq : τ ;

• for all pTrueq˚p : τ P Γ1, Γ $ML γpαq : τ ;

• and for all equalities pu1 » u2q : τ in Γ1, Γ $ γpu1q : τ » γpu2q : τ .

The proof is by simultaneous induction on e and s.
For simple terms s, we prove that if Γ1 $ s : τ and Γ is an inhabited ML

environment such that Γ $ML γ : Γ1, then there exists s1 and ν such that
Γ $ML s1 : ν and Γ $ γpsq : τ » s1 : ν We can always assume that the
type derivation for the term does not end with a conversion (as we can always
remove all conversions and reapply the equalities as conversion in the equality
proof afterwards).

• If the term is x, with Γ1 $ x : τ : we have px : τq P Γ1. Then, γpxq is an
ML type with Γ $ML γpxq : τ .

• If the term is s ν, with Γ1 $ s : @pα : Typq τ : we have Γ1 $ s ν : τ rαÐ νs.
There exists a term s1 and a type σ such that Γ $ γpsq : @pα : Typq τ »
s1 : σ, with σ an ML type. By extraction, Γ $ @pα : Typqτ : Sch » σ : Sch.
Since Γ is inhabited, σ must be of the form @pα : Typq τ 1. Then, we
have, in ML (because ν is an ML type), Γ $ s1 ν : τ 1rα Ð νs, and
Γ $ γps νq : τ rαÐ νs » s1 ν : τ 1rαÐ νs

176 CHAPTER 9. FROM EML TO ML

• We reason similarly for constructor applications, universal quantification
and function definitions.

For expanded term, we prove that if Γ1 $p e : ν ñ ∆ and Γ is an inhabited
ML environment such that Γ $ML γ : Γ1, then there exists a such that Γ $ML

s : ν and TermsEqualpΓ $p γpeq : ν » a : νq. First, we check if Γ is inhabited.
Otherwise, we replace the term by the equal, non-expansive term proving that
Γ is not inhabited (Lemma 9.7). Then by case analysis:

• If we return a simple term s at the ML type ν: there exists an equivalent
term s1 at ML type ν1 that types in ML. Since Γ is inhabited, by Lemma 9.8,
τ “ τ 1.

• For let bindings let x “ s1
p s2 in e: there exists τ1 and τ2 such that

Γ $ s1 : τ1 Ñ τ2 and Γ $ s2 : τ1.
By induction hypothesis, there exists s11 and s12, σ1 and τ 12 such that Γ $
γps1q : τ1 Ñ τ2 » s11 : σ1, and Γ $ γps2q : τ1 » s12 : τ 11. Since Γ is
inhabited, by Lemma 9.8, there exists τ21 and τ 12 such that σ1 “ τ21 Ñ τ 12.
We thus have Γ $ τ 11 : Sch » τ21 : Sch, thus we have τ 11 “ τ21 . Then we
have, in ML, Γ $ s11 s

1
2 : τ 12.

Then, define γ1 “ γ, ˚pÐ x. We have Γ, x : τ 12 $
ML γ1 : Γ, x : τ2, pTrueq˚p :

τ2, px » ˚pq : τ2. Thus, by induction hypothesis, there exists a such that
Γ, x : τ 12 $

ML a : ν and TermsEqualpΓ, x : τ 12 $
γpeq ν :» a : νq. Then, we

have Γ $ML let x “ s11 s
1
2 in a : ν, and TermsEqualpΓ $p γplet x “ s1

p s2 in
eq : ν » let x “ s11 s

1
2 in a : νq.

• For pattern matching match s with pdipνjq
jpxikq

k Ñ eiq
i: By induction

hypothesis, there exists s1 and an ML type τ such that Γ $ML s1 : τ and Γ $
γpsq : ζ pνjq

j » s1 : τ . Then, τ “ ζ pνjq
j by Lemma 9.8 since Γ is inhabited.

We can reduce s1 so that there is no type abstraction/application redex,
preserving the equality. Then, consider the different cases for s1: it can
only be a variable, a constructor, or a type application. If it is a type
application s1 “ s2 σ, consider again s2: it can only be a variable or a
type application (it cannot be a type abstraction as we removed these
redexes, and it cannot be a constructor because it would be ill-typed).
But then, that would mean that we have a variable in context of type
@α ζ pνjq

j , which is forbidden.
If s1 is a variable x, take, for all i, γi “ γ, x Ð dipνjq

jpxikq
k. We then

have Γ, pxik : σikq
k $ML γi : Γ1, pxik : σikq

k, px » dipνjq
jpxikq

kq : ζ pνjq
j .

Then, we can apply the induction hypothesis in each branch and build an
ML term.
Otherwise, s1 “ dipνjq

jpskq
k for some i. Then, we take γ1 “ γ, pxik Ðq

ksk
and apply the induction hypothesis in the branch to obtain a term a. By
congruence and reduction, the original term reduces to γpeiqrxik Ð sks

k “

γ1peiq, thus we get the required equality.

Theorem 9.1 (Simplification). Let Γ be an ML environment whose polymorphic
bindings are all functions. Suppose Γ $p a : τ ñ ∆ with τ an ML type. Then,
there exists an ML term a1 such that Γ $ML a1 : τ , and TermsEqualpΓ $p a : τ »
a1 : τq.

9.3. REMOVING EQUALITIES 177

Proof. By Lemma 9.4, there exists a maximal reduction a2 of a by �. By
Lemma 9.5, this maximal reduction is an expanded term. By Lemma 9.3,
TermsEqualpΓ $p a : τ » a2 : τq. By Lemma 9.9, there exists a1 such
that Γ $ML a1 : τ and TermsEqualpΓ $p a2 : τ » a1 : τq. By transitivity,
TermsEqualpΓ $p a : τ » a1 : τq.

178 CHAPTER 9. FROM EML TO ML

Part III

Encoding ornaments

179

Chapter 10

Encoding ornaments in mML

We now consider how ornaments are described and represented in the lifting
process. This section bridges the gap between mML, a language for meta-
programming that does not have any built-in notion of ornamentation, and the
interface presented to the user for ornamentation.

We define both the datatype ornaments, i.e. the base ornaments specified
by the user, and the higher-order functional ornaments that can be built from
them.

As a running example, we use the ornament natlist α from natural numbers
to lists:

type ornament natlist α : nat Ñ list α with
| Z Ñ Nil
| S w Ñ Cons p_, wq when w : natlist α

The ornament natlist α defines, for all types α, a relation between values of
its base type nat, which we write pnatlist αq´, and its lifted type listα, written
pnatlist αq`: the first clause says that Z is related to Nil; the second clause says
that if w´ is related to w`, then S w´ is related to Cons pv, w`q for any value v.
As a notation shortcut, the variables w´ and w` are identified in the definition
above.

A higher-order ornament type natlist αÑ natlist α relates two functions f´
of type nat Ñ nat and f` of type list τ Ñ list τ when for related inputs v´ and
v`, the outputs f´ v´ and f` v` are related.

The ornament list pnatlist αq relates a list of natural numbers to lists of lists
whose lengths are given by the corresponding element in the base list.

10.1 Ornamentation as a logical relation

We formalize this idea by defining a family of ornament types corresponding to
the ornamentation definitions given by the user and giving them an interpreta-
tion in the logical relation. Then, we say that one term is a lifting of another if
they are related at the desired ornament type.

The syntax of ornament types, given on Figure 10.1, mirrors the syntax of
types. An ornament type, written ω, may be an ornament variable ϕ, a datatype
ornament χ ω, a higher-order ornament ω1 Ñ ω2, or an identity ornament ζ pωqi,
which is automatically defined for any datatype of the same name (ωi indicates

181

182 CHAPTER 10. ENCODING ORNAMENTS IN MML

χ ::“ Base ornaments
| natlist

| . . .

ω ::“ Ornament types
| ϕ Ornament variables
| χ pωqi Datatype ornament
| ζ pωqi Identity ornament
| ω Ñ ω Function

Figure 10.1: Ornament types

αε “ α
pω1 Ñ ω2q

ε “ ωε1 Ñ ωε2
pζ pωiq

iqε “ ζ pωεi q
i

χ pαiq
i : τ ñ σ

pχ pωiq
iq´ “ τ rαi Ð ω´i s

i

χ pαiq
i : τ ñ σ

pχ pωiq
iq` “ σrαi Ð ω`i s

i

Figure 10.2: Projection of ornament types

how the i-th type argument of the datatype is ornamented). An ornament type
ω is interpreted as a relation between terms of type ω´ and ω`. The projection
operation, defined on Figure 10.2, depends on the projections of the datatype
ornaments: they are given by the global judgment χ α : τ ñ τ . We also define
a well-formedness judgment pαiqi $ ω, for ornaments given an environment
of type variables in Figure 10.3. For example, the ornament list pnatlist natq
describes the relation between lists whose elements have been ornamented using
the ornament natlist nat. Thus, its projections are plist pnatlist natqq´ equal to
list nat and plist pnatlist natqq` equal to list plist natq.

The projection is defined and well-kinded for any well-formed ornament type:

Lemma 10.1 (Projection is a type). If α $ ω holds, then we have α $ pωqε :
Typ.

Proof. By induction on the derivation of α $ ω.

We define in the next section how to interpret the base ornaments χ, and
focus here on the interpretation of higher-order ornaments ω1 Ñ ω2 and identity

pαiq
i $ αi

α $ ω1 α $ ω2

α $ ω1 Ñ ω2

ζ : pTypqj Ñ Typ pα $ ωjq
j

α $ ζ pωjq
j

χ pαjq
j : . . .ñ . . .

pα $ ωjq
j

α $ χ pωjq
j

Figure 10.3: Well-formedness of ornament types

10.2. DEEP PATTERN MATCHING IN EML 183

P,Q ::“ Deep patterns
| x Variable
| d τ P Constructor
| _ Wildcard
| K Empty
| pP | P q Alternative

Figure 10.4: Deep patterns

ornaments ζ pωiqi.
The interpretation we want for higher-order ornaments is as functions send-

ing arguments related by ornamentation to results related by ornamentation.
But this is exactly what the interpretation of the arrow type τ1 Ñ τ2 gives us,
if we replace the types τ1 and τ2 by ornament types ω1 Ñ ω2. Thus, we do
not have to define a new interpretation for higher-order ornaments, it is already
included in the logical relation. For this reason, we use the function arrow and
the ornament arrow interchangeably (when talking about the logical relation).

We have the same phenomenon for the identity ornament: constructors are
related at the identity ornament if their arguments are related. Once more,
we can simply take the interpretation of a datatype ζ pτiqi and, by replacing
the type parameters pτiqi by ornament parameters pωiqi, reinterpret it as an
interpretation of the identity ornament.

Finally, ornament variables must be interpreted by getting the corresponding
relation in the relational environment. This is exactly the interpretation of a
type variable.

Thus, the common subset between types and ornament specifications can be
identified, because their interpretations are the same. This property plays a key
role in the instantiation: from a relation at a type, we deduce, by proving the
correct instantiation, a relation at an ornament.

10.2 Deep pattern matching in eML

Ornaments are defined through deep pattern matching, and our presentation of
eML only allows for shallow pattern matching. In this section, we present an
encoding of deep pattern matching in eML, based on eML features. An alter-
native way of handling pattern matching would be to compile it down to a tree
of simple pattern matching [Maranget, 2008], but this would introduce deeper
changes to the term. Instead, the encoding given here maintains a structure very
close to the original deep pattern matching. The syntax of patterns we support
is defined in Figure 10.4. A pattern may be a variable x, a wildcard pattern
_, the void pattern K that matches nothing, an alternative pattern P | Q that
matches if either P or Q matches, or a constructor pattern d pτiqi pPjqj match-
ing a constructor d whose arguments match the pattern Pj . We do not support
pattern synonyms P as Q as they cannot be used in ornament definitions.

Patterns are checked by the judgment $ P : σ ù Σ, asserting that the
pattern P matches values of type σ and returns variables in Σ. The definition of
the judgment is given in Figure 10.5. Apart from checking typing, the judgment

184 CHAPTER 10. ENCODING ORNAMENTS IN MML

P-Var

$ x : σ ù x : σ

P-Wild

$ _ : σ ù H

P-Empty

$ K : σ ù Σ

P-Alternative
$ P1 : σ ù Σ $ P2 : σ ù Σ

$ P1 | P2 : σ ù Σ

P-Con
$ d : @pαi : Typqi pτjq

j Ñ ζ pαiq
i

$ Pj : τjrαi Ð σis
i ù Σj @j, k,Σj # Σk

$ dpτiq
ipPjq

j : ζ pσiq
i ù pΣjq

j

Figure 10.5: Typing for patterns

also checks that each variable is defined only once (we write Σ1 # Σ2 if the
variables in Σ1 and Σ2 are distinct), and that alternatives define the same
variables with the same types.

We provide an encoding of patterns into eML. This is interesting, because it
allows us to add deep patterns to eML without changing the core of the language
and adding reasoning and reduction rules for these patterns. For each pattern
P , we define a non-expansive term Patpu, P q that is equal to None when the
pattern does not match, and Some ppviq

iq when it matches, where the vi are
the values matched by the pattern. This definition is given in Figure 10.6. For
matching on constructors, we use an operation Combinepuiqi on the result of
matching on each argument: it returns Some with a tuple of all the variables
of each result concatenated, or None if any of the matches fail. For example,
CombinepSome 1,Noneq is equal to None and CombinepSome 1,Some pTrue, 2qq
is equal to Some p1,True, 2q. Its definition is also given in Figure 10.6.

The expression Patpu, P q is well-typed:

Lemma 10.2 (The match term is well-typed). Suppose Γ $ u : σ and $ P :
σ ù pxi : τiq

i. Then, Γ $ Patpu, P q : option pτiq
i.

Proof. By induction on the derivation of the pattern typing, using as a lemma
the fact that if pΓ $ ui : option pτijq

jqi, then Γ $ Combinepuiqi : option
pτijq

ij .

From a non-expansive term u, a set of patterns pPiqi, associated expressions
(terms, types, or non-expansive terms) pXiq

i and a default value Y , we define in
Figure 10.6 the pattern matching with default value Matchpu, pPi Ñ Xiq

i, Y q:
it returns the Xi of the first clause that matches a pattern, or Y if nothing
matches.

We say that a set of patterns pPiq1ďiďn is complete for σ in an environment
Γ if one pattern in Γ always matches, i.e. if we have:

Γ, x : σ $ True : bool »Matchpx, pPi Ñ Trueqi,Falseq : bool

10.2. DEEP PATTERN MATCHING IN EML 185

Patpu, xq “ Some u
Patpu,_q “ Some pq
Patpu,Kq “ None
Patpu, P | Qq “ match Patpu, P q with

Some xÑ Some x
None Ñ Patpu,Qq

Patpu, dipτjqjpPkqkq “ match u with
dipτjq

jpxkq
k Ñ CombinepPatpxk, Pkqqk

pd`pτjq
jpxk`q

k Ñ Noneq`‰i

Combinepuiqi “ Combine’ppuiqi;Hq

Combine’pH; pxjq
jq “ Some pxjq

j

Combine’ppu0, puiq
i‰0q; pxjq

jq “

match u0 with
None Ñ None
Some y Ñ match y with
pykq

k Ñ Combine’ppuiqi‰0; ppxjq
j , pykq

kqq

Matchpu, pPi Ñ Xiq
iPt1,...,nu, Y q “ match Patpu, P1q with

Some px1jq
j Ñ X1

None Ñ
...

match Patpu,Xnq with
Some pxnjq

j Ñ bn
None Ñ Y

Figure 10.6: The matching function

186 CHAPTER 10. ENCODING ORNAMENTS IN MML

We say that two patterns P and Q matching σ are non-overlapping in Γ if

Γ, x : σ $ True : bool » match Patpx, P q with
| None Ñ True
| Some xÑ match Patpx,Qq with
| None Ñ True
| Some y Ñ False

: bool

A set of patterns is non-overlapping (in Γ) if the patterns are pairwise non-
overlapping.

From this, we can define the deep pattern matching:

Definition 10.1 (Deep pattern matching). We define:

match a with pPi Ñ biq
i “ let x “ a in

Matchpx, pPi Ñ biq
i,Unitq

where the pxijqj are the variables matched by Pi.
Similarly, for types, we define:

match u with pPi Ñ τiq
i “Matchpu, pPi Ñ τiq

i, unitq

♦

Deep pattern matching verifies the following (derived) typing rule:

Match-Deep
Γ $ u : σ pPiq

i complete for Γ $ σ p$ Pi : σ ù pxik : τikq
ikqi

ˆ

Γ, ppPatpu, Pjq » Noneq : option pτjkq
kqjăi,

pxik : τikq
ik, pPatpu, Piq » Some pxikq

kq : option pτikq
k $ ai : τ

˙i

Γ $ match u with pPi Ñ aiq
i : τ

Proof. This follows from applying the (syntax directed) pattern matching rule.
The last (absurd) branch of the pattern matching is unreachable: it can only
be reached if all matches return None, but then by the completeness condition,
we obtain True equal to False.

10.3 Defining datatype ornaments
In general, an ornament definition is a mutually recursive group of definitions,
each of the form:

type ornament χ pαjq
jPJ : ζ pτkq

kPK ñ σ` with pPi ñ Qi when pxi` : ωi`q
`PLiqiPI

This defines a datatype ornament χ, parametrized by a set of types pαjqjPJ .
The base type is a datatype σ´ “ ζ pτkq

kPK and the ornamented type is σ`.
The ornamented type is most often a datatype but it needs not be. For example,
we can define an ornament unwrapα : option αñ α that maps Some x to x:

type ornament unwrapα : option αñ α with Some xñ x when x : α

The ornament is defined by a series of clauses Pi ñ Qi indexed by a set I and
mapping values of the base type to values of the ornamented type. The variables

10.3. DEFINING DATATYPE ORNAMENTS 187

Valuesγpx : τq “ tγpxqu
Valuesγp_ : τq “ tv | $ v : τu
ValuesγpK : τq “ H

ValuesγpP | Q : τq “ ValuesγpP : τq Y ValuesγpQ : τq
Valuesγpd τk pPiq

i : ζ pτkq
kq “

"

dpτkq
kpviq

i

ˇ

ˇ

ˇ

ˇ

pd : @pαkq
k pσiq

i Ñ ζ pαkq
kq

^@i, vi P ValuesγpPi : σirαk Ð τks
kq

*

Figure 10.7: Values matched by a pattern

present in the patterns are exactly the pxi`q`PLi . On the left-hand side, their
types are the left-projections of the ωi`, while on the right-hand side their types
are the right-projections. The ornamentation process ensures that the value of
this variable on the left and right-hand side are related at the ornament ωi`.

