
A Calculus of Mobile Agents

C�edric Fournet, Georges Gonthier,

Jean-Jacques L�evy, Luc Maranget, Didier R�emy

INRIA Rocquencourt

?

78153 Le Chesnay Cedex, FRANCE

e-mail Cedric.Fournet@inria.fr

Abstract. We introduce a calculus for mobile agents and give its chem-

ical semantics, with a precise de�nition for migration, failure, and fail-

ure detection. Various examples written in our calculus illustrate how

to express remote executions, dynamic loading of remote resources and

protocols with mobile agents. We give the encoding of our distributed

calculus into the join-calculus.

1 Introduction

It is not easy to match concurrency and distribution. Suppose, for instance,

that we want to implement a concurrent calculus with CCS-like communication

channels and with processes running on di�erent physical sites. If we do not

locate channels, we quickly face a global consensus problem for nearly every

communication which uses the interconnection network. In a previous work [6],

we introduced the join-calculus, an asynchronous variant of Milner's �-calculus

with better locality and better static scoping rules. It avoids global consensus and

thus may be implemented in a realistic distributed environment. Furthermore,

it is shown to have the same expressive power as the �-calculus. In this paper,

we extend the join-calculus with explicit locations and primitives for mobility.

The new calculus, the Distributed Join-Calculus, allows to express mobile agents

moving between physical sites. Agents are not only programs but core images of

running processes with their communication capabilities.

The novelty of the distributed join-calculus is the introduction of locations.

Intuitively, a location resides on a physical site, and contains a group of pro-

cesses. We can move atomically a location to another site. We represent mobile

agents by locations. Agents can contain mobile sub-agents, this is represented

by nested locations. Locations move as a whole with all their sublocations. For

these reasons, we organize locations in a tree.

Our calculus also provides a simple model of failure. The crash of a physical

site causes the permanent failure of all its locations. More generally, any location

can halt, with all its sublocations. The failure of a location can be detected at

any other running location, allowing error recovery.

?

This work is partly supported by the ESPRIT Basic Research Action 6454 - CON-

FER.

Our aim is to use this calculus as the core of a distributed programming

language. In particular, our operational semantics is easily implementable in a

distributed setting with failures. The speci�cation of atomic reduction steps be-

comes critical, since it de�nes the balance between abstract features and realistic

concerns.

In the spirit of the �-calculus, our calculus treats channel names and location

names as �rst class values with lexical scopes. A location controls its own moves,

and can only move towards a location whose name it has received. This provides

a sound basis for static analysis and for secure mobility. Our calculus is complete

for expressing distributed con�gurations. In the absence of failure, however, the

execution of processes is independent of distribution. This location transparency

is essential for the design of mobiles agents, and very helpful for checking their

properties.

We present classical examples of distribution and mobility. The basic example

is remote procedure call with timeouts. Dynamic loading of remote applications

is our second example. Unlike Java applets, we download a process with its ac-

tive communications, simply by moving its location. The third example, remote

execution of a local agent, is the dual case. The last example is a combination

of the second and third. The client creates an agent that moves to a server to

perform some task; when this task is completed, the agent comes back to the

client to report the result. We take this example, which we dub the client-agent-

server architecture (CASA), as our paradigm for mobility. We show that causal

error recovery can be integrated into this CASA with minimal implementation

assumptions.

In section 2, we review related work. In section 3, we give a brief presentation

of the join-calculus and recall the basics of the re
exive chemical machine frame-

work. In section 4 and 5, we gradually extend the join-calculus. In section 4, we

introduce our location model as a re�nement of the re
exive chemical model and

present a �rst set of new primitives aimed at expressing location management

and migration. In section 5, we give our �nal calculus that copes with failure and

recovery, discussing various semantical models for failure. In parallel, we develop

our main example of the client-agent-server architecture. In section 6, we suggest

techniques for formal proofs, we provide an encoding of the distributed calculus

into the join-calculus, and we state a full abstraction theorem. Finally, we give

directions for future work.

2 Related work

Migration has been investigated mostly for object-oriented languages. Initially

used in distributed systems to achieve a better load-balancing, migration evolves

to a language feature in Emerald [9] : objects can be moved from one machine to

another; they can also be attached to one another, an object carrying its attached

objects as it moves. At the language level, numerous calling conventions such

as call-by-move re
ect these capabilities, and the use of migration for safety

purposes is advocated.

More recently, several languages have been proposed for large-scale dis-

tributed programming, with some support for the mobile agent paradigm. For

instance, Obliq [5] encodes migration as a combination of remote cloning and

aliasing, in a language with a global distributed scope. Examples of applications

with large-grain mobility in Obliq can be found in [3]. However, little support is

provided for failure recovery. In a functional setting, FACILE [7] provides pro-

cess mobility from site to site, as the communication of higher-order values. As

in this paper, the design choices are discussed in a chemical framework [10].

