

Design

- *i*ML^F: an implicity-typed extension of System F
- Types explained
- eMLF: an explicitly-typed version of iMLF

Uses and Implementation

- Examples
- Type inference
- Restrictions and extensions

ML^F for Everyone (Users, Implementers, and Designers)

Didier Rémy

INRIA-Rocquencourt

ML Workshop

(Based on joint work with Didier Le Botlan and Boris Yakobowski)

Outline

Design

- iML^{F} : an implicity-typed extension of System F
- Types explained
- *e*ML^F: an explicitly-typed version of *i*ML^F

2 Uses and Implementation

- Examples
- Type inference
- Restrictions and extensions

Explicit System F:

VAR	App	
$z:\tau\in\Gamma$	$\Gamma \vdash a_1 : \tau_2 \to \tau_1$	$\Gamma \vdash a_2 : \tau_2$
$\Gamma \vdash z : \tau$	$\Gamma \vdash a_1 a_2$: T ₁

 $\frac{\operatorname{Gen}}{\Gamma \vdash \mathbf{A} \alpha \cdot \mathbf{a} : \tau_0} \frac{\Gamma \vdash \mathbf{A} \alpha \cdot \mathbf{a} : \tau_0}{\Gamma \vdash \mathbf{A} \alpha \cdot \mathbf{a} : \forall(\alpha) \tau_0}$

$$\frac{\Gamma \vdash \mathbf{a} : \forall(\alpha) \tau}{\Gamma \vdash \mathbf{a} \frac{\tau}{\tau} : \tau_0[\alpha \leftarrow \tau]}$$

Implicit System F:

VAR	App	
$z:\tau\in\Gamma$	$\Gamma \vdash a_1 : \tau_2 \to \tau_1$	$\Gamma \vdash a_2 : \tau_2$
$\Gamma \vdash z : \tau$	$\Gamma \vdash a_1 a_2$: τ ₁

* *

 $\frac{\operatorname{Gen}}{\Gamma \vdash \mathbf{a} : \tau_0} \frac{\Gamma \land \mathbf{a} : \tau_0}{\mathbf{a} : \forall(\alpha) \ \tau_0}$

$$\frac{\Gamma \vdash \boldsymbol{a} : \forall(\alpha) \ \tau}{\Gamma \vdash \boldsymbol{a} : \tau_0[\alpha \leftarrow \tau]}$$

Implicit System F:

VAR	App			Fun		
$z:\tau\in \Gamma$	$\Gamma \vdash a_1$: $\tau_2 \rightarrow \tau_1$	$\Gamma \vdash a_2 : \tau_2$	Γ, Χ	$: \tau_0 \vdash $	a : $ au$
$\Gamma \vdash z : \tau$		$\Gamma \vdash a_1 a_2$: T ₁	$\Gamma \vdash \lambda(x$) a	$: \tau_0 \to \tau$
Gen		Inst		Sub		
$\Gamma, \alpha \vdash a$:	$ au_0$			Г⊢а	$ au_1$	$ au_1 \leqslant au_2$
Γ⊢ <i>a</i> : ∀	$(\alpha) \tau_0$	$\forall (\bar{\alpha}) \ \tau$	$\tau_0 \leqslant \tau_0[\bar{\alpha} \leftarrow \bar{\tau}]$		Г⊢а	: ₇₂

Implicit System F:

VAR	App		Fun	
$z:\tau\in\Gamma$	$\Gamma \vdash a_1 : \tau_2 \to \tau_1$	$\Gamma \vdash a_2 : \tau_2$	$\Gamma, x : \tau_0$	$\vdash a$: $ au$
$\Gamma \vdash z : \tau$	$\Gamma \vdash a_1 a$	$T_2: \tau_1$	$\Gamma \vdash \lambda(x)$	$a: au_0 \to au$
Gen	INST		Sub	
$\Gamma, \alpha \vdash \mathbf{a}$:	$ au_0 \qquad \overline{\beta} \notin$	${}^{\underline{t}}$ ftv($orall (ar lpha) \ ar au_0)$	$\Gamma \vdash a$: $ au_1$	$ au_1 \leqslant au_2$
$\Gamma \vdash a: \forall ($	$(\alpha) \tau_0 \qquad \overline{\forall(\bar{\alpha}) \tau_0}$	$\leq \forall (\bar{\beta}) \tau_0[\bar{\alpha} \leftarrow \bar{\tau}]$	Γ⊢	a: $ au_2$

Implicit System F:

