Ornaments

Exploiting Parametricity for Safer, More Automated Code Transformations

Didier Rémy

Cnてía

Haskell Symposium 2017

Haskell $\triangleleft \ldots \ldots \ldots$. ML OCaml
Hope, Miranda

Haskell $\triangleright \ldots \ldots \ldots$. ML \triangleleft OCaml
Hope, Miranda

Haskell $\triangleright \quad$ ML \triangleleft OCaml

Hope, Miranda

In common, since the origin...

- Datatypes \& Pattern-matching
- First-class functions
- Polymorphism
\triangleright Type inference

Haskell $\triangleright \ldots$. ML \triangleleft OCaml

Hope, Miranda

In common, since the origin. . .

- Datatypes \& Pattern-matching
- First-class functions
- Polymorphism
- Type inference

Therefore,

- Programs are safer by construction (and Haskell ones perhaps even more...)
- Still, they sometimes need to be modified...

Haskell $\triangleright \ldots \ldots \triangleleft$ OCaml

 Hope, MirandaIn common, since the origin. . .

- Datatypes \& Pattern-matching
- First-class functions
- Polymorphism
- Type inference

Therefore,

- Programs are safer by construction (and Haskell ones perhaps even more...)
- Still, they sometimes need to be modified...

Program refactoring and evolution

- Surprisingly, it has been little explored by our communities
- But there are interesting things we can do, because:
- programs being structured around datatypes
- polymorphism and type inference.

Plan

In this talk,

- I will show how a small subcase of code refactoring and code refinement based on ornements can be put into practice in languages such as OCaml or (core) Haskell.
- Examples
- Look under the hood
- I will also draw conclusions from this experience, and discuss code evolution in more general terms.

This is largely based on joined work with Thomas Williams.
Ornaments have been introduced by Conor McBride and explored with Pierre-Évariste Dagan in the context of Adga.

The poor man's (good) tool

The poor man's (good) tool

```
type exp =
    Con of int
    Add of exp }\times\operatorname{exp
    Mul of exp }\times\mathrm{ exp
let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```


The poor man's (good) tool

let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
Con i }->\textrm{i
Add (u, v) }->\mathrm{ add (eval u) (eval v)
Mul (u, v) }->\mathrm{ mul (eval u) (eval v)

```
```

```
type exp =
```

```
type exp =
    Con of int
    Con of int
    Add of exp }\times\mathrm{ exp
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\mathrm{ exp
```

 Mul of exp }\times\mathrm{ exp
    ```
```

type binop' = Add' | Mul'
type exp' =
Con' of int
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'

```

\section*{The poor man's (good) tool}
    | Con of int
    Add of exp }\times\operatorname{exp
    Mul of exp }\times\mathrm{ exp
let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
```

type exp =

```
```

```
type exp =
```

```
type binop' = Add' | Mul'
type exp' =
    Con' of int
    Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Add ( }x\mathrm{ , Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }
        add (eval' u) (eval v)
    Mul (u, v) }
        mul (eval u) (eval v)
```


The poor man's (good) tool

let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
Con i }->\textrm{i
Add (u, v) }->\mathrm{ add (eval u) (eval v)
Mul (u, v) }->\mathrm{ mul (eval u) (eval v)

```
```

```
type exp =
```

```
type exp =
    | Con of int
    | Con of int
    Add of exp }\times\operatorname{exp
    Add of exp }\times\operatorname{exp
    |Mul of exp }\times\operatorname{exp
```

 |Mul of exp }\times\operatorname{exp
    ```
```

type binop' = Add' | Mul'
type exp' =
Con' of int
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Add (}x\mathrm{ , Con 42)
let rec eval e = match e with
Con i }->\textrm{i
Add (u, v) }
add (eval' u) (eval v)
Mul (u, v) }
mul (eval u) (eval v)

```

\section*{The poor man's (good) tool}
    | Con of int
    Add of exp }\times\operatorname{exp
    Mul of exp }\times\mathrm{ exp
let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
```

type exp =

```
```

```
type exp =
```

```
type binop' = Add' | Mul'
type exp' =
    Con' of int
    Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }
        add (eval' u) (eval v)
    Mul (u, v) }
    mul (eval u) (eval v)
```


The poor man's (good) tool

let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
Con i }->\textrm{i
Add (u, v) }->\mathrm{ add (eval u) (eval v)
Mul (u, v) }->\mathrm{ mul (eval u) (eval v)

```
```

```
type exp =
```

```
type exp =
    Con of int
    Con of int
    Add of exp }\times\operatorname{exp
    Add of exp }\times\operatorname{exp
    Mul of exp }\times\mathrm{ exp
```

 Mul of exp }\times\mathrm{ exp
    ```
```

type binop' = Add' | Mul'
type exp' =
Con' of int
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
Con' i }->\textrm{i
Add (u, v) }
add (eval' u) (eval v)
Mul (u, v) }
mul (eval u) (eval v)

```

\section*{The poor man's (good) tool}
```

type exp =
Con of int
Add of exp }\times\mathrm{ exp
Mul of exp }\times\mathrm{ exp
let parse }x=\operatorname{Add}(\textrm{x},\mathrm{ Con 42)
let rec eval e = match e with
Con i }->\textrm{i
Add (u, v) }->\mathrm{ add (eval u) (eval v)
Mul (u, v) }->\mathrm{ mul (eval u) (eval v)

```
```

type binop' = Add' | Mul'
type exp' =
Con' of int
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
Con' i }->\textrm{i
Bin'(Add', u, v) }
add (eval u) (eval v)
Mul (u, v) }
mul (eval u) (eval v)

```

\section*{The poor man's (good) tool}
    Con of int
    Add of exp }\times\operatorname{exp
    Mul of exp }\times\mathrm{ exp
let parse }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
```

type exp =

```
```

```
type exp =
```

```
type binop' = Add' | Mul'
type exp' =
    Con' of int
    Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
    Con' i }->\textrm{i
    Bin'(Add', u, v) }
    add (eval u) (eval v)
    Bin'(Mul', u, v) }
    mul (eval u) (eval v)
```


The poor man's (bad) tool

```
type exp =
    Con of int
    Add of exp }\times\operatorname{exp
    Mul of exp }\times\mathrm{ exp
let parse }x=\operatorname{Add}(\textrm{x},\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```


However

- We have to do manually what could be done automatically
- This may be long - and error prone!
- We should guarantee that the input and output programs are related
- We may miss places where a change is necessary (when types agree)

Can we do better?

