
Ornaments

Exploiting Parametricity for Safer, More Automated

Code Transformations

Didier Rémy

based on joined work with
Thomas Williams

Haskell Symposium 2017

1 / 33

Haskell ⊳·········· ML
Hope, Miranda

·········⊲ OCaml

〈4〉2 / 33

Haskell ⊲ ········ ML
Hope, Miranda

······· ⊳ OCaml

〈5〉2 / 33

Haskell ⊲ ········ ML
Hope, Miranda

······· ⊳ OCaml

In common, since the origin. . .

◮ Datatypes & Pattern-matching

◮ First-class functions

◮ Polymorphism

⊲ Type inference

〈6〉2 / 33

Haskell ⊲ ········ ML
Hope, Miranda

······· ⊳ OCaml

In common, since the origin. . .

◮ Datatypes & Pattern-matching

◮ First-class functions

◮ Polymorphism

⊲ Type inference

Therefore,

◮ Programs are safer by construction
(and Haskell ones perhaps even more...)

◮ Still, they sometimes need to be modified...

〈7〉2 / 33

Haskell ⊲ ········ ML
Hope, Miranda

······· ⊳ OCaml

In common, since the origin. . .

◮ Datatypes & Pattern-matching

◮ First-class functions

◮ Polymorphism

⊲ Type inference

Therefore,

◮ Programs are safer by construction
(and Haskell ones perhaps even more...)

◮ Still, they sometimes need to be modified...

Program refactoring and evolution
◮ Surprisingly, it has been little explored by our communities

◮ But there are interesting things we can do, because:

◮ programs being structured around datatypes
◮ polymorphism and type inference.

〈7〉2 / 33

Plan

In this talk,
◮ I will show how a small subcase of code refactoring and code

refinement based on ornements can be put into practice in languages
such as OCaml or (core) Haskell.

– Examples
– Look under the hood

◮ I will also draw conclusions from this experience, and discuss code
evolution in more general terms.

This is largely based on joined work with Thomas Williams.

Ornaments have been introduced by Conor McBride and explored with
Pierre-Évariste Dagan in the context of Adga.

The poor man’s (good) tool

〈1〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

〈2〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

〈3〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Add (x, Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) →

add (eval’ u) (eval v)
| Mul (u, v) →

mul (eval u) (eval v)

〈4〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Add (x, Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) →

add (eval’ u) (eval v)
| Mul (u, v) →

mul (eval u) (eval v)

〈5〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) →

add (eval’ u) (eval v)
| Mul (u, v) →

mul (eval u) (eval v)

〈6〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Add (u, v) →

add (eval’ u) (eval v)
| Mul (u, v) →

mul (eval u) (eval v)

〈7〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Mul (u, v) →

mul (eval u) (eval v)

〈8〉5 / 33

The poor man’s (good) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

〈9〉5 / 33

The poor man’s (bad) tool

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let parse x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)
However

◮ We have to do manually what could be done automatically

◮ This may be long – and error prone !

◮ We should guarantee that the input and output programs are related

◮ We may miss places where a change is necessary (when types agree)

〈9〉5 / 33

Can we do better?

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

〈4〉6 / 33

Can we do better?

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

type ornament oexp : exp ⇒ exp’ with

| Con i ⇒ Con’ i
| Add(u, v) ⇒ Bin ’(Add ’, u, v) when u v : oexp
| Mul(u, v) ⇒ Bin ’(Mul ’, u, v) when u v : oexp

〈5〉6 / 33

Can we do better?

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

type ornament oexp : exp ⇒ exp’ with

| Con i ⇒ Con’ i
| Add(u, v) ⇒ Bin ’(Add ’, u, v) when u v : oexp
| Mul(u, v) ⇒ Bin ’(Mul ’, u, v) when u v : oexp

〈6〉6 / 33

Can we do better?

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

type ornament oexp : exp ⇒ exp’ with

| Con i ⇒ Con’ i
| Add(u, v) ⇒ Bin ’(Add ’, u, v) / when oexp : u : exp ⇒ u : exp’
| Mul(u, v) ⇒ Bin ’(Mul ’, u, v) \ and oexp : v : exp ⇒ v : exp’

〈8〉6 / 33

Can we do better?

