
Design Results Type inference Concluding remarks

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Results
Principal types
Robustness to program transformations
Practice

3 Type inference
Type constraints for simple types
Type constraints for ML
Type inference in MLF

4 Concluding remarks

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 1 / 57

Design Results Type inference Concluding remarks

A new look at MLF

Didier Rémy

INRIA-Rocquencourt

Portland, June 2008

Based on joint work with

Didier Le Botlan and Boris Yakobowski)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 2 / 57

http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://gallium.inria.fr/~yakobows

Simple to use Expressive

Great success

Happy days

Simple extension
Simplification

of ML

Expressive

Full type annotations
are obfuscating

Full type inference
is undecidable

Even used in full scale languages
such as Scala.

Design Results Type inference Concluding remarks

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Results
Principal types
Robustness to program transformations
Practice

3 Type inference
Type constraints for simple types
Type constraints for ML
Type inference in MLF

4 Concluding remarks

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 6 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Explicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x : τ0) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ Λα. a : ∀(α) τ0

Ungen

Γ ⊢ a : ∀(α) τ

Γ ⊢ a τ : τ0[α← τ]

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ a : ∀(α) τ0

Ungen

Γ ⊢ a : ∀(α) τ

Γ ⊢ a : τ0[α← τ]

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ a : ∀(α) τ0

Inst

∀(ᾱ) τ0 6 τ0[ᾱ← τ̄]

Sub

Γ ⊢ a : τ1 τ1 6 τ2

Γ ⊢ a : τ2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ⊢ a : τ1 τ1 6 τ2

Γ ⊢ a : τ2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ⊢ a : τ1 τ1 6 τ2

Γ ⊢ a : τ2

Add a construction for local bindings (perhaps derivable):

Let

Γ ⊢ a1 : τ1 Γ, x : τ1 ⊢ a2 : τ

Γ ⊢ let x = a1 in a2 : τ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ⊢ a : τ1 τ1 6 τ2

Γ ⊢ a : τ2

Add a construction for local bindings (perhaps derivable):

Let

Γ ⊢ a1 : τ1 Γ, x : τ1 ⊢ a2 : τ

Γ ⊢ let x = a1 in a2 : τ

Logical, canonical presentation of typing rules

Covers many variations: F, ML, Fη, F≤, . . .
Vary the set of types.
Vary the instance relation between types.

For ML, just restrict types to ML types.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ⊢ z : τ

App

Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Fun

Γ, x : τ0 ⊢ a : τ

Γ ⊢ λ(x) a : τ0 → τ

Gen

Γ, α ⊢ a : τ0

Γ ⊢ a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ⊢ a : τ1 τ1 6 τ2

Γ ⊢ a : τ2

Add a construction for local bindings (perhaps derivable):

Let

Γ ⊢ a1 : τ1 Γ, x : τ1 ⊢ a2 : τ

Γ ⊢ let x = a1 in a2 : τ

Logical, canonical presentation of typing rules

Covers many variations: F, ML, Fη, F≤, . . .
Vary the set of types.
Vary the instance relation between types.

For ML, just restrict types to ML types.

Do never change the typing rules!

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉7 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type inference is undecidable — in System F

Of course, we must
Use type annotations on function parameters in some cases.

When?
Always?

too many annotations are obfuscating.

Alleviate some annotations by local type inference?

Not conservative
extensions of ML

unintuitive and fragile (to program transformations).

When parameters have polymorphic types?

still two many bothersome type annotations.

Are polymorphic types less important than monomorphic ones?

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉8 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type inference is undecidable — in System F

Of course, we must
Use type annotations on function parameters in some cases.

When?
Always?

too many annotations are obfuscating.

Alleviate some annotations by local type inference?

Not conservative
extensions of ML

unintuitive and fragile (to program transformations).

When parameters have polymorphic types?

still two many bothersome type annotations.

Are polymorphic types less important than monomorphic ones?

Our choice explained below

When (and only when) parameters are used polymorphically.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉8 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀ β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉9 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀ β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉9 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀ β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

No better choice in F!

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉9 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀ β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

No better choice in F!

The problem is serious and inherent

Follows from rules Inst, Gen, and App.

Should values be kept as polymorphic or as instantiated as possible?

A type inference system can do both, but cannot choose.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉9 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀ β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

The solution in iMLF:

choice id : ∀(β ≥ ∀(α) α→ α) β → β

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉9 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀ β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

The solution in iMLF:

choice id : ∀(β ≥ ∀(α) α→ α) β → β

6

{

(β → β) [β ← ∀(α) α→ α]
∀(α) (β → β) [β ← α→ α])

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉9 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

The definition of iMLF

Types are stratified

σ ::= τ ∈ F
| ∀(α≥ σ) σ

We can see and explain types by 6F-closed sets of System-F types:

{{τ}}
△
== {τ ′ | τ 6F τ ′}

{{∀(α≥ σ) σ′}}
△
==

{

∀(β̄) τ ′[α← τ] | ∧

(

τ ∈ {{σ}} ∧ τ ′ ∈ {{σ′}}
β̄ # ftv(∀(α≥ σ) σ′)

}

Type instance 6I is set containment on the translations

σ 6I σ′ ⇐⇒ {{σ}} ⊇ {{σ′}}

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 10 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Simple types

α→ α

→

α α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉11 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Simple types

α→ α

→

α α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉11 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Simple types

α→ α

→

α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉11 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) α→ α

→

α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉11 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) α→ α

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉11 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→

α

→

β

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6>F →

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

(α→ β)→ α→ β

→

→

α

→

β

6>ST →

→

α β

Sharing of inner nodes:

Coming from the dag-representation of simple types.