The patterns Pi should be both expressions and patterns, i.e. they can only
match variables or constructors. This ensures that from a Pi and the values of
the variables we can recover the unique value that may have been matched. The
typing condition, for each Pi, is: $ Pi : ζ pτkq

k ù pxi` : pωi`q
´q`. We require

for convenience that the pPiqi do not overlap. We also require that they form
a complete pattern matching: for ornament definitions, an incomplete pattern
matching can be made complete by adding some clauses mapping the unmatched
values to K (our surface language accepts specifying a clause _ñ K to request
the generation of all such patterns).

The patterns pQiqi on the right-hand side can be any patterns matching on
the ornamented type. They must obey the typing condition $ Qi : σ` ù pxi` :
pωi`q

`q`PLi . Moreover, we require that they are complete and do not overlap:
this allows any term of the ornamented type to be non-ambiguously projected
to the base type (as long as we can project the subcomponents).

We give meaning to these definitions by adding them to the logical relation.
The interpretation of a datatype ornament is the union of the relations defined
by each clause of the ornament. For each clause, the left and right hand-side
values of the variables must be related at ornament type given by the user. Since
the pattern on the left is also an expression, the value on the left is uniquely
defined once values have been chosen for the variables. The pattern on the right
can still represent a set of different values (none, one, or many, depending on
whether the empty pattern, an or-pattern or a wildcard is used). We define a
function ValuesγpP : τq that returns the set of values of types τ matching P
where the values of the free variables in P are taken from γ. Its definition is
given in Figure 10.7.

Then, the interpretation is:

T rχ pωjqjsγ “ pσ´rαj Ð τj´s
j , σ`rαj Ð τj`s

jq where @j, T rωjsγ “ pτj´, τj`q

Vprχ pωjqjsγ “

$

&

%

pPirxi` Ð v`´s
`, v`q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i P I
@` P Li, pv`´, v``q P Vprωi`rαj Ð ωjs

jsγ

v` P Valuespxi`Ðv``q`pQiq

,

.

-

It is in fact quite similar to the interpretation of datatypes: the recursive condi-
tions are the same, but instead of merely applying a constructor, we build the
left and right-hand side values using the patterns of the ornament definition.

188 CHAPTER 10. ENCODING ORNAMENTS IN MML

For example, on natlist , we get the following definition (omitting the typing
conditions):

Vkrnatlist τ sγ “ tpZ,Nilqu Y t pSpv´q, Consp_, v`q | pv´, v`q P Vkrnatlist τ sγu

As expected, we have, e.g. pS pS Zq,Cons pv1,Cons pv2,Nilqqq P Vkrnatlist
bools for any boolean values v1 and v2.

10.4 Shallow ornaments
This definition of ornamentation is convenient for the surface language, but it
unfortunately does not exactly match the encoding. In this section, we’ll give
a slightly lower-level definition of datatype ornaments that allows us to bridge
the gap between the original user-facing definition and the lower-level workings
of lifting.

The issue appears when defining ornaments with deep pattern matching on
the left-hand side. Suppose we have a type t with one constructor T: nat Ñ t.
We may define the following ornament broken:

type ornament broken : option t ñ list bool with
| Some pT xq ñ Cons p_, xq when x : natlist bool
| None ñ Nil

For example, it relates Some pT Zq to Cons pTrue,Nilq.
Unfortunately this breaks down when trying to write the construction func-

tion inj:

λ#px : ???q. λ#py : boolq.match x with Some pT pz : list boolqq Ñ Cons py, zq

This function does not type, as T can only contain a natural number, but at
this stage of lifting, we expect the value inside the Some pT rsq context to be
already lifted to list bool.

We can still write this ornament by instead proceeding in two steps: we
need to ensure that when we are lifting the Some constructor, the type inside
the constructor has already been lifted to a type t1 that can hold a list bool (thus
we take T1: list bool Ñ t1). We start by defining an ornament aux : t ñ t1 as
follows:

type ornament aux : t ñ t1 with
| T xñ T1 x when x : natlist bool

Then, we require that first the argument of Some is ornamented with aux, and
instead of simply forwarding it, we match on it to remove the T 0 constructor.
This is a form of shallow ornamentation, where each ornament only reads one
layer of constructor from the base term. This is easy to express as a construction
function, but the surface syntax does not allow for this. We thus offer an
extended syntax supporting this: when specifying an ornament of a datatype,
one requests a specific ornamentation for each parameter of each constructor,
then one matches on the transformed arguments of the constructors.

With this extended syntax, the broken ornament definition can be fixed as
follows:

type ornament fixed : option t ñ list bool
rSome aux | Nones with

| Some pT1 xq ñ Cons p_, xq
| None ñ Nil

10.4. SHALLOW ORNAMENTS 189

These definitions do not use when clauses: instead, we specify which orna-
ment must be used for which argument to each constructor. This is a restriction
compared with the previous definition, because it prevents ornaments such as
the following from being translated:

type ornament illegal : pair pbool, natq ñ either pnat, list boolq with
| Pair pFalse, xq ñ Left x when x : nat
| Pair pTrue, xq ñ Right x when x : natlist bool

This cannot be transformed into a valid shallow ornament because we would
need to specify two different ornament types for the second argument of Pair.
This is in fact a limitation of our encoding of ornaments: to decide how the
parameters should be ornamented, we can only look at one level of constructor.
Thus, we will reject such ornament definitions when converting to the lower-level
representation (§10.5).

Instead of using the aux ornament, we prefer to use a generic ornament that
allows to transform the type inside T into any type we want. The target type for
this can be the skeleton of t (we first introduced the skeleton when informally
discussing the ornamentation process in Section 3.1).

Consider a datatype ζ pαiqiPI defined by a family of constructors pdkqkPK
each taking arguments of types pτkjqjPJk :

`

dk : @pαi : TypqiPI pτkjq
jPJk Ñ ζ pαiq

iPI
˘kPK

We define the skeleton by abstracting out the concrete types from the construc-
tors and replacing them by type parameters: the skeleton of ζ, written ζ̂, is
parametrized by types pαkjqkPK,jPJk and has constructors:

`

d̂k : @pβ`j : Typq`PK,jPJ` pβkjq
jPJk Ñ ζ̂ pβ`jq

`PK,jPJ`
˘kPK

Let us write AζpτiqiPI for pτkjrαi Ð τis
iqkPK,jPJk , i.e. the function that expands

arguments of the datatype into arguments of its skeleton. The types ζ pτiqi and
ζ̂ pAζpτiqiq are in bijection by construction (the bijection is obtained by adding
hats on the constructors, or removing them when going the other way).

For example, the skeleton of t is the type t̂ α with a single constructor
T̂ : αÑ t̂ α, and there is a bijection between t and t̂ nat.

We would like to define, for each datatype ζ, an ornament rζ mapping its
values to values of its skeleton with the argument suitably ornamented. For t,
we would have, written as a shallow ornament:

type ornament rt α : t ñ t̂ α with
rT αs

| T xñ T̂ x

However, this does not quite work, because we cannot accept any ornament
for α, but only ornaments whose base type is nat. Thus, we need constrained
type parameters for ornament definitions: we write αC nat (or, in code, <:) to
abstract over ornaments whose base type is nat. Then our definition becomes:

type ornament rt pαC natq : t ñ t̂ α with
rT αs

| T xñ T̂ x

190 CHAPTER 10. ENCODING ORNAMENTS IN MML

For a datatype ζ pαiqi defined by a family of constructors pdkqkPK each taking
arguments of types pτkjqjPJk , the ornament rζ is defined as:

type ornament rζ pαiq
i pβkj C τkjqkPK,jPJk : ζ pαiq

i ñ ζ̂ pβkjq
kPK,jPJk with

rdkpτkjq
jPJk skPK

pdk pxkjq
jPJk ñxdk pxkjq

jPJkqkPK

Then, we can define the ornament fixed, mechanically, as follows:

type ornament fixed : option t ñ list bool with
rSome prt pnatlist boolqq | Nones

| Some pT̂ xq ñ Cons p_, xq
| None ñ Nil

Let us now define the constraints and the interpretation of shallow ornament
definitions. Suppose the type ζ has type arguments indexed by L and data
constructors indexed by M with arguments indexed by Nm. Consider a shallow
ornament definition:

type ornament χ pαjq
j pβk C τkqk : ζ pσ`q

`PL ñ σ` with
rdmpωmnq

nPNmsmPM

pPi ñ Qiq
iPI

We first state the conditions for the types appearing in the definition:

• The constraints on the base types are formed with well-defined types: for
all k, pαj : Typqj $ τk : Typ.

• For all ` P L, pαj : Typqj $ σ` : Typ. The βk are not in scope in the σ`
because their projections are already known.

• σ` is a well-defined type: pαj : Typqj , pαk : Typqk $ σ` : Typ.

• The types for each constructor argument are valid ornament types: for all
m PM and n P Nm, pαj : Typqj , pαk : Typqk $ ωmn.

• The left-projection of the types for each constructor argument matches
the original (base) type of the arguments:

ppω´mnqrβk Ð τks
kqmPM,nPNm “ Aζpσ`q`PL

Then, we require the following for the patterns pPiqi and pQiqi. We assume
that all patterns pPiqi start by a constructor of ζ. Let us define P̂ i the pattern
obtained by replacing the head constructor by its skeleton version in Pi. We
require:

• The patterns pP̂ iqi are both expressions and patterns, and are complete
and non-overlapping for ζ̂ pω`mnqmPM,nPNm , the type obtained by project-
ing all the arguments to the skeleton to their ornamented type.

• The patterns pQiqi on the right-hand side are complete and non-overlapping
for σ`, (but not necessarily expressions).

• For each i P I there exists Σi such that $ P̂ i : ζ̂ pω`mnq
mPM,nPNm ù Σi

and $ Qi : σ` ù Σi

10.5. FROM HIGH-LEVEL DEFINITION TO LOW-LEVEL DEFINITION191

The definition of rζ we provided satisfies these criteria.
For such a definition, we can define its interpretation in the logical relation.

For a clause i P I, we note Pi “ dipPinq
nPNi , binding variables pxipqpPPi . Two

values are related if:

• we can choose a clause i P I with head constructor di such that the left-
hand side is dipvn´qnPNi ;

• for each n P Ni we have a lifting vn` of vn´ at the ornament type ωin
specified in the skeleton;

• for all n P Ni, the left-hand side patterns Pin match the lifted values
vn`, binding the variables pxipqpPPi appearing in the pattern to values
pwipq

pPPi ;

• the right-hand side matches Qi given the values of the variables pwipqpPPi

More formally, the interpretation of the ornament is the following:

Vqrχ pωjqj pωkqksγ “
$

’

’

’

’

&

’

’

’

’

%

pdipvn´q
n, v`q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i P I
^ @n P Ni, pvn´, vn`q P Vqrωinrpαj Ð ωjq

j , pβk Ð ωkq
kssγ

^ Dpvpq
pPPi ,

p@n P Ni, vn` “ Pirxip Ð vps
pq

^v` P ValuespxipÐvpqpPPi pQiq

,

/

/

/

/

.

/

/

/

/

-

Our example becomes (after simplification):

Vqrrt ωsγ “

!

pT w´, T̂ v´q
ˇ

ˇ

ˇ
pw´, w`q P Vqrωsγ

)

Vqrfixedsγ “ tpNone,NilquY
$

&

%

pSome w´, v`q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pw´, w`q P Vqrrt pnatlist boolqsγ
^ w` “ T̂ w1

^ v` P ValuesxÐw1pCons p_, xqq

,

.

-

Inlining the first definition into the second we obtain:

Vqrfixedsγ “ tpNone,NilquY
"

pSome pT w´q, v`q

ˇ

ˇ

ˇ

ˇ

pw´, w`q P Vqrnatlist boolsγ
^ v` P ValuesxÐw`pCons p_, xqq

*

10.5 From high-level definition to low-level defi-
nition

We build the encoding of ornaments from shallow definitions but we allow the
user to specify ornaments using the higher-level deep ornamentation syntax. In
this section, we will describe the transformation from deep to shallow ornaments
and prove that a high-level definition and its low-level translation have the same
interpretation: this is enough to show that they are equivalent.

The transformation operates on every ornament definition independently,
and never generates constraints on the base type of ornament parameters. Con-
sider an ornament definition of the form:

type ornament χ pαjq
j : ζ pτkq

kPK ñ σ` with pPi ñ Qi when pxi` : ωi`q
`PI`qiPI

192 CHAPTER 10. ENCODING ORNAMENTS IN MML

Our goal is to find the ornament arguments that must be passed to the skeleton
and transform the left-hand side patterns into patterns that match already-
ornamented values.

We first require that every pattern in pPiqi starts with a constructor of ζ,
i.e. for all i P I, there exists di and pPinqnPNi such that Pi “ dipPinq

nPNi . This
can always be ensured by splitting the pattern: if the only pattern is xñ dpxq,
we can instead match on every constructor of ζ.

Then, we need to find ornament types pωmnqmPM,nPNm for the different ar-
guments of the skeleton. We suppose these types given, and we give a procedure
to check them. The implementation instead performs unification to build these
types. The idea is to transform Pi into a pattern P̂i

1
where all constructors

have been replaced by their skeleton, and check the ornament type at the same
type. We define a function SkelPatpP : ωqΣ, where Σ is pxi : ωiq

i and associates
variables in the pattern to ornaments, as follows:

SkelPatpx : ωqΣ “ x if px : ωq P Σ

SkelPatpdi τ pPkq
k : rω pωikq

ikqΣ “ d̂ippωikq
`qikpSkelPatpPk : ωikqΣq

k

This function satisfies the following properties:

Lemma 10.3. Suppose Q “ SkelPatpP : ωqΣ, with P a pattern matching a
subset pxiqi of Σ. Then:

• We have $ pωq` : Q ù pxi : pΣpxiqq
`qi.

• Suppose we have pvi´qi and pvi`qi, with pvi´, vi`q P VqrΣpxiqsγ . Then,
pP rxi Ð vi´s

i, Qrxi Ð vi`s
iq P Vqrωsγ .

• Consider v´ and pvi`qi such that pv´, Qrxi Ð vi`s
iq P Vqrωsγ . Then there

exists pvi´qi such that pvi´, vi`q P VqrΣpxiqsγ and v´ “ P rxi Ð vi´s
i.

Proof. By induction on the pattern.

• If the pattern is P “ x, then Q “ x and Σpxiq “ ω. Then we have
$ pωq` : x ù x : pΣpxiqq

`. The second and third item are immediate.

• If the pattern is a constructor, looking at the definition of rζ, the rela-
tion only matches constructors to matching constructors, and we use the
induction hypothesis on each argument.

We define P 1i “ d̂ipP
1
inq

nPNi with P 1in “ SkelPatpPin : ωinqpxil:ωilq`PLi . Then
we define the shallow ornament χ1 as follows:

type ornament χ1 pαjq
j : ζ pτkq

k ñ σ` with
rdmpωmnq

nPMnsmPM

pP 1i ñ Qiq
iPI

The first point of Lemma 10.3 ensures this is a well-formed shallow ornament.
We prove that they have the same interpretation:

Lemma 10.4 (The translation from deep to shallow preserves the relation).
Suppose the pωjqj are valid ornaments. Then, Vqrχ pωjqjsγ “ Vqrχ1 pωjqjsγ

10.6. ENCODING ORNAMENTS IN MML 193

Proof. Suppose pv´, v`q P Vqrχ pωjqjsγ . Suppose we match pattern i. Then,
by definition, there exists pv`´, v``q P Vqrωi`rαj Ð ωjs

jsγ such that v´ “

dipPimrxi` Ð v`´s
`qm, and v` P Valuespxi`Ðv``q`pQiq. Then, consider vm´ “

Pimrxi` Ð v`´s
` and vm` “ P 1imrxi` Ð v``s

`. We need to show that pvm´, vm`q P
Vqrωimrαj Ð ωjs

jsγ : this suffices to have pv´, v`q P Vqrχ1 pαjqjsγ . This is true
by Lemma 10.3

Conversely, suppose we have pv´, v`q P Vqrχ1 pαjqjsγ . Then, there exists i
such that v´ “ dipvm´q

m, for all m, pvm´, vm`q P Vqrωimrαj Ð ωjs
jsγ , and

there exists pvpqp such that vm` “ P 1imrxip Ð vps
p, and v` P ValuespxipÐvpq`pQiq.

Then, it suffices to show that pvm´, P 1imrxip Ð vps
pq P Vqrωimrαj Ð ωjs

jsγ im-
plies that there exists pvp´q

p such that vm´ “ Pimrxip Ð vp´s
p and for all p,

pvp´, vpq P Vqrωiprαj Ð ωjs
jsγ . This is also true by Lemma 10.3

10.6 Encoding ornaments in mML
We now describe the encoding of datatype ornaments in mML. Consider a valid
ornament definition:

type ornament χ pαjq
j pβk C τkqk : ζ pσ`q

` ñ σ` with
rdmpωmnq

nPMnsmPM

pPi ñ Qiq
iPI

All terms given in this section are actually parametric in the input types
pαjq

j and pβkqk.
We call τ̂` the type ζ̂ pω`mnqmPM,nPMn , i.e. the type of a subterm as it is

given to the construction function, after its components have been ornamented
according to the specification given in the ornament definition.

The ornament is encoded as a quadruple pσ, δ, proj, injq where σ : Typ is the
lifted type; δ is the extension, a type-level function describing the information
that needs to be added to create a value of the lifted type from a value of
τ̂` ; and proj and inj are the projection and injection functions introduced
in §3.1. More precisely, the projection function proj from the lifted type to
the skeleton has type Πpx : σq τ̂` and, conversely, the injection inj has type
Πpx : τ̂`q Πpy : δ # xq σ, where the argument y is the additional information
necessary to build a value of the lifted type. The type of y is given by the
extension type function δ of kind τ̂` Ñ Typ, which takes the skeleton and gives
the type of the missing information. This dependence allows us to add different
pieces of information for different shapes of the skeleton, e.g. in the case of
natlist α, we need no additional information when the skeleton is Ẑ, but a value
of type α when the skeleton starts with Ŝ. The encoding works incrementally:
all functions manipulate the type τ̂`, with all subterms already ornamented.