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

type ornament oexp : exp ⇒ exp’ with

| Con i ⇒ Con’ i
| Add(u, v) ⇒ Bin ’(Add ’, u, v) when u v : oexp
| Mul(u, v) ⇒ Bin ’(Mul ’, u, v) when u v : oexp

blue + red

=⇒ green

〈9〉6 / 33

Can we do better?

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

type ornament oexp : exp ⇒ exp’ with

| Con i ⇒ Con’ i
| Add(u, v) ⇒ Bin ’(Add ’, u, v) when u v : oexp
| Mul(u, v) ⇒ Bin ’(Mul ’, u, v) when u v : oexp

lifting ∗ with oexp

blue + red

=⇒ green

〈11〉6 / 33

Can we do better? (reversed)

type exp =
| Con of int

| Add of exp × exp

| Mul of exp × exp

let exp x = Add (x , Con 42)
let rec eval e = match e with

| Con i → i
| Add (u, v) → add (eval u) (eval v)
| Mul (u, v) → mul (eval u) (eval v)

type binop’ = Add’ | Mul’
type exp’ =
| Con’ of int

| Bin’ of binop’ × exp’ × exp’

let parse x = Bin’(Add ’, x , Con’ 42)
let rec eval e = match e with

| Con’ i → i
| Bin ’(Add ’, u, v) →

add (eval u) (eval v)
| Bin ’(Mul ’, u, v) →

mul (eval u) (eval v)

type ornament oexp : exp’ ⇒ exp with

| Con’ i ⇒ Con i
| Bin ’(Add ’, u, v) ⇒ Add(u, v) when u v : oexp
| Bin ’(Mul ’, u, v) ⇒ Mul(u, v) when u v : oexp

lifting ∗ with oexp

blue + red

=⇒ green

〈11〉6 / 33

Permuting values of a datatype ⊳

Input program

let process config x = match config with

gt x (match config with True → 0 | False → 1)

let myconfig = True

let main = process myconfig 42

〈1〉7 / 33

Permuting values of a datatype ⊳

Input program

let process config x = match config with

gt x (match config with True → 0 | False → 1)

let myconfig = True

let main = process myconfig 42

Safely exchanging the values of boolean, selectively
type ornament inverse : bool ⇒ bool with

| True ⇒ False
| False ⇒ True

let process = lifting process : inverse → _ → _
let myconfig = lifting myconfig : inverse
let main = lifting main : bool

〈2〉7 / 33

Permuting values of a datatype ⊳

Output program

let process config x = match config with

gt x (match config with True → 1 | False → 0)

let myconfig = False

let main = process myconfig 42

Safely exchanging the values of boolean, selectively
type ornament inverse : bool ⇒ bool with

| True ⇒ False
| False ⇒ True

let process = lifting process : inverse → _ → _
let myconfig = lifting myconfig : inverse
let main = lifting main : bool

◮ The inverse transformation is used selectively.
◮ The ornamentation typechecking / inference tracks the relations

between the old and new versions of bool and ensures consistency.
〈3〉7 / 33

Permuting values of a datatype ⊳

Output program incomplete!

let process config x = match config with

gt x (match config with True → 1 | False → 0)

let myconfig = True

let main = process [missing ornament for myconfig] 42

Unsafely exchanging the values of boolean, selectively
type ornament inverse : bool ⇒ bool with

| True ⇒ False
| False ⇒ True

let process = lifting process : inverse → _ → _
let myconfig = lifting myconfig : bool
let main = lifting main : bool

◮ The inverse transformation is used selectively.
◮ The ornamentation typechecking / inference tracks the relations

between the old and new versions of bool and ensures consistency.
〈4〉7 / 33

Enforcing more invariants

type exp =
| App of exp × exp

| Con of int

| Abs of (exp → exp)

let rec eval e = match e with

| Con i → Some (Con i)
| Abs f → Some (Abs f)
| App (u, v) →

(match eval u with

| None → None

| Some (Con i) → None

| Some (App (u, v)) → None

| Some (Abs f) →

(match eval v with

Some x → eval (f x) | ..))