```
type exp =
    | Con of int
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\operatorname{exp
let exp }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```


Can we do better?

```
type exp =
    | Con of int
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\operatorname{exp
let exp }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
type binop' = Add' | Mul'
type exp' =
    Con' of int
    Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
    Con' i }->\textrm{i
    Bin'(Add', u, v) }
            add (eval u) (eval v)
    Bin'(Mul', u, v) }
    mul (eval u) (eval v)
```

type ornament $\operatorname{oexp}: \exp \Rightarrow$ exp' with
| Con i \Rightarrow Con' i
$\operatorname{Add}(u, v) \Rightarrow \operatorname{Bin}{ }^{\prime}\left(A d d^{\prime}, u, v\right) \quad$ when $u v: \exp$
$\operatorname{Mul}(u, v) \Rightarrow \operatorname{Bin}^{\prime}(M u l \prime, u, v) \quad$ when $u v: \exp$

Can we do better?

```
type exp =
    | Con of int
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\operatorname{exp
let exp }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
type binop' = Add' | Mul'
type exp' =
    Con' of int
    Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
    Con' i }->\textrm{i
    Bin'(Add', u, v) }
            add (eval u) (eval v)
    Bin'(Mul', u, v) }
    mul (eval u) (eval v)
```

type ornament $\operatorname{oexp}: \exp \Rightarrow$ exp' with
| Con i $\quad \Rightarrow$ Con' i
$\operatorname{Add}(u, v) \Rightarrow \operatorname{Bin}{ }^{\prime}(A d d ', u, v) \quad$ when $u v: \exp$
$\operatorname{Mul}(u, v) \Rightarrow \operatorname{Bin}^{\prime}(M u l \prime, u, v) \quad$ when $u v: \exp$

Can we do better?

```
type exp =
    Con of int
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\operatorname{exp
let exp x = Add (x, Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
type binop' = Add' | Mul'
```

type binop' = Add' | Mul'
type exp' =
type exp' =
Con' of int
Con' of int
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
let rec eval e = match e with
Con' i }->\textrm{i
Con' i }->\textrm{i
Bin'(Add', u, v) }
Bin'(Add', u, v) }
add (eval u) (eval v)
add (eval u) (eval v)
Bin'(Mul', u, v) }
Bin'(Mul', u, v) }
mul (eval u) (eval v)

```
    mul (eval u) (eval v)
```

type ornament oexp : exp \Rightarrow exp' with

Can we do better?

```
type exp =
    Con of int
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\operatorname{exp
let exp }x=\operatorname{Add}(x,\mathrm{ Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
type binop' = Add' | Mul'
type exp' =
    Con' of int
    Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
    Con' i }->\textrm{i
    Bin'(Add', u, v) }
            add (eval u) (eval v)
    Bin'(Mul', u, v) }
    mul (eval u) (eval v)
```

type ornament $\operatorname{oexp}: \exp \Rightarrow$ exp' with
| Con i \Rightarrow Con' i
$\operatorname{Add}(u, v) \Rightarrow \operatorname{Bin}{ }^{\prime}\left(\right.$ Add $\left.^{\prime}, u, v\right) \quad$ when $u v: \exp$
$\operatorname{Mul}(u, v) \Rightarrow \operatorname{Bin}{ }^{\prime}(M u l \prime, u, v) \quad$ when $u v: \exp$
blue + red
\Longrightarrow green

Can we do better?

 | Con of int
 Add of exp }\times\operatorname{exp
| Mul of exp }\times\operatorname{exp

```
```

type exp =

```
```

```
type exp =
```

```
let exp x = Add ( }\textrm{x},\mathrm{ Con 42)
```

let exp x = Add (}\textrm{x},\mathrm{ Con 42)
let rec eval e = match e with
let rec eval e = match e with
Con i }->\textrm{i
Con i }->\textrm{i
Add (u, v) }->\mathrm{ add (eval u) (eval v)
Add (u, v) }->\mathrm{ add (eval u) (eval v)
Mul (u, v) }->\mathrm{ mul (eval u) (eval v)

```
```

 Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
    ```
```

type ornament oexp : exp \Rightarrow exp' with
| Con i \Rightarrow Con' i
$\operatorname{Add}(u, v) \Rightarrow \operatorname{Bin}^{\prime}($ Add ', $u, v) \quad$ when $u v: \exp$
$\operatorname{Mul}(u, v) \Rightarrow \operatorname{Bin}^{\prime}\left(M u l{ }^{\prime}, u, v\right) \quad$ when $u v: \exp$
blue + red
\Longrightarrow green
lifting * with oexp

```
type binop' = Add' | Mul'
```

type binop' = Add' | Mul'

```
type binop' = Add' | Mul'
type exp' =
type exp' =
type exp' =
| Con' of int 
let parse x = Bin'(Add', x, Con' 42)
let parse x = Bin'(Add', x, Con' 42)
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
let rec eval e = match e with
let rec eval e = match e with
    Con' i }->\textrm{i
    Con' i }->\textrm{i
    Con' i }->\textrm{i
    | Bin'(Add', u, v) }
    | Bin'(Add', u, v) }
    | Bin'(Add', u, v) }
    add (eval u) (eval v)
    add (eval u) (eval v)
    add (eval u) (eval v)
    Bin'(Mul', u, v) }
    Bin'(Mul', u, v) }
    Bin'(Mul', u, v) }
    mul (eval u) (eval v)
```

 mul (eval u) (eval v)
    ```
    mul (eval u) (eval v)
```

type exp $=$
\mid Con of int
\mid Add of $\exp \times \exp$
\mid Mul of exp $\times \exp$
let exp $x=$ Add $(x$, Con 42$)$
let rec eval $e=$ match e with
\mid Con $i \rightarrow i$
\mid Add $(u, v) \rightarrow$ add $($ eval $u)($ eval $v)$
\mid Mul $(u, v) \rightarrow$ mul $($ eval $u)($ eval $v)$

Can we do better?