The projection projχ pωjqj from the lifted type to the skeleton is given by
reading the clauses of the ornament definition from right to left:

projχ pωjqj : σχ pωjqj Ñ τ̂`
4
“ λ#px : σχ pωjqj q.match x with pQi Ñ P̂ iq

i

The extension δχ pωjqj is determined by computing, for each clause Pi ñ Qi of
the ornament, the type of the information missing to reconstruct a value. There
are many isomorphic representations of this information. The representation we

194 CHAPTER 10. ENCODING ORNAMENTS IN MML

Missingpp_ : τqq “ τ
Missingpxq “ unit
MissingpP | Qq “ either pMissingpP q,MissingpQqq
MissingpKq “ void
MissingpdpP1, .. Pnqq “ MissingpP1q ˆ ..MissingpPnq

Figure 10.8: Missing part of a pattern

Patchpx, uq “ x
Patchp_, uq “ u
PatchpK, uq “ Unit
PatchpP | Q, uq “ match u with Left xÑ PatchpP, xq | Right xÑ PatchpQ, xq
PatchpdpPiqi, uq “ match u with pxiq

i Ñ dpPatchpPi, xiqqi

Figure 10.9: Patching a pattern

use is given by the function MissingpQiq mapping a pattern to a type, defined
in Figure 10.8. There is no missing information in the case of variables, since
they correspond to variables on the left-hand side. In the case of constructors,
we expect the missing information corresponding to each subpattern, given as
a tuple. For wildcards, we expect a value of the type matched by the wildcard.
The empty pattern matches nothing: we cannot add any information to get
a term matching the pattern, so the missing information has the void type.
Finally, for an alternative pattern, we require to choose between the two sides
of the alternative and give the corresponding information, representing this as
a sum type either pτ1, τ2q.

From the value of the variables and the missing parts, we can patch the
holes in the pattern and reconstruct the value that was matched: we define an
expression PatchpP, uq that does this in Figure 10.9. This expresion matches on
u to extract the information. In the case of K, we can return anything, because
u must be a value of type void, which means that this branch is unreachable.
The correctness of the combination of MissingpP q and PatchpP, uq is stated
by the following lemma:

Lemma 10.5. Suppose Γ $ σ : Typ and $ P : σ ù pxi : τiq
i. Then,

Γ $ MissingpP q : Typ: the missing type is a valid type. Moreover, if Γ $

u : MissingpP q, then we have Γ, pxi : τiq
i $ PatchpP, uq : σ: patching cre-

ates a well-typed non-expansive term of the correct type. Finally, patching then
matching gives back the same values for the variables:

Γ, pxi : τiq
i $ PatpP,PatchpP, uqq : option pτiq

i » Some pxiq
i : option pτiq

i

Proof. By induction on the pattern. At each step, split on the non-expansive
value u, apply the lemma recursively and then reduce the matches.

We could use any pair of functions that satisfies these properties: in our
implementation, we generate simpler type by avoiding empty types in sums,
units in products, flattening products, etc.

Then, the extension δχ pωjqj matches on the pP̂ iqi to determine which clause
of the ornament definition can handle the given skeleton, and returns the cor-

10.7. CORRECTNESS OF THE ENCODING 195

responding extension type:

δχ pωjqj : Πpx : σq τ̂`
4
“ λ#px : τ̂`q.match x with pP̂ i ÑMissingpQiqqi

The injection injχ pωjqj then examines the skeleton to determine which clause
of the ornament to apply, and calls the corresponding reconstruction code (writ-
ing just δ for δχ pωjqj):

injχ pωjqj : Πpx : τ̂`qΠpy : δ # xq T
4
“

λ#px : τ̂`q. λ
#py : δ # xq.match x with pP̂ i Ñ PatchpQi, yqqi

In the case of natlist , we recover the definitions given in §3.1.2, with a slightly
more complex (but isomorphic) encoding of the extra information:

σnatlist τ “ list τ

δnatlist τ “ λ#px : xnatplist τqq.match x with Ẑ Ñ unit | Ŝ xÑ τ ˆ unit

projnatlist τ “ λ#px : list τq.match x with Nil Ñ Ẑ | Cons py,_q Ñ Ŝ y
injnatlist τ “ λ#px : xnatplist τqq. λ#py : δnatlist τ # xq.

match y with Ẑ Ñ pmatch y with pq Ñ Nilq

| Ŝ x1 Ñ pmatch y with py1, pqq Ñ Cons py1, x1qq

We also need to be able to instantiate ornamentation points with the iden-
tity ornament, so we need to define the same functions for them: the identity
ornament corresponding to a datatype ζ defined as pdi : @pαj : Typqj pτikq

k Ñ

ζ pαjq
jqi is automatically generated and is described by the following code:

type ornament ζ pαjq
j : ζ pαjq

j Ñ ζ pαjq
j with

rpdi pτikq
kqis

pdipxkq
k Ñ dipxkq

kqi

The generated definition is then:

σ “ ζ pτjq
j

δ “ λ#px : ζ̂ pτikq
ikq.match x with pd̂ipxikq

k Ñ unitqi

proj “ λ#px : ζ pαjq
jq.match x with pdipxikq

k Ñ d̂ipxikq
kqi

inj “ λ#px : ζ̂ pτikq
ikq.match x with pd̂ipxikq

k Ñ dipxikq
kqi

10.7 Correctness of the encoding
In this section, we show that the terms defined in the previous section do corre-
spond to the ornament as interpreted by the logical relation. This will be used
to prove correctness of the lifting, i.e. that the base term and the ornamented
term are related at some ornament type.

The base term will be proved equal to the ornamented term instantiated
with the identity ornament. Thus, what we need to do here is to prove that
the identity ornament and an ornament that does something are related at the
ornament type.

Consider an ornament definition:

type ornament χ pαjq
j pβk C τkqk : ζ pσ`q

` ñ σ` with
rdmpωmnq

nPNmsmPM

pPi ñ Qiq
i

196 CHAPTER 10. ENCODING ORNAMENTS IN MML

The ornament is encoded in mML by pσ, δ, proj, injq. Consider the identity
ornament for ζ pσ`q`: it is encoded as pσid, δid, projid, injidq, with σid “ ζ pσ`q

`.
Consider the ornamented skeleton type τ̂ “ ζ̂pσ`q

`, and an environment γ P
Gkrpαj : Typqj , pβk : Typqjs. We define rδ “ λpv1, v2q. tpUnit, w2q | H $ w2 :
γ2pδq # v2u the relational version of δ: for any pair of base and ornamented
skeletons, it returns the relation that relates Unit, the extension type of the
identity ornament, to any value of the extension type of the ornament.

Definition 10.2 (Valid ornament). A valid ornament is an ornament that ver-
ifies the following properties:

• pγ1pζ pσ`q
`q, γ2pσqq “ T rγsτ

• rδ P VqrΠpx : τ̂q Typsγ

• pγ1pprojidq, γ2pprojqq P VqrΠpx : χ pαjq
j pβkq

kq τ̂ sγ .

• pγ1pinjidq, γ2pinjqq P VqrΠpx : τ̂qΠy : α # x χ pαjq
j pβkq

ksγ,αÐrδ

♦

These properties are simply relational versions of the typing rules for proj
and inj: they ensure that we can relate two instances of the same term, one
instantiated with the identity ornament and the other with the actual ornament.

Theorem 10.1. The construction given in this chapter produces a valid orna-
ment.

Proof. The first item is by definition.
For the second one, note that tpUnit, w2q | H $ w2 : γ2pδq # v2u is stable by

equality and does not vary with the index.
For the third and fourth point: we’ll examine only the third one, the fourth

one is similar. γ1pprojidq and γ2pprojq are values. Consider an index q and
pv1, v2q P Vqrχ pαjqjpβkqksγ . Then pv1, v2q matches some clause i of the orna-
ment whose head constructor is di, and there exists pvm´, xm`qm such that
pvm´, xm`q P Vqrωimsγ and v1 “ dipvm´q

m. Then, γ1pprojidq # v1 reduces to
d̂ipvm´q

m.
There also exists pvpqp such that v` P ValuespxipÐvpqppQiq. Then, γ2pprojq #

v` reduces to P̂ irxip Ð vps
p (this matches the i-th pattern, and the i-th pattern

is the only one that matches, because the patterns do not overlap). This rewrites
to d̂ipPimrxip Ð vps

pqm

Thus, we need to prove pd̂ipvm´qm, d̂ipPimrxip Ð vps
pqmq P Vqrζ̂pωimqimsγ ,

i.e. for all m, pvm´, Pimrxip Ð vps
pq P Vqrωimsγ . From the definition of the

relation for χ, we have Pimrxip Ð vps
p “ vm`, and we have pvm´, xm`q P

Vqrωimsγ .

Once processed, all well-formed ornament definitions are added to a global
ornament definition: we will write

$ χ α β C τ ÞÑ pδχ α β , injχ α β , projχ α β qC ω̂
1
i : σ1i ñ T

to indicate that a definition of ornament χ has been processed with the given
parameters, base type, and skeleton. We also write δχ ωj , injχ ωj and projχ ωj
to stand for instantiated versions of the extension types, construction, and pro-
jection functions defining χ.

Chapter 11

Elaborating to the generic
term

We now consider the problem of ornamenting terms. The ornamentation is done
in two main steps: first the base term is elaborated to a generic term, which is
then specialized using user-specified ornaments to generate ML code.

11.1 Preparing an ML term for lifting

When quantifying over ornaments, one expects to receive some pieces of mML
code that need to be applied, patched and reduced to produce a valid ML term.
Thus, we cannot simplify code that is polymorphic in ornaments back to eML:
the lifted code cannot be polymorphic in ornaments.

Consider a polymorphic definition, for example head : @pα : Typq .list αÑ α.
We do not know the exact types of the ornaments we may use until the type
variable α has been instantiated. We could specify some ornaments depending
on the values of α: for example, we could apply the ornament listoption α : list
α ñ option α. However, this prevents us from applying some other interesting
ornaments, such as the ornament that transforms Cons pTrue, xq to ConsA pxq
and Cons pFalse, xq to ConsB pxq (in OCaml, applying such a transformation
saves memory, as the latter type only needs two words instead of three). Thus
our approach is to instantiate the type variables, then choose some appropri-
ate ornaments, then generalize to produce a lifted definition. Then, we have
produced a lifting compact_head of head bool, but not a general lifting of head.

At the point where head is used, we need to look at its type argument to
decide whether compact_head is an appropriate lifting. This treatment requires
some restrictions on when instantiation and generalization are performed. We
choose to restrict ML polymorphism to top-level bindings and to require all
uses of polymorphic values to immediately instantiate them fully. For local
polymorphic bindings, we know the set of instantiations of the term: we can
thus simply duplicate the term to create one instance per use with different type
arguments. This does not affect usability much, as polymorphic let bindings are
rarely used [Vytiniotis et al., 2010].

To encode the restriction to toplevel polymorphism, we need to make a
distinction between (generalizable) toplevel bindings and monomorphic local

197

198 CHAPTER 11. ELABORATING TO THE GENERIC TERM

Γ ::“ Environment
| G,α,Θ

G ::“ Global environment
| H Empty environment
| G, x α : τ “ a Global binding, with value

Θ ::“ Local environment
| H Empty environment
| Θ, x : τ Local binding

Figure 11.1: Environments for ML restricted to top-level polymorphism

Wf-G-Empty
$ H

Wf-G-Def
$ G G;α;H $ a : τ

$ G, x α : τ “ a

Figure 11.2: Well-formedness for global environments

bindings. The environment Γ can then be split into G, pαi : Typqi,Θ where G is
an environment of polymorphic variable bindings, α the list of type variables of
kind Typ parametrizing the current binding, and Θ a local environment binding
only monomorphic term variables. The syntax of these environments is given in
Figure 11.1. The definitions in G are of the form x β : τ “ a. Such a definition
means that x expects type parameters β and then is of (monomorphic) type τ
with value a. We store the value in the environment because it will be convenient
to prove that the lifting is correct. To save notation, we just write α instead of
α : Typ in typing contexts or polymorphic types, assuming that type variables
have the Typ kind by default. The well-formedness judgment for G, noted $ G,
is defined in Figure 11.2.

We give the typing rules for this restriction of ML in Figure 11.3. The typ-
ing judgment is now of the form G; α ; Θ $ a : τ (the input type is in ML,
and its typing features neither labels nor equalities). The modified rules are
in black, the rules that were only changed to pass a split environment are in
grey. Types are only checked in the environment α , since they can only con-
tain toplevel type variables. The rule Var-Local looks up a variable in the
monomorphic environment, and the rule Var-Global looks up a toplevel defi-
nition in the polymorphic environment. We removed rules for type abstraction
and application.

Generalization is handled through a separate judgment: we consider a pro-
gram as a sequence s of top-level definitions let x α “ a. Such a sequence is
checked by a judgment G $ sñ G1: after typing s in the top-level environment
G, the top-level environment is now G1. The rules of this judgment are given
in Figure 11.4. Then, the rule Top-Let quantifies over the type variables pαiqi
before typechecking the body a.

11.1. PREPARING AN ML TERM FOR LIFTING 199

Var-Local
px : τq P Θ

G;α; Θ $ x : τ

Var-Global
px pβjq

j : σq P G pα $ τj : Typqj

G;α; Θ $ x pτjq
j : σrβj Ð τjs

j

Let α $ τ : Typ
G;α; Θ $ a : τ G;α; Θ, x : τ $ b : σ

G;α; Θ $ let x “ a in b : σ

Fix
Γ $ τ1 : Typ Γ $ τ2 : Typ G;α; Θ, x : τ1 Ñ τ2, y : τ1 $ a : τ2

G;α; Θ $ fixx py : τ1q : τ2 . a : τ1 Ñ τ2

App
G;α; Θ $ b : τ1 G;α; Θ $ a : τ1 Ñ τ2

G;α; Θ $ a b : τ2

Con
$ d : @pαj : Typqj pτiq

i Ñ ζ pβjq
j

pα $ τj : Typqj pG;α; Θ $ ai : τirβj Ð τjs
jqi

G;α; Θ $ dpτjq
jpaiq

i : ζ pτjq
j

Match
α $ τ : Typ pdi : @pβk : Typqk pτijq

j Ñ ζ pβkq
kqi G;α; Θ $ a : ζ pτkq

k

pG;α; Θ, pxij : τijrβk Ð τks
kqj $ bi : τqi $ pdiq

i : ζ complete

G;α; Θ $ match a with pdipτkq
kpxijq

j Ñ biq
i : τ

Figure 11.3: Typing rules for ML restricted to top-level polymorphism

Top-Let
G; pαi : Typqi;H $ a : τ

G $ let x pαiq
i “ añ G, x pαiq

i : τ “ a

Top-Seq
G0 $ s1 ñ G1 G1 $ s2 ñ G2

G0 $ s1; s2 ñ G2

Top-Empty

G $ Hñ G

Figure 11.4: Processing of top-level definitions

200 CHAPTER 11. ELABORATING TO THE GENERIC TERM

11.2 Elaboration environments

The elaboration process is run in parallel with the typing process: each toplevel
definition is elaborated in the order it appears in the program, right after being
typechecked. As for typechecking, the information gathered when processing
previous definitions is used to elaborate the next definition.

For each toplevel definition “ let x “ Λα. a”, we elaborate a using the term
elaboration judgment of the form Γ $p a A : ω ñ ∆ (described in Fig-
ure 11.9), which implies both Γ´ $ML a : ω´Γ and Γ` $p A : ω`Γ ñ ∆
(Lemma 11.1). We use capital letters (A for terms, T for types) to denote
terms and types from the generic side.

Similarly to ML with restricted polymorphism, the elaboration environ-
ment Γ, described in Figure 11.5, is composed of multiple environmentsG,α, S,R,Θ,
As in the ML typing rules, G stores the global definitions with some information
derived from elaboration we will describe later. α is the list of type variables the
term was originally quantified over, and Θ contains the local bindings accumu-
lated when typing the term. It binds the variables appearing in a to ornament
types describing how the values of these variables are related in a and A. It
also contains bindings that are only available in the ornamented term: these are
equalities, noted pu » u1 : τq# to highlight the fact that they are not available in
a, as well as results ppuq˚p : τq# and path variables pπq#. Similarly, the output
∆ contains the list of results produced by the evaluation of the term, and is
only available on the ornamented side. S and R, explained below, contain the
ornaments and patches that are used by the generic term. Finally, ω describes
the ornament relation between a and A once all parts of the environment have
been instantiated.

A definition is typed (Elab-Decl in Figure 11.10) in the current G environ-
ment, quantified over its type variables α, in an initially empty local environment
Θ “ H, and with S and R chosen by the lifting procedure (we will describe how
they are chosen later). The result of the elaboration of a definition is then
folded into the global environment G as a sequence of declarations of the form
xxα, S,Ry : ω “ a A.

The environments S and R are new and used to describe abstract ornaments
and patches, respectively. The generic term A is usually more polymorphic than
a, since we abstract over ornaments where we originally had a fixed type. It
is thus parametrized by a number of ornaments, described by the ornament
specification environment S which is a set of mutually recursive bindings, each
of the form ϕ ÞÑ pδ, proj, injq C ζ̂ pωkqk : ζ pτiq

i ñ β. This binds an ornament
variable ϕ that can be instantiated by an ornament of base type ζ pτiqi with
skeleton ζ̂ pωkqk; it also binds the target type β and the ornament type extension,
projection, and injection functions to the variables δ, proj, and inj. The skeleton
is important here because it determines how the arguments of constructors must
be ornamented.

The ornament variables ϕ can then be used in ornament types ω. They
are considered distinct from the α because they represent datatype ornaments,
and because the environment S specifies what their base type is. Ornament
types ω with ornament variables are projected under a given environment S:
ϕ is replaced on the left with the base type given in S, and on the right with
the given type variable. The definitions of the left and right projections pωq´S
and pωq`S are given in Figure 11.7. An ornament type ω is well-formed in an

11.2. ELABORATION ENVIRONMENTS 201

Γ ::“ Elaboration environment
| G, α , S,R,Θ

G ::“ Global environment
| H Empty
| G, xxα, S,Ry : ω “ a A Global definition

Θ ::“ Local environment
| H Empty
| Θ, x : ω Variable
| Θ, pu » u : τq# Equality for the generic term
| Θ, ppuq˚p : τq# Result for the generic term
| Θ, pπq# Path variable for the generic term

s ::“ Ornament instantiation
| H Empty
| s, ϕÐ ϕ Ornament

S ::“ Ornament requests
| H Empty
| S, ϕ ÞÑ pδ, proj, injqC ζ̂ ω : ζ τ ñ α Ornament request

R ::“ Patch requests
| H Empty
| R, y :# ΠpΓq. rδϕ # us Patch
| R, pxxω, sy y : ωq Lifting

Figure 11.5: Environments

αεS “ α
pω1 Ñ ω2q

ε
S “ pω1q

ε
S Ñ pω2q

ε
S

pϕ ÞÑ _C_ : τ ñ αq P S

ϕ´S “ τ ϕ`S “ α

Figure 11.6: Projections for ornament types

pR, x :# T q`S “ R`S , x : T
pR, xx_,_y y : ωq`S “ R`S , y : ω`S

pΘ, x : ωqεS “ Θε
S , x : ωεS

pΘ, pu » u1 : τq#q´S “ Θ´S
pΘ, pu » u1 : τq#q`S “ Θ`S , pu » u1q : τ

pG,α, S,R,Θq´ “ G´, α,Θ´S
pG,α, S,R,Θq` “ α, S`, R`S ,Θ

`
S

pG, xxα , S,_y : ω “ _ _q´ “ G´, x : @α ω´S

S` “

β : Typ | pϕ ÞÑ _C_ : _ñ βq P S
(

,
$

&

%

δ : ω̂`S Ñ Typ,
proj : Πpx : βq ω̂`S ,
inj : Πpx : ω̂`S qΠpy : δ # xq β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϕ ÞÑ pδ, proj, injqC ω̂ : _ñ βq P S

,

.