〈1〉8 / 33

Enforcing more invariants

type exp =
| App of exp × exp

| Con of int

| Abs of (exp → exp)

let rec eval e = match e with

| Con i → Some (Con i)
| Abs f → Some (Abs f)
| App (u, v) →

(match eval u with

| None → None

| Some (Con i) → None

| Some (App (u, v)) → None

| Some (Abs f) →

(match eval v with

Some x → eval (f x) | ..))

type exp’ =
| App’ of exp’ × exp’
| Val of value ’

and value ’ =
| Con’ of int

| Abs’ of (value ’ → exp’)

〈2〉8 / 33

Enforcing more invariants

type exp =
| App of exp × exp

| Con of int

| Abs of (exp → exp)

let rec eval e = match e with

| Con i → Some (Con i)
| Abs f → Some (Abs f)
| App (u, v) →

(match eval u with

| None → None

| Some (Con i) → None

| Some (App (u, v)) → None

| Some (Abs f) →

(match eval v with

Some x → eval (f x) | ..))

type exp’ =
| App’ of exp’ × exp’
| Val of value ’

and value ’ =
| Con’ of int

| Abs’ of (value ’ → exp’)

let rec eval’ e = match e with

| Con’ i → Some (Int i)
| Abs’ f → Some (Fun f)
| App’(u, v) →

(match eval’ u with

| None → None

| Some (Con’ i) → None

| Some (Abs’ f) →

(match eval’ v with

Some x → eval’ (f x) | ..))

〈3〉8 / 33

Enforcing more invariants

type exp =
| App of exp × exp

| Con of int

| Abs of (exp → exp)

type exp’ =
| App’ of exp’ × exp’
| Val of value ’

and value ’ =
| Con’ of int

| Abs’ of (value ’ → exp’)

type ornament oexp : exp ⇒ exp’ with

| Con i ⇒ Val (Con’ i)
| Abs f ⇒ Val (Abs’ f) when f : ovalue → oexp
| App (u,v) ⇒ App’ (u, v) when u v : oexp

and ovalue : exp ⇒ value ’ with

| Con i ⇒ Con’ i
| Abs f ⇒ Abs’ f when f : ovalue → oexp
| App (u,v) ⇒ ∼

indicates an impossible case

〈4〉8 / 33

Code specialization: sets as unit maps

A set can be seen as a unit map
type α map =

| Mnode of α map × key × α × α map

| Mempty

〈1〉9 / 33

Code specialization: sets as unit maps

A set can be seen as a unit map
type α map =

| Mnode of α map × key × α × α map

| Mempty

but it can use a more compact representation:
type set =

| Snode of set × key × set

| Sempty

〈2〉9 / 33

Code specialization: sets as unit maps

A set can be seen as a unit map
type α map =

| Mnode of α map × key × α × α map

| Mempty

but it can use a more compact representation:
type set =

| Snode of set × key × set

| Sempty

We may automate the translation:
type ornament mapset : unit map ⇒ set with

| Mnode(l,k ,(), r) ⇒ Snode(l ,k, r) when l r : mapset
| Mempty → Sempty

lifting * with mapset

NB: Will keep passing extra unit parameters in auxiliary functions
◮ These can also be removed by ornamentation of the arguments

〈3〉9 / 33

Code generalization: from sets to maps

type set =
| Snode of set × key × set

| Sempty

type α map =
| Mnode of α map × key × α × α map

| Mempty

type ornament α setmap : set ⇒ α map with

| Snode(l ,k, r) ⇒ Mnode(l,k,_,r) when l r : α setmap
| Mempty ⇒ Sempty

◮ The ornament relation α setmap is not a function:
∀ v : α, Snode(l , k , r) ⇒ Mnode(l , k , v , r)

◮ The code can only be partially lifted

◮ The missing parts must be user provided

This is the initial idea of Conor when introducing ornaments. . .
10 / 33

A simpler example: nat & list

(used as a running example to explain the details of lifting.)

Similar types
type nat = Z | S of nat
type α list = Nil | Cons of α × α list

With similar values proj.

