
Design Uses and Implementation

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Uses and Implementation
Examples
Type inference
Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 1 / 40

Design Uses and Implementation

MLF for Everyone
(Users, Implementers, and Designers)

Didier Rémy

INRIA-Rocquencourt

ML Workshop

(Based on joint work with Didier Le Botlan and Boris Yakobowski)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 2 / 40

http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://gallium.inria.fr/~yakobows

Simple to use Expressive

Great success

Happy days

Simple extension
Simplification

of ML

Expressive

Full type annotations
are obfuscating

Full type inference
is undecidable

Even used in full scale languages
such as Scala.

Design Uses and Implementation

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Uses and Implementation
Examples
Type inference
Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 6 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Explicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x : τ0) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` Λα. a : ∀(α) τ0

Ungen

Γ ` a : ∀(α) τ

Γ ` a τ : τ0[α← τ]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` a : ∀(α) τ0

Ungen

Γ ` a : ∀(α) τ

Γ ` a : τ0[α← τ]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` a : ∀(α) τ0

Inst

∀(ᾱ) τ0 6 τ0[ᾱ← τ̄]

Sub

Γ ` a : τ1 τ1 6 τ2

Γ ` a : τ2

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ` a : τ1 τ1 6 τ2

Γ ` a : τ2

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ` a : τ1 τ1 6 τ2

Γ ` a : τ2

Add a construction for local bindings (perhaps derivable):

Let

Γ ` a1 : τ1 Γ, x : τ1 ` a2 : τ

Γ ` let x = a1 in a2 : τ

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ` a : τ1 τ1 6 τ2

Γ ` a : τ2

Add a construction for local bindings (perhaps derivable):

Let

Γ ` a1 : τ1 Γ, x : τ1 ` a2 : τ

Γ ` let x = a1 in a2 : τ

Logical, canonical presentation of typing rules

Covers many variations: F, ML, Fη, F≤, . . .
Vary the set of types.
Vary the instance relation between types.

For ML, just restrict types to ML types.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

A universal type system

Implicit System F:

Var

z : τ ∈ Γ

Γ ` z : τ

App

Γ ` a1 : τ2 → τ1 Γ ` a2 : τ2

Γ ` a1 a2 : τ1

Fun

Γ, x : τ0 ` a : τ

Γ ` λ(x) a : τ0 → τ

Gen

Γ, α ` a : τ0

Γ ` a : ∀(α) τ0

Inst

β̄ /∈ ftv(∀(ᾱ) τ̄0)

∀(ᾱ) τ0 6 ∀(β̄) τ0[ᾱ← τ̄]

Sub

Γ ` a : τ1 τ1 6 τ2

Γ ` a : τ2

Add a construction for local bindings (perhaps derivable):

Let

Γ ` a1 : τ1 Γ, x : τ1 ` a2 : τ

Γ ` let x = a1 in a2 : τ

Logical, canonical presentation of typing rules

Covers many variations: F, ML, Fη, F≤, . . .
Vary the set of types.
Vary the instance relation between types.

For ML, just restrict types to ML types.

Do never change the typing rules!

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈7〉7 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type inference is undecidable — in System F

Of course, we must
Use type annotations on function parameters in some cases.

When?
Always?

too many annotations are obfuscating.

Alleviate some annotations by local type inference?

Not conservative
extensions of ML

unintuitive and fragile (to program transformations).

When parameters have polymorphic types?

still two many bothersome type annotations.

Are polymorphic types less important than monorphic ones?

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉8 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type inference is undecidable — in System F

Of course, we must
Use type annotations on function parameters in some cases.

When?
Always?

too many annotations are obfuscating.

Alleviate some annotations by local type inference?

Not conservative
extensions of ML

unintuitive and fragile (to program transformations).

When parameters have polymorphic types?

still two many bothersome type annotations.

Are polymorphic types less important than monorphic ones?

Our choice explained below

When (and only when) parameters are used polymorphically.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉8 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

No better choice in F!

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

No better choice in F!

The problem is serious and inherent

Follows from rules Inst, Gen, and App.

Should values be kept as polymorphic or as instantiated as possible?

