Design Uses and Implementation

@ Design
o iMLF: an implicity-typed extension of System F
@ Types explained
o eMLF: an explicitly-typed version of iMmLF

© Uses and Implementation
@ Examples
@ Type inference
@ Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 1/40

Design Uses and Implementation

MLF for Everyone

(Users, Implementers, and Designers)

Didier Rémy
INRIA-Rocquencourt

ML Workshop

(Based on joint work with Didier Le Botlan and Boris Yakobowski)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 2 /40

http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://gallium.inria.fr/~yakobows

Simple to use Expressive

Great success
/ Happy days
J—

A%}V

Expressive

SImWSIOH of ML \

Simplification

Even used in full scale languages /

such as Scala. /

Full type inference
is undecidable

Full type annotations
are obfuscating

Design Uses and Implementation

Outline

@ Design
o iMLF: an implicity-typed extension of System F
@ Types explained
o eMLF: an explicitly-typed version of iMLF

© Uses and Implementation
@ Examples
@ Type inference
@ Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

6/ 40

Design Uses and Implementation iMLF Types explained emLF

A universal type system

Explicit System F:

GEN
Nata:n

M= Ao a:V(a)

Didier Rémy (INRIA-Rocquencourt)

Fun
Mx:mokFa:T

MN-Ax:m)a:m—r

UNGEN

N-a:v(a)r

MN=ar7:la«—T1]

MLF for Everyone Oct 2007 (1)7 / 40

Design Uses and Implementation iMLF Types explained emLF

A universal type system

Implicit System F:

GEN
Nata:n

M a:V(a) o

Didier Rémy (INRIA-Rocquencourt)

Fun
Mx:mokFa:T

FN-Ax Jarmm—r

UNGEN

N-a:v(a)r

N=a :71pla 7]

MLF for Everyone Oct 2007 (2)7 / 40

Design Uses and Implementation

A universal type system

Implicit System F:

GEN
Nata:n

M a:V(a) o

Didier Rémy (INRIA-Rocquencourt)

INST

iMLF Types explained eMLF

Fun
Mx:mokFa:T

FN-Ax Jarmm—r

V(&) 10 < 1ol «— 7]

MLF for Everyone

SuB

Na:n 71 < T2
Na:nm
Oct 2007 (3)7 / 40

Design Uses and Implementation iMLF Types explained emLF

A universal type system

Implicit System F:

Fun
Mx:mokFa:T

FN-Ax Jarmm—r

GEN INST SuB
Naka:n B ¢ frv(V(a@) 7o) N-a:mn 71 < T

M a:V(a)mo Y(&) T <V(

R

) To[@ — 7] M-a:m

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Fun
Mx:mokFa:T

FN-Ax Jarmm—r

GEN INST SuB
Naka:n B ¢ ftv(V(@) 7o) N-a:mn 71 < T

M- a:¥(a)o Y(@) 1o < V(B) ro[@ — 7] N-a:m

Add a construction for local bindings (perhaps derivable):

LET
a7 Mx:mbFay:r

Fletx=ajinay:7

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)7 / 40

Design Uses and Implementation iMLF Types explained emLF

A universal type system

Implicit System F: . . . ;
Logical, canonical presentation of typing rules
o Covers many variations: F, ML, F7, F, ...
o Vary the set of types.
o Vary the instance relation between types.

GEN @ For ML, just restrict types to ML types.
Nata:n

M a:V(a) o

Add a construction for local bindings (perhaps derivable):

LET
a7 Mx:mbFay:r

Fletx=ajinay:7

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F: . . . ;
Logical, canonical presentation of typing rules
o Covers many variations: F, ML, F7, F, ...

o Vary the set of types.

o Vary the instance relation between types.
GEN @ For ML, just restrict types to ML types.

Nata:n .

[2 v(a)m DO never change the typing rules!

Add a construction for local bindings (perhaps derivable):

LET
a7 Mx:mbFay:r

Fletx=ajinay:7

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (7)7 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type inference is undecidable — in System F

Of course, we must

@ Use type annotations on function parameters in some cases.