(reversed)

```
type exp =
    Con of int
    Add of exp }\times\mathrm{ exp
    Mul of exp }\times\mathrm{ exp
let exp x = Add (x, Con 42)
let rec eval e = match e with
    Con i }->\textrm{i
    Add (u, v) }->\mathrm{ add (eval u) (eval v)
    Mul (u, v) }->\mathrm{ mul (eval u) (eval v)
```

```
```

type binop' = Add' | Mul'

```
```

type binop' = Add' | Mul'
type exp' =
type exp' =
Con' of int
Con' of int
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
Bin' of binop' }\times\mathrm{ exp' }\times\mathrm{ exp'
let parse x = Bin'(Add', x, Con' 42)
let parse x = Bin'(Add', x, Con' 42)
let rec eval e = match e with
let rec eval e = match e with
Con' i }->\textrm{i
Con' i }->\textrm{i
Bin'(Add', u, v) }
Bin'(Add', u, v) }
add (eval u) (eval v)
add (eval u) (eval v)
Bin'(Mul', u, v) }
Bin'(Mul', u, v) }
mul (eval u) (eval v)

```
```

 mul (eval u) (eval v)
    ```
```

type ornament $\operatorname{oexp}: \exp ^{\prime} \Rightarrow \exp$ with
| Con' i $\quad \Rightarrow$ Con i
Bin'(Add', u, v) $\Rightarrow \operatorname{Add}(\mathrm{u}, \mathrm{v})$ when $u \mathrm{v}$: eexp
Bin'(Mul', u, v) $\Rightarrow \operatorname{Mul}(u, v)$ when $u v: \exp$
blue + red
\Longrightarrow green
lifting * with oexp

Permuting values of a datatype

Input program

```
let process config x = match config with
    gt }\times\mathrm{ (match config with True }->0|\mathrm{ False }->1\mathrm{ )
let myconfig = True
let main = process myconfig 42
```


Permuting values of a datatype

Input program

```
let process config x = match config with
    gt x (match config with True }->0|\mathrm{ False }->1\mathrm{ )
let myconfig = True
let main = process myconfig 42
```

Safely exchanging the values of boolean, selectively

```
type ornament inverse : bool }=>\mathrm{ bool with
    True }=>\mathrm{ False
        False }=>\mathrm{ True
let process = lifting process : inverse }\mp@subsup{->}{-}{}\mp@subsup{->}{-}{
let myconfig = lifting myconfig : inverse
let main = lifting main : bool
```


Permuting values of a datatype

Output program

let process config $x=$ match config with gt \times (match config with True $\rightarrow 1 \mid$ False $\rightarrow 0$)
let myconfig $=$ False
let main $=$ process myconfig 42
Safely exchanging the values of boolean, selectively

```
type ornament inverse : bool }=>\mathrm{ bool with
    True }=>\mathrm{ False
        False }=>\mathrm{ True
let process = lifting process : inverse }\mp@subsup{->}{-}{}\mp@subsup{->}{-}{
let myconfig = lifting myconfig : inverse
let main = lifting main : bool
```

- The inverse transformation is used selectively.
- The ornamentation typechecking / inference tracks the relations between the old and new versions of bool and ensures consistency.

Permuting values of a datatype

Output program incomplete!
let process config $x=$ match config with gt \times (match config with True $\rightarrow 1 \mid$ False $\rightarrow 0$)
let myconfig $=$ True
let main $=$ process [missing ornament for myconfig] 42
Unsafely exchanging the values of boolean, selectively

```
type ornament inverse : bool }=>\mathrm{ bool with
    True }=>\mathrm{ False
    False }=>\mathrm{ True
let process = lifting process : inverse }\mp@subsup{->}{-}{}\mp@subsup{->}{-}{
let myconfig = lifting myconfig : bool
let main = lifting main : bool
```

- The inverse transformation is used selectively.
- The ornamentation typechecking / inference tracks the relations between the old and new versions of bool and ensures consistency.

Enforcing more invariants

```
type exp =
    App of exp }\times\operatorname{exp
    Con of int
    Abs of (exp }->\mathrm{ exp)
```

let rec eval $\mathrm{e}=$ match e with
Con i \rightarrow Some (Con i)
Abs $\mathrm{f} \rightarrow$ Some (Abs f)
App (u, v) \rightarrow
(match eval u with
None \rightarrow None
Some (Con i) \rightarrow None
Some (App (u, v)) \rightarrow None
Some (Abs f) \rightarrow
(match eval v with
Some $x \rightarrow \operatorname{eval}(f x) \mid \quad .$.$))$

Enforcing more invariants

 App of exp }\times\operatorname{exp
 Con of int
 Abs of (exp }->\mathrm{ exp)
    ```
```

```
type exp =
```

```
```

type exp =

```
let rec eval \(\mathrm{e}=\) match e with
    Con i \(\rightarrow\) Some (Con i)
    Abs \(\mathrm{f} \rightarrow\) Some (Abs f)
    App (u, v) \(\rightarrow\)
    (match eval u with
    None \(\rightarrow\) None
    Some (Con i) \(\rightarrow\) None
    Some (App (u, v)) \(\rightarrow\) None
    Some (Abs f) \(\rightarrow\)
    (match eval \(\vee\) with
        Some \(x \rightarrow \operatorname{eval}(f x) \mid \quad .\).\() )\)
```

type exp' =

```
type exp' =
    | App' of exp' }\times\mathrm{ exp'
    | App' of exp' }\times\mathrm{ exp'
    | Val of value'
    | Val of value'
and value' =
and value' =
    Con' of int
    Con' of int
    Abs' of (value' }->\mathrm{ exp')
```

 Abs' of (value' }->\mathrm{ exp')
    ```

\section*{Enforcing more invariants}
```

type exp =
App of exp }\times\mathrm{ exp
Con of int
Abs of (exp }->\mathrm{ exp)

```
let rec eval \(\mathrm{e}=\) match e with
    Con i \(\rightarrow\) Some (Con i)
    Abs \(\mathrm{f} \rightarrow\) Some (Abs f)
    App (u, v) \(\rightarrow\)
    (match eval u with
        None \(\rightarrow\) None
        Some (Con i) \(\rightarrow\) None
        Some (App (u, v)) \(\rightarrow\) None
        Some (Abs f) \(\rightarrow\)
        (match eval \(\vee\) with
        Some \(x \rightarrow \operatorname{eval}(f x) \mid \quad .\).\() )\)
```

type exp' =
| App' of exp' < exp'
Val of value'
and value' =
Con' of int
Abs' of (value ' }->\mathrm{ exp')
let rec eval' e = match e with
Con' i }->\mathrm{ Some (Int i)
Abs' f }->\mathrm{ Some (Fun f)
App'(u, v) }
(match eval' u with
None }->\mathrm{ None
Some (Con' i) }->\mathrm{ None
| Some (Abs' f) }
(match eval' v with
Some x meval' (f x) | ..))