-

Figure 11.7: Environment projections

202 CHAPTER 11. ELABORATING TO THE GENERIC TERM

G-Empty
$ H

G-Def
$ G G,α $ S G,α, S $ ω orn

pG,αq´ $ a : ω´S G,α, S $ R pG,α, S,Rq` $ A : ω`S
$ G, xxα, S,Ry : ω “ a A

Wf-S
@pϕ ÞÑ _C ζ̂ pωkqk : ζ pτjq

j ñ _q P S,
pα $ τj : Typqj ^ pG,α, S $ ωk ornqk ^ ppωkq´S q

k “ Aζpτjqj

G,α $ S

Wf-R-Empty
G,α, S $ H

Wf-R-Patch
G,α, S $ R

pϕ ÞÑ pδ, . . .qC ω̂ : _ñ _q P S pG,α, S,Rq`,Θ`S $ A : ω̂`S

G,α, S $ R, y :# ΠpΘ`S q. rδ # As

Wf-R-Inst
G,α, S $ R

pxxpβjq
j , S1, Ry : ωq P G pG,α, S $ ωj ornqj G,α, S $ s : S1rβj Ð ωjs

j

G,α, S $ R, pxxpωjq
j , sy y : ωrpβj Ð ωjq

j , ssq

Wf-inst
@pϕ ÞÑ _C ω̂ : τ ñ _q P S1, pspϕq ÞÑ _C spω̂q : τ ñ _q P S

G,α, S $ s : S1

Wf-Orn-Arrow
G,α, S $ ω1 orn G,α, S $ ω2 orn

G,α, S $ ω1 Ñ ω2 orn

Wf-Orn-TVar
α P α

G,α, S $ α orn

Wf-Orn-Var
ϕ P S

G,α, S $ ϕ orn

Wf-s
S1rss Ď Γ

Γ $ s : S1

Figure 11.8: Well-formedness for elaboration

11.2. ELABORATION ENVIRONMENTS 203

environment S with free type variables α, written G,α, S $ ω orn, if it contains
only function arrows, type variables from α, and ornament variables bound in S
(see rules Wf-Orn-Arrow, Wf-Orn-TVar, and Wf-Orn-Var, in Figure 11.5).
Note that these environments do not contain concrete ornaments or identity
ornaments: the generic term is made as generic as possible, and each concrete
ornament can be replaced with an ornament variable with the same base type
instead. The environment S is not ordered: each binding defines an ornament
variable ϕ and a type variable β that can be used in the skeleton of any other
ornament request. This is necessary to ornament recursive functions, and this is
why its projection pSq` (Figure 11.6) first projects all type variables representing
ornamented types before projecting the other parts of the environment.

A generic term also abstracts over patches and the liftings used to lift refer-
ences to previously elaborated bindings. Since these bindings do not influence
the final ornament type and are not mutually recursive, they are stored in a
separate patch environment R. Together, S and R specify all the parts that
have to be user-provided at specialization time (see Chapter 12).

The environment R contains lifting requests accumulated when processing
the term. During elaboration, it is built as an output to the judgment: when a
rule requires that something be in R, we simply add it to the output.

When the elaboration process encounters a variable x that corresponds to a
global definition (Rule E-VarGlobal in Figure 11.9), we look up the signature
of the elaboration of this definition pxxα, S1, R1y : ωq P G. We choose an instan-
tiation ω of the type parameters α by ornament types, an instantiation s1 of the
ornament variables in S1 with ornament variables of S (checked by the judg-
ment Γ $ s : S1rα Ð ωs, defined by Wf-s in Figure 11.8) , and request a value
y corresponding to an instantiation of the function with the chosen type and
ornament parameters (we do not ask for a specific instantiation of the patches
and liftings in R1 as they do not contribute to the lifting specification) We record
this instantiation R in the form pxxω , sy y : ωrαÐ ωi, ssq P Γ.

The environment R also contains patches, i.e. mML terms of the appropriate
type, written in R as y :# σ. Well-formedness rules (Wf-R-Patch) require that
the type σ corresponds to meta functions of multiple arguments returning a
value of type rδ # us, i.e. a thunk whose evaluation gives a result of type δ # u,
where δ is the extension function of some ornament in S.

The elaboration judgment Γ $p a A : ω ñ ∆ implies two typing judg-
ments, one for the base term a and one for the elaborated term A (this will be
stated and prove in Lemma 11.1). This requires being able to project the envi-
ronments for the base and ornamented terms from the elaboration environment:
these projections are defined in Figure 11.7.

The projection of an environment Γ of the form G, pαiq
i, S,R,Θ, noted pΓqε

is built from the projection of its components. On the base side, S and R
are ignored, since they correspond to abstraction added to create the generic
term. For the local environment, variable definitions x : ω are translated by
projecting ω. Since the projection of ornament types is parametrized by S, the
projection of Θ is too. The generic-only constructs (pu » u1 : τq#, ppuq˚p : τq#

and pπq#) are translated to themselves on the elaborated side, and ignored on
the base side.

Similarly, the patch environment R is only translated on the elaborated side.
A patch request y :# Amakes y : A available on the elaborated side. An instance
request xxω, sy y : ω makes y available on the elaborated side, with type the

204 CHAPTER 11. ELABORATING TO THE GENERIC TERM

projection of ω.
For the ornament environment, a type variable representing the destination

type, a type variable for the extension function, and two variables for the in-
jection and projection functions are put in scope for each ornament request.
To break up the arbitrary recursion in S, we build S` as the concatenation
of two environments: first we quantify over type variables representing the or-
namented types, then we quantify over the components of the ornament. The
type for the components of the ornament only depend on the type variables
previously defined.

Finally, the global environment of elaborated definitions G projects on the
left to a polymorphic environment G` and a substitution from global definitions
to their non-elaborated values.

The well-formedness rules for all these constructions are given on Figure 11.8.

11.3 Elaboration

The main elaboration judgment Γ $p a A : ω ñ ∆ is described in Fig-
ure 11.9. It follows the structure of the original term. We need to expand Γ
as G,α, S,R,Θ to describe the flow of information during elaboration: G, α,
and Θ are inputs, while S and R are outputs, and added to on demand (some
equality constraints may force two ornament variables in S to be unified). The
term a is an input while A and ω are outputs. Applications, abstractions, let-
bindings, and local variables are translated to themselves. We also add labels,
label variables, equalities, and compute the output results.

We have already explained the elaboration of global variables.
The key rules are pattern matching and construction of datatypes. For

E-Match, consider a pattern matching match a with pdipτjq
jpxikq

kPKi Ñ biq
iPI .

We first elaborate the term a that we are matching on to a term A. We expect
the ornament relation to be some ornament variable ϕ: it must be a datatype
ornament, and it cannot be a concrete ornament). We check the ornament
environment for ϕ: we find an ornament specification pϕ ÞÑ pδ, inj, projq C
ζ̂ pωikq

iPI,kPKi : ζ pτjq
j ñ _q P Γ. We check that the base type is the one

specified for the ornament. The type of the skeleton is ζ̂ pωikqiPI,kPKi , given
by the ornamentation specification. Then, in the elaborated term, we bind A
to a variable x and match on x of type ζ̂ ppωikq`Γ q

iPI,kPKi . We then elaborate
each branch independently at a common ornament type ω in an environment
that holds the equality between reusepAq and the pattern of the branch. The
ornamented versions are the pBiqi.

The rule for constructors E-Con works similarly: we lookup the returned
ornament type ϕ, obtain the ornaments to be used for each argument from
the skeleton, then elaborate each argument at this type (adding the results
computed from previous elaborated arguments). Finally, we request a patch e
that will have access to all local definitions as well as the results computed when
evaluating the elaborated version of the arguments. In the elaborated term we
first evaluate the elaborated versions pAjqj of each argument and bind them to
variables pxjqj , evaluate the result of applying the patch and bind it to y, then
call the construction function inj with these arguments.

11.3. ELABORATION 205

E-VarLocal
x : ω P Γ

Γ $p x x : ω ñH

E-VarGlobal
pxxα , S1, Ry : ωq P Γ Γ $ s : S1rα Ð ωs

pω q´S “ τ pxxω , sy y : ωrα Ð ω , ssq P Γ

Γ $p x τ y : ωrα Ð ω , ss ñ H

E-Let
Γ $p a A : ω0 ñ ∆a Γ,∆a, x : ω0 $

p b B : ω ñ ∆b

Γ $p let x “ a in b let x “ A in B : ω ñ ∆a,∆brxÐ reusepaqs

E-App
Γ $p a A : ω1 Ñ ω2 ñ ∆a Γ $p b B : ω1 ñ ∆b p ď q q K Γ,∆a,∆b

Γ $p a b A B : ω2 ñ ∆a,∆b, pTrueq˚q : pΓq`ω2

E-Fix
Γ, x : ω1 Ñ ω2, y : ω1 $

π a A : ω2 ñ ∆
τ1 Ñ τ2 “ pω1 Ñ ω2q

´
Γ T1 Ñ T2 “ pω1 Ñ ω2q

`
Γ

Γ $p fixx py : τ1q : τ2 . a fixπ x py : T1q : T2 . A : ω1Ñω2 ñH

E-Con
Γ “ _,_, S,_,Θ p ď q p K Θ, p∆jq

j

$ d : @pαiq
i pτjq

j Ñ ζ pαiq
i pϕ ÞÑ pδ, inj, projqC ζ̂ pωkq

k : ζ pσiq
i ñ _q P S

pΓ, p∆`q
`ăj $p aj Aj : ωj ñ ∆jq

j

pe :# ΠpΘ`S , p∆jq
jq rδ # d̂ppωkq

`
S q
kpreusepAjqq

jsq P Γ

Γ $pdpσiq
ipajq

j

 let pxj “ Ajq
j in let y “ pe # pωkq

`
S # p∆jq

jqq in inj # d̂ppωkq
`
S q
kpxjq

j # y : ϕ

ñp∆jq
j , pTrueq˚q : δ # d̂ppωkq

`
S q
kpreusepAjqq

j

E-Match
pϕ ÞÑ pδ, inj, projqC ζ̂ pωikq

iPI,kPKi : ζ pτjq
j ñ _q P Γ Γ $p a A : ϕñ ∆

¨

˝

Γ,∆, pxik : ωikq
kPIk ,

pproj # reusepAq » d̂ippω`kq
`
S q
`PI,kPK`pxikq

kPKi : ζ̂ ppω`kq
`
S q
`PI,kPK`q#

$p bi Bi : ω ñ ∆i

˛

‚

i

Γ $pmatch a with pdipτjq
jpxikq

kPKi Ñ biq
iPI

 let y “ A in match proj # y with pd̂ippωikq
`
S q
`PI,`PK`pxikq

kPKi Ñ Biq
iPI : ω

ñ∆, pmatch x with d̂ippω`kq
`
S q
`PI,kPK`pxikq

kPKi Ñ ∆iq
i

Figure 11.9: Elaboration to a generalized term

Elab-Decl
G,α, S,R $ε a A : ω ñ ∆

G $ let x “ Λα. añ G, pxxα, S,Ry : ω “ a Aq

Figure 11.10: Elaborating a declaration

206 CHAPTER 11. ELABORATING TO THE GENERIC TERM

11.4 Correctness of elaboration
As announced earlier, the elaboration judgments ensure well-typedness of the
projections and the definition elaboration judgment preserves the well-formedness
of G:

Lemma 11.1. If Γ $p a A : ω ñ ∆ holds then both Γ´ $ a : ω´Γ and
Γ` $p A : ω`Γ ñ ∆ hold.

Proof. By induction on the derivation.

Lemma 11.2. If $ G and G $ tñ G1 hold, then $ G1 holds.

Proof. Expand the definitions, apply G-Def and use Lemma 11.1.

In practice, the elaboration is obtained by inference. We first construct
an elaborated term where all ornamentation records are different, and type
it using the normal ML inference (this always succeeds because the term can
be instantiated with records defining identity ornaments). Then, according to
the constraints on elaboration environments, ornaments with the same lifted
type must be the same. This is in fact sufficient: we only have to merge the
ornaments whose lifted types are unified by ML inference. We thus obtain the
most general generic program. We describe our implementation of this process
in Section 13.1.

11.5 Identity instantiation
The correctness of the elaboration (Theorem 12.1) is based on the fact that,
when instantiated with the identity ornament, the elaborated term is equal (for
the mML equality) to the base term. Along with parametricity, this result is
sufficient to prove the correctness of the ornamentation.

Consider a generic term xxα, S,Ry : ω “ a A. We obtain the identity
instantiation by instantiating all ornaments with the identity ornament, all lift-
ing requests with the base definition, and all patches with a patch that always
return Unit.

Definition 11.1 (Identity instantiation). Suppose xxα, S,Ry : ω “ a A.
Then, the identity instantiation of A, noted IdInstS,R is defined as follows:

• For all pϕ ÞÑ pδ, proj, injq C ζ̂ pωiqi : ζ pτ`q
` ñ βq P S, we instantiate ϕ

with the identity ornament: we have IdInstS,Rpβq “ ζ pτ`q
`, IdInstS,Rpδq “

δζ pτ`q` , IdInstS,Rpprojq “ projζ pτ`q` , IdInstS,Rpinjq “ injζ pτ`q` .

• For all e :# Θ Ñ δ # A P R, we set IdInstS,Rpeq “ λ#Θ. rπ. Units.

• For all pxxω , sy y : ω1q P R, we use the base term: IdInstS,Rpyq “
x pω q´S .

♦

Then, we obtain a well-typed instantiation in the base environment:

Lemma 11.3. If $ G,α, S,R, then IdInstS,R exists and pG,αq´ $ IdInstS,R :
pS,Rq`.

11.5. IDENTITY INSTANTIATION 207

Proof. By induction on the well-formedness judgments of S and R. The identity
ornament is well-formed, thus the functions that define it have the correct types.
For any ornament in scope, the extension δ is λ_. unit. Thus, the patches are
well-typed. For the liftings, notice that each ornament is the identity ornament:
thus, we ask for a function of the same type as the original function.

Lemma 11.4 (Identity instantiation and types). Suppose ω is well formed in S.
Then for all R, we have:

pωq´S “ pωq
`
S rIdInstS,Rs

Proof. By induction over ω. If pϕ ÞÑ _C_ : τ ñ βq P S, the ornament variable
ϕ is replaced by τ on the left-hand side by left-projection. On the right-hand
side it is replaced by β by right-projection, then by τ again when substituting
with the identity instantiation.

We define a variant of equality that passes more easily to context: a label
on the left-hand side is always matched with the same label on the right-hand
side. This allows substituting them into the a context that may use the results
to obtain equal terms again.

Definition 11.2 (Exact equality). Consider two terms a and a1. Suppose
atomspaq is p˚pi Ð aiq

iPI with conditions ui and types τi, and atomspa1q is
p˚p1j Ð a1jq

jPJ with conditions u1j and types τ 1j.
Then suppose there exists a permutation σ mapping the indices in I to the

indices in J such that:

• Results with the same name are equivalent: for all i,

Γ, pppkq˚uk : τkq
kăi_σpkqăσpiq $ ui : bool » u1σpiq : bool

and

Γ, pppkq˚uk : τkq
kăi_σpkqăσpiq $ atomi : atomtyi » atom1σpiq : atomty1σpiq

• The results are executed in the same order: for all i,

Γ, pppkq˚uk : τkq
kăi_σpkqăσpiq $ countpukq

kăi : nat » countpu1kq
kăσpiq : nat

where countpuiq
i counts the number of expressions evaluating to True:

countpHq “ Z and countpu, puiq
iq “ match u with False Ñ countpuiq

i |

True Ñ S pcountpuiq
iq.

• The reusable versions of a and a1 are equal:

Γ, ppuiq˚pi : τiq
i $ reusepaq : τ » reusepa1q : τ

.

Then we say that they are exactly equal, and we write this equality
ExactlyEqualpΓ $p a : τ » a1 : τ 1q. ♦

Lemma 11.5. Exact equality is:

• reflexive: if Γ $p a : τ ñ ∆, then ExactlyEqualpΓ $p a : τ » a : τq;

208 CHAPTER 11. ELABORATING TO THE GENERIC TERM

• symmetric: if ExactlyEqualpΓ $p a1 : τ1 » a2 : τ2q, then ExactlyEqualpΓ $p

a2 : τ2 » a1 : τ1q;

• transitive: if ExactlyEqualpΓ $p a1 : τ1 » a2 : τ2q and ExactlyEqualpΓ $p

a2 : τ2 » a3 : τ3q, then ExactlyEqualpΓ $p a1 : τ1 » a3 : τ3q.

Proof. For reflexivity, use the identity permutation. Then everything matches
by reflexivity. For symmetry, invert the permutation and the equalities For
transitivity, compose the permutation and the equalities.

Lemma 11.6 (Exact equality is a congruence). Suppose ExactlyEqualpΓ $p a :
τ » a1 : τ 1q. Then, if Γ1 $p

1

Cras : σ ñ ∆1, we also have ExactlyEqualpΓ1 $p
1

Cras : σ » Cra1s : σq.

Proof. Looking at the decomposition: the reusable versions are equal, since non-
expansive equality is a congruence. Moreover, the terms match, by taking the
substitution that maps every label in C to itself in the same position, and the
substitution for a and a1 for the labels present in a and a1.

Lemma 11.7 (Exact equality implies term equality). Suppose ExactlyEqualpΓ $p

a : τ » a1 : τ 1q. Then TermsEqualpΓ $p a : τ » a1 : τ 1q.

Proof. The main difficulty is in matching the indexing: from the count matching
we can prove that the indexings also match (the count is intuitively the inverse
operation of indexing).

Theorem 11.1. Suppose G,α, S,R $p a A : ω ñ ∆.
Then, TermsEqualppGq´, α $p a : pωq´S » ArIdInstS,Rs : pωq´S q,

Proof. We first consider A1 the term obtained by reducing all patches to Unit in
ArIdInstS,Rs (this preserves equality because it is an mML reduction).