When? Not conservative
o Always? extensions of ML
@ too many annotations are obfuscating. /

@ Alleviate some annotations by local type inference?
@ unintuitive and fragile (to program transformations).
@ When parameters have polymorphic types?
@ still two many bothersome type annotations.
Are polymorphic types less important than monorphic ones?

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)8 / 40

Design Uses and Implementation iMLF Types explained emLF

Type inference is undecidable — in System F

Of course, we must

@ Use type annotations on function parameters in some cases.

When? Not conservative
o Always? extensions of ML
@ too many annotations are obfuscating. /

@ Alleviate some annotations by local type inference?
@ unintuitive and fragile (to program transformations).
@ When parameters have polymorphic types?
@ still two many bothersome type annotations.
Are polymorphic types less important than monorphic ones?

Our choice

@ When (and only when) parameters are used polymorphically.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)8 / 40

Design Uses and Implementation iMLF Types explained emLF

Lack of principal types for applications

The example of choice

let choice = A(x) A(y) if true then x else y : V(3.5 — (— [
let id = \N(z) z: V(o) o — «

choice id :

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)9 / 40

Design Uses and Implementation iMLF Types explained emLF

Lack of principal types for applications

The example of choice
let choice = A(x) A(y) if true then x else y : V(3.5 — (— [
let id = \N(z) z: V(o) o — «

ceid: | V(@ (@—a)—(a—a)
choice id : { V() a = a) = V(o) a — «)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)9 / 40

Design Uses and Implementation iMLF Types explained emLF

Lack of principal types for applications

The example of choice
let choice = A(x) A(y) if true then x else y : V(3.5 — (— [
let id = \N(z) z: V(o) o — «

. Y(a) (o= a) = (a—a) .
choice id : { (¥() @ —) — (V(a) a — a) No better choice in F!

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice
let choice = A(x) A(y) if true then x else y : V(3 -5 — [— [
let id = \N(z) z: V(o) o — «

o iq. | V(@) (@=a) = (a—a)
choice id : { V(o) a = a) — (V(a) a — «

) No better choice in F!
The problem is serious and inherent

@ Follows from rules INST, GEN, and APP.

@ Should values be kept as polymorphic or as instantiated as possible?

@ A type inference system can do both, but cannot choose.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)9 / 40

Design Uses and Implementation iMLF Types explained emLF

Lack of principal types for applications

The example of choice

let choice = A(x) A(y) if true then x else y : V(-5 — 3 — [
let id = \N(z) z: V(o) o — «

V() (@ = a) = (a — a)

choice id : { V() a = a) = V(o) a — «)

The solution in iMLF:
choice id : V(ﬁ > V(Oz) (0t O{) 68— 0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = A(x) A(y) if true then x else y : V(3.5 — (— [
let id = \N(z) z: V(o) o — «

V() (@ = a) = (a — a)

choice id : { V(o) a — a) — (V(a) a — «)

The solution in iMLF:
choice id : V(ﬁ > V(a) o — O{) 68— 0

(B— 0)[8 < ¥(a) @ — o
SEAY AT

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

(6)9 / 40

Design Uses and Implementation iMLF Types explained emLF
The definition of iMLF
Types are stratified

o= T cF
| V(a>o0)o

We can see and explain types by <p-closed sets of System-F types:

fr} ={lr<er}

RS VR NN G P o

Type instance <; is set inclusion on the translations

o< 0 = {o} 2{o'}

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 10 / 40

o —

V(o) a — «

V(o) a — «

Design Uses and Implementation iMLF Types explained emLF

System-F types

V(@) ¥(0) (0 = B) = a = f

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone

Oct 2007

(1)13 / 40

Design Uses and Implementation iMLF Types explained emLF

System-F types

V(@) ¥(0) (0 = B) = a = f

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone

Oct 2007

(2)13 / 40

Design Uses and Implementation iMLF Types explained emLF

System-F types

V(@) ¥(0) (0 = B) = a = f

<F

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)13 / 40

Design Uses and Implementation iMLF Types explained emLF

System-F types

(a—>ﬁ)—>o¢—>ﬁ

ST =
I\
© ©

@ Coming from the dag-representation of simple types.

