
Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

1 Introduction

2 Splitting unpack

3 Splitting pack

4 Reduction

5 Advanced technicalities

6 Expressiveness

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 1 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Abstract

We present a variant of the explicitly-typed second-order polymorphic
λ-calculus with primitive open existential types, i.e. a collection of more
atomic constructs for introduction and elimination of existential types. We
equip the language with a call-by-value small-step reduction semantics
that enjoys the subject reduction property.

We claim that open existential types model abstract types and type
generativity in a modular way. Our proposal can be understood as a
logically-motivated variant of Dreyer’s Rtg where type generativity is no
more seen as a side effect.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 2 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Open Existential types for Module systems
A Logical Account of Type Generativity

Didier Rémy

INRIA-Rocquencourt

IFIP WG 2.8, June 2008

Based on joint work with

Benôıt Montagu

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 3 / 32

http://gallium.inria.fr/~montagu

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Motivations

Modular programming is the key to writing good, maintainable software.
Will be even more important tomorrow than today.

However, despite 20 years of intensive research on module systems:
There is a big gap between:

The intuitive simplicity of the underlying concepts, and

The actual complexity of existing solutions.

Our goals

Explain or reduce this gap.

Design a core calculus for the surface langage of a language with:

first-class modules
that is conceptually economical, e.g. avoids dupplication of concepts.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 4 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

What is needed for module systems?

Already in the core-calculus

Structures are records

Functors are functions

Signatures are types

Crucial (and deep) features for expressiveness

Type abstraction (may already be in the core language)

Type generativity (the master-key to modules)

Important (but not so deep) features for conciseness

Sharing a posteriori (diamond import problem)

Flexible naming policy

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 5 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Type generativity

The problem

A defines t abstractly

B and C uses A

Can D assume that B and C
have compatible views of t?

Can also two copies/views of A
be made incompatible? —this is
type generativity.

A

B C

D
Yes

or

A A

B C

D
No

Keep track of identifies of abstract types in a way or another

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 6 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Previous approaches

Existential types: model type abstraction but lack modular structure.

Path-based systems.

An old idea (Dave MacQueen, Modules for Standard ML, 1984)

Today, still at the basis of all module systems.

General idea
Cannot refer to how types have been defined, since they have been
forgotten.

Instead refer to where they have been defined.

An abstract type is referred to as a projection path from a value
variable.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 7 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Problem with path-based systems

General problem

Types depend on values (at least syntactically)

Although paths only use a small fragment of dependent types, a much
larger fragment is needed to preserve stability under term substitution.

Dependent types

An overkill technology.

They do not carry good intuitions about modules (in our opinion).

Too complicated to be exposed to the programmer, hence they
defined a core calculus in which existing languages are elabored.

Elaboration semantics

Elaboration is a compilation process, may be of arbitrary complexity.

The user cannot perform it mentally.

Looses the connection with logic: no small-step reduction semantics.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 8 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Dreyer’s Rtg: a solution without dependent types!

Motivations
Designed and used as an internal language

for a language with recursive and mixin modules.

Underlying ideas
Sees type generativity as a static side effect.

Use of linear types to keep track of such side effects.

Achievements
Interesting set of primitives

which can be used to model recursive and mixin modules.

Type generativity can be explained without dependent types.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 9 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Problem with Rtg

Based on and carrying wrong intuitions
Type generativity is a side effect (claimed very strongly)

Their semantics enforces and relies on a strictly deterministic
evaluation order.

Ad hoc meta-theory
Typechecking in Rtg uses an abstract machine that performs side
effects into a global store.

Their dynamic semantics is store based, including the modelling of
generativity.

Consequences
Unintuitive semantics: programmers can’t run the machine mentally.

Any connection with logic is lost.

Cannot be exposed to users, i.e. used as an external language.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 10 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

F. (Fzip): a variant of Rtg without the drawbacks

Standard static and dynamic semantics
Typing rules are compositional and have a logical flavor.

Small-step reduction semantics

The two are related by subject reduction and progress lemmas.

No use of recursive types is needed to model type generativity
(but they could be useful with recursive or mixin modules)

Curry-Howard isomorphism (for a subset of F.)
Formulae are the same as in System-F with existential types.

The same formulae are provable.

There are more proofs—which can be assembled more modularly.

Reduction is proof normalization, indeed.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 11 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Beyong F.