Canonical (unique) representation if disallowed.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6F →

→ →

∀(α) (α→ α)→ α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6F →

→ →

→

∀(α) ∀(γ) (α→ γ → γ)→ α→ γ → γ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

System-F types more

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6F →

→ →

→

∀(α)(α→ ∀(γ) γ → γ)→ α→ ∀(γ) γ → γ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉12 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→≥

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

∋ →

→

6>F →

→ →

(∀(α) α→ α)→ ∀(α) α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

∋ →

→

6>F →

→ →

∀(α) (α→ α)→ (α→ α)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

∋ →

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈8〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

∋ →

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈9〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

∋ →

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈10〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α) β → β

→

→

∋ . . .

The semantics cannot be captured by

a finite set of System-F types up to 6F

a finite intersection type.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈11〉13 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉14 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

∋

only
→

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉14 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

6>I →

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉14 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

6>I →

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉14 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Merging

6
→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Merging

6
→

→

→

Weakening

6
→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Merging

6
→

→

→

Weakening

6
→

→

→

Merging only allowed on nodes transitively bound at the root (blue).

Other operations only disallowed on variable nodes that are not
transitively bound at the root (red).

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Merging

6
→

→

→

Weakening

6
→

→

→

These operations are sound and complete for the definition of 6.

Can always be ordered as 6G ; 6R ; 6MW .

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉15 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Checking the example choice id

→

→

Raising

>
→

→

Weakening

6
→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 16 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Results
Principal types
Robustness to program transformations
Practice

3 Type inference
Type constraints for simple types
Type constraints for ML
Type inference in MLF

4 Concluding remarks

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 17 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Design of eMLF

Goal

Find a restriction iMLF where programs that would
require guessing polymorphism are ill-typed.

Guideline design

Function parameters that are used polymorphically
(and only those) need an annotation.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 18 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

First-order inference with second-order types

Easy examples

λ(z) z : ∀(α) α→ α as in ML
let x = λ(z) z in x x : ∀(α) α→ α as in ML

λ(x) x x : ill-typed! x is used polymorphically
λ(x : ∀(α) α→ α) x x : (∀(α) α→ α)→ (∀(α) α→ α)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 19 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

First-order inference of second order types

More challenging examples

(λ(z) z) (a : σ) where σ is truly polymorphic

z carries values of a polymorphic type.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉20 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

First-order inference of second order types

More challenging examples

(λ(z) z) (a : σ) where σ is truly polymorphic ACCEPT

z carries values of a polymorphic type.

but z is not used polymorphically.

Indeed, it can be typed in System F as n

(Λα. λ(z : α) z) [σ] (a : σ)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉20 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

First-order inference of second order types

More challenging examples

λ(z) (z (a : σ))

z must have a polymorphic type σ → τ .

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉20 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

First-order inference of second order types

More challenging examples

λ(z) (z (a : σ)) ACCEPT

z must have a polymorphic type σ → τ .

z need not be used polymorphically:
it may just carry polymorphism without using it.

Indeed, it is the reduct of

(

λ(y) λ(z) (z y)
)

(a : σ)

which can be typed in MLF, exactly as the previous example.

Annotations need not be introduced during reduction!

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉20 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Abstracting second-order polymorphism as first-order types

Solution
1) Disallow second-order types under arrows, e.g. such as σid → σid

2) Instead, allow type variables to stand for polymorphic types:

write ∀(α⇒ σid) α→ α
read “α→ α where α abstracts σid”
means σid → σid

Mechanism
1) Function parameters must be monomorphic (but may be abstract).

2) Forces all polymorphism to be abstracted away in the context.

α⇒ σid, x : α ⊢ x : α

α⇒ σid ⊢ λ(x) x : α→ α

λ(x) x : ∀(α⇒ σid) α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 21 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Abstracting second-order polymorphism more

Key point: abstraction is directional

α⇒ σ ⊢ σ 6 α α⇒ σ ⊢ α 6 σ

Hence,

⊢ a : σ

α⇒ σ ⊢ a : α α⇒ σ, z : α→ α ⊢ z : α→ α

α⇒ σ, z : α→ α ⊢ z a : α

α⇒ σ ⊢ λ(z) z a : (α→ α)→ α

⊢ λ(z) z a : ∀(α⇒ σ) (α→ α)→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉22 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Abstracting second-order polymorphism more

Key point: abstraction is directional

α⇒ σ ⊢ σ 6 α α⇒ σ ⊢ α 6 σ

But,

α⇒ σid, z : α ⊢ z : α ·

α⇒ σid, z : α ⊢ z : σid

α⇒ σid, z : α ⊢ z : α→ α α⇒ σid, z : α ⊢ z : α

α⇒ σid, z : α ⊢ z z : α

α⇒ σid ⊢ λ(z) z z : α→ α

⊢ λ(z) z z : ∀(α≥ σid) α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉22 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) α→ α