Sharing of inner nodes:

@ Canonical (unique) representation if disallowed.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)13 / 40

Design Uses and Implementation iMLF Types explained emLF

System-F types
V(a) ¥(6) (0 =) = a =
SF =

N1

V(o) (@ = a) > a— «

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)13 / 40

Design Uses and Implementation iMLF Types explained emLF

System-F types

V(@) V() (@ =y —=79)—=a—=7v—7

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)13 / 40

Design Uses and Implementation iMLF Types explained emLF

System-F types aD

V() (a—=V(y)y—=7)—a—=Y()y—7

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (7)13 / 40

V(B> V(a)a—a)—= 05—

Design Uses and Implementation iMLF Types explained emLF

Types in iM LF

vi2V(@)a—a)= 5 -0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iM LF

vi2V(@)a—a)= 5 -0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iM LF

vi2V(@)a—a)= 5 -0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iM LF

VB2 V(@)a—a)=F—0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iMLF
ViBz V() a—a)= =0

>

V(o) a — a) = V(o) a — «

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iMLF
ViBz V() a—a)= =0

>

V(o) (@ — a) — (a — «)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (7)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iMLF
ViBz V() a—a)= =0

>

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (8)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iMLF
ViBz V() a—a)= =0

>

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (9)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iMLF
ViBz V() a—a)= =0

>

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (10)14 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in iM LF

V(G2 V(a)a—a)=5—F

The semantics cannot be captured by
o a finite set of System-F types up to <

o a finite intersection type.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (11)14 / 40

Design Uses and Implementation iMLF Types explained emLF

iMLF types

V(= (V()a—a)=(V(a)a—a))=6-0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)15 / 40

Design Uses and Implementation iMLF Types explained emLF

iMLF types

V(= (V()a—a)=(V(a)a—a))=6-0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)15 / 40

Design Uses and Implementation iMLF Types explained emLF

iMLF types

V(= (V()a—a)=(V(a)a—a))=6-0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)15 / 40

Design Uses and Implementation iMLF Types explained emLF

iMLF types

V(= (V(e)a—=a)=(V(a)a—a))=5—=0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)15 / 40

Design Uses and Implementation iMLF Types explained emLF

Type instance < in iMmLF

Only four atomic instance operations, and only two new.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)16 / 40

Design Uses and Implementation iMLF Types explained emLF

Type instance < in iMmLF

Only four atomic instance operations, and only two new.

Grafting

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)16 / 40

Design Uses and Implementation iMLF Types explained emLF

Type instance < in iMmLF

Only four atomic instance operations, and only two new.

Grafting Raising

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)16 / 40

Design Uses and Implementation iMLF Types explained emLF

Type instance < in iMmLF

Only four atomic instance operations, and only two new.

Grafting Raising Merging

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)16 / 40

Design Uses and Implementation iMLF Types explained emLF

Type instance < in iMmLF

Only four atomic instance operations, and only two new.

Grafting Raising Merging ~ Weakening

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)16 / 40

Design Uses and Implementation iMLF Types explained emLF

Checking the example choice id

Raising Weakening
> <

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 17 / 40

Design Uses and Implementation iMLF Types explained emLF

Outline

@ Design
o eMLF: an explicitly-typed version of iMLF

© Uses and Implementation

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 18 / 40

Design Uses and Implementation iMLF Types explained eMLF

Design of eM LF
Goal

Find a restriction iMLF where programs that would
require guessing polymorphism are ill-typed.