```

\section*{Enforcing more invariants}
```

type exp =
App of exp }\times\operatorname{exp
Con of int
Abs of (exp }->\operatorname{exp}

```
```

type exp' =
| App' of exp' < exp'
Val of value'
and value' =
Con' of int
Abs' of (value ' }->\mathrm{ exp')

```
```

type ornament oexp : exp \Rightarrow exp' with
Con i $\quad \Rightarrow$ Val (Con' i)
Abs $f \quad \Rightarrow$ Val (Abs' f) when f : ovalue \rightarrow oexp
App $(u, v) \Rightarrow A p p^{\prime}(u, v)$ when $u v$: oexp
and ovalue : $\exp \Rightarrow$ value' with
Con i $\quad \Rightarrow$ Con' i
Abs $f \quad \Rightarrow$ Abs' f when $f:$ ovalue \rightarrow oexp
App (u,v) $\Rightarrow \sim$

```
indicates an impossible case

\section*{Code specialization: sets as unit maps}

A set can be seen as a unit map
```

type \alpha map =
Mnode of }\alpha\mathrm{ map }\times\mathrm{ key }\times\alpha\times\alpha\mathrm{ map
Mempty

```

\section*{Code specialization: sets as unit maps}

A set can be seen as a unit map
type \(\alpha\) map \(=\)
Mnode of \(\alpha\) map \(\times\) key \(\times \alpha \times \alpha\) map
Mempty
but it can use a more compact representation:

\section*{type set \(=\)}

Snode of set \(\times\) key \(\times\) set
Sempty

\section*{Code specialization: sets as unit maps}

A set can be seen as a unit map
type \(\alpha\) map \(=\)
Mnode of \(\alpha\) map \(\times\) key \(\times \alpha \times \alpha\) map
Mempty
but it can use a more compact representation:

\section*{type set =}

Snode of set \(\times\) key \(\times\) set
Sempty
We may automate the translation:
type ornament mapset : unit map \(\Rightarrow\) set with Mnode(l,k ,(), r) \(\Rightarrow\) Snode(I, k, r) when I r : mapset Mempty \(\rightarrow\) Sempty
lifting * with mapset
NB: Will keep passing extra unit parameters in auxiliary functions
- These can also be removed by ornamentation of the arguments

\section*{Code generalization: from sets to maps}
```

type set =
Snode of set }\times\mathrm{ key }\times\mathrm{ set
Sempty

```
type \(\alpha\) map \(=\)
    Mnode of \(\alpha\) map \(\times\) key \(\times \alpha \times \alpha\) map
    Mempty
type ornament \(\alpha\) setmap : set \(\Rightarrow \alpha\) map with
    Snode(I, k, r) \(\Rightarrow\) Mnode(l, , _, r \(^{\text {r }}\) ) when I r : \(\alpha\) setmap
    Mempty \(\Rightarrow\) Sempty
- The ornament relation \(\alpha\) setmap is not a function:
\[
\forall v: \alpha, \quad \operatorname{Snode}(I, k, r) \Rightarrow \operatorname{Mnode}(I, k, v, r)
\]
- The code can only be partially lifted
- The missing parts must be user provided

This is the initial idea of Conor when introducing ornaments. . .

\section*{A simpler example: nat \& list}

> (used as a running example to explain the details of lifting.)

Similar types
\begin{tabular}{ll|l} 
type & nat \(=\mathbf{Z}\) & S of \\
type \(\alpha\) & nat \\
list & \(=\) Nil & Cons of \(\alpha \times \alpha\) list
\end{tabular}

With similar values


The ornament relation
type ornament \(\alpha\) natlist : nat \(\Rightarrow \alpha\) list with
| Z \(\quad \Rightarrow \mathrm{Nil}\)
I \(\mathrm{S} \mathrm{m} \Rightarrow\) Cons (_, m) when \(\alpha\) natlist : \(\mathrm{m} \Rightarrow \mathrm{m}\)
- The _ stands for any value; may only appear on the right-hand side

\section*{add \& append}
let rec add \(m \mathrm{n}=\) match m with
\[
\begin{aligned}
& \mathrm{Z} \rightarrow \mathrm{n} \\
& \mathrm{I} S \mathrm{~m}^{\prime} \rightarrow \mathrm{S}\left(\text { add } \mathrm{m}^{\prime} \mathrm{n}\right)
\end{aligned}
\]
let rec append \(\mathrm{m} n=\) match m with
| Nil \(\rightarrow\) n
| Cons(x, m') \(\rightarrow\) Cons( x , append m' n )

\section*{add \& append}
let rec add \(\mathrm{m} n=\) match m with
\[
\begin{aligned}
& \mathrm{Z} \rightarrow \mathrm{n} \\
& \mathrm{I} \mathrm{~m}^{\prime} \rightarrow \mathrm{S}\left(\text { add } \mathrm{m}^{\prime} \mathrm{n}\right)
\end{aligned}
\]
let rec append \(\mathrm{m} \mathrm{n}=\) match m with
| Nil \(\rightarrow\) n
| Cons(x, m') \(\rightarrow\) Cons( x , append m' n )

\section*{add \& append}
let rec add \(\mathrm{m} n=\) match m with
\[
\begin{aligned}
& \mathrm{Z} \rightarrow \mathrm{n} \\
& \mathrm{I} ~ \mathrm{~m}^{\prime} \rightarrow \mathrm{S}\left(\text { add } \mathrm{m}^{\prime} \mathrm{n}\right)
\end{aligned}
\]
let rec append \(\mathrm{m} \mathrm{n}=\) match m with
| Nil \(\rightarrow\) n
| Cons(x, m') \(\rightarrow\) Cons( x , append m' n )

Lifting (partial) missing information

\section*{Lifting add into append}
let rec add \(m \mathrm{n}=\) match m with
\(Z \rightarrow n\)
\(S m^{\prime} \rightarrow S\left(\right.\) add \(\left.m^{\prime} n\right)\)
let append \(=\) lifting add \(:{ }_{\text {_ }}\) natlist \(\rightarrow_{\text {_ }}\) natlist \(\rightarrow_{\text {_ }}\) natlist
let rec append \(\mathrm{m} \mathrm{n}=\) match m with
\(\mathrm{Nil} \rightarrow \mathrm{n}\)
\(\operatorname{Cons}(\mathrm{x}, \mathrm{m}\) ') \(\rightarrow\) Cons (\#1, append m' n )

\section*{Lifting add into append}
let rec add \(m \mathrm{n}=\) match m with
\(Z \rightarrow n\)
\(S m^{\prime} \rightarrow S\left(\right.\) add \(\left.m^{\prime} n\right)\)
let append \(=\) lifting add : _ natlist \(\rightarrow_{\text {_ }}\) natlist \(\rightarrow_{\text {_ }}\) natlist with \(\# 1 \leftarrow(\) match \(m\) with Cons \((x, \ldots) \rightarrow x)\)
let rec append \(\mathrm{m} n=\) match m with
\(\mathrm{Nil} \rightarrow \mathrm{n}\)
\(\operatorname{Cons}(\mathrm{x}, \mathrm{m}\) ') \(\rightarrow\) Cons (\#1, append m' n )