VAR	App			Fun			
$z:\tau\in\Gamma$	$\Gamma \vdash a_1$	$: \tau_2 \to \tau_1$	$\Gamma \vdash a_2 : \tau_2$	I	$, x: \tau$	r₀ ⊢ <i>a</i>	: $ au$
$\Gamma \vdash z : \tau$		$\Gamma \vdash a_1 a_2$: T ₁	$\Gamma \vdash \lambda$	\(x) a :	$\tau_0 \rightarrow \tau$
Gen		Inst _		Sui	В		
$\Gamma, \alpha \vdash a$:	$ au_0$	$\bar{eta} otin$	ftv($\forall(\bar{\alpha}) \ \bar{\tau}_0$)	Г⊦	- a : 1	r_1	$ au_1 \leqslant au_2$
Γ⊢ <i>a</i> :∀	$\pi(\alpha) \tau_0$	$\forall (ar{lpha}) \ au_{0}$ \$	$\leqslant \forall (\bar{\beta}) \ au_0[\bar{\alpha} \leftarrow$	$-\overline{\tau}$]	Г	⊢ a :	τ_2

Add a construction for local bindings (perhaps derivable):

$$\frac{\Gamma \vdash a_1 : \tau_1 \qquad \Gamma, x : \tau_1 \vdash a_2 : \tau_1}{\Gamma \vdash \text{let } x = a_1 \text{ in } a_2 : \tau}$$

Implicit System F:	
	Logical, canonical presentation of typing rules
$\begin{array}{ccc} VAR & APP \\ z: \tau \in \Gamma & \Gamma \vdash \end{array}$	• Covers many variations: F, ML, F^{η} , F_{\leq} ,
$\overline{\Gamma \vdash z : \tau}$	Vary the set of types.Vary the instance relation between types.
Gen	 For ML, just restrict types to ML types.
$\Gamma, \alpha \vdash a : \tau_0$	
$\Gamma \vdash \mathbf{a} : \forall (\alpha) \ \tau_0$	

Add a construction for local bindings (perhaps derivable):

$$\frac{\Gamma \vdash a_1 : \tau_1 \qquad \Gamma, x : \tau_1 \vdash a_2 : \tau}{\Gamma \vdash \text{let } x = a_1 \text{ in } a_2 : \tau}$$

Implicit System F:	
	Logical, canonical presentation of typing rules
$\begin{array}{ccc} VAR & APP \\ z : \tau \in \Gamma & \Gamma \vdash \end{array}$	• Covers many variations: F, ML, F^{η} , F_{\leq} ,
$\overline{\Gamma \vdash z : \tau}$	Vary the set of types.Vary the instance relation between types.
Gen	 For ML, just restrict types to ML types.
$\frac{I, \alpha \vdash \mathbf{a} : \tau_0}{\Gamma \vdash \mathbf{a} : \forall(\alpha) \tau_0}$	Do never change the typing rules!

Add a construction for local bindings (perhaps derivable):

$$\frac{\Gamma \vdash a_1 : \tau_1 \qquad \Gamma, x : \tau_1 \vdash a_2 : \tau}{\Gamma \vdash \text{let } x = a_1 \text{ in } a_2 : \tau}$$

Type inference is undecidable — in System F

Of course, we must

• Use type annotations on function parameters in some cases.

- too many annotations are obfuscating.
- Alleviate some annotations by local type inference?
 - unintuitive and fragile (to program transformations).
- When parameters have polymorphic types?
 - still two many bothersome type annotations.

Are polymorphic types less important than monorphic ones?

Type inference is undecidable — in System F

Of course, we must

• Use type annotations on function parameters in some cases.

- too many annotations are obfuscating.
- Alleviate some annotations by local type inference?
 - unintuitive and fragile (to program transformations).
- When parameters have polymorphic types?
 - still two many bothersome type annotations.

Are polymorphic types less important than monorphic ones?

Our choice

• explained below

• When (and only when) parameters are used polymorphically.

The example of choice

let choice = $\lambda(x) \lambda(y)$ if true then x else $y : \forall \beta \cdot \beta \rightarrow \beta \rightarrow \beta$ let $id = \lambda(z) z : \forall (\alpha) \alpha \rightarrow \alpha$

choice id :

The example of choice

let choice = $\lambda(x) \lambda(y)$ if true then x else $y : \forall \beta \cdot \beta \to \beta \to \beta$ let $id = \lambda(z) z : \forall(\alpha) \alpha \to \alpha$ choice $id : \begin{cases} \forall(\alpha) (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall(\alpha) \alpha \to \alpha) \to (\forall(\alpha) \alpha \to \alpha) \end{cases}$

The example of choice

let choice =
$$\lambda(x) \lambda(y)$$
 if true then x else $y : \forall \beta \cdot \beta \to \beta \to \beta$
let $id = \lambda(z) z : \forall(\alpha) \alpha \to \alpha$
choice $id : \begin{cases} \forall(\alpha) (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall(\alpha) \alpha \to \alpha) \to (\forall(\alpha) \alpha \to \alpha) \end{cases}$ No better choice in F!

The example of choice

let choice =
$$\lambda(x) \lambda(y)$$
 if true then x else $y : \forall \beta \cdot \beta \rightarrow \beta \rightarrow \beta$
let $id = \lambda(z) z : \forall(\alpha) \alpha \rightarrow \alpha$
choice $id : \begin{cases} \forall(\alpha) (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \\ (\forall(\alpha) \alpha \rightarrow \alpha) \rightarrow (\forall(\alpha) \alpha \rightarrow \alpha) \end{cases}$ No better choice in F

The problem is serious and inherent

- \bullet Follows from rules ${\rm INST},~{\rm GEN},$ and ${\rm APP}.$
- Should values be kept as polymorphic or as instantiated as possible?
- A type inference system can do both, but cannot choose.