We then prove by induction on a a stronger result that allows for a non-empty
local binding environment Θ, and using exact equality to use congruence: if
G,α, S,R,Θ $p a A : ω ñ ∆, then ExactlyEqualppGq´, α, pΘq`S rIdInstS,Rs $

p

a : pωq´S » A1 : pωq´S q.
Let us examine the rules:

• For Var-Local, we conclude by reflexivity.

• For Var-Global: this is true by our choice of instantiation.

• Other rules except E-Match and E-Con: this is true by congruence.

• For E-Con: first, apply congruence to all subexpressions. We then have
to prove that dpτiqipajqj is equal to pA1jqj ; Unit; injζ pτiqi # d̂preusepA1jqq

j #
Unit. Both terms do the same computation in the same order, we only
have to prove that the reusable versions are equal. By hypothesis, for all
j, reusepajq and reusepA1jq are equal. Then the right-hand side reduces to
dpreusepA1jqq

j so we get the equality.

• For E-Match: proceed similarly by applying congruence to all expressions.
To prove the final equality of the reusable terms, split on reusepaq.

Chapter 12

Lifting by instantiation

Once the user has defined some ornaments and the base terms have been elab-
orated, the user specifies a set of liftings of the base definitions. We describe
here how these liftings are processed.

A lifting of x to y is declared as:

let y β “ lifting x pωjq
j with s, r

The lifting y is polymorphic over a set of type variables β. It is a lifting of
a toplevel definition x of type @pαjqj τ , with its type arguments instantiated
with pω´j q

j . The declaration of x has been generalized: there is a generalized
definition xxα, S,Ry : ω “ a A. To obtain the lifting, the user provides
an instantiation s of the ornaments of S and an instantiation r of R. These
instantiations are then used to instantiate the generic term and obtain the lifting.

In this chapter, we describe how such a definition is checked, what ornament
specification is derived for y, and we prove that the term we obtain indeed
verifies this ornament specification.

12.1 Specifying liftings
Consider an elaborated term xxα, S,Ry : ω “ a A from the global elaboration
environment G. To instantiate it, we need to choose first a set of types to instan-
tiate the α, then a sequence of ornaments for S and finally a sequence of patches
and liftings for R. If the sets of types, ornaments, patches, and liftings given
match the requirement, we obtain a lifting at some specification ω1 obtained by
specializing ω. We then register these liftings in a lifting environment.

The ornament instantiation s is a substitution from ornament variables to
concrete datatype ornaments. We need to check that it conforms to the or-
nament specification S. This is checked by the judgment β $ s : S given in
Figure 12.1: for every ornament request ϕi ÞÑ _ C ω̂i : σi ñ _ in S, we check
that there is a binding spϕiq “ χi pωijq

j pω1ikq
k in s such that χi is a valid

datatype ornament (checked in a global environment left implicit), that the
unconstrained arguments pωijqj are valid ornament types, and the constrained
arguments types pω1ikq

k have the right base types, and that the skeleton of
χi pωijq

j pω1ikq
k matches the skeleton given in the request, after substitution of

s in the request.

209

210 CHAPTER 12. LIFTING BY INSTANTIATION

Wf-OrnInst
pspϕiq “ χi pωijq

j pω1ikq
kqi p$ χi pαijq

j pβik C τikq
k ÞÑ _C ω̂1i : σ1i ñ _qi

pα $ ωijq
ij pα $ ω1ikq

ik ppω1ikq
´ “ τikrαij Ð pωijrssq

´sjqik

pω̂irss “ ω̂1irpαij Ð ωijq
j , pβik Ð ω1ikq

ksqi

α $ s : pϕi ÞÑ _C ω̂i : σi ñ _qi

psq`H “ H psq`S,ϕ ÞÑpδϕ,projϕ,injϕqC_:_ñβ “ psq
`
S ,

β Ð pspϕqq`,
δϕ Ð δspϕq,
injϕ Ð injspϕq,
projϕ Ð projspϕq

Figure 12.1: Ornament instantiation: checking and projection

I ::“ H | I,@α pxxω, sy y α : ω “ Aq

H` “ H pI,@α pxxpωiq
i, sy y α : ω “ Aqq` “ I`, y α : ω` “ A

LiftEnv-Empty
G $ H

LiftEnv-Cons
G $ I pxxpβjq

j , S,_y : ω1q P G
pα $ ωjq

j α $ s : S I`;α;H $ A : ω` ω “ ω1rpβj Ð ωjq
j , ss

G $ I,@α pxxpωjq
j , sy y α : ω “ Aq

Figure 12.2: Lifting environment

When β $ s : S holds, we may take the right-projection s`S of s defined in
Figure 12.1: it binds all the variables bound associated to the ornament ϕ on
the right-hand side to the value associated to the concrete ornament spϕq. For
example, if S binds a projection function projϕ for ornament ϕ, and S substitutes
ϕ with natlist bool, then s`S substitutes projϕ with projnatlistbool.

Lemma 12.1. Suppose β $ s : S. Then, β $ s`S : pSq`

Proof. This derives from the checking judgment and the types of the components
of valid ornaments (Definition 10.2).

From a valid s, we can deduce the specification of the lifting: it will be ωrss.
We store the result A of the instantiations (we will describe how to compute
it later) in a lifting environment I whose syntax is given in Figure 12.2. It is
composed of bindings of the form @αpxxω, sy y α : ω “ Aq indicating that the
base definition x instantiated with ω has been lifted with ornament instantiation
s to y with ornament specification ω. A lifting environment projects to the
ornamented side as a global definition environment, as defined in Figure 12.2:
each lifting is projected to its definition. We define a judgment G $ I that
checks that a lifting environment is valid, i.e. that all the liftings provided have
the right type and ornament specification.

12.1. SPECIFYING LIFTINGS 211

r ::“ Patch instantiation
| H Empty
| y Ð z ω Lifting
| eÐ u Patch

pHq` “ H pr, y Ð z ωq` “ prq`, y Ð z pωq` pr, eÐ uq` “ prq`, eÐ u

Wf-r-Empty
I;α $ r : H

Wf-r-Patch
I;α $ r : R I`, α $ rpeq : T rprq`s

I;α $ r : R, e :# T

Wf-r-Lifting
I;α $ r : R rpyq “ z pωiq

i p@pβiq
i xxpω1jq

j , s1y z pβiq
i : ω1 “ _q P I

pωj “ ω1jrβi Ð ωis
iqj s “ s1rβi Ð ωis

i ω “ ω1rβi Ð ωis
i

I;α $ r : R, pxxpωjq
j , sy y : ωq

Figure 12.3: Patch instantiation: grammar, projection and well-formedness

Lemma 12.2. Suppose G $ I. Then $ pIq`.

Proof. This is implied by the typing condition for well-formed lifting environ-
ments.

We now have to check the patch environment r, which is a substitution from
patch names e to patches u (i.e. fragments of mML code) and of names of
requested liftings y to names of actual liftings applied to ornament arguments
z pωiq

i, where z is a previously defined lifting in I. This is checked by a judgment
I;β $ r : R defined in Figure 12.3. For a patch request e :# T , the judgment
requires that rpeq is a non-expansive term u of type T (with the substitution
prq` applied, so that information learned from previous patches can be reused).
For a lifting request xxpωjqj , sy y : ω, we check that it maps to an instance
z pωiq

i of a lifting of x and that the instances of ornaments in the request and
in the lifting match. Before checking the types, we apply the substitution s to
R, so that we do not need the judgment to be parametrized by s.

We also define a projection prq` of r in Figure 12.3.

Lemma 12.3. Suppose α $ s : S, G $ I and I;α $ r : Rrs, psq`S s. Then,
I`, α $ prq` : pRq`S .

Proof. This is implied by the typing conditions for patches and liftings.

The processing of an instantiation is described by the rule Lifting given
in Figure 12.4. To process an instantiation, we first find in G the binding
pxxα , S,Ry : ω “ a Aq for the variable x. We then check the validity of s,
then r. Finally, we construct the instantiated term Arαj Ð pωjq

`, psq`S , prq
`s.

This is an mML term: we can meta-reduce it back to eML (Theorem 7.3) then
eliminate the eML constructs to obtain an ML term (Theorem 9.1). For a term
B, we note simplifypBq the result of applying these two operations. We then
insert the instantiated and simplified term in the lifting environment along with
its lifting specification.

212 CHAPTER 12. LIFTING BY INSTANTIATION

Lifting
pxxpαiq

i, S,Ry : ω “ a Aq P G

pβ $ ωiq
j β $ s : Srαi Ð ωis

i I;β $ r : Rrpαi Ð ωiq
i, s, psq`SrαiÐωisis

G; I $ let y β “ lifting x pωjq
j with s, r

ñ I, p@β xxpωjq
j , sy y β : ωrpαi Ð ωiq

i, ss
“ simplifypArpαi Ð pωiq

`qi, psq`RrpαiÐωiqis, r
`sqq

Figure 12.4: Lifting

We have the following result:

Lemma 12.4. Suppose $ G and G $ I and G; I $ tñ I 1. Then, G $ I 1.

Proof. By hypothesis on G, we have xxα, S,Ry : ω “ a A. By Lemma 12.1,
β $ s`S : pSq`. By Lemma 12.3, I`, α $ prq` : pRq`S . Thus,

I`, α $ Arpαi Ð pωiq
`qi, psq`RrαiÐωisi , r

`s : pωq`S rpαi Ð pωiq
`qi, psq`RrαiÐωisi , r

`s

The final type is pωrpαi Ð ωiq
i, ssq` because the patches and liftings do not

appear in the ornament type, and projection commutes with substitution. Then,
the term is ML-typed and can be simplified to an ML term by simplifyp_q.

These judgments check that the lifting is valid. In our prototype, they are
also used to generate constraints that are used to infer the ornaments and liftings
that have not been specified by the user. We give more details of this process
in Section 13.2.

12.2 Correctness of the lifting
We use the logical relation from Chapter 8 to prove that the lifted term is related
to the base term by ornamentation. We prove that any valid instantiation is
related to the identity instantiation, thus by parametricity of the generic term,
the identity instantiation and the user-specified instantiation are related at the
ornament specification.

Suppose given an elaboration environmentG generated as described in Chap-
ter 11. Every binding in G has its base term equal to its identity instantiation.

Definition 12.1. We say that a lifting environment I is correct relative to an
elaboration environment G if, for every lifting @αpxxω, sy y α : pωiq

i “ Aq P I
there is a matching binding xxpβiqi,_,_y : _ “ a _ P G, and for all indices
p and γ P Gprαs, we have pγ1parβi Ð pωiq

´siq, γ2pAqq P Vprωsγ . ♦

Then, we have the following correctness result for instantiation, stating that
liftings are indeed lifted at the advertised ornament type:

Theorem 12.1 (Instantiation is correct). Consider $ G, and suppose I is
correct relative to G. If G; I $ let y β “ lifting x pωjq

j with s, r ñ I 1, then I 1 is
also correct relative to G.

Proof. We use here the notations from Lifting in Figure 12.4.
Consider an index p and an environment γ P Gprαs. We prove the cor-

rectness of the ornamentation by constructing a relational instantiation γ1 P
Gprppβiqi, S,Rq`s. as follows:

12.2. CORRECTNESS OF THE LIFTING 213

• For all βi, γ1pβiq “ pVqrωisγqq.

• For all ornaments pϕ ÞÑ pδ, proj, injqC ζ̂ pωiqi : ζ pτ`q
` ñ βq P S P S, we set

γ11 and γ12 using the values and types in IdInstS,R and psq`S respectively,
and the relations as follows:

– γ1Rpβq “ pVqrrpϕqsγqq;

– γ1Rpδq “ pλpv1, v2q. tpUnit, w2q | $ w2 : γ12pδq # v2uq
q

• For all patches e, γ1peq “ pIdInstS,Rpeq, rpeqq.

• For all liftings y of x pωiqi, γ1pyq “ px ppωiq´S q
i, rpyqq.

This is a valid relational environment:

• Ornaments are related by Theorem 10.1.

• Patches are related: the type of a patch is always of the form ΠpΓq.rδ # us
for some term u. Consider u1 and u2 the two patches. Then, we apply
some arguments described by Γ and evaluate the thunk, and compare the
results in Eqrδ # usγ2 for some γ2. The left-hand side reduces to Unit.
Suppose the right-hand side reduces to a value v2. Then, the relation for
δ # u relates Unit to any value, thus the relation holds.

• Liftings are related by the condition on I.

We have by hypothesis on G: G,α, S,R $p a A : ω ñ ∆. Then, by
Lemma 11.1, α, S`, R`S $p A : ω`S ñ ∆. Then, by Theorem 8.1, we have
pγ11pAq, γ

1
2pAqq P Vprω`S sγ1

We have ω`S “ ωrϕ Ð βϕs where βϕ is the type variable associated to
ϕ in S. γ1R associates βϕ to Vrspϕqsγ . Moreover, γ1 associates the pαiqi to
the relation of the corresponding ωi interpreted in γ. Thus, by substitution,
Vprω`S sγ1 “ Vprωrpαi Ð ωiq

i, sssγ,γ1 “ Vprωrpαi Ð ωiq
i, sssγ (the last equality is

because the variables in γ1 do not appear in the type ωrpαi Ð ωiq
i, ss).

In the pair of related terms pγ11pAq, γ12pAqq, the left-hand term is equal to
ArIdInstS,Rsrαi Ð pωiq

´si. By Theorem 11.1 applied to the elaboration A of a,
we have pβiqi $ A : pωq´S » a : pωq´S . Then:

α $ γ11pAq : pωq´S rαi Ð pωiq
´si » arαi Ð pωiq

´si : pωq´S rαi Ð pωiq
´si

The right-hand side term γ12pAq is Arpαi Ð pωiq
`qi, psq`RrpαiÐωiqis, r

`s. By
Theorem 9.1:

β $ γ12pAq : pωrssq` » simplifypArpαi Ð pωiq
`qi, psq`RrpαiÐωiqis, r

`sq : pωrssq`

Finally, since the relation is stable by equality, and by composition with γ:

pγ1parαi Ð pωiq
´siq, γ2psimplifypArpαi Ð pωiq

`qi, psq`RrpαiÐωiqis, r
`sqqq

P Vprωrpαi Ð ωiq
i, sssγ

214 CHAPTER 12. LIFTING BY INSTANTIATION

In the case of strictly positive datatypes and first-order functions, this result
can be translated to the coherence property of ornaments [Dagand and McBride,
2014]. We can define a projection function that projects the whole datatype
at once (rather than incrementally as with the proj function), e.g. the length
function for natlist α. Then, the relation expressed by natlist α between a and
A is simply a “ length A (up to termination). Consider the statement that
append is a lifting of add at natlist α Ñ natlist α Ñ natlist α. Following the
definition of the relation, it is equivalent (again, up to termination) to the fact
that for all a1 and A1 related by natlist, and all a2 and A2 also related, the
terms add a1 a2 and append A1 A2 are related. Since a1 “ length A1 and
a2 “ length A2, this translates to the fact that for all A1, A2, length pappend A1

A2q “ add plength A1q plength A2q.
In order to prove that, when the patches terminate, the lifted term termi-

nates whenever the base term terminates, we need to use the relation the other
way around, with the base term on the right-hand side and the lifted type on the
left-hand side: for each ornament, we define a relation Vqrχ´1 pωiq

isγ using the
same definition with the sides reversed. Then, a patch is in the interpretation
of its type if it always terminates, and the final relation then guarantees that
the lifted term terminates more often than the base term. Since the base term
also terminates more often than the lifted term, they terminate on exactly the
same inputs.

Part IV

Implementing lifting

215

Chapter 13

Implementation

Our implementation works on a small subset of OCaml containing only the
constructs of core ML with datatypes, but without objects, GADTs, modules,
etc. (we explore possible extensions to the language in Section 15.4). It follows
the structure outlined in Chapter 3. In this chapter, we examine some interesting
parts of the implementation: how inference is used to perform generalization
(§13.1); how we process the lifting directives given by the user and infer the
missing parts (§13.2), and how we annotate terms to recover more readable
terms after eML simplification (§13.3).

13.1 Generalization by inference
The first step for lifting a term is to find a generalized term and the constraints
on its instantiations. The rules for generalization we presented in Chapter 11
are presented as checking rules: they assume given a set of datatype ornaments
and check that to each datatype constructor and pattern matching we assign
an ornament variable of the right specification. In practice, we do not want the
user to have to specify the generalization themself: instead, we should compute
the most generic term that can be obtained from the base declaration.

For instance, consider again the example of addition of natural numbers:

let rec add = fun m n Ñ match m with
| Z Ñ n
| S m’ Ñ S (add m’ n)

As we explained previously, it is possible to use two distinct ornaments of natural
numbers, one transforming the first input, and the other transforming the second
input and the output. Thus, the most generic lifting has the following signature,
using the notation established in Chapter 11:

addxpϕ ÞÑ _C xnat ϕ : nat ñ _q, pψ ÞÑ _C xnat ψ : nat ñ _q,_y : ϕÑ ψ Ñ ψ

Reusing ML inference

We implement this by building upon ML type inference [Milner, 1978] to also
extract information about ornaments. The intuition behind this process is that
when two variables have the same type, it can be because their types have ac-
tually been unified during inference, or simply because we constructed the same

217

218 CHAPTER 13. IMPLEMENTATION

type expression twice, but unrelatedly. We can observe both in the example of
add: while the branch Z Ñ n actually unifies the type of n and the return type,
the type of m and the return type are only accidentally the same: we match
on n with constructors of nat, thus m must have type nat, and we construct the
return value using the constructor S, which also requires the return type to be
nat.