→

→

α

β

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉23 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) α→ α

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉23 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) ∀(α′ ⇒ ∀(β) β → β) α→ α′

→

→ →

More general sharing of ⇒ matters

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉23 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) ∀(α′ ≥ ∀(β) β → β) α→ α′

→

→ →

Even more general ≥ better than ⇒

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉23 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

→

→

→ →

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉24 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

→

→

→ →

→

→ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉24 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉24 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

→

→

→ →

→

→ →

+ well-formedness conditions relating the two

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉24 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type instance 6 in eMLF

Sharing and binding of abstract nodes now matter

→

→

→

→

→

6

6>
→

→

→

6

6>
→

→

→

Grafting, Merging, Raising, Weakening
Unchanged.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 25 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I)

6 is weaker than 6I , as sharing and binding of abstract nodes
matters.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉26 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I) = (6 ∪ 6>I)∗

6 is weaker than 6I , as sharing and binding of abstract nodes
matters.

Use explicit type annotations to recover (6>I \ 6).

Notice that the larger 6, the fewer type annotations.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉26 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I) = (6 ∪ 6>I)∗

Technically
Intuitively,

Γ ⊢ a : τ τ 6>I τ ′

Γ ⊢ (a : τ ′) : τ ′

Actually, use coercion functions:

(: σ) : ∀(α⇒ σ) ∀(α′ ⇒ σ) α→ α′

Add syntactic sugar λ(x : σ) a
△
== λ(x) let x = (x : σ) in a
≡ λ(x) a[x ← (x : σ)]

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉26 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I) = (6 ∪ 6>I)∗

Technically
Intuitively,

Γ ⊢ a : τ τ 6>I τ ′

Γ ⊢ (a : τ ′) : τ ′

Actually, use coercion functions:

(: ∃ (β̄) σ) : ∀(β̄) ∀(α⇒ σ) ∀(α′ ⇒ σ) α→ α′

Add syntactic sugar λ(x : σ) a
△
== λ(x) let x = (x : σ) in a
≡ λ(x) a[x ← (x : σ)]

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉26 / 57

Design Results Type inference Concluding remarks iMLF Types explained eMLF

Type annotations

Remember α⇒ σ, x : α ⊢ x : σ

Prevents typing λ(x) x x

With an annotation α⇒ σ, x : α ⊢ (x : σ) : σ more

Allows typing λ(x : σid) x x

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉26 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Results
Principal types
Robustness to program transformations
Practice

3 Type inference
Type constraints for simple types
Type constraints for ML
Type inference in MLF

4 Concluding remarks

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 27 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Principal types

Fact
Programs have principal types, given with their type annotations.

Programs with type annotations
Two versions of the same program, but with different type
annotations, usually have different principal types.

Programs typable without type annotations
Exactly ML programs.

But usually have a more general type than in ML (e.g. choice id)

Annotations may still be useful to get more polymorphism.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 28 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Robustness to program transformations

Agreed

Programmmers must be free of choising their programming
patterns/styles.

Programs should be maintainable.

Therefore

Programs should be stable under some small, but important program
transformations.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉29 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Robustness to program transformations

a ⊆ a′ means all typings of a are typings of a′

Let-conversion (x ∈ a2) let x = a1 in a2 ⊆⊇ a2[x ← a1]

Common subexpression can be factored out.

η-conversion of functional expressions a ⊆⊇ λ(x) a x

Delay the evaluation.

Redefinable application a1 a2 ⊆⊇ (λ(f) λ(x) f x) a1 a2

Many functionals, such as maps are typed as applications.

Reordering of arguments a a1 a2 ⊆⊇ (λ(x) λ(y) a y x) a2 a1

Curryfication a (a1, a2) ⊆⊇ (λ(x) λ(y) a (x , y)) a1 a2

All valid in MLF

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉29 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Robustness to program transformations

Reduction
Transforms existing type annotations

Does not introduce new type annotations

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 30 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Printing types ◮ more

Problem

Types are graphs.

They can be represented syntactically with prefix notation,

Not very readable: compare (∀(γ) γ → γ)→ (∀(γ) γ → γ)
with ∀(α⇒ ∀(γ) γ → γ) ∀(β ≥ ∀(γ) γ → γ) α→ β

Solution

Inline linear bindings that are

flexible at covariant positions, or
rigid at contravariant positions.

Very effective in practice: types look often as in System F.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 31 / 57

Design Results Type inference Concluding remarks Principal types Robustness Practice

Examples ◮ more

Library functions

let rec fold f v = function
| Nil → v
| Cons (h, t) → fold f (f h t) t ;;

val fold : ∀(α) ∀(β) (α → α list → β) → β → α list → β

Few type annotations are needed in practice

No dummmy/annoying/unpredictable annotations.

Output types are usually readable

Most inner binding edges may be left implicit.