The example of choice

let choice = $\lambda(x) \lambda(y)$ if true then x else $y : \forall \beta \cdot \beta \rightarrow \beta \rightarrow \beta$ let $id = \lambda(z) z : \forall (\alpha) \alpha \rightarrow \alpha$ choice $id : \begin{cases} \forall (\alpha) (\alpha \rightarrow \alpha) \rightarrow (\alpha \rightarrow \alpha) \\ (\forall (\alpha) \alpha \rightarrow \alpha) \rightarrow (\forall (\alpha) \alpha \rightarrow \alpha) \end{cases}$

The solution in iML^{F} :

choice id :
$$\forall (\beta \geq \forall (\alpha) \ \alpha \rightarrow \alpha) \ \beta \rightarrow \beta$$

The example of choice

let choice = $\lambda(x) \lambda(y)$ if true then x else $y : \forall \beta \cdot \beta \rightarrow \beta \rightarrow \beta$ let $id = \lambda(z) z : \forall (\alpha) \alpha \rightarrow \alpha$

choice id :
$$\begin{cases} \forall (\alpha) \ (\alpha \to \alpha) \to (\alpha \to \alpha) \\ (\forall (\alpha) \ \alpha \to \alpha) \to (\forall (\alpha) \ \alpha \to \alpha) \end{cases}$$

The solution in iML^{F} :

choice id :
$$\forall (\beta \geq \forall (\alpha) \ \alpha \rightarrow \alpha) \ \beta \rightarrow \beta$$

$$\leq \left\{ \begin{array}{l} \left(\beta \to \beta\right) \left[\beta \leftarrow \forall(\alpha) \; \alpha \to \alpha\right] \\ \forall(\alpha) \; \left(\beta \to \beta\right) \left[\beta \leftarrow \alpha \to \alpha\right] \right) \end{array} \right.$$

The definition of iML^{F}

Types are stratified

$$\sigma ::= \tau \in \mathsf{F}$$
$$| \quad \forall (\alpha \ge \sigma) \ \sigma$$

We can see and explain types by \leq_F -closed sets of System-F types:

$$\begin{aligned} & \{\!\!\{\tau\}\!\} & \stackrel{\triangle}{=} \{\tau' \mid \tau \leqslant_{\mathsf{F}} \tau'\} \\ & \{\!\!\{\forall(\alpha \ge \sigma) \ \sigma'\}\!\} & \stackrel{\triangle}{=} \left\{\forall(\bar{\beta}) \ \tau'[\alpha \leftarrow \tau] \mid \land \left(\begin{array}{c} \tau \in \{\!\!\{\sigma\}\!\} \land \tau' \in \{\!\!\{\sigma'\}\!\} \\ & \bar{\beta} \ \# \ \mathsf{ftv}(\forall(\alpha \ge \sigma) \ \sigma') \end{array}\right) \right\} \end{aligned}$$

Type instance \leq_I is set inclusion on the translations

Simple types

Simple types

Simple types

 $\forall (\alpha) \ \alpha \rightarrow \alpha$

 $\forall (\alpha) \ \alpha \rightarrow \alpha$

$$\forall (\alpha) \; \forall (\beta) \; (\alpha \to \beta) \to \alpha \to \beta$$

$$\forall (\alpha) \; \forall (\beta) \; (\alpha \to \beta) \to \alpha \to \beta$$

$$\forall (\alpha) \; \forall (\beta) \; (\alpha \to \beta) \to \alpha \to \beta$$

System-F types

Sharing of inner nodes:

- Coming from the dag-representation of simple types.
- Canonical (unique) representation if disallowed.

System-F types

$$\forall (\alpha) \; \forall (\beta) \; (\alpha \to \beta) \to \alpha \to \beta$$

 $\forall (\alpha) \ (\alpha \to \alpha) \to \alpha \to \alpha$

System-F types

 $\forall (\alpha) \; \forall (\beta) \; (\alpha \to \beta) \to \alpha \to \beta$

iMLF Types explained eMLF

System-F types

$$\forall (\alpha) \; \forall (\beta) \; (\alpha \to \beta) \to \alpha \to \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \rightarrow \alpha) \rightarrow \beta \rightarrow \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

 $\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

*i*ML^F Types explained *e*ML^F

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

*i*ML^F Types explained *e*ML^F

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

$$\forall (\beta \geq \forall (\alpha) \ \alpha \to \alpha) \to \beta \to \beta$$

Э

The semantics cannot be captured by

- ${\scriptstyle \bullet}$ a finite set of System-F types up to \leqslant
- a finite intersection type.

Only four atomic instance operations, and only two new.