\section*{Lifting add into append}
let rec add \(m \mathrm{n}=\) match m with
\(Z \rightarrow n\)
\(S m^{\prime} \rightarrow S\left(\right.\) add \(\left.m^{\prime} n\right)\)
let append \(=\) lifting add : _ natlist \(\rightarrow_{\text {_ }}\) natlist \(\rightarrow_{\text {_ }}\) natlist with \(\# 1 \leftarrow(\) match \(m\) with Cons \((x, \ldots) \rightarrow x)\)
let rec append \(\mathrm{m} n=\) match m with
\(\mathrm{Nil} \rightarrow \mathrm{n}\)
Cons( \(\mathrm{x}, \mathrm{m}\) ') \(\rightarrow\) Cons ( x , append \(\mathrm{m}^{\prime} \mathrm{n}\) )

\section*{Lifting add into append}
let rec add \(m \mathrm{n}=\) match m with
\(Z \rightarrow n\)
\(S m^{\prime} \rightarrow S\left(\right.\) add \(\left.m^{\prime} n\right)\)
let append \(=\) lifting add : _ natlist \(\rightarrow_{\text {_ }}\) natlist \(\rightarrow_{\text {_ }}\) natlist with \(\# 1 \leftarrow(\) match \(m\) with Cons \((x, \quad\) ) \(\rightarrow x)\)
let rec append \(\mathrm{m} n=\) match m with
\(\mathrm{Nil} \rightarrow \mathrm{n}\)
Cons( \(\mathrm{x}, \mathrm{m}\) ') \(\rightarrow\) Cons ( x , append \(\mathrm{m}^{\prime} \mathrm{n}\) )

\section*{Lifting add into append}
let rec add \(m \mathrm{n}=\) match m with
\[
\begin{aligned}
& \mathrm{Z} \rightarrow \mathrm{n} \\
& \mathrm{~S} \mathrm{~m}^{\prime} \rightarrow \mathrm{S}\left(\text { add } \mathrm{m}^{\prime} \mathrm{n}\right)
\end{aligned}
\]
let append \(=\) lifting add : _ natlist \(\rightarrow_{\text {_ }}\) natlist \(\rightarrow_{\text {_ }}\) natlist with \(\# 1 \leftarrow(\) match \(m\) with Cons \((x, \ldots) \rightarrow x)\)
let rec append \(\mathrm{m} n=\) match m with
\[
\mathrm{Nil} \rightarrow \mathrm{n}
\]
\[
\operatorname{Cons}\left(\mathrm{x}, \mathrm{~m}^{\prime}\right) \rightarrow \operatorname{Cons}\left(\mathrm{x}, \text { append } \mathrm{m}^{\prime} \mathrm{n}\right)
\]

\section*{How to proceed?}
- in a principled manner-no arbitrary choices!
- so that the lifted program behaves similarly to the base one: (add, append) \(\in \alpha\) natlist \(\rightarrow \alpha\) natlist \(\rightarrow \alpha\) natlist
implies:
\[
\text { length }(\text { append } \mathrm{n} m)=\text { add }(\text { length } \mathrm{n}) \text { (length } \mathrm{m})
\]

\section*{Code reuse by abstraction a priori}

A design principle for modularity

\section*{Code reuse by abstraction a priori}

A design principle for modularity


Provide the details separately
as type and value arguments
\[
F A
\]

\section*{Code reuse by abstraction a priori}

A design principle for modularity


Provide the details separately as type and value arguments

F \(A\)

Code reuse with a different implementation of the details
\(F B\)

\section*{Code reuse by abstraction a priori}

A design principle for modularity


Provide the details separately as type and value arguments
\[
F A
\]


Code reuse with a different implementation of the details
\(F B\)

Theorems for free
Parametricity ensures that the code \(F A\) and \(F B\) behaves the same up to the differences between \(A\) and \(B\).

\section*{Lifting}

No reasonable place for abstraction a priori

\section*{Lifting}

Need to ornament some of the datatypes
base
code

Find its lifted version given an ornament specification

\section*{Lifting by abstraction a posteriori}

Abstract over (depends only on) what is ornamented.

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]

base
code

Find its lifted version given an ornament specification

\section*{Lifting by abstraction a posteriori}

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]


\section*{Lifting by abstraction a posteriori}

Specialize according to the liftting specification

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]

base
code
\(A=A_{\text {gen }} i d_{\text {args }}\)
(inferred) ornargs

Find its lifted version given an ornament specification
\[
B=A_{\text {gen }} \text { orn }{ }_{\text {args }}
\]

\section*{Lifting by abstraction a posteriori}

\section*{Simplify}

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]


\section*{Lifting by abstraction a posteriori}

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]


\section*{Lifting by abstraction a posteriori}

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]


\section*{Lifting by abstraction a posteriori}

\section*{\(m \mathrm{ML}\)}

Find a (most) generic version
\[
\Lambda(\alpha, \beta) \lambda(x: \tau)(y: \sigma) M
\]


\section*{Representing ornaments of nat}
- We introduce a skeleton (open definition) of nat, to allow for hybrid nats where the head looks like a nat but the tail need not be a nat. type \(\alpha\) natS \(=Z^{\prime}\) | S' of \(\alpha\)
- The ornamented datatype will piggy bag on this skeleton:


\section*{Representing ornaments of nat}
- We introduce a skeleton (open definition) of nat, to allow for hybrid nats where the head looks like a nat but the tail need not be a nat. type \(\alpha\) natS \(=Z^{\prime}\) | S' of \(\alpha\)
- The ornamented datatype will piggy bag on this skeleton:

- For convenience, we pack them in a datatype
\[
\begin{aligned}
& \text { type }(\alpha, \beta, \gamma) \text { orn }=\{\text { inj }: \alpha \rightarrow \beta \rightarrow \gamma ; \text { proj }: \gamma \rightarrow \alpha\} \\
& \text { let natlist }:((\alpha \text { list }) \text { natS, } \beta, \alpha \text { list }) \text { orn } \\
& \\
& =\{\text { inj }=\text { list_inj; proj }=\text { list_proj }\}
\end{aligned}
\]

\section*{From add to append}
let add =
let rec add \(\mathrm{m} \mathrm{n}=\) match
\| Z \(\rightarrow\) n
| S m' \(\rightarrow\)
in add
\(m\) with
(S (add m, n))

\section*{From add to append}
let append =
let rec add \(\mathrm{m} n=\)
match natlist. proj m with
| Z' \(\rightarrow\) n
| S' m' \(\rightarrow\)
(S (add m, n))
in add

\section*{From add to append}
let append =
let rec add \(\mathrm{m} n=\)
match natlist. proj m with
| Z' \(\rightarrow\) n
| S' m' \(\rightarrow\) natlist.inj (S' (add m' n)) (List.hd m) in add