Many library functions libraries keep their ML type in MLF,
modulo the syntactic sugar.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 32 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Results
Principal types
Robustness to program transformations
Practice

3 Type inference
Type constraints for simple types
Type constraints for ML
Type inference in MLF

4 Concluding remarks

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 33 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for ML

Based on first-order unification

Best implemented and formalized using
graphs (Huet) or, equivalently, multi-equations.

Type inference

Best formalized by type constrains

See The essence of ML, in ATTAPL.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 34 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→ →

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→ →

→

Congruence closure

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→ →

→

Merging

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→ →

→

Grafting

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→ →

→

Merging

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→

→

Unification builds a dag, by merging variabes or inner nodes,

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

First-order unification

Unification problems may be represented on a term using unification edges

→

→

→

→

→

Unification builds a dag, by merging variabes or inner nodes,

However, the dag may be read back up to sharing of inner nodes.

Because extra sharing will never block further simplications
Thus, inner nodes could always be maximally shared (hash-consing).
Hence, sharing of inner nodes does not matter.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉35 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Unification formally

Term view
A solution to a unification problem is an instance in which subterms
connected by unification edges are equal.

Graph view (simpler)
A solution to a unification problem is an instance in which nodes
connected by unification edges are identical.

The algorithm (with simple proof of correctness)

Each transformation preserves the set of solutions.

Applying transformations terminates, with either:

an obvious conflict, thus, their is no solution; or
a graph without constraints, hence
a solution of which all others are instances, i.e. a principal solution.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 36 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

It is well-known that it reduces to unification problems:

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: the λ-term

@

λ

· λ

· @

λ

·

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its type constraint

→

→

↑

↑ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its type constraint

→

→

↑

↑ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its type constraint

→

→ →

↑ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its type constraint

→

→ →

↑ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its type constraint

→

→ →

→

↑ →

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its type constraint

→

↑ →

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈8〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for simply typed λ-calculus

Example:
(

λ(f) λ(x) f x
)

(

λ(y) y)

Graphically: its solved form

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈9〉37 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation (more details)

Variables ⇒

Functions
λ

· 1

⇒ →

1

Applications
@

1 2

⇒

1 ↑ 2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉38 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation (more details)

Variables ⇒

Functions
λ

· 1

⇒ →

1

Applications
@

1 2

⇒

1

→

2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉38 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation (more details)

Variables ⇒

Functions
λ

· 1

⇒ →

1

Applications
@

1 2

⇒

1

→

2

Bindings
1 2 ⇒ 1 2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉38 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for let-bindings

Can we extend the previous schema?
The question is usually eluded in books.

The solution is type inference with let-constraints.

Can be better explained graphically.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 39 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for let-bindings

Introduce G-nodes (Generalization points)
to represent type schemes and distinguish them from types

G

→

→

∀(αβ) (α→ β)→ γ

Generalized variables are drawn as binding edges to G.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉40 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for let-bindings

Introduce G-nodes (Generalization points)
to represent type schemes and distinguish them from types

G

→

→

∀(αβ) (α→ β)→ γ

Generalized variables are drawn as binding edges to G.
Inner nodes may also be bound to G-nodes.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉40 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference for let-bindings

Introduce G-nodes (Generalization points)
to represent type schemes and distinguish them from types

G

→

→

∀(αβ) (α→ β)→ γ

Generalized variables are drawn as binding edges to G.

Constraint generation
Expressions now represent G-nodes., i.e. type scheme constraints.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉40 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation for ML (revisited)

Variables ⇒ G

Functions
λ

· 1

⇒ G

→

1

Applications
@

1 2

⇒ G

1

→

2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉41 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation for ML (revisited)

Let-bindings
let

1 2

⇒ G

1 2

λ-bindings
1 G

2

λ ⇒ 1 G

2

let-bindings
1 G

2

let ⇒ 1 G

2

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉41 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation for ML (example)

Example:

let g = λ(x) x in
g

(

λ(y) y)

Graphically (on the right):

the λ-term

let

λ

·
λ

@
let

λ

·

λ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉42 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation for ML (example)

Example:

let g = λ(x) x in
g

(

λ(y) y)

Graphically (on the right):

its type constraint

G

G

→

G
x

G

G

g

→

G

→

G
z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉42 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Constraint generation for ML (example)

Example:

let g = λ(x) x in
g

(

λ(y) y)

Graphically (on the right):

its type constraint

G

G

→

G
x

G

G

g

→

G

→

G
z

Superfluous generalization points
As in ML generalization is only needed at let-bindings.

Useless G-nodes may be simplified after/during constraint generation.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉42 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Well-formedness of constraints

Well-formedness
Arities: all nodes have a fixed number of outgoing structure edges

Kinds: we distinguish G-nodes from other, regular nodes.

Instantiation edges are from G-nodes to regular nodes.
Unification edges are between from regular nodes.

All nodes are bound to some G-node.

The binding of a node is one of its dominators
for mixed structure and binding edges.

Existential nodes
Nodes that do not have an incoming structure edge.