Mobility and locality already have other meanings in process calculi. Mobility

in the �-calculus refers to the communication of channel names on channels [11],

whereas locality has been used as a tool to capture spatial dependencies among

processes in non-interleaving semantics [4, 14].

The formal model developed for core FACILE [1] is more closely related to

our work. In the �

l

-calculus, the authors extend the syntax of the �-calculus

with locations. Channels are statically located; a location can fail, preventing

further communication on its channels; location status can be tested in the lan-

guage. Due to the properties of the �-calculus, observation with failures become

very di�erent from the usual observation, but an encoding of the �

l

-calculus in

the �-calculus is given and proved adequate. In this paper, we also introduce a

distributed calculus as a re�nement of a core calculus { the join-calculus {. How-

ever, the join-calculus was speci�cally designed for this purpose, which leads to

simpler formal developments, even though our extensions capture both migration

and failure.

3 Chemical frameworks

In this section, we introduce key notions for the syntax and semantics of our dis-

tributed calculi, we brie
y present the join-calculus, and we de�ne observational

equivalence. The join-calculus is our basic process calculus. Later in this paper,

we extend it by introducing locations, migration, and failure.

3.1 General setting

Our calculus is a name-passing calculus. We assume given an in�nite set of port

names with arities N (ports are also called channels). We use lowercase variables

x, y, foo, bar, : : : to denote the elements of N . Names obey lexical scoping and

can be sent in messages. At present, we only have port names. Later in this

paper, we will introduce other values (location names, integers, booleans) and

letters u, v, : : : will denote values in general.

We assume that names are used consistently in processes, respecting their

arities. This could be made precise by using a recursive sort discipline as in the

polyadic �-calculus [11, 12]. We assume that all processes are well-sorted.

Notations: We use the following conventions: ev is the tuple v

1

; v

2

; � � � v

n

, (n � 0);

RR

0

is the composition of the relations R and R

0

; R

�

is the transitive closure of

relation R.

Chemical rules: We present our operational semantics in the chemical abstract

machine style of Berry and Boudol [2]. The CHAM provides a precise and conve-

nient way to specify reduction modulo equivalence. It also conveys some intuition

about implementation schemes and implementation costs, especially in distin-

guishing between local and global operations.

As usual, we use two families of chemical rules that operate on multisets

of terms (the so-called chemical soups, or chemical solutions): Structural rules

*

)

are reversible (* is heating,) is cooling); they represent the syntactical

rearrangements of terms in solution. Reduction rules �! consume some speci�c

terms in the soup, replacing them by some other terms; they correspond to the

basic computation steps.

3.2 The join-calculus and the re
exive chemical machine (RCHAM)

Our starting point is the join-calculus as described in [6]. The join-calculus is as

expressive as the asynchronous �-calculus. Furthermore, our calculus is closer to

a programming language than the �-calculus. In particular, it can be seen as a

concurrent extension of functional programming.

Syntax: Terms of the calculus are processes and de�nitions:

P

def

= xhevi j def D in P j P jP j 0

D

def

= J . P j D ^D j T

J

def

= xhevi j J jJ

A process P is the asynchronous emission of a message xhevi, the de�nition of

port names, the parallel composition of processes, or the null process. A de�nition

D is made of a few reaction rules J .P connected by the ^ operator. Such rules

match join-patterns of messages J to trigger their guarded processes. They can

be considered as an extension of named functions with synchronization, and obey

similar lexical scoping rules:

{ The formal parameters v

1

; v

2

; : : : v

n

received in join-patterns are bound in

(each instance of) the corresponding guarded process. They are pairwise

distinct.

{ De�ned port names are recursively bound in the whole de�ning process def

D in P , that is, in the main process P and in the guarded processes inside

de�nition D.

A name is fresh with regards to a process or a solution when it is not free in

them. We write f

x

=

y

g for the substitution of name x for name variable y, and � for

an arbitrary substitution. We assume implicit �-conversion on bound variables

to avoid clashes. Received variables rv[J], de�ned variables dv[J] and dv[D],

and free variables fv[D] and fv[P] are formally de�ned for the full calculus in

Figure 2.