\section*{From add to a generic lifting}
let add_gen orn \({ }_{1}\) orn \({ }_{2}\) patch = let rec add \(\mathrm{m} \mathrm{n}=\)
match orn \({ }_{1}\).proj m with
I Z' \(\rightarrow\) n
| S' m' \(\rightarrow \quad \operatorname{orn}_{2} . \operatorname{inj}\left(S^{\prime}\left(\operatorname{add} \mathrm{m}^{\prime} \mathrm{n}\right)\right.\) ) (patch m n) in add

\section*{and back to append}
let add_gen orn \({ }_{1}\) orn \({ }_{2}\) patch = let rec add \(\mathrm{m} \mathrm{n}=\) match orn \({ }_{1}\).proj m with
\[
\mid Z^{\prime} \rightarrow \text { n }
\]
\[
\text { | } S^{\prime} m^{\prime} \rightarrow \quad \operatorname{orn}_{2} \cdot \operatorname{inj}\left(S^{\prime}\left(\operatorname{add} m^{\prime} n\right)\right)(\text { patch m n) }
\]
in add
From add_gen back to append
let append \(=\) add_gen natlist natlist
(fun \(m \quad \rightarrow\) match \(m\) with Cons( x, _) \(\rightarrow \mathrm{x}\) )

\section*{or back to add}
let add_gen orn \({ }_{1}\) orn \({ }_{2}\) patch =
let rec add \(\mathrm{m} \mathrm{n}=\)
match orn \({ }_{1}\).proj m with
I Z' \(\rightarrow\) n
| S' m' \(\rightarrow \quad \operatorname{orn}_{2} . \operatorname{inj}\left(S^{\prime}\left(\operatorname{add} \mathrm{m}^{\prime} \mathrm{n}\right)\right)(\) patch m n)
in add
From add_gen back to append
let append \(=\) add_gen natlist natlist

From add_gen back to add: by passing the "identity" ornament
let natnat : (nat natSkel, \(\alpha\), nat) orn \(=\)
\{ proj \(=\left(\right.\) fun \(n \rightarrow\) match \(n\) with \(Z \rightarrow Z^{\prime} \mid S m \rightarrow S^{\prime} m\) ) inj \(=\left(\right.\) fun \(n \times \rightarrow\) match \(n\) with \(\left.\left.Z^{\prime} \rightarrow Z \mid S^{\prime} m \rightarrow S m\right)\right\}\)
let add \(=\) add_gen natnat natnat (fun _ _ \(\rightarrow\) () )

\section*{Type Inference}

Needed for coherence
- the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference
- For the ornament natlist

let rec add \(\mathrm{m} \mathrm{n}=\)
match orn \({ }_{0}\). proj \(m\) with
\[
\begin{aligned}
& Z^{\prime} \rightarrow \mathrm{n} \\
& S^{\prime} \mathrm{m}^{\prime} \rightarrow \operatorname{orn}_{1} \cdot \operatorname{inj}\left(S^{\prime} \quad\left(\text { add } m^{\prime} \mathrm{n}\right)\right)\left(\mathrm{p}_{1} \mathrm{~m} \mathrm{n}: \beta_{1}\right)
\end{aligned}
\]
in add

\section*{Type Inference}

Needed for coherence
- the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference
- If nat had 2 successor nodes, we would get ...
let add_gen (orn : (_, , \(\gamma_{0}\) ) orn) (orn \({ }_{1}\) : (_, \(\beta_{1}, \gamma_{1}\) ) orn) \(\mathrm{p}_{1}\) (orn \({ }_{2}\) : (_, \(\beta_{2}, \gamma_{1}\) ) orn) \(p_{2}=\)
let rec add \(m \mathrm{n}=\)
match orn \({ }_{0}\).proj \(m\) with
\[
\begin{aligned}
& Z^{\prime} \rightarrow \mathrm{n} \\
& \mathrm{~S}_{1}^{\prime} \mathrm{m}^{\prime} \rightarrow \operatorname{orn}_{1} \cdot \operatorname{inj}\left(\mathrm{~S}_{1},\left(\text { add } \mathrm{m}^{\prime}, \mathrm{n}\right)\right)\left(\mathrm{p}_{1} \mathrm{mn}: \beta_{1}\right) \\
& \mathrm{S}_{2}^{\prime} \mathrm{m}^{\prime} \rightarrow \operatorname{orn}_{2} \cdot \operatorname{inj}\left(\mathrm{~S}_{2},\left(\operatorname{add} \mathrm{~m}^{\prime} \mathrm{n}\right)\right)\left(\mathrm{p}_{2} \mathrm{mn}: \beta_{2}\right)
\end{aligned}
\]
in add

\section*{Type Inference}

Needed for coherence
- the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference
- ... and orn \({ }_{1}\) and orn 2 should be identified
let add_gen (orn \(: ~\left(\_, \quad, \gamma_{0}\right)\) orn) ( orn \(_{1}:\left(\ldots, \beta_{1}, \gamma_{1}\right)\) orn) \(p_{1}\)
let rec add \(\mathrm{m} n=\)
match orn \(_{0}\). proj \(m\) with
\[
\begin{aligned}
& Z^{\prime} \rightarrow \mathrm{n}^{\prime} \\
& \mathrm{S}_{1}^{\prime} \mathrm{m}^{\prime} \rightarrow \operatorname{orn}_{1} \cdot \operatorname{inj}\left(\mathrm{~S}_{1},\left(\text { add } \mathrm{m}^{\prime} \mathrm{n}\right)\right)\left(\mathrm{p}_{1} \mathrm{mn}: \beta_{1}\right) \\
& \mathrm{S}_{2}^{\prime} \mathrm{m}^{\prime} \rightarrow \operatorname{orn}_{1} \cdot \operatorname{inj}\left(\mathrm{~S}_{2},\left(\text { add } \mathrm{m}^{\prime} \mathrm{n}\right)\right)\left(\mathrm{p}_{2} \mathrm{mn}: \beta_{1}\right)
\end{aligned}
\]
in add

\section*{Type Inference}

Needed for coherence
- the same base type may be ornamented differently in different places
- except if their values (may) communicate