Projection
Remove all existential nodes and constraints.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 43 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

A new instance operation

Raising a binding edge along another one.
This amounts to treating a polymorphic as locally monomorphic

G

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉44 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

A new instance operation

Raising a binding edge along another one.
This amounts to treating a polymorphic as locally monomorphic

G

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉44 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

A new instance operation

Raising a binding edge along another one.
This amounts to treating a polymorphic as locally monomorphic

G

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉44 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Solved instantiation edge

Informally
An instantiation edge is solved if its target is an instance of its origin.

Expansion
G

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉45 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Solved instantiation edge

Informally
An instantiation edge is solved if its target is an instance of its origin.

Expansion
G

G

→

→

→

Expansion does not copy constraint edges nor existential nodes.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉45 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Solved instantiation edge

Informally
An instantiation edge is solved if its target is an instance of its origin.

Expansion
G

G

→

→

→

Can we come back to the original term by instantiation? —No

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉45 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Solved instantiation edge

Informally
An instantiation edge is solved if its target is an instance of its origin.

Expansion
G

G

→

→

→

→ →

Can we come back to the original term by instantiation? —Yes

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉45 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Solved instantiation edge

Informally
An instantiation edge is solved if its target is an instance of its origin.

Expansion
G

G

→

→

→

→ →

Expansion can be used as a test

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉45 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Solved instantiation edge

Informally
An instantiation edge is solved if its target is an instance of its origin.

Expansion
G

G

→

→

→

→ →

Expansion can also be used as a simplification: the instantiation edge can
be removed, if the origin is solved type scheme were solved.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉45 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Semantics of constraints

The set of its instances in which all constained edges are solved.

Constraint simplifications (preserve the semantics)

Solving a unification edge by unification (as before).

Expansion-elimination of an instantiation edge whose origin is solved.

Garbage collection of unconstrained existential nodes.

Elimination of superfluous G-nodes.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 46 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Algorithm

1 Eliminate superfluous G-nodes first, for efficiency.

2 Solve unification edges eagerly.

3 Solve instantiation constraints, innermost first.

4 Garbage collect at any time (no efficiency impact).

Complexity in O(kn(α(kn) + d)) ≈ O(kdn) (see McAllester)

k is the maximal size of types (usually not too large)

d is the maximal nesting of type schemes
i.e. after simplificatin of useless generalizations, let-nesting of
let-bindings (reasonably below 5).

Explains why ML type inference works well in practice
Large programs mainly increase right nesting of let-bindings.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 47 / 57

http://www.springerlink.com/content/auehenre84tcp3gb/

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Unification algorithm

Computes principal unifiers, in three steps
Computes the underlying dag-structure by first-order unification.

Computes the binding structure

by raising binding edges
as little as possible to maintain well-formedness.

Checks that no locked binding edge (in red) has been raised or
merged.

Complexity

Same as first-order unification. Other passes are in linear time.

O(n) (or O(nα(n)) if incremental).

Note
The algorithm performs “first-order unification of second-order types”.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 48 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference

Proceeds much as in ML, except that
Generalize as much as possible at every step (not just at every let).

Nodes may be bound to G-nodes or other nodes.

Existential nodes only bound to G-nodes.

Expansion is modified to reset topmost bindings:

G

G

→

→

i.e. G

→

6> G

→

In particular, constraint generation is unchanged.
Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 49 / 57

Design Results Type inference Concluding remarks Type constraints for simple types ML MLF

Type inference ◮ Demo?

Complexity, also in O(kn(α(kn) + d)) ≈ O(kdn)
However, ML and MLF differs on d , which is:

the left-nesting of let-bindings in ML

the maximun height of an expression in MLF

(Still, does not grow on the right of let-bindings).

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 50 / 57

Design Results Type inference Concluding remarks

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Results
Principal types
Robustness to program transformations
Practice

3 Type inference
Type constraints for simple types
Type constraints for ML
Type inference in MLF

4 Concluding remarks

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 51 / 57

Design Results Type inference Concluding remarks

Variations on MLF skip

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉52 / 57

Design Results Type inference Concluding remarks

Variations on MLF skip

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Full MLF

No stratification, more expressive.

All interesting properties are preserved.

Algorithms are mostly unchanged.

We loose the interpretation of types as sets of System-F types.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉52 / 57

Design Results Type inference Concluding remarks

Variations on MLF skip

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Simple MLF
Remove instance bindings ≥, keep abstract bindings ⇒.

Equivalent to System F.

Principal types are lost (no type inference).

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉52 / 57

Design Results Type inference Concluding remarks

Variations on MLF skip

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Simple MLF
Remove instance bindings ≥, keep abstract bindings ⇒.

Equivalent to System F.

Principal types are lost (no type inference).

Is there an interesting variant in between?
As expressive as System F.