(length)
function

Ornament.

relation
S (S (S (Z)))

Cons (1, Cons (2, Cons (3, Nil)))

The ornament relation
type ornament α natlist : nat ⇒ α list with
| Z ⇒ Nil

| S m ⇒ Cons (_, m) when α natlist : m ⇒ m

◮ The _ stands for any value; may only appear on the right-hand side

11 / 33

add & append

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let rec append m n = match m with
| Nil → n
| Cons(x, m’) → Cons(x, append m’ n)

〈1〉12 / 33

add & append

forget
information
(looks) easy

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let rec append m n = match m with
| Nil → n
| Cons(x, m’) → Cons(x, append m’ n)

〈2〉12 / 33

add & append

Lifting

(partial)
missing
information

let rec add m n = match m with
| Z → n
| S m’ → S (add m’ n)

let rec append m n = match m with
| Nil → n
| Cons(x, m’) → Cons(x, append m’ n)

〈3〉12 / 33

Lifting add into append

let rec add m n = match m with

| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist

let rec append m n = match m with

| Nil → n
| Cons(x,m’) → Cons (#1 , append m’ n)

〈1〉13 / 33

Lifting add into append

let rec add m n = match m with

| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
with #1 ← (match m with Cons (x, _) → x)

let rec append m n = match m with

| Nil → n
| Cons(x,m’) → Cons (#1 , append m’ n)

〈2〉13 / 33

Lifting add into append

let rec add m n = match m with

| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
with #1 ← (match m with Cons (x, _) → x)

let rec append m n = match m with

| Nil → n
| Cons(x,m’) → Cons (x , append m’ n)

〈3〉13 / 33

Lifting add into append

let rec add m n = match m with

| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
with #1 ← (match m with Cons (x, _) → x)

let rec append m n = match m with

| Nil → n
| Cons(x,m’) → Cons (x , append m’ n)

〈4〉13 / 33

Lifting add into append

let rec add m n = match m with

| Z → n
| S m’ → S (add m’ n)

let append = lifting add : _ natlist → _ natlist → _ natlist
with #1 ← (match m with Cons (x, _) → x)

let rec append m n = match m with

| Nil → n
| Cons(x,m’) → Cons (x , append m’ n)

How to proceed?
◮ in a principled manner—no arbitrary choices!
◮ so that the lifted program behaves similarly to the base one:

(add, append) ∈ α natlist→ α natlist→ α natlist

implies:
length (append n m) = add (length n) (length m)

〈5〉13 / 33

Code reuse by abstraction a priori

A design principle for modularity

〈1〉14 / 33

Code reuse by abstraction a priori

A design principle for modularity

Polymorphic code
abstracts over the details

Λ(α, β) . . . λ(x : τ, y : σ) M

F

Provide the details separately
as type and value arguments

F A

A

〈2〉14 / 33

Code reuse by abstraction a priori

A design principle for modularity

Polymorphic code
abstracts over the details

Λ(α, β) . . . λ(x : τ, y : σ) M

F

Provide the details separately
as type and value arguments

F A

A

Code reuse with a different
implementation of the details

F B

B

〈3〉14 / 33

Code reuse by abstraction a priori

A design principle for modularity

Polymorphic code
abstracts over the details

Λ(α, β) . . . λ(x : τ, y : σ) M

F

Provide the details separately
as type and value arguments

F A

A

Code reuse with a different
implementation of the details

F B

B

Theorems for free
Parametricity ensures that the code F A and F B behaves the same up to
the differences between A and B .

〈4〉14 / 33

Lifting

No reasonable place for abstraction a priori

base
code

A

〈1〉15 / 33

Lifting

Need to ornament some of the datatypes

base
code

A

Find its lifted version
given an ornament specification

B

?

〈2〉15 / 33

Lifting by abstraction a posteriori

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

Abstract over (depends only on) what is ornamented.

base
code

A

Find its lifted version
given an ornament specification

B

Inference
(1)

〈3〉15 / 33

Lifting by abstraction a posteriori

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

base
code

A = Agen idargs

Find its lifted version
given an ornament specification

B = Agen ornargs

idargs Inference
(1)

〈4〉15 / 33

Lifting by abstraction a posteriori

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

Specialize according to the liftting specification

base
code

A = Agen idargs

Find its lifted version
given an ornament specification

B = Agen ornargs

idargs Inference
(1)