Modules can be explained as a combination of

open abstract types, to model type generativity

Shape bounded quantification to recover conciseness

(complementary, not described here)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 12 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Reminder: pack and unpack

Pack

Γ ⊢ M : τ ′[α← τ]

Γ ⊢ pack 〈τ, M〉 as ∃α. τ ′ : ∃α. τ ′

Unpack

Γ ⊢ M : ∃α. τ Γ, α, x : τ ⊢ M ′ : τ ′ α /∈ ftv(τ ′)

Γ ⊢ unpack M as α, x in M ′ : τ ′

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 13 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting unpack

unpack M as α, x in M
′

,

να. let x = open 〈α〉M in M ′

Limits the scope of α Uses α for the abstract type of M

Binds M to x in M ′

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉14 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting unpack

να. let x = open 〈α〉M in M ′

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉14 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting unpack advantages

να. let x = D

{

open 〈α〉M
}

in M ′

M need not be at toplevel.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈3〉14 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting unpack advantages

να. C

{

let x = open 〈α〉M in M ′

}

α need not be hidden immediately.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈4〉14 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting unpack advantages

C

{

let x = open 〈α〉M in M ′

}

α need not be hidden at all in program components

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈5〉14 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Must forbid incorrect programs such as

να.

let x = open 〈α〉M1 in

open 〈α〉M2

M [α] x

X

ok

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉15 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

να
⊗∃α

⊗

∃α

· · ·∀α

⊕

∃α

open
∃α

· · ·
∅

open∃α · · ·
∅

⊗

∀α
· · ·∀α

· · ·∀α

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉15 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Nu

Γ, ∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να. M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉16 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Open

Γ ⊢ M : ∃α. τ

Γ, ∃α ⊢ open 〈α〉M : τ

Nu

Γ, ∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να. M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉16 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Open

Γ ⊢ M : ∃α. τ

Γ, ∃α ⊢ open 〈α〉M : τ

Let

Γ1 ⊢ M1 : τ1 Γ2, x : τ1 ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

Nu

Γ, ∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να. M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈3〉16 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Open

Γ ⊢ M : ∃α. τ

Γ, ∃α ⊢ open 〈α〉M : τ

...

Γ, ∀α ⊢ M ′ [α] : τ ′

Let

Γ1 ⊢ M1 : τ1 Γ2, x : τ1 ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

Nu

Γ, ∃α ⊢ M : τ α /∈ ftv(τ)

Γ ⊢ να. M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈3〉16 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking Zipping

Zipping of two type environments ensures that every existential type
appears in at most one of the environments.

∀α . ∀α = ∀α

∀α . ∃α = ∃α

∃α . ∀α = ∃α

x : τ . x : τ = x : τ

∅ . ∅ = ∅ (Γ1, b1) . (Γ2, b2) = (Γ1 . Γ2), (b1 . b2)

b ::= x : τ | ∀α | ∃α

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 17 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting pack

pack 〈τ, M〉 as ∃α. τ ′

,

makes α abstract
with witness τ converts the type of M

using the equation(s)

∃(α = τ) (M : τ ′)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉18 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting pack

pack 〈τ, M〉 as ∃α. τ ′

,

closes the abstract type β

defines the open abstract type β

with internal name α and witness τ

converts the type of M

∃β. Σ 〈β〉 (α = τ) (M : τ ′)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉18 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting pack

pack 〈τ, M〉 as ∃α. τ ′

,

∃β. C

{

Σ 〈β〉 (α = τ) D
{

(M : τ ′)
}

}

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈3〉18 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting pack

pack 〈τ, M〉 as ∃α. τ ′

,

Σ 〈β〉 (α = τ) D
{

(M : τ ′)
}

A module with an open abstract type β.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈4〉18 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Splitting pack

C

{

Σ 〈β〉 (α = τ) D
{

(M : τ ′)
}

}

A sub -module with an open abstract type β.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈5〉18 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β. M : ∃β. τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉19 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β. M : ∃β. τ

Open

Γ ⊢ M : ∃β. τ

Γ, ∃β ⊢ open 〈β〉M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉19 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Sigma

Γ, ∀β , Γ′, ∀(α = τ) ⊢ M : τ ′

Γ, ∃β , Γ′ ⊢ Σ 〈β〉 (α = τ) M : τ ′[α← β]

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β. M : ∃β. τ

Open

Γ ⊢ M : ∃β. τ

Γ, ∃β ⊢ open 〈β〉M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈3〉19 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Typechecking