This can be observed by adding a phantom type variable to the type nat:
the type ’a nat_with_tag is the same as nat, but the extra type variable ensures
that two unrelated instances of nat_with_tag are labeled by different variables:

type ’a nat_with_tag = Z_with_tag | S_with_tag of ’a nat
let rec add_with_tag = fun m n Ñ match m with

| Z_with_tag Ñ n
| S_with_tag m’ Ñ S_with_tag (add_with_tag m’ n)

val add_with_tag : ’a nat_with_tag Ñ ’b nat_with_tag Ñ ’b nat_with_tag

Here, we took the arbitrary choice of using the same tag for a natural num-
ber and its recursive argument. This is not necessary: indeed, we have seen
some examples of ornaments (e.g. expr_value in Section 2.3) where the recur-
sive structure of type does not match the original type. During ornamentation,
we use the skeleton to express the fact that arguments of constructors may
change types. We can similarly use the skeleton for ornament inference. This
requires extending the inference to support recursive types. In OCaml, this
can be enabled by passing the option ´rectypes [Leroy et al., 2020]. The type
(’s1 , ’tag) nat_skel_tag represents the skeleton of nat, where ’s1 is the type of
the argument of the constructor S, and ’tag the tag distinguishing separate orna-
mentations. We name the constructors Z_skel_tag and S_skel_tag in the code.
In mathematical notation, we will name the type |nat and its constructors qZ

and qS.

type (’s1, ’tag) nat_skel_tag = Z_skel_tag | S_skel_tag of ’s1
let rec add_st = fun m n Ñ match m with

| Z_skel_tag Ñ n
| S_skel_tag m’ Ñ S_skel_tag (add_st m’ n)

val add_st :
((’a, ’phi) nat_skel_tag as ’a) Ñ ((’b, ’psi) nat_skel_tag as ’b) Ñ ’b

The type signature at the bottom can be read in the following way: let ϕ be an
ornament with destination type α and skeleton xnat α, and ψ an ornament with
destination type β and skeleton xnat β. Then, we can give add the ornament type
ϕÑ ψ Ñ ψ.

Translating to ornamentation constraints

We want to prove that this reinterpretation of the ornamentation constraints
translates exactly the constraints in the generalization judgment.

Consider first the case of pattern matching match x with pdipτjq
jpyikq

kPKi Ñ

biq
iPI on a type ζ pτjqj (we assume for simplicity that we are matching on a

variable). Let us examine the corresponding elaboration rule, simplified to only

13.1. GENERALIZATION BY INFERENCE 219

handle matching on local variables:

E-Match
px : ϕq P Γ pϕ ÞÑ pδ, inj, projqC ζ̂ pωikq

iPI,kPKi : ζ pτjq
j ñ _q P Γ

¨

˝

Γ, pxik : ωikq
kPIk ,

px » d̂ippω`kq
`
S q
`PI,kPK`pyikq

kPKi : ζ̂ ppω`kq
`
S q
`PI,kPK`q#

$p bi Bi : ω ñ ∆i

˛

‚

i

Γ $pmatch x with pdipτjq
jpyikq

kPKi Ñ biq
iPI

 match x with pd̂ippωikq
`
S q
`PI,`PK`pyikq

kPKi Ñ Biq
iPI : ω

ñpmatch x with d̂ippω`kq
`
S q
`PI,kPK`pxikq

kPKi Ñ ∆iq
i

We suppose that the datatype ζ has constructors pdi : @pαjq
j pσikq

kPIk Ñ

ζ pαjq
jqiPI . Its skeleton with tags is the type qζ with parameters ppβikqiPI,kPKi , ϕq

and constructors pqdi : @ppβikq
iPI,kPKi , ϕq pβikq

kPIk Ñ qζ ppβikq
iPI,kPKi , ϕqqiPI . We

write qbi the terms obtained by applying the transformation to use the skeleton
with tags to the pbiqi. Then, for the whole term the transformation gives:

match x with pqdippqτ`kq
`PI,kPK` , ϕqpxikq

kPKi Ñ qbiq
i

where ϕ is the inferred ornament for x (it will always be a variable because
it cannot be unified with anything else than a variable). This expression only
generates a constraint that x has type qζ ppqτ`kq

`PI,kPK` , ϕq where ϕ is some or-
nament variable and the qτik are the types expected by the qbi, and a constraint
that all the qbi return the same type, which are exactly the constraints expressed
by E-Match.

Similarly, construction in the skeleton with tags expresses the constraints
required by the rule E-Con used for elaborating data constructors.

We also want to show that the term rewritten to use the skeleton with
tags always admits a typing: this is enough to show that elaboration is always
possible. Inference will then find the most generic term. We can first apply
an extension operation to a term: we replace all types by their skeleton and all
constructors by the corresponding constructor in the skeleton. For example, any
instance of nat becomes the cyclic type µα. xnat α (where the notation µα. F pαq
denotes the recursive type that is the fixed point of F). Similarly, any instance
of S a becomes Ŝ pµα. xnat αq a. This preserves the typing constraints, since
the transformation transforms datatypes in a uniform way, and all constructors
are transformed in a compatible way. We then switch to the skeleton with
tags by adding type variables to all skeleton types such that two types have
the same variable if and only if they have exactly the same parameters. This
transformation preserves all equalities between types, and preserves the property
that one ornament variable is always linked to exactly one skeleton. Thus, the
resulting term is well-typed.

Implementation

The implementation is not based on this transformation: instead, we directly
generate the constraints that would be generated with this transformation. We
use the Inferno library [Pottier, 2014a,b] to express the constraints in applicative
style and solve them.

220 CHAPTER 13. IMPLEMENTATION

To reconstruct the final constraints in S, we keep a mapping from ornament
variables ϕ, i.e. the variables used to tag skeleton types, to the corresponding
skeleton type. When interpreting the solution of the constraints as an ornament
type, we ignore the skeleton and only keep the ornament variable.

When generalizing a term, we obtain two kinds of free variables:

• We may get usual type variables α. These variables are copied in the
environment α containing the type variables in scope of the generalized
type.

• We may also quantify over ornament type variables ϕ. In this case, we look
up the corresponding skeleton in the mapping from ornament variables to
skeleton, and add it in S with the constraints that its skeleton be the one
found in the mapping.

We also need to handle liftings and patches. This is done by keeping a global
listR of patches that are required by the type. For each location needing a patch,
we take the expected type from the ornament specification, we collect the type
of local variables and add a patch taking the local variables as arguments and
returning something of the expected type to R. For each location where a
global definition is used, we need to choose the ornaments that will be used to
instantiate the ornaments in its environment S1: we create a fresh ornament
variable for each ornament in S1 and let them unify with the other ornament
variables in the term. Once inference is done, we recover their value and add
to the patch environment for the current term R a request for a lifting of the
global definition at the ornament specification determined during inference.

We thus obtain a generic term and an ornament specification that we add to
the global environment. We immediately add the identity instantiation of this
generic term as an already-done lifting and proceed to the next definition.

13.2 Strategies for instantiation

When describing the instantiation of a generic to obtain a lifting (Chapter 12),
we assumed that a value was given for all the required ornaments, liftings and
patches. In practice, we allow the user to give less information and try to
infer the missing information using various strategies. Our strategies consider
ornaments and liftings on the one hand, and patches on the other hand, in two
separate phases.

The instantiation of ornaments and lifting uses unification (again, based on
the type inference engine) to ensure that the provided ornaments and liftings
are compatible with the requirements of the generic term and with each other.
When lifting a definition of x, we first look up the generic term for x and encode
the constraints in the ornament requirements S and the liftings requirements of
R into type inference constraints. We then consider some information given by
the user:

• The user may specify an ornament specification for the term. This orna-
ment specification may be partial (i.e. contain wildcards _ to indicate
unconstrained parts). We unify this specification with the specification of
the generic term to infer the values of some variables.

13.2. STRATEGIES FOR INSTANTIATION 221

• The user may specify the ornaments to be used at some construction and
pattern matching locations. We add constraints specifying that the orna-
ment at these locations must be instantiated with the specified ornament.

• The user may specify some liftings to be used at some program points.
The choice of the lifting gives us additional constraints on the ornament
variables in the generic term.

Once these explicit indications are processed, we apply multiple strategies:

• The user may similarly specify a list of ornaments to be used: for each
program point where we still need a datatype ornament, we try each of the
specified ornaments in order. This is useful for a refactoring: the user may
specify that the ornament describing the refactoring is always to be used.
This is expressed with a declaration of the form: ornament ∗ Ð orn1, orn2,
orn3.

• The user may specify a list of liftings to be used in priority order, but not
attached to a particular location in the program. Each of these liftings
is a lifting of some term y: for each occurrence of y still to be lifted,
we try each of these liftings in order and commit to the first matching
lifting. This in turn may instantiate some ornament variables. This can
be written lifting ∗ Ð f1, f2 , f3.

The order of application of these strategies is important: one of them might
decide on an ornament and prevent the other from applying. For this reason,
these clauses are always applied in the order given by the user: they may choose
to prioritize one strategy over the other. We do not warn the user if one of these
strategies does not apply because some other strategy already instantiated the
term (this is in contrast with the hints applied to specific program locations,
where we interpret as requirements for the lifted term).

Finally, we propose two other optional mechanisms. The first one exploits
unique liftings: after learning of some ornaments, we may end up in a situation
where only one known lifting can be used in some location. In this case, the
user may elect to have the unique remaining lifting automatically used. This
avoids specifying some liftings, assuming that the user already defined all the
liftings they may want to use.

The other mechanism allows for auto-lifting : if no lifting is available for a
location (i.e. applying any existing lifting leads to a set of unsatisfiable con-
straints), the user may ask us to automatically generate a new lifting to fill the
spot. This is useful when no patches are needed, for example in the case of
refactorings: this way, a user can ask for a refactoring of one function and all
functions it depends on will have refactorings automatically generated.

We have much fewer possibilities for patches, because we are not treating
patches as typed: instead, we assume that they are well-typed and check the
types after reduction to eML and simplification to an ML term. We still perform
an approximation of type-directed patch inference: during simplification, if we
are matching on an unspecified patch with a pattern matching having a single
branch, we assume that the patch must start with this constructor.

Finally, when simplifying the term obtained after lifting and instantiation,
some program locations may disappear, for example if we simply remove a con-
structor and the associated branches: for this reason, we proceed with instanti-
ation even if some ornaments, liftings, or patches are missing. If simplification

222 CHAPTER 13. IMPLEMENTATION

eliminates the missing program locations, we accept the lifting. Otherwise, we
pretty-print the term with markers indicating where a lifting is missing, what
is the name of the location and what kind of object is expected to instantiate
this location. For example, the fully generalized version of add is printed as:

let rec add_gen m n = match (orn´match #4) m with
| Z_skel Ñ n
| S_skel m’ Ñ (orn´cons #1) (S_skel (add_gen m’ n)) #2

The user can deduce that #1 should be instantiated with an ornament of the
type nat (since it should transform S_skel the skeleton of S), that the same
should be true for #4, and that #2 should be a patch of the type required by
the ornament given for #1.

13.3 Refolding terms after the transformation
The transformation described in Chapter 9 to convert eML terms to ML is rather
heavy-handed: notably, it separates out possibly effectful computations and
removes other let bindings. Moreover, before generalizing the term, we had to
transform deep pattern matching into shallow pattern matching. The simplified
term might end up rather unreadable. For this reason, after simplifying, we
apply a resugaring transformation to generate a term closer to the original
term.

For re-sharing let declarations, we insert markers in the term, one at the
site of the original declaration and corresponding markers at every place where
the definition has been expanded. When resugaring the term, we look for the
markers of declarations: under the declaration, we look up all markers of uses
of this declaration. If there are no uses left, we do not attempt to restore
the definition. Otherwise, we check that the usages would still be well-scoped
at the declaration site, compare them for syntactic equality, and re-insert a
declaration for each family of equal expressions at use site. Along with the
declaration marker, we store the original name of the declaration, so that we
can restore it (management of names is detailed later in this section).

For pattern matching, we look at chains of pattern matching in the final
term and try, as much as possible, to gather them in one pattern matching.
We then compare branches: if some branches have the same code, we use an
alternative pattern to regroup them. We do not add back wildcard patterns to
match all remaining cases, even if they were present in the original term. We
also do not preserve the order of the patterns: this could be done by adding a
mark on the branches indicating which appeared first in the source term. For
example, consider the input term:

let rec eval e = match e with
| App (u, v) Ñ

begin match eval u with
| Some (Abs f) Ñ eval (f v)
| _ Ñ None

end
| _ Ñ Some(e)

If we ask for its identity lifting, we obtain the following output term. The order
of the branches has been lost and the wildcard pattern has been replaced by
a pattern listing all alternatives, but the branches that were merged are still
merged:

13.3. REFOLDING TERMS AFTER THE TRANSFORMATION 223

let rec eval_id e = match e with
| (Abs _ | Const _) Ñ Some e
| App(u, v) Ñ
begin match eval_id u with

| Some (Abs f) Ñ eval_id (f v)
| ((Some (App(_, _)) | Some (Const _)) | None) Ñ None

end

Finally, we insert a specific mark on let bindings introduced to lift effectful
computations. When we encounter such a binding, we try to insert the computa-
tion as close to its use-site in the term without reordering function applications.
For example, if f1 and f2 are two functions, consider the following term and its
identity lifting:

let h t = (f1 t, f2 t)
let h’ = lifting h with ornament ∗ Ð @id

Since constructor arguments are evaluated from right to left, during its elabo-
ration, it is transformed to:

let h’ t =
let x = f2 t in
let y = f1 t in
(x, y)

The resugaring transform will then fold the two function calls back into the
construction:

let h’ t = (f1 t, f2 t)

Suppose now that we apply an ornament that reverses the members of a tuple:

type ornament (’a, ’b) rev : (’a ∗ ’b) ñ (’b ∗ ’a) with
| (x,y) ñ (y,x)

let h’’ = lifting h with ornament ∗ Ð @id

We cannot refold both applications into the tuple construction, because they
would run in the reverse order. Instead, we obtain the following term: the
second applications could be folded into the construction, then the first one is
blocked because if it were lifted in its position it would execute before the second
one.

let h’’ t =
let x = f2 t in
(x, f1 t)

All these transformations operate on abstract names, represented by unique
integers. To generate readable code at the end, we store alongside these names
the name they had in the original program. This might be a set of names, as
some variables can end up identified during the transformation (for example if
we match twice on the same value). Names can come both from the base term
and from the pattern in the ornament definition. We then look at the names
that must be available in each scope to select a name formed by one of the
original names followed by a numeric prefix. If possible, we prefer shadowing
variables to using the same variable with a prefix.

Taken together, these transformations generate reasonable-looking codes on
our (admittedly simple) examples. To use ornamentation to transform code-
bases and continue working on the transformed codebase, we would have to also

224 CHAPTER 13. IMPLEMENTATION

be able to preserve comments. This is usually done by attaching them to nodes
of the abstract syntax tree. We do output pretty-printed term, but we expect
that the user would prefer running a code formatter configured with the recom-
mended style for their project as a post-processing phase before committing the
code to source control.

Chapter 14

Unfolding of definitions

The presentation of lifting given before has one major restriction: we cannot
change the recursive structure of a function. This is because recursive calls refer
to the function being defined as a local variable, so they can only refer to the
function being currently lifted.

14.1 Unfolding the recursive structure

This sometimes prevents us from writing interesting liftings of functions. For
example, consider the map function on lists:

type ’a list = Nil | Cons of ’a ∗ ’a list
let rec map f l = match l with

| Nil Ñ Nil
| Cons(x, xs) Ñ Cons(f x, map f xs)

We can define a type of chunked lists, where each constructor contains two
elements. We define the ornament using the low-level syntax for ornaments,
and use an auxiliary ornament to transform lists of odd length into an element
and a list of even length.

type ’a chunked_list = Nil2 | Cons2 of ’a ∗ ’a ∗ ’a chunked_list
type ornament ’a chunk_list : ’a list ñ ’a chunked_list with

| Nil ñ Nil2
| Cons(x1, (x2, xs) : ’a odd_list) ñ Cons2(x1, x2, xs)

and ’a odd_list : ’a list ñ ’a ∗ ’a chunked_list with
| Nil ñ „ (∗ empty lists are not odd ∗)
| Cons(x1, xs) ñ (x1, xs) when xs : ’a chunk_list

The syntax (x2, xs) : ’a odd_list is used to require this argument to be lifted
with the ornament ’a odd_list and then matching on the result of the lifting.
This ornament relates, e.g., the list Cons p1,Cons p2,Nilqq to Cons2 p1, 2,Nil2q.

Given such an ornament, we cannot lift the function map: we quickly realize
that the type of the recursive call must be the same as the type of map because
it is defined as a fixed point, while the ornament requires the recursive call to
be ornamented with odd_list.

Our solution is to optionally consider recursive calls as calling global vari-
ables: then, a recursive call can be ornamented by any lifting of the function, not

225

226 CHAPTER 14. UNFOLDING OF DEFINITIONS

necessarily the lifting we are currently defining. In the case of map, we simul-
taneously define two mutually recursive liftings of the single-recursive function
map:

(∗ Run with option ´´unfold ∗)
let chunk_map = lifting map : _ Ñ _ chunk_list Ñ _ chunk_list
and chunk_map_odd = lifting map : _ Ñ _ odd_list Ñ _ odd_list

We obtain the following result:

let rec chunk_map f l = match l with
| Nil2 Ñ Nil2
| Cons2(x, x2, xs) Ñ
begin match chunk_map_odd f (x2, xs) with

| (x2, xs) Ñ Cons2(f x, x2, xs)
end

and chunk_map_odd f l = match l with
| (x, xs) Ñ (f x, chunk_map f xs)

With autolifting, we do not even need to request a lifting for odd lists:

(∗ Run with ´´unfold ´´autolift ∗)
let chunk_map = lifting map : _ Ñ _ chunk_list Ñ _ chunk_list

We are not limiting the number of generated liftings. In some cases this process
could generate liftings recursively, never stopping.