(inferred)
ornargs

〈5〉15 / 33

Lifting by abstraction a posteriori

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

Agen ornargs

Simplify

base
code

A ∼ Agen idargs

Find its lifted version
given an ornament specification

B ∼ Agen ornargs

idargs Inference
(1)

ornargs
(2)

reduction (3)

simplification (4)

〈6〉15 / 33

Lifting by abstraction a posteriori

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

Agen ornargs

base
code

A ∼ Agen idargs

Find its lifted version
given an ornament specification

B ∼ Agen ornargs

idargs Inference
(1)

ornargs
(2)

reduction (3)

simplification (4)

A ∼ B

idargs ∼ ornargs
⇓

〈7〉15 / 33

Lifting by abstraction a posteriori

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

Agen ornargs

base
code

A ∼ Agen idargs

Find its lifted version
given an ornament specification

B ∼ Agen ornargs

idargs Inference
(1)

ornargs
(2)

meta-reduction (3)

simplification (4)

A ∼ B

〈8〉15 / 33

Lifting by abstraction a posteriori

mML

ML

Find a (most) generic version
Λ(α, β) λ(x : τ)(y : σ) M

Agen

Agen ornargs

base
code

A ∼ Agen idargs

Find its lifted version
given an ornament specification

B ∼ Agen ornargs

idargs Inference
(1)

ornargs
(2)

meta-reduction (3)

simplification (4)

A ∼ B

〈9〉15 / 33

Representing ornaments of nat

◮ We introduce a skeleton (open definition) of nat, to allow for hybrid
nats where the head looks like a nat but the tail need not be a nat.
type α natS = Z’ | S’ of α

◮ The ornamented datatype will piggy bag on this skeleton:

α list (α list) natS

list_proj

list_inj
let list_proj a =
match a with
| Nil → Z’
| Cons(_,xs) → S’ xs

let list_inj n x =
match n with
| Z’ → Nil
| S’ xs → Cons(x , xs)

〈1〉17 / 33

Representing ornaments of nat

◮ We introduce a skeleton (open definition) of nat, to allow for hybrid
nats where the head looks like a nat but the tail need not be a nat.
type α natS = Z’ | S’ of α

◮ The ornamented datatype will piggy bag on this skeleton:

α list (α list) natS

list_proj

list_inj
let list_proj a =
match a with
| Nil → Z’
| Cons(_,xs) → S’ xs

let list_inj n x =
match n with
| Z’ → Nil
| S’ xs → Cons(x , xs)

◮ For convenience, we pack them in a datatype
type (α,β,γ) orn = { inj : α → β → γ; proj : γ → α }

let natlist : ((α list) natS, β, α list) orn

= { inj = list_inj; proj = list_proj }

〈2〉17 / 33

From add to append

let add =

let rec add m n =
match m with
| Z → n
| S m’ → (S (add m’ n))

in add

〈1〉18 / 33

From add to append

let append =
let rec add m n =
match natlist. proj m with
| Z’ → n
| S’ m’ → (S (add m’ n))

in add

〈2〉18 / 33

From add to append

let append =
let rec add m n =
match natlist. proj m with
| Z’ → n
| S’ m’ → natlist. inj (S’ (add m’ n)) (List.hd m)

in add

〈3〉18 / 33

From add to a generic lifting

let add_gen orn 1 orn 2 patch =

let rec add m n =
match orn 1. proj m with
| Z’ → n
| S’ m’ → orn 2. inj (S’ (add m’ n)) (patch m n)

in add

〈4〉18 / 33

and back to append

let add_gen orn 1 orn 2 patch =

let rec add m n =
match orn 1. proj m with
| Z’ → n
| S’ m’ → orn 2. inj (S’ (add m’ n)) (patch m n)

in add

From add_gen back to append
let append = add_gen natlist natlist

(fun m _ → match m with Cons(x,_) → x)

〈5〉18 / 33

or back to add

let add_gen orn 1 orn 2 patch =

let rec add m n =
match orn 1. proj m with
| Z’ → n
| S’ m’ → orn 2. inj (S’ (add m’ n)) (patch m n)

in add

From add_gen back to append
let append = add_gen natlist natlist

(fun m _ → match m with Cons(x,_) → x)