Coerce

Γ ⊢ M : τ ′ Γ ⊢ τ ′ ≡ τ

Γ ⊢ (M : τ) : τ

Sigma

Γ, ∀β , Γ′, ∀(α = τ) ⊢ M : τ ′

Γ, ∃β , Γ′ ⊢ Σ 〈β〉 (α = τ) M : τ ′[α← β]

uses

Exists

Γ, ∃β ⊢ M : τ

Γ ⊢ ∃β. M : ∃β. τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈4〉19 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Summary

Types are unchanged

τ ::= α | τ → τ | ∀α. τ | ∃α. τ

Exressions are

M ::= . . .

| ∃α. M | Σ 〈β〉 (α = τ) M | (M : τ)
| να. M | open 〈α〉M

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 20 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Examples

In ML:

module X = struct

type t = int
val z = 0
val s = λ(x : int)x+1

 : sig

type t
val z : t
val s : t→ t

In Fzip:

let x =Σ 〈β〉 (α = int)

({

z = 0 ;
s = λ(x : int)x+1

}

:

{

z : α ;
s : α→ α

})

in

open 〈β〉 x

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉21 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Examples

In ML:

module X = struct

type t = int
val z = 0
val s = λ(x : int)x+1

 : sig

type t
val z : t
val s : t→ t

In Fzip:

let x = ∃(α = int)

({

z = 0 ;
s = λ(x : int)x+1

}

:

{

z : α ;
s : α→ α

})

in

open 〈β〉 x

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉21 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Examples

In ML:

Making generative views of x

In Fzip:

let x = ∃(α = int)

({

z = 0 ;
s = λ(x : int)x+1

}

:

{

z : α ;
s : α→ α

})

in

let x1 = open 〈β1〉 x in
let x2 = open 〈β2〉 x in
. . .

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉21 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Examples

Functors
functions must be pure (i.e. not create open abstract types)

thus, body of functors are closed abstract types

that are opened after each application of the functor.

Example

let MakeSet =
Λα. λ(cmp : α→ α→ bool) ∃(β = set(α)) (. . . : set(β)) in

let s1 = open 〈β1〉MakeSet [int] (<) in
let s2 = open 〈β2〉MakeSet [β1] (s1.cmp) in
. . .

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 22 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Reduction

Problem (well-known)
Expressions that create open abstract types can’t be substituted.

This would dupplicate—hence break—the use of linear ressources.

The reduct would thus be ill-typed.

Solution (new)
Extrude Σ’s whenever needed (when reduction would blocked).

This safely enlarges the scope of identities,

moving the Σ’s outside of redexes, and

Allowing further reduction to proceed.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 23 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Reduction Example

let x = Σ 〈β〉 (α = int) (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}

↓

Σ 〈β〉 (α = int) let x = (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}

↓

Σ 〈β〉 (α = int)
{

ℓ1 = (1 : α) ; ℓ2 = (λ(y : β)y) (1 : α)
}

↓

Σ 〈β〉 (α = int) {ℓ1 = (1 : α) ; ℓ2 = (1 : α)}

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 24 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Reduction Values

Results are non erroneous expressions that cannot be reduced.

Some results cannot be dupplicated and are not values.

Values are results that can be dupplicated.

Definition

Values
v ::= u | (u : τ)
u ::= x | λ(x : τ)M | Λα. M | ∃β. Σ 〈β〉 (α = τ) v

Results
w ::= v | Σ 〈β〉 (α = τ) w

Note

Abstractions λ’s and Λ’s are always values because they are pure,
i.e. typechecked in Γ without ∃α’s.

Otherwise, unpure abstractions should be treated linearly.
Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 25 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Reduction Semantics

Call-by-value small-step reduction semantics

Elimination rules: β-reduction rules plus,

open 〈β〉 ∃α. M M[α← β]

νβ. Σ 〈β〉 (α = τ) w w [β ← α][α← τ]

+ Extrusion rule applies for all extrusion contexts E (definition omitted)

E
[

Σ 〈β〉 (α = τ) w
]

 Σ 〈β〉 (α = τ) E [w]

+ Propagation of coercions (uninteresting reduction rules)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 26 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Reduction Type soundness

Theorem (Subject reduction)

If Γ ⊢ M : τ and M M ′, then Γ ⊢ M ′ : τ .