Guideline

Function parameters that are used polymorphically
(and only those) need an annotation.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 19 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference with second-order types

Easy examples

Nz) z D Y(e)a—« as in ML
let x = X(z) z in x x o Y(a)a—a as in ML
A(x) x x :ill-typed! x is used polymorphically
AMx:V(o)a—a)xx : (Y(a)a—a)— V(o) a—a)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 20 / 40

Design Uses and Implementation iMLF Types explained emLF

First-order inference of second order types

More challenging example

(Mz) z) (a:0) where o is truly polymorphic

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

(1)21 / 40

Design Uses and Implementation iMLF Types explained emLF

First-order inference of second order types

More challenging example
(Mz) z) (a:0) where o is truly polymorphic
@ z must carry values of a polymorphic type.

@ but z is not used polymorphically.

@ Indeed, it can be typed in System F as n

(Aa. Mz:a) z) o] (a:0)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)21 / 40

Design Uses and Implementation iMLF Types explained emLF

First-order inference of second order types

More challenging example
(M(z) z) (a: o) where o is truly polymorphic ACCEPT
@ z must carry values of a polymorphic type.

@ but z is not used polymorphically.

@ Indeed, it can be typed in System F as n

(Aa. Mz:a) z) o] (a:0)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)21 / 40

Design Uses and Implementation iMLF Types explained emLF

First-order inference of second order types

More challenging example

Az) (z (a:)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

(4)21 / 40

Design Uses and Implementation iMLF Types explained emLF

First-order inference of second order types

More challenging example

Az) (z (a:)

@ z have the polymorphic type 0 — o 7

@ z is node used polymorphically:
polymorphism is only carried out from the argument to the result.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)21 / 40

Design Uses and Implementation iMLF Types explained emLF

First-order inference of second order types

More challenging example

MNz) (z (a:0)) ACCEPT

@ z have the polymorphic type 0 — o 7

@ z is node used polymorphically:
polymorphism is only carried out from the argument to the result.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)21 / 40

Design Uses and Implementation iMLF Types explained eMLF

Abstracting second-order polymorphism as first-order types

Solution
1) Disallow second-order types under arrows, e.g. such as o4 — oig

2) Instead, allow type variables to stand for polymorphic types:

write Y(a = o04) a — «
read “a — o where « abstracts giq”
means oOiq — Oid

Mechanism
1) function parameters must be monomorphic (but may be abstract).
2) forces all polymorphism to be abstracted away in the context.

a=o0ig,Xx:abFx:«a

a=oghAX)x:a—a

Ax) x V(o= o04) a = «

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 22 / 40

Design Uses and Implementation iMLF Types explained emLF

Abstracting second-order polymorphism aD

Key point: abstraction is directional

a=okto<a a:>/al’{<a

Hence,
Fa:o
a=ocla:«a Z:a—atz:ia—«
Fza
FXz)za:

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)23 / 40

Design Uses and Implementation iMLF Types explained emLF

Abstracting second-order polymorphism aD

Key point: abstraction is directional

a=ockto<a a:>/al’{<a

But,

aé\a;d,\z:al—z:a
a=0i4, Z: otk z:0y4
I—ZN Fz:a
\!\Qa

FXz)zz

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)23 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in eM LF

Introduce a new binder for abstraction

V(e =V(0) f = f)a—«

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)24 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in eM LF

Introduce a new binder for abstraction

V(e =V(0) f = f)a—«

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)24 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in eM LF

Introduce a new binder for abstraction

V(e =V(8) 8 — B) V(o' = V(3) f =) o —

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)24 / 40

Design Uses and Implementation iMLF Types explained emLF

Types in eM LF

Introduce a new binder for abstraction

V(e =V(8) 8 — B) V(e 2 V(B) 8 — f)a—d

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)24 / 40

Design Uses and Implementation iMLF Types explained emLF

Types, graphically

= first-order term-dag + a binding tree

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)25 / 40

Design Uses and Implementation iMLF Types explained emLF

Types, graphically

= first-order term-dag + a binding tree

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)25 / 40

Design Uses and Implementation iMLF Types explained emLF

Types, graphically

= first-order term-dag + a binding tree

6600 o

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)25 / 40

Design Uses and Implementation iMLF Types explained emLF

Types, graphically

= first-order term-dag + a binding tree

-+ well-formedness conditions relating the two

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)25 / 40

Design Uses and Implementation iMLF Types explained emLF

Type instance < in eMLF

Sharing and binding of abstract nodes matter

< <

W
W

-~

e

Grafting, Merging, Raising, Weakening
Unchanged.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 26 / 40

Design Uses and Implementation iMLF Types explained emLF

Type annotations
Recovering the missing power

(<) ()

@ < is weaker than <, as sharing and binding of abstract nodes
matters.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)27 / 40

Design Uses and Implementation iMLF Types explained emLF

Type annotations
Recovering the missing power
(=)= Ku<) =(<)
@ < is weaker than <, as sharing and binding of abstract nodes

matters.