Local chemistry A re
exive solution D ` P consists of two parts: P is a multiset

of running processes; D is a multiset of active rules. Such reaction rules de�ne

the possible reductions of processes, while processes can introduce new names

and reaction rules. The chemical rules are:

str-join ` P

1

jP

2

*

)

` P

1

; P

2

str-null ` 0

*

)

`

str-and D

1

^D

2

`

*

)

D

1

; D

2

`

str-nodef T `

*

)

`

str-def ` def D in P

*

)

D�

dv

` P�

dv

(range(�

dv

) fresh)

red J . P ` J�

rv

�! J . P ` P�

rv

The �rst four structural rules state that j and ^ are associative and commu-

tative, with units 0 and T. The str-def rule provides re
ection, with a static

scoping discipline: a de�ning process can activate its reaction rules, substituting

fresh names for its de�ned variables. Conversely, rules can be frozen on a process,

as long as their names are local to that process. The single reduction rule red

describes the use of active reactions (J . P) to consume join-messages present

in the soup and produce a new instance of their guarded process.

In this paper, the presentation of every chemical rule assumes an implicit

context. In other words, we omit the parts of multisets in chemical solutions

that do not change by the e�ect of the presented rule. For instance, the verbose

str-def rule is

D ` P [fdef D in Pg

*

)

D [fD�

dv

g ` P [fP�

dv

g

with the side-condition �

dv

: dv[D] 7! (N � fv[P]� fv[D]� fv[def D in P]).

Example 1. The simplest process is written xhyi; it sends a name y on some

other name x. In examples, we shall assume the existence of basic values, such as

integers, strings, etc. For instance, assuming a printing service has been de�ned

on name print, we would write printh3i. A program would be of the form

def printhxi . : : : in printh3i

To print several integers in order, we would need the printer to send back some

message upon completion. For that purpose, the printer should be given a return

channel � together with every job.

def printhx; �i . : : : �hi : : : in def �hi . printh4; �

0

i in printh3; �i

In practice, sequential control is so common that it deserves some syntactic sugar

to make continuations implicit, as in the language PICT [13]. We write:

def print(x) . : : : reply to print : : : in print(3); print(4)

Synchronous names are written \x" and \print" instead of \x" and \print"

to remind that they also carry an implicit continuation channel �

x

. In their

de�nitions, we use fresh names �

x

, and we translate:

x(ev)

def

= xhev; �

x

i (in join-patterns J)

reply

e

V to x

def

= �

x

h

e

V i (in guarded processes P)

On the caller's side, we introduce let-bindings, sequences, and nested calls. We

use a reserved name �, and we translate top-down, left-to-right:

xh

e

V i

def

= let ev =

e

V in xhevi

let eu = x(

e

V) in P

def

= def �heui . P in xh

e

V ; �i

let u = v in P

def

= P f

u

=

v

g

let eu =

e

V in P

def

= let u

1

= V

1

in let u

2

= : : : in P (otherwise)

x(

e

V);P

def

= def �hi . P in xh

e

V ; �i

3.3 Observation

We choose the observational equivalence framework as a formal basis for rea-

soning about processes [8, 6]. A �rst step is to de�ne a reduction relation on

processes, as a combination of heating, chemical reduction and cooling:

P ! P

0

def

= ; ` fPg (

*

)

�

�!

*

)

�

) ; ` fP

0

g

In the de�nition above, the notation ; ` fPg stands for a chemical solution that

contains no de�nitions and only one running process P .

Then, our idea of observation is to characterize processes by their capabilities

to emit on certain names. Testing one particular name is enough: let \test" be

that name. We de�ne the testing predicate + as follows:

P +

def

= 9P

0

; P !

�

(P

0

j testhi)

Hence, the test succeeds when output on the name test is enabled, possibly after

some internal reductions took place.

The observational congruence is the largest equivalence relation � that meets

the following requirements:

{ � is a re�nement of +;

{ � is a congruence;

{ � is a weak bisimulation. That is, for all processes P and Q such that P � Q

holds, we have the following implication:

P !

�

P

0

implies 9Q

0

; Q!

�

Q

0

and P

0

� Q

0

This equivalence is as discriminating as the barbed bisimulation congruence,

which would test emission on every name x. We refer to [6] for discussion, ex-

amples and proof methods.

The above de�nition of observational congruence is parametric in the reduc-

tion relation and in the context syntax. As we re�ne the calculus, we will apply

the same de�nition to yield re�ned equivalences.