14.2 Unfolding for specialization
We can use unfolding to specialize a program to a more restricted version of a
datatype. Continuing with our example of lists and the map functions, we might
want to ornament lists to e.g. three-element tuples representing coordinates:

type ’a vec3 = Vec3 of ’a ∗ ’a ∗ ’a
type ornament ’a list3 : ’a list ñ ’a vec3 with

| Nil ñ „

| Cons(x, (y, z) : ’a list2) ñ Vec3(x, y, z)
and ’a list2 : ’a list ñ ’a ∗ ’a with

| Nil ñ „

| Cons(y, z : ’a list1) ñ (y, z)
and ’a list1 : ’a list ñ ’a with

| Nil ñ „

| Cons(z, () : ’a list0) ñ z
and ’a list0 : ’a list ñ () with

| Nil ñ ()
| Cons(x, xs) ñ „

The last definition list0 is useful because we cannot simply ignore the tail of the
list, but we can ignore a value of type unit by matching it. With this definition,
we can ask for a lifting of map operating only on three-elements vectors. This
has two advantages: first, it is obvious from the type that this function takes a
three-element vector and returns a three-element vector. The second advantage
is that a three-element vector has a much more compact memory representation,
avoiding indirection, and the functions operating on them do not need pattern
matching. We can again require an automatic lifting:

(∗ Requires ´´unfold ´´autolift ∗)
let map_vec3 = lifting map : (’a Ñ ’b) Ñ ’a list3 Ñ ’b list3

14.3. GENERIC PROGRAMMING WITH UNFOLDING 227

We obtain the following result:
let rec map_vec3 f x = match x with

| Vec3(x, y, z) Ñ
begin match map_auto1 f (y, z) with

| (y, z) Ñ Vec3(f x, y, z)
end

and map_auto1 f x = match x with
| (x, xs) Ñ (f x, map_auto2 f xs)

and map_auto2 f x = match map_auto3 f () with
| () Ñ f x

and map_auto3 f x = match x with
| () Ñ ()

This definition is made harder to read by the many intermediate function calls
and pattern matchings. If our objective is to generate human-readable code, we
can inline some definitions as a post-processing phase. We provide an option
for this, that attempts to inline all functions left from unfolding (but leaves all
definitions that were explicitly specified by the programmer). We obtain the
following inline code:

let rec map_tuple f x = match x with
| Vec3(x, y, z) Ñ Vec3(f x, f y, f z)

14.3 Generic programming with unfolding
The fact that unfolding allows for more specialization could also be used for
generic programming. Suppose that we represent the structure of containers
with the following type, equipped with a map function:

type ’a gen = Pair of ’a gen ∗ ’a gen | Value of ’a | Unit
let rec gen_map f x = match x with

| Pair(u,v) Ñ Pair(gen_map f u, gen_map f v)
| Value x Ñ Value (f x)
| Unit Ñ Unit

We can express lists as an ornament of this type:
type ’a list = Nil | Cons of ’a ∗ ’a list

type ornament ’a gen_list : ’a gen ñ ’a list with
| Unit ñ Nil
| Pair(x, xs) ñ Cons(x, xs) when x : ’a gen_elem, xs : ’a gen_list
| Value x ñ „

and ’a gen_elem : ’a gen ñ ’a with
| Value x ñ x
| Unit ñ „

| Pair(x, y) ñ „

Then, we can ask for a lifting of the map function to operate on lists and recover
the map function on lists:

let map_list = lifting gen_map : (’a Ñ ’b) Ñ ’a gen_list Ñ ’b gen_list

let rec map_list f x = match x with
| Nil Ñ Nil
| Cons(u, v) Ñ Cons(gen_map_auto1 f u, map_list f v)

and gen_map_auto1 f x = f x

228 CHAPTER 14. UNFOLDING OF DEFINITIONS

If we ask for the generated definitions to be inlined, we obtain the following
code:

let rec map_list f x = match x with
| Nil Ñ Nil
| Cons(u, v) Ñ Cons(f u, map_list f v)

Similarly, we can express an ornament from the generic type to binary trees,
and obtain a map function by lifting:

type ’a tree = Leaf | Node of ’a ∗ ’a tree ∗ ’a tree

type ornament ’a gen_tree : ’a gen ñ ’a tree with
| Unit ñ Leaf
| Pair(v : ’a gen_value, (l, r) : ’a gen_treepair) ñ Node(v,l,r)
| Value x ñ „

and ’a gen_value : ’a gen ñ ’a with
| Value x ñ x
| Unit ñ „

| Pair(x,y) ñ „

and ’a gen_treepair : ’a gen ñ ’a tree ∗ ’a tree with
| Unit ñ „

| Pair(l : ’a gen_tree, r : ’a gen_tree) ñ (l, r)
| Value x ñ „

let map_tree = lifting gen_map : (’a Ñ ’b) Ñ ’a gen_tree Ñ ’b gen_tree

This produces the following code:

let rec map_tree f x = match x with
| Leaf Ñ Leaf
| Node(u, l, r) Ñ
begin match gen_map_auto2 f (l, r) with

| (l , r) Ñ Node(gen_map_auto3 f u, l, r)
end

and gen_map_auto2 f x = match x with
| (u, v) Ñ (map_tree f u, map_tree f v)

and gen_map_auto3 f x = f x

With unfolding, this simplifies to:

let rec map_tree f x = match x with
| Leaf Ñ Leaf
| Node(u, l, r) Ñ Node(map_tree f u, f l, f r)

We can write other operations on the generic representation and lift then to
trees and lists, for example a fold operation:

let rec gen_fold z f x = match x with
| Pair(u, v) Ñ f (gen_fold z f u) (gen_fold z f v)
| Value x Ñ x
| Unit Ñ z

let fold_list = lifting gen_fold : _ Ñ _ Ñ _ gen_list Ñ _

The following code is produced:

let rec fold_list z f x = match x with
| Nil Ñ z

14.3. GENERIC PROGRAMMING WITH UNFOLDING 229

| Cons(u, v) Ñ
f (gen_fold_auto z f u) (fold_list z f v)

and gen_fold_auto z f x = x

This can be simplified by inlining to:

let rec fold_list z f x = match x with
| Nil Ñ z
| Cons(u, v) Ñ f u (fold_list z f v)

Similarly, if we ask for a lifting to trees, we obtain the following code after
inlining:

let rec fold_tree z f x = match x with
| Leaf Ñ z
| Node(x, l, r) Ñ

f x (f (fold_tree z f l) (fold_tree z f r))

230 CHAPTER 14. UNFOLDING OF DEFINITIONS

Chapter 15

Extensions and future work

In this manuscript, we presented a theoretical framework for ornamentation,
and we illustrated its usefulness with a proof of concept implementation of
ornamentation. This presentation is purposefully restricted to focus on the core
ideas behind the transformation. The results obtained on this restricted field
are very encouraging and invite us to consider how this refactoring technique
could be scaled to a wider family of cases. The theoretical framework has been
explored in a core subset of ML, and on a restricted class of transformations:
there is some work remaining to adapt it to handle more language features. The
implementation we propose is only a proof of concept, with only the minimal
features needed to demonstrate ornamentation. It only operates on a restricted
subset of OCaml. Operating on this subset is already useful, but there is a lot
to do to scale ornamentation to larger examples using more language features.
Although they work remarkably well, our strategies to output readable code
are also an interesting area for further improvements. This remaining work is
extensive, and involve both interesting research topics and extensive design and
engineering work, but our results indicate that scaling up ornamentation should
be very rewarding. We detail some of these challenges in this chapter.

15.1 Handling effects

OCaml programs very often feature effects, in the form of non-termination, ex-
ceptions, references, and interaction with external systems. Our presentation
of ornamentation only handles non-termination. In practice, programmers will
want to ornament effectful programs, and thus require an ornamentation pro-
cedure that preserves a wider range of effects.

In fact, the ornamentation procedure has been carefully designed so as to
preserve effects, assuming only function calls can carry side effects. This can
be intuitively understood by the following reasoning: first, two instantiations
of a generic term perform the same side effects (when called with related argu-
ments) up to the side effects performed in patches: all functions are called in the
same order in the same branches and with related arguments. The side effects
performed by patches are interleaved between the side effects performed by the
base term. Then, the term is transformed both on the left and the right-hand
sides, preserving the full term equality. But full term equality also preserves

231

232 CHAPTER 15. EXTENSIONS AND FUTURE WORK

effects: it precisely keeps the order of function calls and their arguments stay
equal. Thus, effects should be preserved throughout the ornamentation process.

Our implementation does respect the ordering imposed by full term equality,
and thus does preserve the existence and the ordering of side-effects. We are
still missing a presentation of effects in mML and results asserting that they
are preserved by both the logical relation and the program transformations.
We would also like to explicitly handle control effects such as exceptions and
continuations.

15.2 Generalizing the ornamentation relations

We limited the relations we consider on datatypes to only adding and reorga-
nizing information. This is obviously not the only kind of transformation on
datatypes that a programmer might want to perform. Baudin and Rémy [2018]
extend ornaments to also allow for disornamentation, i.e. removing information
from a datatype. They build on the theory described in this manuscript to allow
writing relations such as rev_add_loc below, removing location information from
an abstract syntax tree, and lifting functions along these relations.

type relation rev_add_loc : (expr’ ∗ location) ñ expr with
| (Abs’ f, _) ñ Abs f when f : (rev_add_loc Ñ rev_add_loc)
| (App’ (u, v), _) ñ App (u, v) when u v : rev_add_loc
| (Const’ i, _) ñ Const i

This relation is not an ornament, since it removes information that cannot be
recovered: indeed, it is a disornament as its inverse transformation would be an
ornament. Their system actually generalizes ornamentation: it allows writing
both ornaments, disornaments, and compositions of ornaments and disorna-
ments in a uniform syntax.

Disornamentation can be used to remove data that is no longer useful, or to
provide a simplified view into a program manipulating different kinds of data
at once to focus on only understanding and editing one aspect of the program.
For example, the disornament above can be used to erase location information
in a compiler manipulating a toy language: the programmer would then be able
to see and edit code that does not manipulate the locations. After performing
the desired changes, the programmer may want to port their change back to the
original version of the compiler. One way to do this is to generate during the
disornamentation a set of patches explaining how to reornament the program to
manipulate locations again: these patches can then be applied when possible,
leaving the programmer with only a few locations to fill in after reornamentation.

The example of reornamentaion is very interesting in itself, since it may offer
a model to abstract away some irrelevant details when manipulating complex
programs. It also shows that our framework is not exclusively limited to orna-
mentation and can handle at least some other transformations: we can handle
disornamentation and mixed ornamentation solely by adding an argument to the
function defining projection of a type before pattern matching, and propagating
the corresponding requests for patches. Ornamentation and disornamentation
can be freely mixed, and all the theory we developed then immediately extends
to this case. Further exploration is needed to determine what other interesting
transformations could be encoded, or what obstacles exist to encoding them.

15.3. IMPROVING THE PATCHING LANGUAGE 233

15.3 Improving the patching language

The patching language we propose is very limited. We identify two main issues
with it. The first one is that patches are tied to program locations expressed
as integers. These locations are not at all robust to modifications of the source
term, even modifications that should not change the meaning of the patches.
To avoid this issue, Baudin and Rémy [2018] propose to match on the syntax
of the term to identify where patches should be inserted. For example, consider
the incomplete version of append obtained from the addition function on natural
numbers:

let rec append_incomplete m n = match m with
| Nil Ñ n
| Cons(_, m’) Ñ Cons(#3, append_incomplete m’ n)

There is a single hole #3, which may be selected with any of the following
patterns:

• #[...]

• Cons(#[...], _)

• match _ with | Cons(_, _) Ñ Cons(#[...], _)

The code pattern can be used to capture the variables used in the patch, instead
of relying on the names in the original term. Here, the hole should be filled with
the first argument of the constructor Cons that comes from the destruction of m.
Then, the patch could be expressed as follows, with the patch inserted inside
the square brackets appearing in the pattern:

patch match _ with | Cons(a, _) Ñ Cons(#[a], _)

The other issue is that most patches need to be written manually. It would
be interesting to explore some strategies to generate patches, for example by
exploiting typing information to deduce that only one value of the desired type
could be constructed in the context [Scherer and Rémy, 2015], or by exploiting
strategies such as copying the latest value of the appropriate type introduced in
the context. Such a strategy could be enough to propagate source locations in
an abstract syntax tree.

15.4 Scaling up the prototype

Our small prototype only works on small subset of OCaml and on small exam-
ples. Porting it to work on the full OCaml language would be a large amount of
work, and would come with significant challenges. Ornament inference is based
on type inference: the simplest way to implement ornament inference for OCaml
might be to base it on type inference. Most alterations to the type-checker
should be local to code handling data types and type constructors. Then, lift-
ing would be based on a suitably-annotated version of the typed abstract syntax
tree. Some language constructions would require special care:

234 CHAPTER 15. EXTENSIONS AND FUTURE WORK

Modularity Large programs tend to be split into different modules: some of
these modules might be created by the programmer, others might be part of
a library. In both cases, the lifting should be done following the structure of
the existing modules: one module can be lifted to its lifted version, producing
both the lifted code and a lifting interface similar to the module interface, but
describing the relation between two versions of the module. This lifting interface
could then be used as an input to the lifting process for modules depending on
the first one. One can imagine that library maintainers wanting to update the
interface of their library could provide such a file, allowing all clients of the
library to semi-automatically lift their programs to use the newest version of
the library.

The OCaml module system has rich abstraction constructs (such as func-
tors and first-class modules). These would need special care. Module used as
arguments of functors often provide an abstract datatype and operations on
this datatype: we can replace them with a module providing an ornament of
the original datatype and implementations of these operations related to the
implementations on the base type.

GADTs Programming with generalized algebraic datatypes (GADT) requires
writing multiple definitions of the same type holding different invariants. GADT
definitions that only add constraints could be considered ornaments of regular
types, which was one of the main motivations for introducing ornaments in the
first place [Dagand and McBride, 2014]. It would then be useful to automati-
cally derive, whenever possible, copies of the functions on the original type that
preserve the new invariants. Extending our results to the case of GADTs is cer-
tainly useful but still challenging future work. GADTs integrate both existential
types and type equalities: we would have to add both into eML and mML. On
the practical side, we would have to consider how a definition of an ornament
from a GADT might be expressed, and ensure that the procedure for simplifying
from eML terms to terms that type in ML is compatible with GADTs. It might
also be necessary to add type annotations inside the lifted term to make it type:
we would have to provide a mechanism to insert them.

Extensible variants, objects, polymorphic variants, and exceptions
OCaml provides some other datatype-like constructs, including objects, exten-
sible variants and polymorphic variants. It would be interesting to accept them
as both source and destination types for ornaments. For polymorphic and ex-
tensible variant, this could be expressed with a default case that transforms
all constructors that were not mentioned using the identity ornament. Excep-
tions are represented by a global extensible variant. Ornamenting the exception
type means, in essence, changing the global exception type used by some func-
tions: then, functions using this new exception type would be incompatible with
functions using the normal exception type. This is acceptable for full program
refactoring, but it might be possible to find a finer strategy (for example, terms
with different ornaments of the exception type become compatible again once
all ornamented exception constructors are captured).

Part V

Conclusion

235

Chapter 16

Related works

16.1 Ornaments

The notion of ornament has been introduced by McBride [2010] in context of
dependently-typed programming language. Here, ornaments are described in a
framework where a universe of datatypes [Chapman et al., 2010] is encoded in
the Agda programming language, allowing descriptions of indexed datatypes to
be manipulated as first-class objects. Building on this description, ornaments
can be described as patches over existing datatypes, adding fields and enrich-
ing their indexing. Because they respect the indexing structure of the base
datatypes, ornaments describe an algebra allowing for example to forget the
elements of a list to get a natural number. This ornamental algebra can be used
to index lists, building vectors as an algebraic ornaments of lists.

Working in a dependently-typed programming language and over a universe
of datatypes allows the flexibility to describe ornaments as first-class objects:
this allows the programmer to re-use the concept of ornaments, adapting it to
their specific use. On the other hand, the encoding induces a lot of syntactic
overhead and makes it impossible to work on programs that operate on the
native datatypes. We instead chose to have ornaments operate as a second-class
construct in a tool external to the language and to the compiler: this allows
ornamentation on practical programs within the constraints of ML. We lose the
ability to describe ornaments as diffs: instead, we define ornaments as relations
between two pre-existing types. We could recover this ability by adding a facility
to generate an ornamented type and a relation by describing what data should
be added on what constructors.

Finally, the presentation of ornaments in this article, and in subsequent
work, is very much rooted in the presentation of datatypes as fixed points of
functors: ornaments must respect the recursive structure of datatypes. In ML,
the recursive structure of a datatype is less obvious: for example, when consid-
ering two mutually recursive datatypes, the recursion steps could be inserted
only when coming back to the first type, or between each of the types. Using
the notion of skeleton and recursive types during ornament inference, we do not
have to decide on a recursive structure for each type; the way the type is to be
interpreted is instead implicitly described by the user when giving the recursive
structure of the ornamentation relation.

237

238 CHAPTER 16. RELATED WORKS

The idea of lifting functions across ornaments was introduced by Dagand
and McBride [2014], along with the coherence property explaining the meaning
of lifting. Again, this is done by defining a universe of functions, and a notion of
functional ornament following the original signature. A notion of patch is then
defined, using algebraic ornaments to have a convenient structure isomorphic to
a function along with its coherence proof. By writing a term of this type, the
programmer builds a correct by construction lifting. The authors then propose
following the structure of the base term to build the patch: a user can build a
patch reproducing the recursive structure of the base term, and then choose to
lift the constructors already present. They propose an interactive mechanism
to define such liftings. This idea formed the base of our exploration of semi-
automatic ornamentation in ML.

In this context, Ko and Gibbons [2016] explore the use of ornaments, still
using universes of datatypes, to define data structures (e.g. binomial trees)
as liftings of representations of binary numbers. They also define a notion
of ornamentation for higher-order functions by considering an ornamentation
relation between functions that is not based on projection.

Dagand [2017] presents a more general model of what ornamentation means:
datatypes are represented as many-sorted signature and ornaments as cartesian
morphisms on these signatures. This fits somewhat better the types available in
ML, although our treatment of ornaments allows ornamentation below function
arrows, even in negative position. From this categorical presentation, the au-
thor describes how a number of categorical concepts translate to operations on
ornaments. Notably, vertical composition creates an ornament from two orna-
ments applied in sequence, and a categorical pullback would combine the data
and constraints added by two ornaments and thus allow building types from
base types and multiple ornamentations. These forms of composition could be
integrated to our prototype implementation, and would be especially useful for
GADTs, where one would want to combine multiple invariants into a single type.

On the practical side, Ringer et al. [2019] propose Devoid, an implementa-
tion of ornamentation as a plugin for Coq to allow for proof reuse. The plugin
approach works directly on the Coq language and does not require an embed-
ding of datatypes to allow their manipulation. Their work is concerned only
with algebraic ornaments. They propose a way to automatically search for an
ornament between two types, limiting the search by requiring that the types
have the same constructors in the same order, with additional arguments ac-
counting for the indexing. These ornaments can then be used to lift Coq terms,
generating along the way a proof that the lifted terms and the base terms behave
in the same way up to indexing. An automatic search for ornaments would also
be interesting in ML, particularly for GADTs: when only adding constraints,
without adding or reorganizing data, constructors are simply replaced with the
matching constructor of the ornamented type. It would be good to ensure the
programmer does not have to explicitly write such definitions.

16.2 Refactoring

The notion of refactoring has mainly been considered in context of object-
oriented programming languages [Mens and Tourwe, 2004].

HaRe, the Haskell Refactorer [Li et al., 2005], is a refactoring tool for Haskell

16.2. REFACTORING 239

that automates a variety of operations (adding arguments, renaming, moving
definitions across modules, etc.). The tool also provides an API allowing the
programmer to define their own transformations. More recently, the Rotor
tool [Rowe et al., 2019] has been developed to automatically perform renaming
of top-level declarations in OCaml. Renaming a top-level declaration can induce
many other renamings: functors take module of a given signature, and renaming
an identifier in a module given as argument to a functor requires renaming the
same identifier in the signature, and in all modules used in the same position.
The transformation is based on a formal semantics of names in the module sys-
tem. Cross-module lifting in OCaml would be affected by similar issues (indeed,
lifting may already be used as a form of renaming), where we additionally would
have to take ornament types into account. This shows that handling ornamenta-
tion across modules requires some pretty involved work, although one might be
able to rely on the analysis underlying such a tool to propagate ornamentation
constraints.