From add_gen back to add: by passing the “identity” ornament

let natnat : (nat natSkel, α, nat) orn =
{ proj = (fun n → match n with Z → Z’ | S m → S’ m)
inj = (fun n x → match n with Z’ → Z | S’ m → S m)}

let add = add_gen natnat natnat (fun _ _ → ())

〈6〉18 / 33

Type Inference

Needed for coherence

◮ the same base type may be ornamented differently in different places
◮ except if their values (may) communicate

ML-style type inference

◮ For the ornament natlist

let add_gen (orn0: (_,_,γ0) orn) (orn1 : (_,β1,γ1) orn) p1 =

let rec add m n =
match orn0. proj m with
| Z’ → n
| S’ m’ → orn1 . inj (S’ (add m’ n)) (p1 m n : β1)

in add

〈1〉19 / 33

Type Inference

Needed for coherence

◮ the same base type may be ornamented differently in different places
◮ except if their values (may) communicate

ML-style type inference

◮ If nat had 2 successor nodes, we would get . . .

let add_gen (orn0: (_,_,γ0) orn) (orn1 : (_,β1,γ1) orn) p1

(orn2 : (_,β2,γ1) orn) p2 =

let rec add m n =
match orn0.proj m with
| Z’ → n
| S1’ m’ → orn1 . inj (S1’ (add m’ n)) (p1 m n : β1)

| S2’ m’ → orn2 . inj (S2’ (add m’ n)) (p2 m n : β2)

in add

〈2〉19 / 33

Type Inference

Needed for coherence

◮ the same base type may be ornamented differently in different places
◮ except if their values (may) communicate

ML-style type inference

◮ . . . and orn1 and orn2 should be identified

let add_gen (orn0: (_,_,γ0) orn) (orn1 : (_,β1,γ1) orn) p1

p2 =

let rec add m n =
match orn0.proj m with
| Z’ → n
| S1’ m’ → orn1 . inj (S1’ (add m’ n)) (p1 m n : β1)

| S2’ m’ → orn1 . inj (S2’ (add m’ n)) (p2 m n : β1)

in add

〈3〉19 / 33

Type Inference

Needed for coherence

◮ the same base type may be ornamented differently in different places
◮ except if their values (may) communicate

ML-style type inference

⊲ Suffices here, but the injection need a dependent type in fine

let add_gen (orn0: (_,_,γ0) orn) (orn1 : (_,β1,γ1) orn) p1

p2 =

let rec add m n =
match orn0.proj m with
| Z’ → n
| S1’ m’ → orn1 . inj (S1’ (add m’ n)) (p1 m n : β1)

| S2’ m’ → orn1 . inj (S2’ (add m’ n)) (p2 m n : β2)

in add

〈3〉19 / 33

Staging

We need meta-reduction to

◮ generate readable code (the one the user would have written)

◮ preserve the computational behavior/complexity, not just the meaning

◮ bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:

let add_gen = fun orn1 orn2 patch →
let rec add m n =
match orn1.proj m with
| Z’ → n
| S’ m’ → orn2.inj S’ (add m’ n) (patch m n)

in add

let append = add_gen natlist natlist
(fun m _ → match m with Cons(x,_) → x)

〈1〉20 / 33

Staging

We need meta-reduction to

◮ generate readable code (the one the user would have written)

◮ preserve the computational behavior/complexity, not just the meaning

◮ bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:

let add_gen = fun orn1 orn2 patch //=⇒
let rec add m n =
match orn1.proj # m with
| Z’ → n
| S’ m’ → orn2.inj # S’ (add m’ n)# (patch m n)

in add

let append = add_gen# natlist # natlist
(fun m _ → match m with Cons(x,_) → x)

〈2〉20 / 33

Staging

We need meta-reduction to

◮ generate readable code (the one the user would have written)

◮ preserve the computational behavior/complexity, not just the meaning

◮ bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:

let add_gen = fun orn1 orn2 patch //=⇒
let rec add m n =
match orn1.proj # m with
| Z’ → n
| S’ m’ → orn2.inj # S’ (add m’ n)# (patch m n)

in add

let append = add_gen# natlist # natlist
(fun m _ → match m with Cons(x,_) → x)

〈3〉20 / 33

Meta-reduction of the lifted code

let add_gen orn1 orn2 patch //=⇒

let rec add m n =
match orn1. proj # m with
| Z’ → n
| S’ m’ → orn2. inj # S’ (add m’ n) # (patch m n)

in add

let append = add_gen # natlist # natlist

(fun m _ → match m with Cons(x,_) → x)

◮ Reduce #-redexes at compile time.