Grafting

Checking the example choice id

Outline

1 De

Design

- iMLF: an implicity-typed extension of System F
- Types explained
- eML^{F} : an explicitly-typed version of iML^{F}

Uses and Implementation

- Examples
- Type inference
- Restrictions and extensions

Design of *e*ML^F

Goal

Find a restriction *i*ML^F where programs that would require guessing polymorphism are ill-typed.

Guideline

◀ design

Function parameters that are used polymorphically (and only those) need an annotation.

Easy examples

- $\begin{array}{rcl} \lambda(z) \ z & : & \forall(\alpha) \ \alpha \to \alpha \\ \text{let} \ x = \lambda(z) \ z \ \text{in} \ x \ x & : & \forall(\alpha) \ \alpha \to \alpha \end{array}$
- $\begin{array}{l} \forall (\alpha) \ \alpha \to \alpha \\ \forall (\alpha) \ \alpha \to \alpha \end{array} \qquad \qquad \text{as in ML} \\ \text{as in ML} \end{array}$
- $\begin{array}{ll} \lambda(x) \; x \; x & : & \text{ill-typed!} & x \text{ is used polymorphically} \\ \lambda(x : \forall(\alpha) \; \alpha \to \alpha) \; x \; x & : & (\forall(\alpha) \; \alpha \to \alpha) \to (\forall(\alpha) \; \alpha \to \alpha) \end{array}$

More challenging example

 $(\lambda(z) z) (a : \sigma)$ where σ is truly polymorphic

More challenging example

 $(\lambda(z) z) (a : \sigma)$ where σ is truly polymorphic

- z must carry values of a polymorphic type.
- but z is not used polymorphically.
- Indeed, it can be typed in System F as n

 $(\Lambda \alpha. \ \lambda(z:\alpha) \ z) \ [\sigma] \ (a:\sigma)$

More challenging example

 $(\lambda(z) z) (a : \sigma)$ where σ is truly polymorphic

ACCEPT

- z must carry values of a polymorphic type.
- but z is not used polymorphically.
- Indeed, it can be typed in System F as n

 $(\Lambda \alpha. \ \lambda(z:\alpha) z) [\sigma] (a:\sigma)$

More challenging example

 $\lambda(z) (z (a : \sigma))$

More challenging example

 $\lambda(z) (z (a : \sigma))$

- z have the polymorphic type $\sigma \rightarrow \sigma$?
- z is node used polymorphically: polymorphism is only carried out from the argument to the result.

More challenging example

$$\lambda(z) (z (a : \sigma))$$
 ACCEPT

- z have the polymorphic type $\sigma \rightarrow \sigma$?
- z is node used polymorphically: polymorphism is only carried out from the argument to the result.

Abstracting second-order polymorphism as first-order types

Solution

- 1) Disallow second-order types under arrows, e.g. such as $\sigma_{\rm id} \rightarrow \sigma_{\rm id}$
- 2) Instead, allow type variables to stand for polymorphic types:

$$\begin{array}{ll} \text{write} & \forall (\alpha \Rightarrow \sigma_{\text{id}}) \; \alpha \to \alpha \\ \text{read} & ``\alpha \to \alpha \; \text{where} \; \alpha \; \underset{\alpha \text{ abstracts}}{\text{abstracts}} \; \sigma_{\text{id}} \\ \text{means} & \sigma_{\text{id}} \to \sigma_{\text{id}} \\ \end{array}$$

Mechanism

- 1) function parameters must be monomorphic (but may be abstract).
- 2) forces all polymorphism to be abstracted away in the context.

$$\frac{\alpha \Rightarrow \sigma_{\mathsf{id}}, x : \alpha \vdash x : \alpha}{\alpha \Rightarrow \sigma_{\mathsf{id}} \vdash \lambda(x) x : \alpha \to \alpha}$$
$$\frac{\lambda(x) x : \forall(\alpha \Rightarrow \sigma_{\mathsf{id}}) \alpha \to \alpha}{\lambda(x) x : \forall(\alpha \Rightarrow \sigma_{\mathsf{id}}) \alpha \to \alpha}$$

Abstracting second-order polymorphism

Key point: abstraction is directional

Abstracting second-order polymorphism

Key point: abstraction is directional

Introduce a new binder for abstraction

$$\forall (\alpha \Rightarrow \forall (\beta) \ \beta \to \beta) \ \alpha \to \alpha$$

Introduce a new binder for abstraction

$$\forall (\alpha \Rightarrow \forall (\beta) \ \beta \to \beta) \ \alpha \to \alpha$$

Introduce a new binder for abstraction

 $\forall (\alpha \Rightarrow \forall (\beta) \ \beta \to \beta) \ \forall (\alpha' \Rightarrow \forall (\beta) \ \beta \to \beta) \ \alpha \to \alpha'$

Introduce a new binder for abstraction

 $\forall (\alpha \Rightarrow \forall (\beta) \ \beta \to \beta) \ \forall (\alpha' \ge \forall (\beta) \ \beta \to \beta) \ \alpha \to \alpha'$

= first-order term-dag + a binding tree

+ well-formedness conditions relating the two

Type instance \leq in eML^{F}

Sharing and binding of abstract nodes matter

Grafting, Merging, Raising, Weakening Unchanged.