4 Computing with locations

We now re�ne the re
exive CHAM to model distributed systems. First, we parti-

tion processes and de�nitions into several local solutions. This
at model su�ces

for representing both local computation on di�erent sites and global communi-

cation between them. Then, we introduce some more structure to account for

creation and migration of local solutions: we attach location names to solutions,

and we organize them as a tree of nested locations

4.1 Distributed solutions

A distributed re
exive chemical machine (DRCHAM) is a multiset of CHAMs;

we write its global state as several solutionsR

i

` P

i

separated by k; our chemical

rules do not mention the solutions that are left unchanged. Using this convention,

the local solutions evolve internally by the same rules as before. They can also

interact with one another by the new reduction:

comm ` xhevi k J . P ` �! ` k J . P ` xhevi (x 2 dv[J])

This rule states that a message emitted in a given solution on a port name x

that is remotely de�ned can be forwarded to the solution of its de�nition. Later

on, this message can be consumed there using the red rule. This two-step de-

composition of global communication re
ects what happens at run-time in actual

implementations, where message transport and message treatment are distinct

operations. We only consider well-formed DRCHAMs, where every name is de-

�ned in at most one solution. Hence, the transport is deterministic, static, and

point-to-point, and synchronization is only done locally on the receiving site dur-

ing message treatment. As a distributed model of computation, the DRCHAM

hides the details of message routing, but not those of synchronization.

4.2 The location tree

In order to compute with locations, we view them both as syntactic de�nitions

and local chemical solutions; we use location names to relate the two. The set

of location names is denoted by L; we use the letters a; b; : : : 2 L for location

names, and '; : : : 2 L

�

for �nite strings of location names.

Running locations are local labeled solutions R `

'

P . We de�ne the sublo-

cation relation as: `

'

is a sublocation of `

when is a pre�x of '. In the

following, DRCHAMs are multisets of labeled solutions whose labels ' are dis-

tinct, pre�x-closed, and uniquely identi�ed by their rightmost location name, if

any. These conditions ensures that solutions ordered by the sublocation relation

form a tree.

Location names are �rst-class values that statically identify a location. Like

port names, they can be created locally, sent and received in messages, and they

obey the lexical scoping discipline. To introduce new locations, we extend the

syntax of de�nitions with a new location constructor:

D

def

= : : : j a [D : P]

In the heating direction, the semantics of this new construct is to create a sublo-

cation of the current location containing the unique de�nition D and the unique

running process P . More precisely, we have a new structural rule:

str-loc a [D : P] `

'

*

)

`

'

k fDg `

'a

fPg (a frozen)

The side condition means that there are no solutions of the form `

'a

where

 is a non-empty label. As the de�nition D could contain sublocation de�nitions,

this side condition guarantees that D syntactically captures the whole subtree

of a sublocations. Such a complete cooling has a \freezing e�ect" on locations

and will be useful later for controlling migration.

All previous chemical rules apply unchanged, except for the explicit labeling

of solutions. However, it is worth noticing that str-def also applies to de�ned

location names, introducing fresh locations in running processes. In well-formed

DRCHAMs, all reaction rules de�ning one name belong to a single location.

To maintain this invariant when we dilute de�nitions, we constrain the syntax

accordingly: in a multiple de�nition D ^ D

0

, dv[D] \ dv[D

0

] contains only port

names that are not de�ned under a sublocation of D or D

0

.

Example 2. The simplest example of distribution is to send a value to a remote

name. For instance, we may assume that the printer is running at location s (the

server), while the print request is sent from another location c (the client):

print(x) . : : : `

s

`

c

print(3); : : :

The de�nition of print at location s is in the solution. In particular, it can be

used from the client c.

Example 3. Remote procedure call is an abstraction of the previous example: it

sends a value x to a remote service f and waits for a result.

f(y) . reply computation(y) to f `

s

`

c

def rpc(g; x) . reply g(x) to rpc in : : : rpc(f; 3) : : :

As above, f is visible from both solutions. By contrast, rpc is local to c, and

can be considered as part of its communication library. We can also use a more

elaborate de�nition of rpc that handles timeouts:

def rpc(f; x; error) .

def incallhi j donehri . reply r to rpc

^ incallhi j timeouthi . errorhi

in incallhi j donehf(x)i j start timerhtimeout; 3i

in : : : rpc(f; 3; error handler) : : :

The incall message guarantees mutual exclusion between the normal return from

the remote call and the timeout error message.

4.3 Migration

We are now ready to extend the syntax of processes with a new primitive for

migration, along with a new chemical reduction:

P

def

= : : : j gohb; �i

move a [D : P jgohb; �i] `

'

k `

 b

�! `

'

k a [D : P j�hi] `

 b

Informally, the location a moves from its current position 'a in the tree,

to a new position ba just under b. The destination solution `

 b

is identi�ed

by its relative name b. Once a arrives, the continuation �hi can trigger other

computations. In case the rule str-loc has been used beforehand to cool down

location a into a de�nition, its side-condition (a frozen) forces all the sublocations

of a to migrate at the same time. As a consequence, migration to a sublocation

is ruled out, and nested migrations in parallel are con
uent.