A type inference system can do both, but cannot choose.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

The solution in iMLF:

choice id : ∀(β ≥ ∀(α) α→ α) β → β

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉9 / 40

Design Uses and Implementation iMLF Types explained eMLF

Lack of principal types for applications

The example of choice

let choice = λ(x) λ(y) if true then x else y : ∀β · β → β → β
let id = λ(z) z : ∀(α) α→ α

choice id :

{

∀(α) (α→ α)→ (α→ α)
(∀(α) α→ α)→ (∀(α) α→ α)

The solution in iMLF:

choice id : ∀(β ≥ ∀(α) α→ α) β → β

6

{

(β → β) [β ← ∀(α) α→ α]
∀(α) (β → β) [β ← α→ α])

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉9 / 40

Design Uses and Implementation iMLF Types explained eMLF

The definition of iMLF

Types are stratified

σ ::= τ ∈ F
| ∀(α≥ σ) σ

We can see and explain types by 6F-closed sets of System-F types:

{{τ}}
4
== {τ ′ | τ 6F τ ′}

{{∀(α≥ σ) σ′}}
4
==

{

∀(β̄) τ ′[α← τ] | ∧

(

τ ∈ {{σ}} ∧ τ ′ ∈ {{σ′}}
β̄ # ftv(∀(α≥ σ) σ′)

}

Type instance 6I is set inclusion on the translations

σ 6I σ′ ⇐⇒ {{σ}} ⊇ {{σ′}}

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 10 / 40

Design Uses and Implementation iMLF Types explained eMLF

Simple types

α→ α

→

α α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉12 / 40

Design Uses and Implementation iMLF Types explained eMLF

Simple types

α→ α

→

α α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉12 / 40

Design Uses and Implementation iMLF Types explained eMLF

Simple types

α→ α

→

α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉12 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) α→ α

→

α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉12 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) α→ α

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉12 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→

α

→

β

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6>F →

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

(α→ β)→ α→ β

→

→

α

→

β

6>ST →

→

α β

Sharing of inner nodes:

Coming from the dag-representation of simple types.

Canonical (unique) representation if disallowed.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6F →

→ →

∀(α) (α→ α)→ α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6F →

→ →

→

∀(α) ∀(γ) (α→ γ → γ)→ α→ γ → γ

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

System-F types more

∀(α) ∀(β) (α→ β)→ α→ β

→

→ →

6F →

→ →

→

∀(α)(α→ ∀(γ) γ → γ)→ α→ ∀(γ) γ → γ

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈7〉13 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→≥

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

3 →

→

6>F →

→ →

(∀(α) α→ α)→ ∀(α) α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

3 →

→

6>F →

→ →

∀(α) (α→ α)→ (α→ α)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈7〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

3 →

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈8〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

3 →

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈9〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

3 →

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈10〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in iMLF

∀(β ≥ ∀(α) α→ α)→ β → β

→

→

3 . . .

The semantics cannot be captured by

a finite set of System-F types up to 6

a finite intersection type.
Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈11〉14 / 40

Design Uses and Implementation iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉15 / 40

Design Uses and Implementation iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

3

only
→

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉15 / 40

Design Uses and Implementation iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

6>I →

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉15 / 40

Design Uses and Implementation iMLF Types explained eMLF

iMLF types

∀(β ≥ (∀(α) α→ α)→ (∀(α) α→ α))→ β → β

→

→

→ →

6>I →

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉15 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉16 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉16 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉16 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Merging

6
→

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉16 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type instance 6 in iMLF

Only four atomic instance operations, and only two new.

→

→

→

Grafting

6
→

→

→ →

Raising

6
→

→

→ →

Merging

6
→

→

→

Weakening

6
→

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉16 / 40

Design Uses and Implementation iMLF Types explained eMLF

Checking the example choice id

→

→

Raising

>
→

→

Weakening

6
→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 17 / 40

Design Uses and Implementation iMLF Types explained eMLF

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Uses and Implementation
Examples
Type inference
Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 18 / 40

Design Uses and Implementation iMLF Types explained eMLF

Design of eMLF

Goal

Find a restriction iMLF where programs that would
require guessing polymorphism are ill-typed.

Guideline design

Function parameters that are used polymorphically
(and only those) need an annotation.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 19 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference with second-order types

Easy examples

λ(z) z : ∀(α) α→ α as in ML
let x = λ(z) z in x x : ∀(α) α→ α as in ML

λ(x) x x : ill-typed! x is used polymorphically
λ(x : ∀(α) α→ α) x x : (∀(α) α→ α)→ (∀(α) α→ α)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 20 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference of second order types

More challenging example

(λ(z) z) (a : σ) where σ is truly polymorphic

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉21 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference of second order types

More challenging example

(λ(z) z) (a : σ) where σ is truly polymorphic

z must carry values of a polymorphic type.

but z is not used polymorphically.