Recovering the missing power

 $(\leqslant) \subset (\leqslant_l)$

 ≤ is weaker than ≤1, as sharing and binding of abstract nodes matters.

Recovering the missing power

$$(\leqslant) \subset (\leqslant_l) = (\leqslant \cup \circledast_l)^* = (\leqslant; \circledast_l)$$

- ≤ is weaker than ≤_I, as sharing and binding of abstract nodes matters.
- Use explicit type annotations to recover ($\bigotimes_I \setminus \leqslant$).

Notice that the weaker \leqslant , the more annotations will be required.

Recovering the missing power

$$(\leqslant) \subset (\leqslant_l) = (\leqslant \cup \circledast_l)^* = (\leqslant; \circledast_l)$$

Intuitively,

$$\frac{\Gamma \vdash \mathsf{a} : \tau \qquad \tau \bigotimes_I \tau'}{\Gamma \vdash (\mathsf{a} : \tau') : \tau'}$$

• Actually, use coercion functions:

• Add syntactic sugar
$$\lambda(x:\sigma) = \lambda(x) = \alpha'$$

• $\lambda(x) = \alpha' = \lambda(x) = \lambda(x) = \lambda(x) = \lambda(x) = \lambda(x)$ in $a = \lambda(x) = \lambda(x) = \lambda(x) = \lambda(x)$

Recovering the missing power

$$(\leqslant) \subset (\leqslant_l) = (\leqslant \cup \circledast_l)^* = (\leqslant; \circledast_l)$$

Intuitively,

$$\frac{\mathsf{\Gamma}\vdash\mathsf{a}:\tau\quad \tau \circledast_{\mathsf{I}}\tau'}{\mathsf{\Gamma}\vdash(\mathsf{a}:\tau'):\tau'}$$

• Actually, use coercion functions:

• Add syntactic sugar
$$\lambda(x:\sigma) = \lambda(x) = \alpha$$

• $\lambda(x) = \lambda(x) = \alpha$
• $\lambda(x) = \alpha$

Remember $\alpha \Rightarrow \sigma, x : \alpha \vdash x : \sigma$

• Prevents typing $\lambda(x) \times x$

With an annotation $\alpha \Rightarrow \sigma, x : \alpha \vdash (x : \sigma) : \sigma$

▶ more

• Allows typing $\lambda(x : \sigma_{id}) x x$

Outline

1 Design

- *i*ML^F: an implicity-typed extension of System F
- Types explained
- eML^{F} : an explicitly-typed version of iML^{F}

2 Uses and Implementation

- Examples
- Type inference
- Restrictions and extensions

About principal types

Fact

• Programs have principal types, given with their type annotations.

Programs with type annotations

• Two versions of the same program, but with different type annotations, usually have different principal types.

Programs typable without type annotations

- Exactly ML programs.
- But usually have a more general type than in ML (e.g. choice id)
- Annotations may still be useful to get more polymorphism.

Robustness to small program transformations

Agreed

- Programmmers must be free of choising their programming patterns/styles.
- Programs should be maintainable.

Therefore

• Programs should be stable under some small, but important program transformations.

Robustness to small program transformations

 $a\subseteq a'$ means all typings of a are typings of a'

Let-conversion

let $x = a_1$ in $a_2 \bigcirc a_2[x \leftarrow a_1]$

Common subexpression can be factored out.

Redefine application

 $a_1 a_2 \supseteq (\lambda(f) \lambda(x) f x) a_1 a_2$

Many functionals, such as maps are typed as applications.

 η -conversion of functional expressions $a \subseteq \lambda(x) a x$

Delay the evaluation.

Reordering of arguments $a a_1 a_2 \bigcirc (\lambda(x) \lambda(y) a y x) a_2 a_1$

Curryfication

 $\mathsf{a} (\mathsf{a}_1, \mathsf{a}_2) \ \bigcirc \ (\lambda(x) \ \lambda(y) \ \mathsf{a} (x, y)) \ \mathsf{a}_1 \ \mathsf{a}_2$

Only overlined bindings need to be drawn

Leave implicit bindings that are

- at unshared, inner nodes,
- bound just above,
- abstractions on the left of arrows,
- instances on the right arrows.

 $(\forall (\alpha) \ \forall (\beta) \ (\alpha \to \beta) \to (\alpha \to \beta)) \to (\forall (\alpha) \ \alpha \to \alpha) \to (\forall (\alpha) \ \alpha \to \alpha)$

Only overlined bindings need to be drawn

Leave implicit bindings that are

- at unshared, inner nodes,
- bound just above,
- abstractions on the left of arrows,
- instances on the right arrows.