@ Use explicit type annotations to recover (< \ <).

Notice that the weaker <, the more annotations will be required.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)27 / 40

Design Uses and Implementation iMLF Types explained emLF

Type annotations

Recovering the missing power
(=)= Ku<) =(<)

@ Intuitively,
Fl-a:7 T T

Fr-(a:7):7

@ Actually, use coercion functions:

(-: o) : Vo= o) V(' = o) a— o

@ Add syntactic sugar A(x:0) a

>

Ax)let x=(x:0)ina
A(x) a[x «— (x : 0)]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)27 / 40

Design Uses and Implementation iMLF Types explained emLF

Type annotations

Recovering the missing power
(=)= Ku<) =(<)

@ Intuitively,
Fl-a:7 T T

Fr-(a:7):7

@ Actually, use coercion functions:

(L:3(B) o) : VB V(a= o) V(' = 0)a—d
@ Add syntactic sugar A(x:0) a

>

Ax)let x=(x:0)ina
A(x) a[x «— (x : 0)]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)27 / 40

Design Uses and Implementation iMLF Types explained emLF

Type annotations

Remember a=o0,x:akFx:0o

@ Prevents typing A(x) x x

With an annotation a = o,x:abt (x:0):0

@ Allows typing \(x : gig) x x

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)27 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Outline

© Uses and Implementation
@ Examples
@ Type inference
@ Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone

Oct 2007

28 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

About principal types

Fact

@ Programs have principal types, given with their type annotations.

Programs with type annotations

@ Two versions of the same program, but with different type
annotations, usually have different principal types.

Programs typable without type annotations
@ Exactly ML programs.
@ But usually have a more general type than in ML (e.g. choice id)

@ Annotations may still be useful to get more polymorphism.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 29 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Robustness to small program transformations

Agreed

@ Programmmers must be free of choising their programming
patterns/styles.

@ Programs should be maintainable.

Therefore

@ Programs should be stable under some small, but important program
transformations.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)30 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions
Robustness to small program transformations
a C &’ means all typings of a are typings of a’
Let-conversion let x = a3 in aa O ax[x « ai1]

Common subexpression can be factored out.

Redefine application
a1 ar O (AMf) Mx) f x) a1 a»

Many functionals, such as maps are typed as applications.

n-conversion of functional expressions a O Mx)ax
Delay the evaluation.

Reordering of arguments aaia © (Mx)Ay)ayx)asa;

Curryfication a(ana) © (M) AMy) a(x,y)) a1 a

All valid in MLF

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)30 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings Leave implicit bindings

need to be drawn that are

@ at unshared, inner nodes,

@ bound just above,

@ abstractions on the left of arrows,

@ instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings Leave implicit bindings

need to be drawn that are

@ at unshared, inner nodes,

@ bound just above,

@ abstractions on the left of arrows,

@ instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings Leave implicit bindings

need to be drawn that are

@ at unshared, inner nodes,

@ bound just above,

@ abstractions on the left of arrows,

@ instances on the right arrows.

a—)= (a—0)—= V() a—a) >y

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings Leave implicit bindings

need to be drawn that are

@ at unshared, inner nodes,

@ bound just above,

@ abstractions on the left of arrows,

@ instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Examples

Library functions

let rec fold f v = function

| Nil — v

| Cons (h, t) — fold f (f ht) t;;
val fold : ¥(a)Y(B) (o« — « list — 3) — 8 — « list —
Few type annotations are needed in practice

@ No dummmy/annoying/unpredictable annotations.