Theorem (Progress)

If Γ ⊢ M : τ and Γ does not contain value variable bindings, then either M
is a result, or it is reducible.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 27 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

The appearance of recursive types

Internal recursion, through openings:

let x = ∃(α = β → β)M in open 〈β〉 x

reduces to: ∃(α = τ)M stands for
∃γ. Σ 〈γ〉 (α = β → β)M

open 〈β〉 ∃(α = β → β)M

which leads to the recursive equation β = β → β.

External recursion, through open witness definitions:

{ℓ1 = Σ 〈β1〉 (α1 = β2 → β2)M1 ;
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1)M2 }

already contains the recursive equations β1 = β2 → β2 and β2 = β1 → β1

Cannot occur in System F.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 28 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

The appearance of recursive types

Origin of the problem

Sigma

Γ, ∀β ,Γ′,∀(α = τ) ⊢ M : τ ′

Γ, ∃β ,Γ′ ⊢ Σ 〈β〉 (α = τ)M : τ ′[α← β]

β may appear in τ which is later meant to be equated with β.

Solutions
1 Remove ∀β from the premisse:

requires that Γ′ does not depend on β either.
too strong:

at least requires some special case for let-bindings.

some useful cases would still be eliminated.

2 Keep a more precise track of dependencies.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 29 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Tracking dependencies ◮ more

Traditional view
Γ is a mapping together with a total ordering on its domain.

Generalization
Organize the context as a strict partial order.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 30 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Relation to System F (with pack and unpack)

There is a subset F.− with more restrictive dependencies

System F is a subset of F.−

There is a translation of pure expressions of F.− to System F
that

preserves the semantics, abstraction, and typings.
preserves β-reduction steps, but increases let-reduction steps.

Reading through the Curry-Howard isomorphism for F.−

The formulae are the same as in System F.

The provable formulae are the same as in System F.

They are more proofs in F.−, which can be assembled in mode
modular ways.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 31 / 32

Introduction Splitting unpack Splitting pack Reduction Technicalities Expressiveness

Conclusions

Type generativity can be explained by open existential types

Standard small step reduction semantics.
Scope extrusion is a good, fine grain explaination of type abstraction

Linearity provides a good explaination of type generativity.

Close connection to logic with new ways of assembling proofs.

Modelling of double-vision is already in F. (omitted)

Extension to recursive values and types (with no expected difficulties)

Shapes bounded polymorphism and projections (complementary)

Good basis for a core calculus for a rich surface language with

first-class, recursive and mixin modules and no redundancies.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 32 / 32

Dependencies Double vision Related works

Appendix

7 Dependencies

8 Double vision

9 Related works

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 34 / 32

Dependencies Double vision Related works

Tracking dependencies ◭ back

Traditional view

Γ is a mapping together with a total ordering on its domain.

Generalization

Organize the context as a strict partial order.

Γ is a pair (E ,≺) where E is a set of bindings ordered by ≺.

We write Γ, (b ≺ D),Γ′ when

domΓ 6≺ b and b 6≺ domΓ′ and D is the set b depends on.

Zipping of contexts is redefined

(E1,≺1) . (E2,≺2) =
(

(E1 . E2), (≺1 ∪ ≺2)
+
)

E1 . E2 = {b1 . b2 | b1 ∈ E1, b2 ∈ E2, dom b1 = dom b2}
∪ {∃β | β ∈ dom E1 ∆ dom E2}

(weakening to remove unnecessary dependencies)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 35 / 32

Dependencies Double vision Related works

Tracking dependencies ◭ back

Sigma

D′ \ ({β} ∪ dom Γ′) ⊆ D

Γ, (∀β �D),Γ′, (∀(α = τ ′) �D′) ⊢ M : τ

Γ, (∃β �D),Γ′ ⊢ Σ 〈β〉 (α = τ ′)M : τ [α← β]

In particular,

Free variables of the witness type τ ′ are in D′ (by well-formedness).

Those that are in dom Γ are not in dom Γ′ and thus must be in D.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉36 / 32

Dependencies Double vision Related works

Tracking dependencies ◭ back

Sigma

D′ \ ({β} ∪ dom Γ′) ⊆ D

Γ, (∀β �D),Γ′, (∀(α = τ ′) �D′) ⊢ M : τ

Γ, (∃β �D),Γ′ ⊢ Σ 〈β〉 (α = τ ′)M : τ [α← β]

Prevents typechecking:

{ℓ1 = Σ 〈β1〉 (α1 = β2 → β2)M1 ; implies β1 ≺ β2

ℓ2 = Σ 〈β2〉 (α2 = β1 → β1)M2 } implies β2 ≺ β1

But allows typechecking:

{ℓ1 = Σ 〈β1〉 (α1 = int)M1 ;
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1)M2 }

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉36 / 32

Dependencies Double vision Related works

Tracking dependencies ◭ back

Open

Γ ⊢ M : ∃β. τ D = dom Γ

Γ, (∃β �D) ⊢ open 〈β〉M : τ

Let

{α | (∃α) ∈ Γ2 and (∀α) ∈ Γ1} ⊆ D

Γ1 ⊢ M1 : τ1 Γ2, (x : τ1 �D) ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

Open: α depends on all that precedes him, since the witness is unknown.