 $(\forall (\alpha) \ \forall (\beta) \ (\alpha \to \beta) \to (\alpha \to \beta)) \to \forall (\gamma \Rightarrow \forall (\alpha) \ \alpha \to \alpha) \ (\forall (\alpha) \ \alpha \to \alpha) \to \gamma$

Only overlined bindings need to be drawn

Leave implicit bindings that are

- at unshared, inner nodes,
- bound just above,
- abstractions on the left of arrows,
- instances on the right arrows.

 $\forall (\gamma \Rightarrow \forall (\alpha) \ \alpha \to \alpha) \ (\forall (\alpha) \ \forall (\beta) \ (\alpha \to \beta) \to (\alpha \to \beta)) \to (\forall (\alpha) \ \alpha \to \alpha) \to \gamma$

Only overlined bindings need to be drawn

Leave implicit bindings that are

- at unshared, inner nodes,
- bound just above,
- abstractions on the left of arrows,
- instances on the right arrows.

 $(\forall (\alpha) \ \forall (\beta) \ (\alpha \to \beta) \to (\alpha \to \beta)) \to \forall (\gamma \ge \sigma_{\mathsf{id}}) \ \gamma \to \gamma$

Examples

Library functions

let rec fold f v = function | Nil \rightarrow v | Cons (h, t) \rightarrow fold f (f h t) t;; val fold : $\forall(\alpha) \forall(\beta) (\alpha \rightarrow \alpha \text{ list} \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \text{ list} \rightarrow \beta$

Few type annotations are needed in practice

• No dummmy/annoying/unpredictable annotations.

Output types are usually readable

- Most inner binding edges may be left implicit.
- Many library functions libraries keep their ML type in ML^F, modulo the syntactic sugar.

More examples

₩ skip

Church's numerals

type nat =
$$\forall (\alpha) (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha;$$

let zero = fun f x \rightarrow x;;
val zero : $\forall (\alpha) \alpha \rightarrow (\forall (\beta) \beta \rightarrow \beta)$

With type annotations on the iterator

let succ (n : nat) = fun f x
$$\rightarrow$$
 n f (f x);;
val succ : nat \rightarrow (\forall (α) ($\alpha \rightarrow \alpha$) $\rightarrow \alpha \rightarrow \alpha$)

let add (n : nat) m = n succ m;; val add : nat \rightarrow (\forall (α) ($\alpha \rightarrow \alpha$) $\rightarrow \alpha \rightarrow \alpha$) let mul n (m : nat) = m (add n) zero;; mul : nat \rightarrow nat \rightarrow (\forall (α) ($\alpha \rightarrow \alpha$) $\rightarrow \alpha \rightarrow \alpha$)

Examples Type inference Restrictions and extensions

More examples

type nat =
$$\forall (\alpha) (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha;;$$

let zero = fun f x \rightarrow x;;
val zero : $\forall (\alpha) \alpha \rightarrow (\forall (\beta) \beta \rightarrow \beta)$

Without type annotations

let succ n = fun f x \rightarrow n f (f x);; val succ : $\forall (\alpha, \beta, \gamma) ((\alpha \rightarrow \beta) \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$ let add n m = n succ m;; val add : $\forall (\delta \ge \forall (\alpha, \beta, \gamma) ((\alpha \rightarrow \beta) \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma)$ $\forall (\varepsilon, \varphi) (\delta \rightarrow \varepsilon \rightarrow \varphi) \rightarrow \varepsilon \rightarrow \varphi$ In ML:

$$\begin{array}{l} \text{val add} : \forall \ (\alpha, \beta, \gamma, \varepsilon, \varphi) \ ((((\alpha \to \beta) \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma) \\ \to \varepsilon \to \varphi) \to \varepsilon \to \varphi \end{array}$$

Examples Type inference Restrictions and extensions

More examples

Church's numerals

type nat =
$$\forall (\alpha) (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha;$$

let zero = fun f x \rightarrow x;;
val zero : $\forall (\alpha) \alpha \rightarrow (\forall (\beta) \beta \rightarrow \beta)$

Mandatory type annotations

 ML^F without any type annotation at all does not do better than $\mathsf{ML}!$

Unification algorithm

Computes principal unifiers, in three steps

- Computes the underlying dag-structure by first-order unification.
- Computes the binding structure
 - by raising binding edges
 - as little as possible to maintain well-formedness.
- Checks that no locked binding edge (in red) has been raised or merged.

Complexity

- Same as first-order unification. Other passes are in linear time.
- O(n) (or $O(n\alpha(n))$ if incremental).

Note

• The algorithm performs "first-order unification of second-order types".

Type inference

Proceeds much as in ML

- Implement type-instantiation by copying the polymorphic part.
- Use unification to solve typing constraints.
- Generalize as much as possible at every step (not just at every let).
- Type inference with typing constraints

Demo

- Complexity in $O(kn(\alpha(kn) + d)) \approx O(kdn)$
 - As for ML (see McAllester).
 - k is the maximal size of types (usually not too large)
 - *d* is the maximal nesting of type schemes.
 - However, ML and ML^F differs on *d*, which is:
 - the left-nesting of let-bindings in ML
 - the maximun height of an expression in ML^F (Still, does not grow on the right of let-bindings).