With type inference and principal types.
Yes! Leijen’s HML

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉52 / 57

Design Results Type inference Concluding remarks

A hierarchy of languages

F

(Full) MLF

ML

Shallow MLF

Simple Types

Simple MLF
⇒

6≥

6⇒ ≥

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉53 / 57

Design Results Type inference Concluding remarks

A hierarchy of languages

F

(Full) MLF

ML

Shallow MLF

Simple Types

Simple MLF

let-∀

λ-∀

let-∀≥

λ-∀≥

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉53 / 57

Design Results Type inference Concluding remarks

A hierarchy of languages

F

(Full) MLF

ML

Shallow MLF

HML

Simple Types

Simple MLF

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉53 / 57

Design Results Type inference Concluding remarks

A hierarchy of languages

F

(Full) MLF

ML

Shallow MLF

HMLHMF

FPH

Simple Types

Simple MLF

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉53 / 57

Design Results Type inference Concluding remarks

An internal language for MLF (on going work)

Problem
iMLF is in curry style.

eMLF is not quite in church style:

type reconstruction is non local
type annotations must be transformed during reduction,
but eMLF does not describe how to do so.

Need for a church-style MLF (e.g. compiling Haskell)

Solution
Make type abstaction and type application fully explicit,

Annotate all parameters of functions,

Use a more general form of type application that witness the correct
type-instantiation.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 54 / 57

Design Results Type inference Concluding remarks

Extensions

Primitive Existential types

Encoding with existential types works well (only annotate at creation).

Can more be done with primitive existential ?

(Equi-) recursive types
Easy when cycles do not contain quantifiers.

Cycles that croses quantifiers are difficult.

Higher-order types
Use two quantifiers (explicit coercions between the two permitted)

∀F for fully explicit type abstractions and

∀MLF for implicit MLF polymorphism.

Restrict ∀MLF to the first-order type variables.

Can ∀MLF also be used at higher-order kinds?

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 55 / 57

Design Results Type inference Concluding remarks

Conclusions

To bring back home
MLF allows function parameters to implicitly carry
polymorphic values that are used monomorphically.

Type annotations are required only to allow function parameters to
carry (polymorphic) values that are used polymophically.

MLF design, use, and implementation are close to ML
MLF piggy-backs on ML type-schemes and generalization mechanism.

Part of the credits should be returned to the great designer of ML.

Hopefully
ML users will feel “at home”.

Other users will also appreciate the convenience of type inference.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 56 / 57

Design Results Type inference Concluding remarks

Papers and prototypes

Talk mainly based on
Recasting-MLF with Didier Le Boltan.

Graphic Type Constraints and Efficient Type Inference: from ML to
MLF, with Boris Yakobowski.

Other papers and online prototype at
http://gallium.inria.fr/∼remy/mlf/

See also Daan Leijen’s papers and prototypes (HMF, HML)

http://research.microsoft.com/users/daan/pubs.html

and works by Vytinoitis et al. (Boxy types, FPH)

http://research.microsoft.com/users/daan/pubs.html

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 57 / 57

http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://gallium.inria.fr/~yakobows
http://gallium.inria.fr/~remy/mlf/
http://research.microsoft.com/users/daan/pubs.html
http://research.microsoft.com/users/daan/pubs.html

Printing Examples Restrictions Questions Details Demo

Appendix

5 Printing types

6 More examples
Church numerals
encoding of existential types

7 Other restrictions of MLF

8 Questions
Sharing of abstract nodes is irreversible (implicitly)
Stability by linear beta-expansion

9 Details of slides
Another example of System F types
Abstraction in action

10 Type inference demo

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 58 / 57

Printing Examples Restrictions Questions Details Demo

Printing types ◭ next

Only overlined bindings
need to be drawn

→

→

→ →

→

→ →

(∀(α) ∀(β) (α→ β)→ (α→ β))→ (∀(α) α→ α)→ (∀(α) α→ α)

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉59 / 57

Printing Examples Restrictions Questions Details Demo

Printing types ◭ next

Only overlined bindings
need to be drawn

→

→

→ →

→

→ →

(∀(α) ∀(β) (α→ β)→ (α→ β))→ ∀(γ ⇒ ∀(α) α→ α) (∀(α) α→ α)→ γ

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉59 / 57

Printing Examples Restrictions Questions Details Demo

Printing types ◭ next

Only overlined bindings
need to be drawn

→

→

→ →

→

→ →

∀(γ ⇒ ∀(α) α→ α) (∀(α) ∀(β) (α→ β)→ (α→ β))→ (∀(α) α→ α)→ γ

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉59 / 57

Printing Examples Restrictions Questions Details Demo

Printing types ◭ next

Only overlined bindings
need to be drawn

→

→

→ →

→

→

(∀(α) ∀(β) (α→ β)→ (α→ β))→ ∀(γ ≥ σid) γ → γ

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉59 / 57

◭ back

Printing Examples Restrictions Questions Details Demo Church numerals existential types

More examples ◭ next

Church numerals

type nat = ∀ (α) (α → α) → α → α;;
let zero = fun f x → x ;;
val zero : ∀(α) α → (∀(β) β → β)

With type annotations on the iterator

let succ (n : nat) = fun f x → n f (f x);;
val succ : nat → (∀ (α) (α → α) → α → α)

let add (n : nat) m = n succ m;;
val add : nat → (∀ (α) (α → α) → α → α)

let mul n (m : nat) = m (add n) zero;;
mul : nat → nat → (∀(α) (α → α) → α → α)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉61 / 57

Printing Examples Restrictions Questions Details Demo Church numerals existential types