Output types are usually readable
@ Most inner binding edges may be left implicit.

@ Many library functions libraries keep their ML type in MLF,
modulo the syntactic sugar.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

32 /40

Design Uses and Implementation Examples Type inference Restrictions and extensions

More examples

Church’s numerals

type nat =V () (o = o) —» a — a;
let zero = fun f x — x;;

val zero : V(o) a — (Y(B) B —)

With type annotations on the iterator

let succ (n : nat) =funfx — nf (f x);
val succ : nat — (V (o) (@ — a) > a — «)

let add (n : nat) m = n succ m;;
val add : nat — (V (o) (@ — a) — a — «)

let mul n (m : nat) = m (add n) zero;;
mul : nat — nat — (V(a) (0« — o) — a — «a)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

(1)33 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

More examples

Church’s numerals

type nat =V () (o = o) —» a — a;
let zero = fun f x — x;;

val zero : V(o) o — (Y(B) B — 1)
Without type annotations

let succ n =funfx —nf (fx);

val succ : YV (o, B, 7) (o = B) = B3 —7) = (o —) = a—
let add n m = n succ m;;

val add : V(6 >V (a,B,v) (¢ — B) — B —) = (a« —) = a —7)
Vi) (6 —e—¢p)—me—p
In ML:

val add : V («,8,7.,0) (e — B)— B—7v)— (a = B) = a—7)

—>5—>4p)—>5—>(p

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)33 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

More examples D

Church’'s numerals

type nat =V () (o = o) —» a — a;
let zero = fun f x — x;;

val zero : V(o) a — (Y(B) B —)

Mandatory type annotations

let mul n m = m (add n) zero;;
let mul" = (mul : : nat — nat — nat);;
fails

MLF without any type annotation at all does not do better than ML!

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)33 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Unification algorithm

Computes principal unifiers, in three steps

o Computes the underlying dag-structure by first-order unification.
o Computes the binding structure

@ by raising binding edges

@ as little as possible to maintain well-formedness.

@ Checks that no locked binding edge (in red) has been raised or
merged.

Complexity
@ Same as first-order unification. Other passes are in linear time.

@ O(n) (or O(na(n)) if incremental).

Note

@ The algorithm performs “first-order unification of second-order types'.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 34 /40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Type inference

Proceeds much as in ML
@ Implement type-instantiation by copying the polymorphic part.
@ Use unification to solve typing constraints.

@ Generalize as much as possible at every step (not just at every let).

Type inference with typing constraints

Complexity in O(kn(a(kn) 4 d)) ~ O(kdn)
@ As for ML (see McAllester).

o k is the maximal size of types (usually not too large)
@ d is the maximal nesting of type schemes.
@ However, ML and MLF differs on d, which is:

o the left-nesting of let-bindings in ML
@ the maximun height of an expression in mLF
(Still, does not grow on the right of let-bindings).

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 35/ 40

http://www.springerlink.com/content/auehenre84tcp3gb/

Design Uses and Implementation Examples Type inference Restrictions and extensions

Variations on MLF

Shallow MLF

The version we presented is a “downgraded” version of MLF.

@ Types are stratified.
@ Instance bounded types cannot appear in bounds of abstract variables.

@ In particular, type annotations must be F types.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)36 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Variations on MLF

Shallow MLF

The version we presented is a “downgraded” version of MLF.
@ Types are stratified.
@ Instance bounded types cannot appear in bounds of abstract variables.

@ In particular, type annotations must be F types.

Full MLF
@ No stratification, more expressive.
@ All interesting properties are preserved.
@ Algorithms are mostly unchanged.

@ We loose the interpretation of types as sets of System-F types.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)36 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Variations on MLF

Shallow MLF

The version we presented is a “downgraded” version of MLF.

@ Types are stratified.
@ Instance bounded types cannot appear in bounds of abstract variables.

@ In particular, type annotations must be F types.