In the paper, we use the same notation for port names and for primitives like

goh�; �i. We extend the synchronous call convention accordingly for go(�). Notice,

however, that primitives are not �rst-class names: they cannot be sent as values

in messages.

Example 4. Another example of distribution is to download code from a code

server �a la Java for the computation to take place on the local site.

load applet(a) . def b[applet(y) . reply : : : to applet

: go(a); reply applet to load applet] in 0 `

s

`

c

let f = load applet(c) in : : : f(3) : : :

This reduces to the same server, and a local copy of the applet:

load applet(a) . def b[applet(y) . reply : : : to applet

: go(a); reply applet to load applet] in 0 `

s

b

0

[applet(y) . reply : : : to applet] `

c

: : : applet(3) : : :

Assuming that the applet does not include another go primitive, b

0

remains

attached to c and the program behaves as if a fresh copy of the applet had been

de�ned at location c.

4.4 Building our CASA

The opposite of retrieving code is sending computation to a remote server. The

client de�nes the request; the request moves to the server, runs there, and sends

the result back to the client:

def f(x; s) . a[go(s); reply : : : to f : 0] in : : : f(3; server) : : :

In the code above, the remote computation returns a tuple of basic values. In

general however, the result might contain arbitrary data allocated during the

computation, or even active data (processes with internal state). In the generic

CASA, the server cannot just return a pointer to the data; it must also move

the data and the code back to the client location. To illustrate this, we consider

an agent that allocates and uses a reference cell; new cell creates a fresh cell and

returns its two methods, set for updates and get for access.

def c[f(x; s) .

def a[T : go(s);

let set; get = new cell(a)

in set(computation(x)); go(c); reply get to f]

in : : : : 0]

in : : : f(3; server) : : :

The data is allocated within the agent at location a, upon arrival on the server. It

does not need to be pre-allocated, and grows on demand during the computation.

Eventually, the agent is repatriated to the client by the go(c) primitive call.

5 Failure and recovery

Modeling failures is the litmus test for a distributed computation formalism.

In the absence of failures, locations have only pragmatic signi�cance, and no

semantic importance. In fact, it was our incapacity to come up with a simple

failure model for the �-calculus that spawned the join-calculus.

In this section we present our failure model, we introduce our two failure

management primitives, we show their use in examples, and �nally we discuss

the choice of our failure model.

5.1 Representing failures

We use a marker
 62 L to tag failed locations. For every a 2 L, "a denotes either

a or
a, and '; denote strings of such "a. In the DRCHAM,
 appears in the

location string ' of failed locations `

'

. We say ' is dead if it contains
, and

alive otherwise; the position of the tag indicates where the failure was triggered.

In the process syntax, failed locations are frozen as tagged de�nitions
a [D : P];

thus the general shape of a location de�nition is "a [D : P].

In order to preserve scopes, structural rules are allowed in failed locations,

hence the structural rules in Figure 3 are almost unchanged from sections 3{4,

except for the obvious generalization of str-loc to the failed location syntax.

We model failure by prohibiting reactions inside a failed location or any of its

sublocations. More precisely, in Figure 3 we add a side condition to red, comm,

andmove, that prevents these rules from taking messages (or goh�; �i primitives)

in a solution with a dead label. Note however that we do not prevent messages

or even locations from moving to a failed location, as such deadly moves are

unavoidable in an asynchronous distributed setting.

Because failure can only occur in a named location, the top solution ` pro-

vides a \safe haven" where pervasive de�nitions, such as the behavior of integers,

may be put. Because of this we need to consider two equivalences for the cal-

culus with failures: a \static equivalence" that is a congruence for all but the

P

def

= xhevi message

def D in P de�nition

0 inert process

P jP composition

goha; �i migration

halthi termination

failha; �i failure detection

D

def

= J . P local rule

T inert de�nition

D ^D co-de�nition

a [D : P] sub-location

a [D : P] dead sub-location

J

def

= xhevi message pattern

J jJ join-pattern

Fig. 1. Syntax for the distributed-join-calculus

J : dv[xhevi]

def

= fxg

dv[J j J

0

]

def

= dv[J] [dv[J

0

]

D : dv[J . P]

def

= dv[J]

dv[T]

def

= dv[;]

dv[D ^D

0

]

def

= dv[D] [dv[D

0

]

dv[a [D : P]]

def

= fag] dv[D]