More examples ◭ next

Church numerals

type nat = ∀ (α) (α → α) → α → α;;
let zero = fun f x → x ;;
val zero : ∀(α) α → (∀(β) β → β)

Without type annotations

let succ n = fun f x → n f (f x);;
val succ : ∀ (α, β, γ) ((α → β) → β → γ) → (α → β) → α → γ
let add n m = n succ m;;

val add : ∀(δ ≥ ∀(α,β,γ) ((α → β) → β → γ) → (α → β) → α → γ)
∀(ε,ϕ) (δ → ε → ϕ) → ε → ϕ

In ML:

val add : ∀ (α,β,γ,ε,ϕ) ((((α → β) → β → γ) → (α → β) → α → γ)
→ ε → ϕ) → ε → ϕ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉61 / 57

Printing Examples Restrictions Questions Details Demo Church numerals existential types

More examples ◭ next

Church numerals

type nat = ∀ (α) (α → α) → α → α;;
let zero = fun f x → x ;;
val zero : ∀(α) α → (∀(β) β → β)

Mandatory type annotations

let succ n = fun f x → n f (f x);;
let succ’ = (succ : nat → nat);;
fails

MLF without any type annotation at all does not do better than ML!

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉61 / 57

◭ back

Printing Examples Restrictions Questions Details Demo Church numerals existential types

More examples

Encoding of existential types, e.g. ∃β.β × β → α

type α func = ∀(γ) ∀ (δ = ∀(β) β ∗ (β → α) → γ) δ → γ

val pack z = fun (f : ∃(γ) ∀(β) β ∗ (β → α) → γ) → f z;;

val pack : ∀(α) ∀(β) α ∗ (α → β) → (∀(γ) (∀(δ) δ ∗ (δ → β) → γ) → γ)

let packed int = pack (1, fun x → x+1);;
let packed pair = pack (1, fun x → (x, x));;

let v = packed int (fun p → (snd p) (fst p));;

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 63 / 57

Printing Examples Restrictions Questions Details Demo

HML: no rigid bindings ◭ back

HML, proposed by Daan Leijen Very interesting!

the specification uses the same types as iMLF.

A strict subset of MLF

annotate exactly arguments that are used polymorphically.

can be explained as follows;

Disable rigid bindings in prefixes.
Then, abstraction commutes with type inference
Hence, types may be treated up to abstraction. bindings.

Gains and losses
⊕ Simpler, more intuitive types.

⊙ Keep most essential properties (pincipal types, robustness)

⊖ Lost of some robustness. Polymorphism is not quite first-class.
e.g., primitive integers can’t be replaced by church numerals.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 64 / 57

Printing Examples Restrictions Questions Details Demo

FPH: only System-F like types in the specification ◭ back

HML can be further restricted Less interesting...

The specification uses only System-F types.

Many losses
⊙ Inference algorithm is kept (using MLF internally...)

⊖ Bigger lost of some robustness.

⊖ No longer principal types per se.

Two variants to recover principal derivations
HML: imposes minimal rank of polymorphism when ambiguous.
which may require type annotations to get deeper polymorphism.

FPH: requires no ambiguity at let-bindings,
which may require type annotations to disambiguate.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 65 / 57

Printing Examples Restrictions Questions Details Demo

Rigid MLF back

Rigid MLF lies very close to MLF

It uses and relies on (Shallow) MLF internally.

It projects MLF principal types into System-F types at let-bindings,
by raising variable bindings as much as possible.

Rigid MLF looses important properties of MLF

There are no principal types per se.

Rigid MLF pretends to have principal types, but this is in an ad hoc
manner, using a non logical typing rule for Let-bindings with a premise
that blocks free uses of type-instantiation.

let x = λ(z : σ) z in a2 may be accepted while
let x = λ(z) z in a2 would be rejected.

Rigid MLF is not invariant by let-expansion
(which signs the lost of truly principal types).

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉66 / 57

Printing Examples Restrictions Questions Details Demo

Rigid MLF back

Rigid MLF lies very close to MLF

It uses and relies on (Shallow) MLF internally.

It projects MLF principal types into System-F types at let-bindings,
by raising variable bindings as much as possible.

Rigid MLF looses important properties of MLF

There are no principal types per se.

Rigid MLF is not invariant by let-expansion
(which signs the lost of truly principal types).

Rigid MLF is a subset of System F
This is both its interest and its problem.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉66 / 57

◭ back

Printing Examples Restrictions Questions Details Demo sharing of abstract nodes linear beta-expansion

Sharing of abstract nodes is irreversible (implicitly) back

Can you show an example illustrating the difference?

Fact: ∀(α⇒ σ) α→ α 66 ∀(α⇒ σ, α′ ⇒ σ) α→ α′

Observe that:

λ(z) z : ∀(α⇒ σ) α→ α

(: σ) : ∀(α⇒ σ, α′ ⇒ σ) α→ α′

Then, the context a
△
== λ(x) [] x x distinguishes those two expressions.

a[λ(z) z] is ill-typed.
(As it uses no type annotation and it is ill-typed in ML)

a[(: σ)] is well-typed.