Simple mLF

Remove instance bindings >, keep abstract bindings =.
o Equivalent to System F.
@ Principal types are lost (no type inference).

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)36 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

A hierarchy of languages

F Simple MLF

v

Simple Types

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)37 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

A hierarchy of languages

F Simple MLF

4

Simple Types

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)37 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

A hierarchy of languages

F Simple MLF

Simple Types

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)37 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Extensions

Primitive Existential types

@ Encoding with existential types works well (only annotate at creation).
@ Can more be done with primitive existential 7

(Equi-) recursive types
@ Easy when cycles do not contain quantifiers.
o Cycles that croses quantifiers are difficult.

Higher-order types

@ Use two quantifiers (explicit coercions between the two permitted)
o V" for fully explicit type abstractions and
o WM for implicit mLF polymorphism.

: F : :
@ Restrict YMI to the first-order type variables.

o Can YM also be used at higher-order kinds?

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 38 /40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Papers and prototypes

Talk mainly based on
o Recasting-MLF with Didier Le Boltan.
@ A Graphical Presentation of MmLF Types, with Boris Yakobowski.

Other papers and online prototype at
@ http://gallium.inria.fr/“remy/mif/

See also Daan Leijen’s papers and prototypes

@ http://research.microsoft.com/users/daan/pubs.html

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 39 / 40

http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://gallium.inria.fr/~yakobows
http://gallium.inria.fr/~remy/mlf/
http://research.microsoft.com/users/daan/pubs.html

Design Uses and Implementation Examples Type inference Restrictions and extensions

Conclusions

Just two things to remember

o MLF allows function parameters to implicitly carry
polymorphic values that are used monomorphically.

@ Type annotations are required only to allow function parameters to
carry (polymorphic) values that are used polymophically.

MLF design, use, and implementation are close to ML
o MLF piggy-backs on ML type-shemes and generalization mechanism.
@ Part of the credits should be returned to the great designers of ML.
Hopefully
@ ML users will feel “at home".

@ Other users will also appreciate the convenience of type inference.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 40 / 40

Demo Examples About Rigid MLF Questions Details

Appendix

© Type inference demo
@ More examples: encoding of existential types
© About Rigid MLF

O Questions
@ What is an Intermediate language for MLF

@ Sharing of abstract nodes is irreversible (implicitly)
@ Details of slides

@ Another example of System F types
@ Abstraction in action

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

41 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

A(x) x

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

let y = A\(x) x
inyy

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

let y = A\(x) x »

inyy Ny

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

........
. Ce.

:__..» O

ATy

)x(x) X

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone

Oct 2007 (3)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Db a&D

IIIIII.::I_':?Ii-::

5_..» O

Didier Rémy (INRIA-Rocquencourt)

MLF for Everyone

Oct 2007

(4)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

] ."-..‘..l .‘i -::

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (7)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

] ."-..‘..l .‘i -::

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (8)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

.-7‘ ‘

D

Yund

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (9)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

.-7‘ ‘

D

Yund

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (10)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (11)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (12)43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

A(z) z (AMx) x)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) @ @

A(z) z (AMx) x)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (7)44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

ANz) (z:0u)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo)

ANz) (z:0u)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (3)45 / 40

Demo Examples About Rigid mLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (4)45 / 40

Demo Examples About Rigid mLF Questions Details

Type inference with typing constraints (demo)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (5)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (6)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (7)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (8)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (9)45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) (< back]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (10)45 / 40

Demo Examples About Rigid MLF Questions Details

More examples
Encoding of existential types, e.g. 36.6 X 3 — «
type o func = V(1) V(6 =V(8) B = (8 — a) =) 6 —

val pack z = fun (f : 3(y) V(B) B * (f — o) =) — fz;
val pack : V(a)V(B) a* (o — B) — (V(v) (V(0) 0 x (6 — B) —) —)

let packed_int = pack (1, fun x — x+1);;
et packed_pair — pack (L, fun x — (x, x));

let v = packed.int (fun p — (snd p) (fst p)):;

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

47 / 40

Demo Examples About Rigid MLF Questions Details

About Rigid MLF aD

Rigid MLF lies very close to mLF

o It uses and relies on (Shallow) MLF internally.