Indeed, it can be typed in System F as n

(Λα. λ(z : α) z) [σ] (a : σ)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉21 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference of second order types

More challenging example

(λ(z) z) (a : σ) where σ is truly polymorphic ACCEPT

z must carry values of a polymorphic type.

but z is not used polymorphically.

Indeed, it can be typed in System F as n

(Λα. λ(z : α) z) [σ] (a : σ)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉21 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference of second order types

More challenging example

λ(z) (z (a : σ))

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉21 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference of second order types

More challenging example

λ(z) (z (a : σ))

z have the polymorphic type σ → σ ?

z is node used polymorphically:
polymorphism is only carried out from the argument to the result.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉21 / 40

Design Uses and Implementation iMLF Types explained eMLF

First-order inference of second order types

More challenging example

λ(z) (z (a : σ)) ACCEPT

z have the polymorphic type σ → σ ?

z is node used polymorphically:
polymorphism is only carried out from the argument to the result.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉21 / 40

Design Uses and Implementation iMLF Types explained eMLF

Abstracting second-order polymorphism as first-order types

Solution
1) Disallow second-order types under arrows, e.g. such as σid → σid

2) Instead, allow type variables to stand for polymorphic types:

write ∀(α⇒ σid) α→ α
read “α→ α where α abstracts σid”
means σid → σid

Mechanism
1) function parameters must be monomorphic (but may be abstract).

2) forces all polymorphism to be abstracted away in the context.

α⇒ σid, x : α ` x : α

α⇒ σid ` λ(x) x : α→ α

λ(x) x : ∀(α⇒ σid) α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 22 / 40

Design Uses and Implementation iMLF Types explained eMLF

Abstracting second-order polymorphism more

Key point: abstraction is directional

α⇒ σ ` σ 6 α α⇒ σ ` α 6 σ

Hence,
` a : σ ·

α⇒ σ ` a : α α⇒ σ, z : α→ α ` z : α→ α

α⇒ σ, z : α→ α ` z a : α

α⇒ σ ` λ(z) z a : (α→ α)→ α

` λ(z) z a : ∀(α⇒ σ) (α→ α)→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉23 / 40

Design Uses and Implementation iMLF Types explained eMLF

Abstracting second-order polymorphism more

Key point: abstraction is directional

α⇒ σ ` σ 6 α α⇒ σ ` α 6 σ

But,

α⇒ σid, z : α ` z : α ·

α⇒ σid, z : α ` z : σid

α⇒ σid, z : α ` z : α→ α α⇒ σid, z : α ` z : α

α⇒ σid, z : α ` z z : α

α⇒ σid ` λ(z) z z : α→ α

` λ(z) z z : ∀(α≥ σid) α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉23 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) α→ α

→

→

α

β

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉24 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) α→ α

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉24 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) ∀(α′ ⇒ ∀(β) β → β) α→ α′

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉24 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types in eMLF

Introduce a new binder for abstraction

∀(α⇒ ∀(β) β → β) ∀(α′ ≥ ∀(β) β → β) α→ α′

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉24 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

→

→

→ →

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉25 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

→

→

→ →

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉25 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉25 / 40

Design Uses and Implementation iMLF Types explained eMLF

Types, graphically

= first-order term-dag + a binding tree

→

→

→ →

→

→ →

+ well-formedness conditions relating the two

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉25 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type instance 6 in eMLF

Sharing and binding of abstract nodes matter

→

→

→

→

→

6

6>
→

→

→

6

6>
→

→

→

Grafting, Merging, Raising, Weakening
Unchanged.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 26 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I)

6 is weaker than 6I , as sharing and binding of abstract nodes
matters.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉27 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I) = (6 ∪ 6>I)
∗ = (6; 6>I)

6 is weaker than 6I , as sharing and binding of abstract nodes
matters.

Use explicit type annotations to recover (6>I \ 6).