Robert [2018] considers the problem of refactoring proofs in dependently-
types language, where the goal is to replace the original code by some code taking
into account a modification. His approaches takes as input the original program
and a partially-refactored program. From this partially-refactored program, a
diff is inferred, representing the modifications applied by the programmer. This
diff is then repaired by propagating changes from definitions to use-sites. The diff
language considered in this work handles renaming of constants and variables,
changing the number, order and type of function arguments, and changing the
definition of inductive types, including addition and removal of constructors and
arguments. The repair process can leave holes in the patches that should be
filled by the programmer. This repair process is extended to richer languages by
embedding them in the core language: the richer constructs are ignored during
the transformation in the hope that they do not interfere with the repair that
is in progress. This is unsafe, since there is no way to detect that an embedded
construct should have been repaired, but still helps in automating part of a
refactoring. The embedding from the surface language to the core language used
in the transformation loses some information. To preserve as much as possible
the surface syntax of the original term, the abstract syntax tree on which the
transformation is performed is decorated with extra information indicating the
original shape of the term. This information is attached to the abstract syntax
tree and preserved in a systematic way during patching (following the "Trees
that grow" technique, Najd and Peyton-Jones [2016]). This is similar to the
mark we add in terms, although we do not take such a principled approach to
attaching this information: we instead have a marking construct where the mark
is taken from an extensible type. Finally, to preserve the layout of the code,
the repaired code is pretty-printed by following simultaneously the original code
and the new code.

Pumpkin patch [Ringer et al., 2018] proposes a solution to the problem
of patching proof scripts instead of terms. The idea is to examine existing
adaptations to a change in a definition, and infer corresponding patches by
looking at the downstream modifications. The patches are found in a type-
directed way, by looking for term fragments that have the type of the desired
transformation. The user can then reuse these patches to fix subsequent proofs.

240 CHAPTER 16. RELATED WORKS

16.3 Porting operations to similar datatypes

Type Theory in Color [Bernardy and Moulin, 2013] is another way to under-
stand the link between a base type and a richer type. Some parts of a datatype
can be tainted with a color modality: this allows tracing which parts of the re-
sult depend on the tainted values and which are independent from them. Terms
operating on a colored type can then be erased to terms operating on the un-
colored version, which would correspond to the base term. This is internalized
in the type theory: in particular, equalities involving the erasure hold automat-
ically. This is the inverse direction from ornaments, and thus more related to
disornamentation (§15.2). Once the operations on the ornamented datatype are
defined, the base functions are automatically derived, as well as a coherence
property between the two implementations. Moreover, the range of transfor-
mations supported by type theory in color is more limited: it only allows field
erasure, but not, for example, to rearrange a product of sums as a sum of prod-
ucts. Interestingly, their definition supports a notion of composition as there
can be multiple colors than can be separately projected out.

Programming with GADTs may require defining one base structure and sev-
eral structures with some additional invariants, along with new functions for
each invariant. Ghostbuster [McDonell et al., 2016] proposes a gradual ap-
proach to porting functions to GADTs with richer invariants, by allowing as a
temporary measure to write a function against the base structure and dynam-
ically checking that it respects the invariant of the richer structure, until the
appropriately typed function is written. While the theory of ornaments sup-
ports adding invariants, we do not yet support GADTs. Moreover, we propose
ornaments as a way to generate new code to be integrated into the program,
rather than to quickly prototype on a new datatype.

Dagand et al. [2018] also consider the problem of interacting between code
written to operate on dependent types and code that operates on unrestricted
simple types. They propose a solution based on inserting dynamic checks at
appropriate boundaries. Notably, this allows the safe interaction of code ex-
tracted from a dependently-typed language and code that may generate invalid
values because it operates on less-restricted types. Their framework is based
on Galois connections between simple and dependent types, which offer a very
flexible notion of connection.

Najd and Peyton-Jones [2016] also observe that one often needs many vari-
ants of a given data structure (typically an abstract syntax tree), and corre-
sponding functions for each variant. They propose a programming idiom to
solve this problem: they create an extensible version of the type, and use type
families to determine from an extension name what information must be added
to each constructor. In this approach, the type of the additional information
only depends on the constructor, while our type-level pattern matching allows
depending on the information stored in the already-present fields. Their ap-
proach uses only existing features of GHC, avoiding a separate pre-processing
step and allowing one to write generic functions that operate on all decorations
of a tree. On the other hand, the programmer must pay the runtime and read-
ability cost of the encoding even when using only the undecorated tree. The
encoding of extensible trees scales naturally to GADTs. Interestingly, this idiom
and ornaments are largely orthogonal features with some common use case (fac-
toring operations working on several variants of the same datatype) and might

16.3. PORTING OPERATIONS TO SIMILAR DATATYPES 241

hopefully benefit from one another.
Views, first proposed by Wadler [1986] and later reformulated by Okasaki

[1998] have some resemblance with isomorphic ornaments. They allow several
interchangeable representations for the same data, using isomorphisms to switch
between views, but, again, the isomorphisms persist at runtime, which gives
views applications that are quite different from those of ornamentation.

242 CHAPTER 16. RELATED WORKS

Chapter 17

Conclusion

In this work, we propose the notion of ornamentation as an interesting kind
of refactoring, allowing for many useful examples that could free programmers
from tedious and error-prone hand-refactoring. We use ornament types as spec-
ifications for these refactorings. The ornament types are a binary counterpart
to usual types: they relate two different versions of a program, allowing us to
reason about program transformations.

To implement this transformation and prove its correctness, we define a
richer language mML and follow a process where from a base term we compute
a generic term that can be instantiated with any ornamentation. We then use
parametricity of mML to relate two instantiations of the generic term: one with
identity ornaments, giving back the base term, and one with the user-specified
ornaments. The instantiation with user-specified ornaments is then simplified
and printed to the user.

We demonstrate a prototype implementation based on this process: we use
it to illustrate how ornaments are useful on a variety of examples. One, maybe
surprising, result is that, even though the transformation does a lot of modifi-
cations on the term, we manage, with a bit of marking, to recover a term close
to the original term.

Many of the ideas exposed here can be reused for other transformations,
as illustrated by the example of disornamentation. To allow the writing of the
generic term, we construct a stack of languages over core ML: we add labels, then
equalities to form eML, and meta-abstractions to form mML. The equalities and
reasoning features of eML are closely related to the fact that, for ornamentation,
the types of the patches depend on the shape of the term we are constructing.
Other transformations might require adding some features in eML, or might not
require equalities at all (that would be the case if we were only interested in
pure refactorings that do not add or remove information). Labels are a very
convenient way to transport information about the result of evaluating some
language features that would be tricky to reason about (or that we are simply
not interested in), such as side-effects: this should be useful when building other
transformations. Similarly, the abstractions offered by mML are necessary as
soon as the abstractions needed for the generic term cannot be expressed in ML,
and they moreover ensure that traces of the encoding are eliminated from the
term.

The type-like specifications we use to express the relation between the orig-

243

244 CHAPTER 17. CONCLUSION

inal and the refactored terms can be extended to encode many other transfor-
mations, such as adding and removing arguments, or defunctionalization. The
idea of inferring a most general transformed term that then needs to be in-
stantiated allows incremental interaction with the transformation: a user can
see a partial result and deduce from there what next steps they should take to
obtain the desired result. On the other hand, it seems harder to scale this to
offer a wide range of transformations at once: the term would quickly become
too abstract and unintelligible. One may want instead to guide the generation
of the abstract, generic term based on the (partial) specification provided by
the user. The generic term plays another key role: by being an abstraction
over both the base term and the ornamented term, it allows us to only prove
that the basic building blocks of the ornamentation, i.e. the function describing
datatype ornaments, are related at the correct specification, and to deduce by
parametricity that the whole base term and ornamented terms are related. This
reasoning principle should generalize to many transformations.

Providing programmers with powerful transformations they can apply as
needed allows for faster development of higher-quality programs, and give them
the ability to easily experiment with restructuring their code. This manuscript
describes one possible transformation that is already useful by itself, but its
building blocks are also hopefully reusable to construct other refactoring tools.

Bibliography

Amal Ahmed. Step-indexed syntactic logical relations for recursive and quanti-
fied types. In European Symposium on Programming, pages 69–83. Springer,
2006.

Andrew W. Appel and David McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23
(5):657–683, September 2001. ISSN 0164-0925. doi: 10.1145/504709.504712.
URL https://doi.org/10.1145/504709.504712.

Lucas Baudin and Didier Rémy. Disornamentation. In ML 2018 - ML Family
Workshop, St. Louis, Missouri, United States, September 2018. URL https:
//hal.inria.fr/hal-02001629.

Jean-Philippe Bernardy and Guilhem Moulin. Type-theory in color. In In-
ternational Conference on Functional Programming, pages 61–72, 2013. doi:
10.1145/2500365.2500577.

Richard Bird and Lambert Meertens. Nested datatypes. In International Con-
ference on Mathematics of Program Construction, pages 52–67. Springer,
1998.

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris.
The gentle art of levitation. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’10, page 3–14,
New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605587943. doi: 10.1145/1863543.1863547. URL https://doi.org/10.
1145/1863543.1863547.

Pierre-Évariste Dagand. The essence of ornaments. Journal of Functional Pro-
gramming, 27:e9, 2017. doi: 10.1017/S0956796816000356.

Pierre-Évariste Dagand and Conor McBride. A categorical treatment of orna-
ments. In 28th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 530–539,
2013. doi: 10.1109/LICS.2013.60. URL http://dx.doi.org/10.1109/LICS.
2013.60.

Pierre-Évariste Dagand and Conor McBride. Transporting functions
across ornaments. J. Funct. Program., 24(2-3):316–383, 2014. doi:
10.1017/S0956796814000069. URL http://dx.doi.org/10.1017/
S0956796814000069.

245

https://doi.org/10.1145/504709.504712
https://hal.inria.fr/hal-02001629
https://hal.inria.fr/hal-02001629
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
http://dx.doi.org/10.1109/LICS.2013.60
http://dx.doi.org/10.1109/LICS.2013.60
http://dx.doi.org/10.1017/S0956796814000069
http://dx.doi.org/10.1017/S0956796814000069

246 BIBLIOGRAPHY

Pierre-Evariste Dagand, Nicolas Tabareau, and Éric Tanter. Foundations of
Dependent Interoperability. Journal of Functional Programming, 28, March
2018. doi: 10.1017/S0956796818000011. URL https://hal.inria.fr/
hal-01629909.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, New York, NY, USA, 1989. ISBN 0-521-37181-3.

Hsiang-Shang Ko. Analysis and synthesis of inductive families. Dphil disserta-
tion, University of Oxford, 2014.

Hsiang-Shang Ko and Jeremy Gibbons. Programming with ornaments. Journal
of Functional Programming, 27, 2016. doi: 10.1017/S0956796816000307.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The OCaml system release 4.11: Documentation and
user’s manual. Technical report, Inria, August 2020. URL https://caml.
inria.fr/pub/docs/manual-ocaml/.

Huiqing Li, Simon Thompson, and Claus Reinke. The haskell refactorer,
hare, and its api. Electronic Notes in Theoretical Computer Science, 141
(4):29 – 34, 2005. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.
2005.02.053. URL http://www.sciencedirect.com/science/article/
pii/S157106610505173X. Proceedings of the Fifth Workshop on Language
Descriptions, Tools, and Applications (LDTA 2005).

Luc Maranget. Compiling pattern matching to good decision trees. In Pro-
ceedings of the 2008 ACM SIGPLAN Workshop on ML, ML ’08, page 35–46,
New York, NY, USA, 2008. Association for Computing Machinery. ISBN
9781605580623. doi: 10.1145/1411304.1411311. URL https://doi.org/10.
1145/1411304.1411311.

Conor McBride. Ornamental algebras, algebraic ornaments. Journal of func-
tional programming, 47, 2010. URL https://personal.cis.strath.ac.uk/
conor.mcbride/pub/OAAO/LitOrn.pdf.

Trevor L. McDonell, Timothy A. K. Zakian, Matteo Cimini, and Ryan R.
Newton. Ghostbuster: A tool for simplifying and converting gadts. In
Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, pages 338–350, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951914. URL
http://doi.acm.org/10.1145/2951913.2951914.

T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004.

Robin Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3):348–375, 1978.

Shayan Najd and Simon Peyton-Jones. Trees that grow. JUCS,
2016. URL https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/11/trees-that-grow-2.pdf.

https://hal.inria.fr/hal-01629909
https://hal.inria.fr/hal-01629909
https://caml.inria.fr/pub/docs/manual-ocaml/
https://caml.inria.fr/pub/docs/manual-ocaml/
http://www.sciencedirect.com/science/article/pii/S157106610505173X
http://www.sciencedirect.com/science/article/pii/S157106610505173X
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/1411304.1411311
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
http://doi.acm.org/10.1145/2951913.2951914
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/trees-that-grow-2.pdf

BIBLIOGRAPHY 247

Chris Okasaki. Views for standard ml. In In SIGPLAN Workshop on ML, pages
14–23, 1998.

François Pottier. Hindley-Milner Elaboration in Applicative Style. In ICFP
2014: 19th ACM SIGPLAN International Conference on Functional Program-
ming, Goteborg, Sweden, September 2014a. ACM. doi: 10.1145/2628136.
2628145. URL https://hal.inria.fr/hal-01081233.

François Pottier. Inferno: a library for Hindley-Milner type inference and
elaboration, February 2014b. URL http://gallium.inria.fr/~fpottier/
inferno/inferno.tar.gz.

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Adapting
proof automation to adapt proofs. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 115–129,
2018.

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for
proof reuse in coq. In 10th International Conference on Interactive Theorem
Proving, 2019.

Valentin Robert. Front-end tooling for building and maintaining dependently-
typed functional programs. Phd dissertation, University of California San
Diego, 2018.

Reuben NS Rowe, Hugo Férée, Simon J Thompson, and Scott Owens. Charac-
terising renaming within ocaml’s module system: theory and implementation.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 950–965, 2019.

Gabriel Scherer and Didier Rémy. Which simple types have a unique inhabi-
tant? In Proceedings of the 20th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2015, Vancouver, BC, Canada, Septem-
ber 1-3, 2015, pages 243–255, 2015. doi: 10.1145/2784731.2784757. URL
http://gallium.inria.fr/~remy/focusing/.

Masako Takahashi. Parallel reductions in λ-calculus. Journal of Symbolic Com-
putation, 7(2):113 – 123, 1989. ISSN 0747-7171. doi: https://doi.org/10.1016/
S0747-7171(89)80045-8. URL http://www.sciencedirect.com/science/
article/pii/S0747717189800458.

Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. Let should not
be generalized. In Proceedings of the 5th ACM SIGPLAN Workshop on Types
in Language Design and Implementation, TLDI ’10, page 39–50, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781605588919.
doi: 10.1145/1708016.1708023. URL https://doi.org/10.1145/1708016.
1708023.

Philip Wadler. Views: A way for pattern matching to cohabit with data ab-
straction, 1986.

Ambre Williams, Pierre-Évariste Dagand, and Didier Rémy. Ornaments in prac-
tice. In Proceedings of the 10th ACM SIGPLAN workshop on Generic pro-
gramming, WGP 2014, Gothenburg, Sweden, August 31, 2014, pages 15–24,

https://hal.inria.fr/hal-01081233
http://gallium.inria.fr/~fpottier/inferno/inferno.tar.gz
http://gallium.inria.fr/~fpottier/inferno/inferno.tar.gz
http://gallium.inria.fr/~remy/focusing/
http://www.sciencedirect.com/science/article/pii/S0747717189800458
http://www.sciencedirect.com/science/article/pii/S0747717189800458
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/1708016.1708023

248 BIBLIOGRAPHY

2014. doi: 10.1145/2633628.2633631. URL http://doi.acm.org/10.1145/
2633628.2633631.

Andrew K Wright. Simple imperative polymorphism. Lisp and symbolic com-
putation, 8(4):343–355, 1995.

http://doi.acm.org/10.1145/2633628.2633631
http://doi.acm.org/10.1145/2633628.2633631

	Introduction
	I Ornaments in practice
	Ornaments by example
	Code refactoring
	Code refinement
	Composing transformations: a practical use case
	Hiding administrative data
	Higher-order types, recursive types

	Overview of the lifting process
	Encoding ornaments
	Eliminating the encoding
	Inferring a generic lifting

	II A calculus for program transformation
	Core ML
	Notation
	Types and datatypes
	The syntax of explicit ML
	Evaluation
	Type soundness

	Labelling ML terms
	Overview
	Labelled reduction
	Full reduction
	An attempt at well-labelling

	A language for equalities
	Design constraints
	Description of eML
	Extended syntax
	Extended labeled reduction
	Combining typing and labeling
	The non-expansive equality judgment
	Full term equality

	Metatheory of eML
	Basic properties
	Extraction
	Subject reduction
	Soudness via a logical relation for equality
	Full term equality and reduction

	Staging with mML
	Overview of the design
	Definition of mML
	Syntax and typing
	The meta reduction
	Equality

	Metatheory of mML
	Confluence
	Basic properties of the typing derivation
	Strong normalization
	Subject reduction and soundness

	mML elimination

	A logical relation for reasoning on mML
	A deterministic reduction
	Interpretation of kinds
	The logical relation

	From eML to ML
	Expanded terms
	Simplification
	Removing equalities

	III Encoding ornaments
	Encoding ornaments in mML
	Ornamentation as a logical relation
	Deep pattern matching in eML
	Defining datatype ornaments
	Shallow ornaments
	From high-level definition to low-level definition
	Encoding ornaments in mML
	Correctness of the encoding

	Elaborating to the generic term
	Preparing an ML term for lifting
	Elaboration environments
	Elaboration
	Correctness of elaboration
	Identity instantiation

	Lifting by instantiation
	Specifying liftings
	Correctness of the lifting

	IV Implementing lifting
	Implementation
	Generalization by inference
	Strategies for instantiation
	Refolding terms after the transformation

	Unfolding of definitions
	Unfolding the recursive structure
	Unfolding for specialization
	Generic programming with unfolding

	Extensions and future work
	Handling effects
	Generalizing the ornamentation relations
	Improving the patching language
	Scaling up the prototype

	V Conclusion
	Related works
	Ornaments
	Refactoring
	Porting operations to similar datatypes

	Conclusion