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 68 / 57

◭ back

Printing Examples Restrictions Questions Details Demo sharing of abstract nodes linear beta-expansion

Stability by linear beta-expansion back

Linear β-conversion? (λ1(x) a1) a2

?
⊆⊇ a1[x ← a2]

No! otherwise, for x ∈ a1:

(λ(x) a1) a2 ⊆⊇ (λ1(x) let x = x in a1) a2

⊆⊇ (let x = x in a1)[x ← a2] ⊆⊇ (let x = a2 in a1)

Linearity is misleading:

λ1(x) let y = x in y y

is not typable! Indeed, x must be used polymorphically via y .

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 70 / 57

◭ back

Printing Examples Restrictions Questions Details Demo System F Abstraction

System-F types (encoding of existential types) back

∀(α) (∀(β) τβ → α)→ α

→

→

τ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉72 / 57

Printing Examples Restrictions Questions Details Demo System F Abstraction

System-F types (encoding of existential types) back

∀(α) (∀(β) τβ → α)→ α

→

→

τ

6F →

→

τ →

(∀(β) τβ → ∀(α) α→ α)→ ∀(α) α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉72 / 57

Printing Examples Restrictions Questions Details Demo System F Abstraction

System-F types (encoding of existential types) back

∀(α) (∀(β) τβ → α)→ α

→

→

τ

6F →

→

τ →

∀(α) (∀(β) τβ → α→ α)→ α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉72 / 57

◭ back

Printing Examples Restrictions Questions Details Demo System F Abstraction

Type annotations back

α⇒ σ, β ⇒ σ ⊢ σ 6 α and σ 6 β

α⇒ σ, β ⇒ σ ⊢ ∀(α′ ⇒ σ) ∀(β′ ⇒ σ) α′ → β′

6 ∀(α′ ⇒ α) ∀(β′ ⇒ β) α′ → β′

6>

α→ β

α⇒ σ, x : α, β ⇒ σ ⊢ (: σ) : α→ β α⇒ σ, x : α, β ⇒ σ ⊢ x : α

α⇒ σ, x : α, β ⇒ σ ⊢ (x : σ) : β

α⇒ σ, x : α ⊢ (x : σ) : ∀(β ⇒ σ) β

α⇒ σ, x : α ⊢ (x : σ) : σ

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉74 / 57

Printing Examples Restrictions Questions Details Demo System F Abstraction

Type annotations back

α⇒ σid, x : α ⊢ (x : σid) : σid

α⇒ σid, x : α ⊢ (x : σid) : α→ α α⇒ σid, x : α ⊢ x : α

α⇒ σid, x : α ⊢ (x : σid) x : α

α⇒ σid ⊢ λ(x) (x : σid) x : α→ α

⊢ λ(x) (x : σid) x : ∀(α⇒ σid) α→ α

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉74 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

λ(x) x

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉75 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

λ(x) x G

→

x

x

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉75 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

G

→

x

x

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉75 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉75 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉75 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

let y = λ(x) x

in y y

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

let y = λ(x) x

in y y

y y

λ(x) x

y

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

y

λ(x) x

y

→

y

y

y y

λ(x) x

y

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

y

λ(x) x

y

→

y

y

G

G

λ(x) x

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

G

G

→

G

→

G

G

λ(x) x

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

G

G

→

G

→

G

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

→

G

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

→

G

→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈8〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

→

G

→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈9〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

→

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈10〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈11〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

G

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈12〉76 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

λ(z) z (λ(x) x)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

λ(z) z (λ(x) x) G

→

G

z

λ(x) x

→

z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

z

G

→

→

z

G

→

G

z

λ(x) x

→

z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

z

G

→

→

z

G

→

G

z

→

→

z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

→

→

G

→

G

z

→

→

z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

→

→

G

→

→

→

G

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

→

G

→

→

→

G

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉77 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

λ(z) (z : σid)

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈1〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

λ(z) (z : σid) G

→

G

z

(σid) →
z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈2〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

(σid) →

G

→

G

z

(σid) →
z

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈3〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

(σid) →

G

→

G

G

→

→ →

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈4〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

→

→ →

→

G

→

G

G

→

→ →

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈5〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

G

→

→ →

→

G

→

→

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈6〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

G

→

G

→

→

G

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈7〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→

G

→

G

→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈8〉78 / 57

Printing Examples Restrictions Questions Details Demo

Type inference with typing constraints (demo) skip back

G

→

→ →

G

→

→

→

Didier Rémy (INRIA-Rocquencourt) A new look at MLF June 2008 〈9〉78 / 57

◭ back

	Design
	iMLF: an implicity-typed extension of System F
	Types explained
	eMLF: an explicitly-typed version of iMLF

	Results
	Principal types
	Robustness to program transformations
	Practice

	Type inference
	Type constraints for simple types
	Type constraints for ML
	Type inference in MLF

	Concluding remarks
	Appendix
	Printing types
	More examples
	Church numerals
	encoding of existential types

	Other restrictions of MLF
	Questions
	Sharing of abstract nodes is irreversible (implicitly)
	Stability by linear beta-expansion

	Details of slides
	Another example of System F types
	Abstraction in action

	Type inference demo