Variations on ML^F

Shallow ML^F

The version we presented is a "downgraded" version of ML⁺.

- Types are stratified.
- Instance bounded types cannot appear in bounds of abstract variables.
- In particular, type annotations must be F types.

Variations on ML^F

Shallow ML^F

The version we presented is a "downgraded" version of ML^F.

- Types are stratified.
- Instance bounded types cannot appear in bounds of abstract variables.
- In particular, type annotations must be F types.

Full MLF

- No stratification, more expressive.
- All interesting properties are preserved.
- Algorithms are mostly unchanged.
- We loose the interpretation of types as sets of System-F types.

Variations on ML^F

Shallow ML^F

The version we presented is a "downgraded" version of ML⁺.

- Types are stratified.
- Instance bounded types cannot appear in bounds of abstract variables.
- In particular, type annotations must be F types.

Simple ML^F

Remove instance bindings \geq , keep abstract bindings \Rightarrow .

- Equivalent to System F.
- Principal types are lost (no type inference).

A hierarchy of languages

A hierarchy of languages

A hierarchy of languages

Extensions

Primitive Existential types

- Encoding with existential types works well (only annotate at creation).
- Can more be done with primitive existential ?

(Equi-) recursive types

- Easy when cycles do not contain quantifiers.
- Cycles that croses quantifiers are difficult.

Higher-order types

- Use two quantifiers (explicit coercions between the two permitted)
 - \forall^{F} for fully explicit type abstractions and
 - \forall^{MLF} for implicit MLF polymorphism.
- Restrict \forall^{MLF} to the first-order type variables.
- Can \forall^{MLF} also be used at higher-order kinds?
Papers and prototypes

Talk mainly based on

- Recasting-ML^F with Didier Le Boltan.
- A Graphical Presentation of ML^F Types, with Boris Yakobowski.

Other papers and online prototype at

• http://gallium.inria.fr/~remy/mlf/

See also Daan Leijen's papers and prototypes

http://research.microsoft.com/users/daan/pubs.html

Conclusions

Just two things to remember

- ML^F allows function parameters to implicitly carry polymorphic values that are used monomorphically.
- Type annotations are required only to allow function parameters to carry (polymorphic) values that are used polymophically.

ML^F design, use, and implementation are close to ML

- ML^F piggy-backs on ML type-shemes and generalization mechanism.
- Part of the credits should be returned to the great designers of ML.

Hopefully

- ML users will feel "at home".
- Other users will also appreciate the convenience of type inference.

Appendix

3 Type inference demo

- 4 More examples: encoding of existential types
- 5 About Rigid ML^F

Questions

- What is an Intermediate language for ML^F
- Sharing of abstract nodes is irreversible (implicitly)

Details of slides

- Another example of System F types
- Abstraction in action

$$let y = \lambda(x) x$$

in y y

let
$$y = \lambda(x) x$$

in $y y$

$\lambda(z) z (\lambda(x) x)$

$$\lambda(z) z (\lambda(x) x)$$

$$\lambda(z) \ (z : \sigma_{id})$$

$$\lambda(z) \ (z : \sigma_{id})$$

Demo Examples About Rigid ML^F Questions Details

Type inference with typing constraints (demo)

Demo Examples About Rigid ML^F Questions Details

Type inference with typing constraints (demo)

More examples

Encoding of existential types, e.g. $\exists \beta . \beta \times \beta \rightarrow \alpha$ type α func = $\forall (\gamma) \forall (\delta = \forall (\beta) \beta * (\beta \rightarrow \alpha) \rightarrow \gamma) \delta \rightarrow \gamma$

val pack $z = fun (f : \exists (\gamma) \forall (\beta) \beta * (\beta \to \alpha) \to \gamma) \to f z;;$ val pack : $\forall (\alpha) \forall (\beta) \alpha * (\alpha \to \beta) \to (\forall (\gamma) (\forall (\delta) \delta * (\delta \to \beta) \to \gamma) \to \gamma)$

let packed_int = pack (1, fun $x \rightarrow x+1$);; let packed_pair = pack (1, fun $x \rightarrow (x, x)$);;

let $v = packed_int (fun p \rightarrow (snd p) (fst p));;$

About Rigid ML^F

Rigid ML^F lies very close to ML^F

- It uses and relies on (Shallow) ML^F internally.
- It projects ML^F principal types into System-F types at let-bindings, by raising variable bindings as much as possible.

Rigid ML^F looses important properties of ML^F

- There are no principal types per se.
 - Rigid ML^F pretends to have principal types, but this is in an ad hoc manner, using a non logical typing rule for Let-bindings with a premise that blocks free uses of type-instantiation.
- let x = λ(z : σ) z in a₂ may be accepted while let x = λ(z) z in a₂ would be rejected.
- Rigid ML^F is not invariant by let-expansion (which signs the lost of truly principal types).