Notice that the weaker 6, the more annotations will be required.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉27 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I) = (6 ∪ 6>I)
∗ = (6; 6>I)

Intuitively,
Γ ` a : τ τ 6>I τ ′

Γ ` (a : τ ′) : τ ′

Actually, use coercion functions:

(: σ) : ∀(α⇒ σ) ∀(α′ ⇒ σ) α→ α′

Add syntactic sugar λ(x : σ) a
4
== λ(x) let x = (x : σ) in a
≡ λ(x) a[x ← (x : σ)]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉27 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type annotations

Recovering the missing power

(6) ⊂ (6I) = (6 ∪ 6>I)
∗ = (6; 6>I)

Intuitively,
Γ ` a : τ τ 6>I τ ′

Γ ` (a : τ ′) : τ ′

Actually, use coercion functions:

(: ∃ (β̄) σ) : ∀(β̄) ∀(α⇒ σ) ∀(α′ ⇒ σ) α→ α′

Add syntactic sugar λ(x : σ) a
4
== λ(x) let x = (x : σ) in a
≡ λ(x) a[x ← (x : σ)]

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉27 / 40

Design Uses and Implementation iMLF Types explained eMLF

Type annotations

Remember α⇒ σ, x : α ` x : σ

Prevents typing λ(x) x x

With an annotation α⇒ σ, x : α ` (x : σ) : σ more

Allows typing λ(x : σid) x x

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉27 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Outline

1 Design
iMLF: an implicity-typed extension of System F
Types explained
eMLF: an explicitly-typed version of iMLF

2 Uses and Implementation
Examples
Type inference
Restrictions and extensions

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 28 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

About principal types

Fact
Programs have principal types, given with their type annotations.

Programs with type annotations
Two versions of the same program, but with different type
annotations, usually have different principal types.

Programs typable without type annotations
Exactly ML programs.

But usually have a more general type than in ML (e.g. choice id)

Annotations may still be useful to get more polymorphism.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 29 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Robustness to small program transformations

Agreed

Programmmers must be free of choising their programming
patterns/styles.

Programs should be maintainable.

Therefore

Programs should be stable under some small, but important program
transformations.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉30 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Robustness to small program transformations

a ⊆ a′ means all typings of a are typings of a′

Let-conversion let x = a1 in a2 ⊆⊇ a2[x ← a1]

Common subexpression can be factored out.

Redefine application
a1 a2 ⊆⊇ (λ(f) λ(x) f x) a1 a2

Many functionals, such as maps are typed as applications.

η-conversion of functional expressions a ⊆⊇ λ(x) a x

Delay the evaluation.

Reordering of arguments a a1 a2 ⊆⊇ (λ(x) λ(y) a y x) a2 a1

Curryfication a (a1, a2) ⊆⊇ (λ(x) λ(y) a (x , y)) a1 a2

All valid in MLF

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉30 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings
need to be drawn

→

→

→ →

→

→ →

(∀(α) ∀(β) (α→ β)→ (α→ β))→ (∀(α) α→ α)→ (∀(α) α→ α)

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings
need to be drawn

→

→

→ →

→

→ →

(∀(α) ∀(β) (α→ β)→ (α→ β))→ ∀(γ ⇒ ∀(α) α→ α) (∀(α) α→ α)→ γ

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings
need to be drawn

→

→

→ →

→

→ →

∀(γ ⇒ ∀(α) α→ α) (∀(α) ∀(β) (α→ β)→ (α→ β))→ (∀(α) α→ α)→ γ

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Printing types

Only overlined bindings
need to be drawn

→

→

→ →

→

→

(∀(α) ∀(β) (α→ β)→ (α→ β))→ ∀(γ ≥ σid) γ → γ

Leave implicit bindings
that are

at unshared, inner nodes,

bound just above,

abstractions on the left of arrows,

instances on the right arrows.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉31 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Examples

Library functions
let rec fold f v = function
| Nil → v
| Cons (h, t) → fold f (f h t) t ;;

val fold : ∀(α) ∀(β) (α → α list → β) → β → α list → β

Few type annotations are needed in practice
No dummmy/annoying/unpredictable annotations.

Output types are usually readable
Most inner binding edges may be left implicit.