◮ All #-abstractions and #-applications can actually be reduced.

◮ This is ensured just by typing!

21 / 33

Meta-reduction

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n
| S’ m’ →
(match S’ (append m’ n) with

| Z’ → Nil

| S’ zs → Cons((match m with Cons(x,_) → x), zs))

◮ There remains some redundant pattern matchings...

◮ Decoding list to natS and encoding natS to list .

◮ We can eliminate the last one by reduction

22 / 33

Elimination of the encoding

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n
| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n)

◮ And the other by extrusion... (commuting matches)

〈1〉23 / 33

Elimination of the encoding

let rec append m n =
match (match m with

| Nil → Z’

| Cons(_, xs) → S’ xs) with

| Z’ → n

| S’ m’ →

Cons((match m with Cons(x,_) → x), append m’ n)

◮ And the other by extrusion... (commuting matches)

〈2〉23 / 33

Elimination of the encoding

let rec append m n =
match m with

| Nil →

(match Z’ with

| Z’ → n

| S’ m’ →

Cons((match m with Cons(x,_) → x), append m’ n))

| Cons(_, xs) →

(match S’ m’ with

| Z’ → n

| S’ m’ →

Cons((match m with Cons(x,_) → x), append m’ n))

and reducing again

〈1〉24 / 33

Elimination of the encoding

let rec append m n =
match m with

| Nil →

(match Z’ with
| Z’ → n

| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n))

| Cons(_, xs) →

(match S’ m’ with
| Z’ → n
| S’ m’ →
Cons((match m with Cons(x,_) → x), append m’ n))

and reducing again

〈2〉24 / 33

Eliminating the encoding

let rec append m n =
match m with

| Nil →

n

| Cons(_, xs) →

Cons((match m with Cons(x,_) → x), append m’ n))

25 / 33

Back to ML

let rec append m n =
match m with
| Nil → n

| Cons (x, xs) →

Cons ((match m with Cons x → x) , append m’ n)

〈1〉26 / 33

Back to ML

let rec append m n =
match m with
| Nil → n

| Cons (x, xs) →

Cons ((match m with Cons x → x), append m’ n)

〈2〉26 / 33

Back to ML

let rec append m n =
match m with
| Nil → n

| Cons (x, xs) →

Cons (x , append m’ n)

◮ We obtain the code for append.

◮ This transformation also always eliminates all uses of dependent types.

〈3〉26 / 33

Back to ML

let rec append m n =
match m with
| Nil → n
| Cons (x, xs) →

Cons (x, append m’ n)

◮ We obtain the code for append.

◮ This transformation also always eliminates all uses of dependent types.

〈4〉26 / 33

Beyond ornaments

27 / 33

Theoretical limits of ornaments

Theorem
The lifted code behaves as the base code up to the relation between values
of the base type and values of the lifted type.

Corollary
Ornaments cannot change the behavior of the base code.

✘ fix bugs

✘ turn an implementation of merge sort into quick sort

Based on datatype transformations

✘ modify the control, e.g. CPS transform, defunctionalization, etc.
deforestation

✘ add a new unrelated constructor to a datatype (datatype extension)

28 / 33

Practical limits of ornaments

Lifting is syntactic

✘ ornamentation points are derived from the syntax.

✘ unfolding of recursion

A useful scenario for unfolding of recursion

◮ Use (homogeneous) fix-length (long enough) lists instead of tuples to
benefit from library functions (e.g. maps and folds).

◮ Lift the code back into tuples for efficiency.

Solutions

◮ perform unfolding as a preprocessing

◮ extend the notion of syntactic lifting?

29 / 33

De-ornamentation

S

S

Z

C

1 C

2 N

Ornamentation

(lifting)

〈1〉30 / 33

De-ornamentation

S

S

Z

C

1 C

2 N

〈2〉30 / 33

De-ornamentation

S

S

Z

C

1 C

2 N

Why useful?