Let: x depends on all abstract types that are used in M2 and could be
seen in M1.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉37 / 32

Dependencies Double vision Related works

Tracking dependencies ◭ back

Open

Γ ⊢ M : ∃β. τ D = dom Γ

Γ, (∃β �D) ⊢ open 〈β〉M : τ

Let

{α | (∃α) ∈ Γ2 and (∀α) ∈ Γ1} ⊆ D

Γ1 ⊢ M1 : τ1 Γ2, (x : τ1 �D) ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

Prevents typechecking:

let x = ∃(α = β → β)M in implies x ≺ β, since β ∈ dom Γ2

open 〈β〉 x implies β ≺ x

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉37 / 32

Dependencies Double vision Related works

Double vision

This example is rejected

let f = λ(x : β)x in Σ 〈β〉 (α = int) f (1 : α)

We do not know that the external type β in the type of f
is equal to the internal view α also equal to int.

Keep this information in the context

Sigma

Γ,∀α,Γ′,∀(α ⊳ β = τ ′) ⊢ M : τ

Γ,∃β,Γ′ ⊢ Σ 〈β〉 (α = τ ′)M : τ [α← β]

and use it whenever needed
Sim

Γ ⊢ M : τ ′ Γ ⊢ τ ⊳ τ ′

Γ ⊢ M : τ

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 38 / 32

Dependencies Double vision Related works

Comparisson with Derek’s RTG

The primitives are similar, with small differences

Fzip Rtg

να.M new α in M

Σ 〈α〉 (α = τ)M set α := τ in M

∃α.M Λα ↑ K . λ(: ())1M

open 〈α〉M M [α] () M

We evaluate under existentials while Rtg does not.
Rtg uses Fω while we restrict to System F.
Rtg allows recursive values and types, while we do not.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈1〉39 / 32

Dependencies Double vision Related works

Comparisson with Derek’s RTG

The primitives are similar, with small differences

Fzip Rtg

να.M new α in M

Σ 〈α〉 (α = τ)M set α := τ in M

∃α.M Λα ↑ K . λ(: ())1M

open 〈α〉M M [α] () M

We evaluate under existentials while Rtg does not.
Rtg uses Fω while we restrict to System F.
Rtg allows recursive values and types, while we do not.

Shared ideas with Rtg

Use of linear types
(only in typing contexts in Fzip, exposed in Rtg.)

Similar decomposition of constructs
(by design in Fzip, observed a posteriori in Rtg.)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈2〉39 / 32

Dependencies Double vision Related works

Comparisson with Derek’s RTG

The primitives are similar, with small differences

Shared ideas with Rtg

The “inside” differs significantly

Typechecking in Rtg uses an abstract machine
that performs side effects into a global store.

Unintuitive for programmers (who can’t run the machine mentally).

Looses the connection with logic.

Does not isolate type abstraction from the use of recursive types.

The motivations and uses also differs

Designed and used as an internal language (opposite to our goals)

Used to model recursive and mixin modules (complementary)

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 〈3〉39 / 32

Dependencies Double vision Related works

Other related works

Rossberg (2003)
Introduces λN , a version of System-F to define abstract types, that can
automatically be extruded to allow sharper type analysis.

Many similarities in spirit with our Σ binder.

But the motivations and technical details are quire different.
In particular, parametricity is purposedly violates in λN .

Russo (2003)

He first explained that paths are meaningless for module types.

He interpretes modules and signatures into semantic objets within Fω.

However

his existential types are implicitly opened.
no dynamic semantics for objets.

Didier Rémy (INRIA-Rocquencourt) Open Existential types for Module systems June 2008 40 / 32

	Introduction
	Our goals
	Module systems
	Problems
	Previous approaches
	Our solutions

	Splitting unpack
	Splitting pack
	Reduction
	Advanced technicalities
	Recursion

	Expressiveness
	Appendix