Many library functions libraries keep their ML type in MLF,
modulo the syntactic sugar.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 32 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

More examples skip

Church’s numerals

type nat = ∀ (α) (α → α) → α → α;;
let zero = fun f x → x;;
val zero : ∀(α) α → (∀(β) β → β)

With type annotations on the iterator

let succ (n : nat) = fun f x → n f (f x);;
val succ : nat → (∀ (α) (α → α) → α → α)

let add (n : nat) m = n succ m;;
val add : nat → (∀ (α) (α → α) → α → α)

let mul n (m : nat) = m (add n) zero;;
mul : nat → nat → (∀(α) (α → α) → α → α)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉33 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

More examples skip

Church’s numerals

type nat = ∀ (α) (α → α) → α → α;;
let zero = fun f x → x;;
val zero : ∀(α) α → (∀(β) β → β)

Without type annotations

let succ n = fun f x → n f (f x);;
val succ : ∀ (α, β, γ) ((α → β) → β → γ) → (α → β) → α → γ
let add n m = n succ m;;

val add : ∀(δ ≥ ∀(α,β,γ) ((α → β) → β → γ) → (α → β) → α → γ)
∀(ε,ϕ) (δ → ε → ϕ) → ε → ϕ

In ML:

val add : ∀ (α,β,γ,ε,ϕ) ((((α → β) → β → γ) → (α → β) → α → γ)
→ ε → ϕ) → ε → ϕ

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉33 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

More examples skip

Church’s numerals

type nat = ∀ (α) (α → α) → α → α;;
let zero = fun f x → x;;
val zero : ∀(α) α → (∀(β) β → β)

Mandatory type annotations

let mul n m = m (add n) zero;;
let mul’ = (mul : : nat → nat → nat);;
fails

MLF without any type annotation at all does not do better than ML!

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉33 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Unification algorithm

Computes principal unifiers, in three steps
Computes the underlying dag-structure by first-order unification.

Computes the binding structure

by raising binding edges
as little as possible to maintain well-formedness.

Checks that no locked binding edge (in red) has been raised or
merged.

Complexity

Same as first-order unification. Other passes are in linear time.

O(n) (or O(nα(n)) if incremental).

Note
The algorithm performs “first-order unification of second-order types”.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 34 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Type inference

Proceeds much as in ML
Implement type-instantiation by copying the polymorphic part.

Use unification to solve typing constraints.

Generalize as much as possible at every step (not just at every let).

Type inference with typing constraints Demo

Complexity in O(kn(α(kn) + d)) ≈ O(kdn)
As for ML (see McAllester).

k is the maximal size of types (usually not too large)
d is the maximal nesting of type schemes.

However, ML and MLF differs on d , which is:

the left-nesting of let-bindings in ML
the maximun height of an expression in MLF

(Still, does not grow on the right of let-bindings).

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 35 / 40

http://www.springerlink.com/content/auehenre84tcp3gb/

Design Uses and Implementation Examples Type inference Restrictions and extensions

Variations on MLF

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉36 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Variations on MLF

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Full MLF

No stratification, more expressive.

All interesting properties are preserved.

Algorithms are mostly unchanged.

We loose the interpretation of types as sets of System-F types.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉36 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Variations on MLF

Shallow MLF
The version we presented is a “downgraded” version of MLF.

Types are stratified.

Instance bounded types cannot appear in bounds of abstract variables.

In particular, type annotations must be F types.

Simple MLF
Remove instance bindings ≥, keep abstract bindings ⇒.

Equivalent to System F.

Principal types are lost (no type inference).

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉36 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

A hierarchy of languages

F

(Full) MLF

ML

Shallow MLF

Simple Types

Simple MLF
⇒

6≥

6⇒ ≥

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉37 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

A hierarchy of languages

F

(Full) MLF

ML

Shallow MLF

Simple Types

Simple MLF

let-∀

λ-∀

let-∀≥

λ-∀≥

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉37 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

A hierarchy of languages Rigid MLF

F

(Full) MLF

ML

Shallow MLF

Rigid MLF

Simple Types

Simple MLF

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉37 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Extensions

Primitive Existential types

Encoding with existential types works well (only annotate at creation).

Can more be done with primitive existential ?

(Equi-) recursive types
Easy when cycles do not contain quantifiers.

Cycles that croses quantifiers are difficult.

Higher-order types
Use two quantifiers (explicit coercions between the two permitted)

∀F for fully explicit type abstractions and

∀MLF for implicit MLF polymorphism.

Restrict ∀MLF to the first-order type variables.

Can ∀MLF also be used at higher-order kinds?

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 38 / 40

Design Uses and Implementation Examples Type inference Restrictions and extensions

Papers and prototypes

Talk mainly based on
Recasting-MLF with Didier Le Boltan.

A Graphical Presentation of MLF Types, with Boris Yakobowski.