ML-style type inference
\(\triangleright\) Suffices here, but the injection need a dependent type in fine
let add_gen (orn \({ }_{0}\) : (_,_, \(\gamma_{0}\) ) orn) ( orn \(_{1}:\left({ }_{-}, \beta_{1}, \gamma_{1}\right)\) orn) \(\mathrm{p}_{1}\)
let rec add \(\mathrm{m} n=\)
match orn \(_{0}\). proj \(m\) with
| Z' \(\rightarrow\) n
\(\mid S_{1}, m^{\prime} \rightarrow \operatorname{orn}_{1} \cdot \operatorname{inj}\left(S_{1}^{\prime}\left(\right.\right.\) add \(\left.\left.m^{\prime}, n\right)\right)\left(p_{1} m n: \beta_{1}\right)\)
\(\mid S_{2}, m^{\prime} \rightarrow \operatorname{orn}_{1} \cdot \operatorname{inj}\left(S_{2}^{\prime}\left(\right.\right.\) add \(\left.\left.m^{\prime} n\right)\right)\left(p_{2} m n: \beta_{2}\right)\)
in add

\section*{Staging}

We need meta-reduction to
- generate readable code (the one the user would have written)
- preserve the computational behavior/complexity, not just the meaning
- bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:
```

let add_gen $=$ fun orn $_{1}$ orn $_{2}$ patch \rightarrow
let rec add m n $=$
match orn 1 .proj m with
| Z' \rightarrow n
| S' m' \rightarrow orn $_{2}$.inj $S^{\prime}\left(\right.$ add $m^{\prime} n$) (patch m n)
in add
let append = add_gen natlist natlist
(fun $\mathrm{m}{ }_{-} \rightarrow$ match m with $\operatorname{Cons(x,~}$) $\rightarrow \mathrm{x}$)

```

\section*{Staging}

We need meta-reduction to
- generate readable code (the one the user would have written)
- preserve the computational behavior/complexity, not just the meaning
- bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:
```

let add_gen = fun orn }\mp@subsup{|}{1}{}\mp@subsup{\mathrm{ orn }}{2}{}\mathrm{ patch \#\#
let rec add m n =
match orn..proj \# m with
| Z' }->\mathrm{ n
| S' m' }->\mathrm{ orn2.inj \# S' (add m' n) \# (patch m n)
in add

```
let append = add_gen \# natlist \# natlist \# (fun \(m{ }_{-} \rightarrow\) match \(m\) with Cons \(\left(x,{ }_{\sim}\right.\) ) \(\rightarrow x\) )

\section*{Staging}

We need meta-reduction to
- generate readable code (the one the user would have written)
- preserve the computational behavior/complexity, not just the meaning
- bring the lifted code back to ML

Mark meta-abstractions and meta-applications that have been introduced:
```

let add_gen = fun orn }\mp@subsup{|}{1}{}\mp@subsup{\mathrm{ orn }}{2}{}\mathrm{ patch \#\#
let rec add m n =
match orn..proj \# m with
| Z' }->\mathrm{ n
| S' m' }->\mathrm{ orn2.inj \# S' (add m' n) \# (patch m n)
in add

```
let append = add_gen \# natlist \# natlist \# (fun \(m{ }_{-} \rightarrow\) match \(m\) with Cons \(\left(x,{ }_{\sim}\right.\) ) \(\rightarrow x\) )

\section*{Meta-reduction of the lifted code}
```

let add_gen orn}

```
    let rec add \(\mathrm{m} \mathrm{n}=\)
    match orn \({ }_{1}\). proj \# m with
    | Z' \(\rightarrow\) n
    | S' m' \(\rightarrow\) orn \(_{2}\).inj \# S' (add m' n) \# (patch m n)
    in add
let append = add_gen \# natlist \# natlist
                                    \# (fun m \(\quad \rightarrow\) match \(m\) with \(\operatorname{Cons(x,~}\) ) \(\rightarrow \mathrm{x}\) )
- Reduce \#-redexes at compile time.
- All \#-abstractions and \#-applications can actually be reduced.
- This is ensured just by typing!

\section*{Meta-reduction}
let rec append \(\mathrm{m} \mathrm{n}=\) match (match m with
| Nil \(\rightarrow\) Z'
| Cons(_, xs) \(\rightarrow\) S' xs) with
```

| Z' }->\mathrm{ n
| S' m' }
(match S' (append m' n) with
| Z' }->\mathrm{ Nil
| S' zs }->\mathrm{ Cons((match m with Cons(x,_) }->\textrm{x}),\textrm{zs})

```
- There remains some redundant pattern matchings...
- Decoding list to natS and encoding natS to list.
- We can eliminate the last one by reduction

\section*{Elimination of the encoding}
let rec append m n = match (match m with
| Nil \(\rightarrow\) Z'
| Cons(_, xs) \(\rightarrow\) S' xs) with

Cons((match m with Cons(x,_) \(\rightarrow \mathrm{x}\) ), append m' n )
- And the other by extrusion... (commuting matches)

\section*{Elimination of the encoding}
let rec append m n = match (match m with
| Nil \(\rightarrow\) Z'
| Cons(_, xs) \(\rightarrow\) S' xs) with
```

| Z' }->\mathrm{ n
S' m' }
Cons((match m with Cons(x,_) -> x), append m' n)

```
- And the other by extrusion... (commuting matches)

\section*{Elimination of the encoding}
let rec append m n = match \(m\) with
| Nil \(\rightarrow\)

\section*{(match Z' with}

I \(Z^{\prime} \rightarrow n\)
\| S' m' \(\rightarrow\)
Cons((match m with Cons(x,_) \(\rightarrow \mathrm{x}\) ), append m' n))
| Cons(_, xs) \(\rightarrow\)
\[
\begin{aligned}
& \text { (match S' m' with } \\
& \text { | Z' } \rightarrow \text { n } \\
& \text { \| S' m' } \rightarrow \\
& \text { Cons((match m with Cons(x,_) } \rightarrow \text { x), append m' n)) }
\end{aligned}
\]
and reducing again

\section*{Elimination of the encoding}
let rec append \(\mathrm{m} n=\) match m with
\(\mid \mathrm{Nil} \rightarrow\)
(match Z' with
| Z' \(\rightarrow \mathrm{n}\)
| S' m' \(\rightarrow\)
Cons((match m with \(\operatorname{Cons}(x, \ldots) \rightarrow x)\), append \(m\) n))
\(\mid\) Cons(_, xs) \(\rightarrow\)
(match S' m' with
\(\mid Z^{\prime} \rightarrow \mathrm{n}\)
| S' m’ \(\rightarrow\)
Cons((match m with Cons \((\mathrm{x}, \ldots) \rightarrow \mathrm{x})\), append m'n))
and reducing again

\section*{Eliminating the encoding}
let rec append m n = match m with
| Nil \(\rightarrow\)
| Cons(_, xs) \(\rightarrow\)

Cons((match m with Cons(x,_) \(\rightarrow\) x), append m' \(n\) ))

\section*{Back to ML}
let rec append \(\mathrm{m} n=\) match m with
\(\mid \mathrm{Nil} \rightarrow \mathrm{n}\)
\(\mid\) Cons (x, xs) \(\rightarrow\)
Cons ( (match m with Cons \(x \rightarrow x\) ), append \(m\), \(n\) )

\section*{Back to ML}
let rec append \(\mathrm{m} n=\) match m with
\(\mid \mathrm{Nil} \rightarrow \mathrm{n}\)
| Cons ( \(\bar{x}, \mathrm{xs}\) ) \(\rightarrow\)
Cons ( (match m with Cons \(x \rightarrow x\) ), append m' \(n\) )

\section*{Back to ML}
let rec append \(\mathrm{m} n=\) match \(m\) with
\(\mid \mathrm{Nil} \rightarrow \mathrm{n}\)
\(\mid\) Cons (x, xs) \(\rightarrow\)
Cons ( \(x\), append m' \(n\) )
- We obtain the code for append.
- This transformation also always eliminates all uses of dependent types.