@ It projects MmLF principal types into System-F types at let-bindings,
by raising variable bindings as much as possible.

Rigid MLF looses important properties of MmLF
@ There are no principal types per se.

o Rigid MLF pretends to have principal types, but this is in an ad hoc
manner, using a non logical typing rule for Let-bindings with a premise
that blocks free uses of type-instantiation.

@ let x = A(z:0) z in ap may be accepted while
let x = A\(z) z in ap would be rejected.

o Rigid MLF is not invariant by let-expansion
(which signs the lost of truly principal types).

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)48 / 40

Demo Examples About Rigid MLF Questions Details

About Rigid MLF aD

Rigid MLF lies very close to mLF

o It uses and relies on (Shallow) MLF internally.

@ It projects MmLF principal types into System-F types at let-bindings,
by raising variable bindings as much as possible.

Rigid MLF looses important properties of MmLF
@ There are no principal types per se.

o Rigid MLF is not invariant by let-expansion
(which signs the lost of truly principal types).

Rigid MLF is a subset of System F

@ This is both its interest and its problem.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)48 / 40

Demo Examples About Rigid MLF Questions Details Intermediate Language sharing of abstract nodes

What would be an intermediate language for ML

Problem
@ Subject reduction is only proved in iMLF, which has the same type
erasure as eMLF.

o This ensures correctness of iMLF
@ But does not help to propagate annotations during reduction
(or other program transformations)

o Even so, eMLF requires type inference, which is not a local process.

Solution
@ Introduce a fully explicit version of xMLF (easy)

@ Instrument reduction rules to keep track of types during reduction
(not entirely trivial)

@ This has to be investigated.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 50 / 40

Demo Examples About Rigid MLF Questions Details Intermediate Language sharing of abstract nodes

Sharing of abstract nodes is irreversible (implicitly) — @=»

Can you show an example illustrating the difference?

Fact: V(o= o0)a—a g€ V(a= 0,0 =0)a—d
Observe that:

o \N2)z:V(a=0)a—«

o (L:o):YV(a=o0,d=0)a—d
Then, the context a = A(x) [] x x distinguishes those two expressions.

@ a[A(z) z] is ill-typed.

(As it uses no type annotation and it is ill-typed in ML)
e a[(-: 0)] is well-typed.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 51 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

System-F types (encoding of existential types)

v(a) (V(F) 75 — a) = a

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)53 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

System-F types (encoding of existential types) < back

v(a) (V(F) 75 — a) = a

(V(B) 75 = V(o) a = a) = V(o) a — «

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)53 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

System-F types (encoding of existential types) < back

v(a) (V(F) 75 — a) = a

V(a) (V(0) 73 = a—a) = a—«

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (2)53 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

Type annotations [< bac]

a=o0,0=>ckFoc<aandoc <
a=o0,pf=0k V(o = o)V(F =0)d — [
< V=)V =p0)d = F
<
a— [

a=ox:oq,f=0F(.:0):a—p a=ox:a,f=>o0kFx:«

a=ox:a,f=>0b(x:0):0

a=ox:ak(x:0):0

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 (1)55 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

Type annotations

a= o, x:ab (x:04): 0

a=oig,x:ak(x:04)a—a o= 0ig, X 1k x:c

a = oig, X ak (x:04) x:

a= ok Ax) (x:04) x: a0 — a
FAX) (x:oig) x V(o= oig) o — o

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007

(2)55 / 40

	Design
	iMLF: an implicity-typed extension of System F
	Types explained
	eMLF: an explicitly-typed version of iMLF

	Uses and Implementation
	Examples
	Type inference
	Restrictions and extensions

	Appendix
	Type inference demo
	More examples: encoding of existential types
	About Rigid MLF
	Questions
	What is an Intermediate language for MLF
	Sharing of abstract nodes is irreversible (implicitly)

	Details of slides
	Another example of System F types
	Abstraction in action