Other papers and online prototype at
http://gallium.inria.fr/˜remy/mlf/

See also Daan Leijen’s papers and prototypes
http://research.microsoft.com/users/daan/pubs.html

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 39 / 40

http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://gallium.inria.fr/~yakobows
http://gallium.inria.fr/~remy/mlf/
http://research.microsoft.com/users/daan/pubs.html

Design Uses and Implementation Examples Type inference Restrictions and extensions

Conclusions

Just two things to remember
MLF allows function parameters to implicitly carry
polymorphic values that are used monomorphically.

Type annotations are required only to allow function parameters to
carry (polymorphic) values that are used polymophically.

MLF design, use, and implementation are close to ML
MLF piggy-backs on ML type-shemes and generalization mechanism.

Part of the credits should be returned to the great designers of ML.

Hopefully
ML users will feel “at home”.

Other users will also appreciate the convenience of type inference.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 40 / 40

Demo Examples About Rigid MLF Questions Details

Appendix

3 Type inference demo

4 More examples: encoding of existential types

5 About Rigid MLF

6 Questions
What is an Intermediate language for MLF

Sharing of abstract nodes is irreversible (implicitly)

7 Details of slides
Another example of System F types
Abstraction in action

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 41 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

λ(x) x

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

λ(x) x ∀

→

x

x

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

∀

→

x

x

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

∀

→

∀

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

→

∀

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉42 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

let y = λ(x) x

in y y

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

let y = λ(x) x

in y y

y y

λ(x) x

y

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

y

λ(x) x

y

→

y

y

y y

λ(x) x

y

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

y

λ(x) x

y

→

y

y

∀

∀

λ(x) x

∀

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

∀

∀

→

∀

→

∀

∀

λ(x) x

∀

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

∀

∀

→

∀

→

∀

∀

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

∀

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈7〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

→

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈8〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

→

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈9〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈10〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

∀

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈11〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

∀

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈12〉43 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

λ(z) z (λ(x) x)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

λ(z) z (λ(x) x) ∀

→

∀

z

λ(x) x

→

z

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

z

∀

→

→

z

∀

→

∀

z

λ(x) x

→

z

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

z

∀

→

→

z

∀

→

∀

z

→

→

z

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

→

→

∀

→

∀

z

→

→

z

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

→

→

∀

→

→

→

∀

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

→

→

→

∀

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈7〉44 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

λ(z) (z : σid)

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

λ(z) (z : σid) ∀

→

∀

z

(σid) →
z

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

(σid) →

∀

→

∀

z

(σid) →
z

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈3〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

(σid) →

∀

→

∀

∀

→

→ →

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈4〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

→

→ →

→

∀

→

∀

∀

→

→ →

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈5〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

∀

→

→ →

→

∀

→

→

∀

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈6〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

∀

→

∀

→

→

∀

→

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈7〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

∀

→

∀

→

→

∀

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈8〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

→

→

∀

→

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈9〉45 / 40

Demo Examples About Rigid MLF Questions Details

Type inference with typing constraints (demo) skip back

∀

→

→

→

∀

→

→ →

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈10〉45 / 40

J back

Demo Examples About Rigid MLF Questions Details

More examples

Encoding of existential types, e.g. ∃β.β × β → α

type α func = ∀(γ) ∀ (δ = ∀(β) β ∗ (β → α) → γ) δ → γ

val pack z = fun (f : ∃(γ) ∀(β) β ∗ (β → α) → γ) → f z;;

val pack : ∀(α) ∀(β) α ∗ (α → β) → (∀(γ) (∀(δ) δ ∗ (δ → β) → γ) → γ)

let packed int = pack (1, fun x → x+1);;
let packed pair = pack (1, fun x → (x, x));;

let v = packed int (fun p → (snd p) (fst p));;

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 47 / 40

Demo Examples About Rigid MLF Questions Details

About Rigid MLF back

Rigid MLF lies very close to MLF

It uses and relies on (Shallow) MLF internally.

It projects MLF principal types into System-F types at let-bindings,
by raising variable bindings as much as possible.

Rigid MLF looses important properties of MLF

There are no principal types per se.

Rigid MLF pretends to have principal types, but this is in an ad hoc
manner, using a non logical typing rule for Let-bindings with a premise
that blocks free uses of type-instantiation.

let x = λ(z : σ) z in a2 may be accepted while
let x = λ(z) z in a2 would be rejected.