◮ undo the ornamentation. . .

◮ offer a simplified view: locations, type annotations on ASTs, etc.

◮ remove information in datatypes that became obsolete/erroneous

◮ change information by combination of with re-ornamentation

〈3〉30 / 33

De-ornamentation

S

S

Z

C

C

N

Trival case

◮ (binop example): ornamentation is bijective (no green)
de-ornamentation is an an ornamentation.

〈4〉30 / 33

De-ornamentation

S

S

Z

C

1 C

2 N

Normal case

◮

code

code

code

✘

code

The source is an ornamentation or the target.
Need to throw away the green code (should be dead code on the left)

〈5〉30 / 33

De-ornamentation

S

S

Z

S

1 S

2 Z

Normal case

◮

code

code

code

✘

code

The source is an ornamentation or the target.
Need to throw away the green code (should be dead code on the left)

◮ Related work: Type theory in color by Bernardy and Moulin (ICFP
2013) A type system to check (non) dependencies.
The blue parts need to coincide exactly.

〈6〉30 / 33

De-ornamentation

S

S

Z

C

1 C

2 N

General case

◮

#1

The blue may be depend on the green.
Need code patches in the target
to replace missed bindings and pattern matchings

〈7〉30 / 33

Combining transformations

P Q

〈1〉31 / 33

Combining transformations

P P1 P2 Q

〈2〉31 / 33

Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

◮ Generate good names for new variables
◮ Pattern matching:

◮ Transform deep pattern matching into narrow pattern matching.
◮ Inverse transformation that restores deep pattern matching.
◮ Factor identical branches.

◮ Introduce / inline let bindings.

〈3〉31 / 33

Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

◮ Could autofill or propose some of the patches

◮ Inferring code from types, possibly with addition constraints

◮ Any other forms of code inference could be used.

〈4〉31 / 33

Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

Ornamentation like transformations

◮ Ornamenting in several steps: complex but isomorphic
transformations, followed by simpler, non-reversible ornamentations.

◮ Deornamentation could precede (or follow) ornamentation.

◮ Extensible datatypes ?
See Trees that grows by Shayan Najd & Simon Peyton Jones:

– Their solution is by abstraction a priori.
– Abstraction a posteriori alternative?

〈5〉31 / 33

Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

Ornamentation like transformations

Other useful semantic preserving transformations?

◮ CPS transformation, Defunctionalization, Deforestation, etc.

◮ Many compiler optimisations could be made available to the user

〈6〉31 / 33

Combining transformations

P P1 P2 Q

General tooling already needed for pre/post processing

Code inference

Ornamentation like transformations

Other useful semantic preserving transformations?

Non-semantic preserving transformations

◮ Necessary, for completeness, and to fix bugs!

◮ Hopefully, can be reduced to only a few, small transformations
inserted between well-behaved ones.

〈7〉31 / 33

Modes of interaction

◮ The most appealing usage is probably in an interactive mode, in some
IDE with in place changes.

◮ We also need a batch mode

◮ to separate the concerns, be independent of any IDE
◮ we may wish to maintain two versions in sync (e.g. locations)
◮ or maintain older versions for archival

◮ Raises new questions:

◮ Design the right syntax for describing transformations
◮ Robustness to source changes:

Can a patch from A to B be adapted when A changes?
◮ Merging of two transformations done in parallel . . .

32 / 33

Conclusion

We need a toolbox for safer, easier software evolution!

◮ With simple, composable, well-understood transformations
◮ Typed languages are a good setting:

◮ Focus on type transformations, prior to code transformations.
◮ Separate what can be automated, from what must be user provided
◮ Abstraction a posteriori provides guidance and ensures a semantic

preservation property

◮ Other applications of abstraction a posteriori? (boilerplate code?)

Ornaments are just one little tool

fits well within ML and could be further explored in many directions
(see more at http://gallium.inria.fr/~remy/ornaments/)

Let’s automate the boring parts of programming!
33 / 33

http://gallium.inria.fr/~remy/ornaments/

	Appendix
	Status
	Price to pay
	A posteriori abstraction
	Dependent types
	A meta-language for ornamentation
	Encoding ornaments in mML
	More examples