P : fv[xhevi]

def

= fxg [fu 2 evg

fv[0]

def

= ;

fv[P j P

0

]

def

= fv[P] [fv[P

0

]

fv[def D in P]

def

= (fv[P] [fv[D]) � dv[D]

rv[xhevi]

def

= fu 2 evg

rv[J j J

0

]

def

= rv[J]] rv[J

0

]

fv[J . P]

def

= dv[J] [(fv[P]� rv[J])

fv[T]

def

= ;

fv[D ^D

0

]

def

= fv[D] [fv[D

0

]

fv[a [D : P]]

def

= fag [fv[D] [fv[P]

fv[goha; �i]

def

= fa; �g

fv[halthi]

def

= ;

fv[failha; �i]

def

= fa; �g

Well-formed conditions for D: In a scope, location variables can be de�ned only once;

port variables can only appear in the join-patterns of one location (cf. 3.2, 4.2)

Fig. 2. Scopes for the distributed-join-calculus

str-join ` P

1

jP

2

*

)

` P

1

; P

2

str-null ` 0

*

)

`

str-and D

1

^D

2

`

*

)

D

1

; D

2

`

str-nodef T `

*

)

`

str-def ` def D in P

*

)

D�

dv

` P�

dv

(range(�

dv

) fresh)

str-loc "a [D : P] `

'

*

)

`

'

k fDg `

'"a

fPg (a frozen)

red J . P `

'

J�

rv

�! J . P `

'

P�

rv

(' alive)

comm `

'

xhevi k J . P ` �! `

'

k J . P ` xhevi (x 2 dv[J], ' alive)

move a [D : P jgohb; �i] `

'

k `

 "b

�! `

'

k a [D : P j�hi] `

 "b

(' alive)

halt a [D : P jhalthi] `

'

�!
a [D : P] `

'

(' alive)

detect `

'

failha; �i k `

 "a

�! `

'

�hi k `

 "a

("a dead, ' alive)

Side conditions: in str-def, �

dv

instantiates the port variables dv[D] to distinct, fresh

names; in red, �

rv

substitutes the transmitted names for the received variables rv[J];

\a frozen" means that a has no sublocations in solution; ' is dead if it contains
, and

alive otherwise.

Fig. 3. The distributed re
exive chemical machine

"a [� : �] constructor, and a \mobile equivalence" that is a congruence for the full

calculus. The two notions coincide for processes that do not export agents.

5.2 Primitives for failure and recovery

We introduce two new primitives halthi and failh�; �i. A halthi at location a can

make this location permanently inert (rule halt in Figure 3), while failha; �i

triggers �hi after it detects that a has failed, i.e. that a or one of its parent

locations has halted (rule detect). Note that the (' alive) side condition in

rulesmove and comm are su�cient to prevent all output from a dead location;

it is attached to rules red, halt, and detect only for consistency.

In conjunction with the static equivalence, the halthi primitive allows us to

use the calculus to express the site failure patterns under which we prove an

equivalence: a top-level location that does not move can only fail if it executes

a halthi. In addition, halthi can be used to encode a \kill" operation, as in

def b[killhi . halthi : start timerhkill; 5i]

in let f = load applet(b) in : : : f(3) : : :

The failh�; �i primitive provides a natural guard for error recovery. For example,

we can make the CASA more secure as follows:

f(x; s) . def a[: : :] in (fail(a); reply f(x; s

0

) to f)

If no error occurs, the agent returns permanently to the client, hence the fail is

permanently disabled. Conversely, if the fail triggers then the server must have

failed while hosting agent a. As this agent cannot return to the server, a new

agent is created and sent to another server. Anyway, we are assured that there

is at most one agent at large, and that its action is only completed once (which

might be quite important, say if the action is \get a plane ticket"). This would

still be true if the client did not know the server location, and the agent moved

through several intermediate sites before reaching the server location.

This uniqueness property is di�cult to obtain with timeouts only. The

failh�; �i primitive provides more information than timeouts do. However, time-

outs are easier to implement and to model (they are just silent transitions in any

bisimulation-based process calculus), so they are a natural complement of fails.

Indeed, for RPC-like interactions that are asynchronous and without side e�ects,

there is little practical use for the uniqueness property, so a simpler timeout is

preferable to a fail check.

5.3 Failure models

What does \failure" mean? The most conservative answer, in our message-

passing setting, is that when a location fails, some messages to, at, or from

the location are lost. However it is very hard to do sensible error recovery in

such a weak model: it is impossible to issue a replacement b for a failed agent a

without running the risk of having a and b interfere through side e�ects.

Assuming that all messages from a failed agent are lost would solve this.

Unfortunately this strong model is not consistent with the comm rule and our

asynchronous, distributed setting. It would require that the system track and

delete all messages issued by a failing location.