\section*{Back to ML}
let rec append \(\mathrm{m} n=\) match \(m\) with
\(\mid \mathrm{Nil} \rightarrow \mathrm{n}\)
\(\mid\) Cons (x, xs) \(\rightarrow\)
Cons ( x , append m ' n )
- We obtain the code for append.
- This transformation also always eliminates all uses of dependent types.

\section*{Beyond ornaments}

\section*{Theoretical limits of ornaments}

\section*{Theorem}

The lifted code behaves as the base code up to the relation between values of the base type and values of the lifted type.

Corollary
Ornaments cannot change the behavior of the base code.
\(X\) fix bugs
\(X\) turn an implementation of merge sort into quick sort
Based on datatype transformations
\(X\) modify the control, e.g. CPS transform, defunctionalization, etc. deforestation
\(X\) add a new unrelated constructor to a datatype (datatype extension)

\section*{Practical limits of ornaments}

Lifting is syntactic
\(X\) ornamentation points are derived from the syntax.
\(X\) unfolding of recursion

A useful scenario for unfolding of recursion
- Use (homogeneous) fix-length (long enough) lists instead of tuples to benefit from library functions (e.g. maps and folds).
- Lift the code back into tuples for efficiency.

Solutions
- perform unfolding as a preprocessing
- extend the notion of syntactic lifting?

\section*{De-ornamentation}


\section*{De-ornamentation}


\section*{De-ornamentation}


Why useful?
- undo the ornamentation...
- offer a simplified view: locations, type annotations on ASTs, etc.
- remove information in datatypes that became obsolete/erroneous
- change information by combination of with re-ornamentation

\section*{De-ornamentation}


Trival case
- (binop example): ornamentation is bijective (no green) de-ornamentation is an an ornamentation.

\section*{De-ornamentation}

Normal case

- The source is an ornamentation or the target. Need to throw away the green code (should be dead code on the left)

\section*{De-ornamentation}

Normal case

- The source is an ornamentation or the target. Need to throw away the green code (should be dead code on the left)
- Related work: Type theory in color by Bernardy and Moulin (ICFP 2013) A type system to check (non) dependencies.

The blue parts need to coincide exactly.

\section*{De-ornamentation}


\section*{General case}
- The blue may be depend on the green.

Need code patches in the target to replace missed bindings and pattern matchings

\section*{Combining transformations}

P
Q

\section*{Combining transformations}
\[
P \longrightarrow P_{1} \longrightarrow P_{2} \quad Q
\]

\section*{Combining transformations}

\section*{\(P \longrightarrow P_{1} \longrightarrow P_{2}{ }^{\cdots \cdots \cdots \cdots \cdots \cdots} Q\)}

General tooling already needed for pre/post processing
- Generate good names for new variables
- Pattern matching:
- Transform deep pattern matching into narrow pattern matching.
- Inverse transformation that restores deep pattern matching.
- Factor identical branches.
- Introduce / inline let bindings.

\section*{Combining transformations}

\section*{\(P \longrightarrow P_{1} \longrightarrow P_{2} \cdots \cdots \cdots \cdots \cdots, Q\)}

General tooling already needed for pre/post processing
Code inference
- Could autofill or propose some of the patches
- Inferring code from types, possibly with addition constraints
- Any other forms of code inference could be used.

\section*{Combining transformations}

\section*{\(P \longrightarrow P_{1} \longrightarrow P_{2} \cdots \cdots \cdots \cdots \cdots, Q\)}

General tooling already needed for pre/post processing
Code inference
Ornamentation like transformations
- Ornamenting in several steps: complex but isomorphic transformations, followed by simpler, non-reversible ornamentations.
- Deornamentation could precede (or follow) ornamentation.
- Extensible datatypes ? See Trees that grows by Shayan Najd \& Simon Peyton Jones:
- Their solution is by abstraction a priori.
- Abstraction a posteriori alternative?

\section*{Combining transformations}

\section*{\(P \longrightarrow P_{1} \longrightarrow P_{2} \cdots \cdots \cdots \cdots \cdots, Q\)}

General tooling already needed for pre/post processing
Code inference
Ornamentation like transformations
Other useful semantic preserving transformations?
- CPS transformation, Defunctionalization, Deforestation, etc.
- Many compiler optimisations could be made available to the user

\section*{Combining transformations}

\section*{\(P \longrightarrow P_{1} \longrightarrow P_{2}{ }^{\cdots \cdots \cdots \cdots \cdots \cdots} Q\)}

General tooling already needed for pre/post processing
Code inference
Ornamentation like transformations
Other useful semantic preserving transformations?
Non-semantic preserving transformations
- Necessary, for completeness, and to fix bugs!
- Hopefully, can be reduced to only a few, small transformations inserted between well-behaved ones.

\section*{Modes of interaction}
- The most appealing usage is probably in an interactive mode, in some IDE with in place changes.
- We also need a batch mode
- to separate the concerns, be independent of any IDE
- we may wish to maintain two versions in sync (e.g. locations)
- or maintain older versions for archival
- Raises new questions:
- Design the right syntax for describing transformations
- Robustness to source changes:

Can a patch from \(A\) to \(B\) be adapted when \(A\) changes?
- Merging of two transformations done in parallel...

\section*{Conclusion}

We need a toolbox for safer, easier software evolution!
- With simple, composable, well-understood transformations
- Typed languages are a good setting:
- Focus on type transformations, prior to code transformations.
- Separate what can be automated, from what must be user provided
- Abstraction a posteriori provides guidance and ensures a semantic preservation property
- Other applications of abstraction a posteriori? (boilerplate code?)

Ornaments are just one little tool
fits well within ML and could be further explored in many directions (see more at http://gallium.inria.fr/~remy/ornaments/)

\section*{Let's automate the boring parts of programming!}```