Rigid MLF is not invariant by let-expansion
(which signs the lost of truly principal types).

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉48 / 40

Demo Examples About Rigid MLF Questions Details

About Rigid MLF back

Rigid MLF lies very close to MLF

It uses and relies on (Shallow) MLF internally.

It projects MLF principal types into System-F types at let-bindings,
by raising variable bindings as much as possible.

Rigid MLF looses important properties of MLF

There are no principal types per se.

Rigid MLF is not invariant by let-expansion
(which signs the lost of truly principal types).

Rigid MLF is a subset of System F
This is both its interest and its problem.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉48 / 40

J back

Demo Examples About Rigid MLF Questions Details Intermediate Language sharing of abstract nodes

What would be an intermediate language for MLF?

Problem
Subject reduction is only proved in iMLF, which has the same type

erasure as eMLF.

This ensures correctness of iMLF

But does not help to propagate annotations during reduction
(or other program transformations)

Even so, eMLF requires type inference, which is not a local process.

Solution
Introduce a fully explicit version of xMLF (easy)

Instrument reduction rules to keep track of types during reduction
(not entirely trivial)

This has to be investigated.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 50 / 40

Demo Examples About Rigid MLF Questions Details Intermediate Language sharing of abstract nodes

Sharing of abstract nodes is irreversible (implicitly) back

Can you show an example illustrating the difference?

Fact: ∀(α⇒ σ) α→ α 66 ∀(α⇒ σ, α′ ⇒ σ) α→ α′

Observe that:

λ(z) z : ∀(α⇒ σ) α→ α

(: σ) : ∀(α⇒ σ, α′ ⇒ σ) α→ α′

Then, the context a
4
== λ(x) [] x x distinguishes those two expressions.

a[λ(z) z] is ill-typed.
(As it uses no type annotation and it is ill-typed in ML)

a[(: σ)] is well-typed.

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 51 / 40

J back

Demo Examples About Rigid MLF Questions Details System F Abstraction

System-F types (encoding of existential types) back

∀(α) (∀(β) τβ → α)→ α

→

→

τ

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉53 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

System-F types (encoding of existential types) back

∀(α) (∀(β) τβ → α)→ α

→

→

τ

6F →

→

τ →

(∀(β) τβ → ∀(α) α→ α)→ ∀(α) α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉53 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

System-F types (encoding of existential types) back

∀(α) (∀(β) τβ → α)→ α

→

→

τ

6F →

→

τ →

∀(α) (∀(β) τβ → α→ α)→ α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉53 / 40

J back

Demo Examples About Rigid MLF Questions Details System F Abstraction

Type annotations back

α⇒ σ, β ⇒ σ ` σ 6 α and σ 6 β

α⇒ σ, β ⇒ σ ` ∀(α′ ⇒ σ) ∀(β′ ⇒ σ) α′ → β′

6 ∀(α′ ⇒ α) ∀(β′ ⇒ β) α′ → β′

6>

α→ β

α⇒ σ, x : α, β ⇒ σ ` (: σ) : α→ β α⇒ σ, x : α, β ⇒ σ ` x : α

α⇒ σ, x : α, β ⇒ σ ` (x : σ) : β

α⇒ σ, x : α ` (x : σ) : ∀(β ⇒ σ) β

α⇒ σ, x : α ` (x : σ) : σ

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈1〉55 / 40

Demo Examples About Rigid MLF Questions Details System F Abstraction

Type annotations back

α⇒ σid, x : α ` (x : σid) : σid

α⇒ σid, x : α ` (x : σid) : α→ α α⇒ σid, x : α ` x : α

α⇒ σid, x : α ` (x : σid) x : α

α⇒ σid ` λ(x) (x : σid) x : α→ α

` λ(x) (x : σid) x : ∀(α⇒ σid) α→ α

Didier Rémy (INRIA-Rocquencourt) MLF for Everyone Oct 2007 〈2〉55 / 40

	Design
	iMLF: an implicity-typed extension of System F
	Types explained
	eMLF: an explicitly-typed version of iMLF

	Uses and Implementation
	Examples
	Type inference
	Restrictions and extensions

	Appendix
	Type inference demo
	More examples: encoding of existential types
	About Rigid MLF
	Questions
	What is an Intermediate language for MLF
	Sharing of abstract nodes is irreversible (implicitly)

	Details of slides
	Another example of System F types
	Abstraction in action