A more reasonable requirement would be that a failed location a cannot

respond to messages; this can be enforced by blocking output to a from all

locations detecting an a failure (or having received messages triggered by that

failure-detection). This \weak asynchronous" model can easily be seen to be

testing-equivalent to our \strong asynchronous" model (simply delay the failure

until all the required output from a leave a); hence we are justi�ed in using the

stricter, simpler model in the calculus, but only implementing the weaker one.

However, the models do give di�erent interpretations to a [T : halthi j xhi j xhi]

under bisimulation congruence.

6 Proofs for mobile protocols

The primary purpose of our calculus is to found a core language with enough

expressivity for distributed and mobile programming. But locations with their

primitives can also be used to model fallible distributed environments, as speci�c

contexts within the calculus. As a result, we can use our observational equiva-

lence to relate precisely the distributed implementations with their speci�cation

(i.e. simpler programs and contexts without failures or distribution). In combi-

nation with the usual proof methods developed for other process calculi, this

should provide a setting for the design and the proof of distributed programs

under realistic assumptions.

In this section, we explore this setting through a few simple examples and

an internal encoding of locations. The equivalence relation � is the observa-

tional congruence de�ned in section 3, applied to the distributed join-calculus of

section 5. Due to lack of space, proofs are omitted.

6.1 A sample of equational laws

First, we state several \garbage collection" laws which are useful for simplifying

terms in proofs: we have P � 0 when P resides in a failed location, when it

is guarded by patterns of messages that cannot be assembled, or when it has

neither free port names nor halthi, goh�; �i primitives.

Second, some basic laws hold for the goh�; �i, failh�; �i, and halthi primitives.

For instance, we have fail(a); fail(b);P � fail(b); fail(a);P . Because these primi-

tives are strictly static, the analysis of their local usage yields simpli�cations of

the location tree. The following laws show how to get rid of location b once it

has reached its �nal destination a : when D;P contain neither goh�; �i nor halthi,

the b boundary is irrelevant:

def a [b [D : P] ^D

0

: P

0

] in P

00

� def a [b [T : 0] ^D ^D

0

: P j P

0

] in P

00

When a location is empty, migrations and failure-detections using its name b or

its parent's name a cannot be distinguished:

def a [b [T : 0] ^D : P] in P

0

� (def a [D : P] in P

0

) f

a

=

b

g

6.2 Internal encoding

We present a translation from the distributed join-calculus with all the features

introduced in section 4 and section 5, into the simpler join-calculus of section 3.

In combination with the encoding of the join-calculus into the �-calculus [6], this

provides an alternative de�nition of migration and failure in the usual setting

of process calculi. This also suggests that our distributed extension does not

unduly add semantic complexity.

The basic idea is to replace every location construct by a de�nition that sup-

ports an equivalent protocol, and every use of locality information by a message

call for this protocol. Once this is done, the structural translation [[P]] of the dis-

tributed process P simply makes explicit the side-conditions of the DRCHAM.

For instance, we have [[xh1i]] = ping();xh1i, where ping() checks that the current

location is alive before returning, thus mimicking the comm rule.

The interface to the encoding of location a consists of two port names. a

stands for the location value; h

a

provides internal access to the current location.

They are sent to the encoding of location primitives (ping; fail; halt; go; subloc).

The corresponding implementation E(�) de�nes these primitives and the top-level

location:

def subloc(h

0

) .

def livehpi j poll() . let r = p() in (livehpi j reply r to poll)

^ livehpi j killhi . deadhpi

^ deadhpi j poll() . let r = p() in

deadhpi j reply (if r = alive then failed else r) to poll

^ livehpi j get() . lockhi j reply p to get

^ lockhi j poll() . lockhi j reply retry to poll

^ lockhi j sethpi . livehpi in

def here() . reply poll; kill; get; set to here in

let poll

0

; ; ; = h

0

() in livehpoll

0

i j reply poll; here to subloc in

def ping(h) . let p; ; ; = h() in repeat p() until alive; reply to ping in

def fail(p) . repeat p() until failed; reply to fail in

def halthhi . let ; kill; ; = h() in killhi in

def go(h; p

0

) . let p; ; get; set = h() in

def attempt() . if (if p

0

() = retry then failed else p()) = alive

then sethp

0

i j reply done to attempt

else sethpi j reply retry to attempt in

repeat attempt(get()) until done in

def here() .

def top() . reply alive to top ^ top() . reply retry to top

^ killhi j get() j sethpi . 0 in

reply top; kill; get; set to here in

def starthh

s

;eai . (�) in inithstart; here; ping; fail; halt; go; subloci

[[0]]

a

def

= 0

[[xhevi]]

a

def

= ping(h

a

);xhevi

[[failha; �i]]

a

def

= fail(a); [[�hi]]

[[halthi]]

a

def

= halthh

a

i

[[gohb; �i]]

a

def

= go(h

a

; b); [[�hi]]