About Rigid ML^F

Rigid ML^F lies very close to ML^F

- It uses and relies on (Shallow) ML^F internally.
- It projects ML^F principal types into System-F types at let-bindings, by raising variable bindings as much as possible.

Rigid ML^F looses important properties of ML^F

- There are no principal types per se.
- Rigid ML^F is not invariant by let-expansion (which signs the lost of truly principal types).

Rigid ML^F is a subset of System F

• This is both its interest and its problem.

What would be an intermediate language for ML^F?

Problem

- Subject reduction is only proved in *i*ML^F, which has the same type erasure as *e*ML^F.
 - This ensures correctness of *i*ML^F
 - But does not help to propagate annotations during reduction (or other program transformations)
- Even so, *e*ML^F requires type inference, which is not a local process.

Solution

- Introduce a fully explicit version of *x*ML^F (easy)
- Instrument reduction rules to keep track of types during reduction (not entirely trivial)
- This has to be investigated.

Sharing of abstract nodes is irreversible (implicitly)

Can you show an example illustrating the difference?

Fact: $\forall (\alpha \Rightarrow \sigma) \ \alpha \to \alpha \nleq \forall (\alpha \Rightarrow \sigma, \alpha' \Rightarrow \sigma) \ \alpha \to \alpha'$

Observe that:

•
$$\lambda(z) \ z : \forall (\alpha \Rightarrow \sigma) \ \alpha \to \alpha$$

• $(_: \sigma) : \forall (\alpha \Rightarrow \sigma, \alpha' \Rightarrow \sigma) \ \alpha \to \alpha'$

Then, the context $a \stackrel{\triangle}{=} \lambda(x)$ [] x x distinguishes those two expressions.

- a[λ(z) z] is ill-typed.
 (As it uses no type annotation and it is ill-typed in ML)
- a[(_: σ)] is well-typed.

System F Abstraction

System-F types (encoding of existential types)

System F Abstraction

System-F types (encoding of existential types)

 $\forall (\alpha) (\forall (\beta) \tau_{\beta} \to \alpha) \to \alpha$

 $(\forall (\beta) \ \tau_{\beta} \to \forall (\alpha) \ \alpha \to \alpha) \to \forall (\alpha) \ \alpha \to \alpha$

System F Abstraction

System-F types (encoding of existential types)

 $\forall (\alpha) (\forall (\beta) \tau_{\beta} \to \alpha) \to \alpha$

 $\forall (\alpha) \ (\forall (\beta) \ \tau_{\beta} \to \alpha \to \alpha) \to \alpha \to \alpha$

Type annotations

$$\begin{array}{c|c} \alpha \Rightarrow \sigma, \beta \Rightarrow \sigma \vdash \sigma \leqslant \alpha \text{ and } \sigma \leqslant \beta \\ \hline \alpha \Rightarrow \sigma, \beta \Rightarrow \sigma \vdash & \forall (\alpha' \Rightarrow \sigma) \forall (\beta' \Rightarrow \sigma) \alpha' \to \beta' \\ \leqslant & \forall (\alpha' \Rightarrow \alpha) \forall (\beta' \Rightarrow \beta) \alpha' \to \beta' \\ & \Leftrightarrow \\ \alpha \to \beta \end{array}$$

$$\frac{\alpha \Rightarrow \sigma, x : \alpha, \beta \Rightarrow \sigma \vdash (_:\sigma) : \alpha \to \beta \qquad \alpha \Rightarrow \sigma, x : \alpha, \beta \Rightarrow \sigma \vdash x : \alpha}{\alpha \Rightarrow \sigma, x : \alpha, \beta \Rightarrow \sigma \vdash (x : \sigma) : \beta}$$
$$\frac{\alpha \Rightarrow \sigma, x : \alpha \vdash (x : \sigma) : \forall (\beta \Rightarrow \sigma) \beta}{\alpha \Rightarrow \sigma, x : \alpha \vdash (x : \sigma) : \sigma}$$

Type annotations

$$\frac{\alpha \Rightarrow \sigma_{\mathsf{id}}, x : \alpha \vdash (x : \sigma_{\mathsf{id}}) : \sigma_{\mathsf{id}}}{\alpha \Rightarrow \sigma_{\mathsf{id}}, x : \alpha \vdash (x : \sigma_{\mathsf{id}}) : \alpha \to \alpha} \qquad \alpha \Rightarrow \sigma_{\mathsf{id}}, x : \alpha \vdash x : \alpha}$$
$$\frac{\alpha \Rightarrow \sigma_{\mathsf{id}}, x : \alpha \vdash (x : \sigma_{\mathsf{id}}) x : \alpha}{\alpha \Rightarrow \sigma_{\mathsf{id}} \vdash \lambda(x) (x : \sigma_{\mathsf{id}}) x : \alpha \to \alpha}$$
$$\vdash \lambda(x) (x : \sigma_{\mathsf{id}}) x : \forall (\alpha \Rightarrow \sigma_{\mathsf{id}}) \alpha \to \alpha}$$