[[P j P

0

]]

a

def

= [[P]]

a

j [[P

0

]]

a

[[def D in P]]

a

def

= [[D]]

L

a

�

def [[D]]

D

a

in ([[D]]

P

a

j [[P]]

a

)

�

D [[D]]

D

a

[[D]]

P

a

[[D]]

L

a

J . P [[J]]

a

. [[P]]

a

0 (�)

b [D : P] [[D]]

D

b

[[D]]

P

b

j [[P]]

b

let b; h

b

= subloc(h

a

) in [[D]]

L

b

(�)

D ^D

0

[[D]]

D

a

^ [[D

0

]]

D

a

[[D]]

P

a

j [[D

0

]]

P

a

[[D]]

L

a

([[D

0

]]

L

a

(�))

T T 0 (�)

In the translation above, we assume that location names in P are pairwise dis-

tinct. We omit the formal translation of the syntactic sugar we use for control

(symbolic constants, if then else, repeat until).

When placed in an arbitrary context, the encoding E([[P]]

s

) exports the init

message. The context can set up an arbitrary location tree using the location

primitives, then starts the translation in some location by providing some valid

interface h;ea. To keep things simple, we use a re�ned sort discipline for the

target calculus; the port names h

a

and a are given special sorts; �

local

is the

restricted congruence over contexts that do not de�ne or sends messages to names

of these sorts. In particular, this prevents contexts from accessing our internal

representation or otherwise meddling with our protocol. We believe that this

limitation can be enforced using \�rewall" techniques as in [6].

Theorem 1 The encoding E([[�]]

s

) is fully-abstract up-to observational congru-

ences � in the distributed join-calculus and �

local

in the join-calculus:

8P; P

0

;8ea � (fv[P; P

0

] \ L); P � P

0

() E([[P]]

s

) �

local

E([[P

0

]]

s

)

As a special case, contexts of the simple join-calculus have the same dis-

criminating power than distributed ones, as long as there is no exchange of

location names. This condition automatically holds for simple processes consid-

ered as distributed processes, meaning that simple and distributed observation

coincide. This is in sharp contrast with the �-calculus with locality [1], where

the distributed congruence is strictly �ner than the local one, even for local

processes.

7 Future work

In this paper, we laid the groundwork for a calculus of distributed processes with

mobility and failure, and we investigated the use of process-calculus techniques

for proving distributed protocols. In complement, more speci�c tools are needed

(weaker equivalences, fairness). In order to validate our approach, we plan to

apply the distributed join-calculus to asynchronous protocols in an unreliable

setting, or with security requirements; to this end, we currently experiment with

the design and implementation of a high-level programming language founded

on our calculus.

Acknowledgments

This work bene�ted from numerous discussions with Roberto Amadio, G�erard

Boudol, Damien Doligez, Florent Guillaume, Benjamin Pierce, Peter Sewell, and

David Turner.

References

1. R. Amadio and S. Prasad. Localities and failures. In 14th Foundations of Software

Technology and Theoretical Computer Science Conference. Springer-Verlag, 1994.

LNCS 880.

2. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217{248, 1992.

3. K. A. Bharat and L. Cardelli. Migratory applications. Technical Report 138,

DEC-SRC, February 1996.

4. G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with

localities. Formal Aspects of Computing, 6:165{200, 1994.

5. L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27{59,

Jan. 1995.

6. C. Fournet and G. Gonthier. The re
exive chemical abstract machine and the

join-calculus. In 23rd ACM Symposium on Principles of Programming Languages,

Jan. 1996.

7. A. Giacalone, P. Mishra, and S. Prasad. FACILE: A symmetric integration of

concurrent and functional programming. International Journal of Parallel Pro-

gramming, 18(2):121{160, 1989.

8. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical

Computer Science, 151:437{486, 1995.

9. E. Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis,

University of Washington, Computer Science Department, Dec. 1988.

10. L. Leth and B. Thomsen. Some facile chemistry. Technical Report ECRC-92-14,

European Computer-Industry Research Centre, Munich, May 1992.

11. R. Milner. The polyadic �-calculus: a tutorial. In Logic and Algebra of Speci�ca-

tion. Springer Verlag, 1993.

12. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-

ematical Structures in Computer Science, 1995. To appear. A summary was pre-

sented at LICS '93.

13. B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In Theory

and Practice of Parallel Programming, Sendai, Japan, Apr. 1995. LNCS 907.

14. D. Sangiorgi. Localities and non-interleaving semantics in calculi for mobile pro-

cesses. Technical Report ECS{LFCS{94{282, University of Edinburgh, 94. to

appear in TCS.

